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Abstract. Predicting the solution of complex systems is a significant
challenge. Complexity is caused mainly by uncertainty and nonlinear-
ity. The nonlinear nature of many complex systems leaves uncertainty
irreducible in many cases.
In this work, a novel iterative strategy based on the feedback neural net-
work is recommended to obtain the approximated solutions of the fully
fuzzy nonlinear system (FFNS). In order to obtain the estimated solu-
tions, a gradient descent algorithm is suggested for training the feedback
neural network. An example is laid down in oreder to demonstrate the
high accuracy of this suggested technique.

Keywords: Approximate solution, complex system, feedback neural net-
work, gradient descent algorithm, simulation

1 Introduction

Neural network has drawn attention since it is viewed as to be successful in
various applications [1–10]. Fuzzy neural network is coordinated with numer-
able characteristics expressed as learning capability, generalization and nonlin-
ear mapping [11]. The standard neural network is viewed as to be approximator
[12, 13]. A new learning algorithm for training the fuzzy neural networks by tak-
ing into consideration of triangular fuzzy weights is suggested in [14]. The fuzzy
delta learning rule in order to train the fuzzy neural network is proposed in [15].
Obtaining the solution of fuzzy problem by utilizing neural networks is investi-
gated in [16]. The approximated solution of fully fuzzy matrix equation by using
neural networks is studied in [17]. A static neural network is suggested in [18] in
order to obtain the approximate solution of fuzzy polynomials. A dynamic neu-
ral network is utilized in order to extract the estimated solution of dual fuzzy
polynomials in [19]. New methods for fuzzy identification and modeling are pro-
posed in [20–22]. The state space model of a linear system is extended to fuzzy
case in [23]. The homotopy method for solving fuzzy nonlinear system is sug-
gested in [24]. A new algorithm for dynamical nonsingleton fuzzy control system
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is proposed in [25]. The Adomian methodology for solving fuzzy system of linear
equations is suggested in [26]. The homotopy technique in order to obtain the
solution of a system of fuzzy nonlinear equations is suggested in [27].

It is worthwhile to mention that no study has been initiated for solving FFNS
by using neural networks. For this purpose, in this work a new method based on
neural network is suggested in order to obtain the Z-number solutions of FFNS.
The Z-number weights are adjusted by utilizing a learning algorithm which is
based on the gradient descent method. The simulation results shows that the new
proposed technique is effective in extracting the Z-number solutions of FFNS.

This work is organized as follows: In section II some basic definitions are laid
down. The structure of the feedback neural network for obtaining the Z-number
solutions of FFNS is illustrated in section III. In section IV an example with
application is given in order to show the efficiency of the proposed method. The
conclusion is given in Section V.

2 Preliminaries

Prior to the introduction of the FFNS, some important definitions associated
with fuzzy numbers and Z-numbers are given in this section.

Definition 1. A fuzzy number B is a function B ∈ E : ℜ → [0, 1], in such a
manner that, 1) B is normal, (there exist a0 ∈ ℜ in such a manner that B(a0) =
1; 2) B is convex, B(ϱa+ (1− ϱ)τ) ≥min{B(a), B(τ)}, ∀a, τ ∈ ℜ, ∀ϱ ∈ [0, 1]; 3)
B is upper semi-continuous on ℜ, i.e., B(a) ≤ B(a0) + ε, ∀a ∈ N(a0), ∀a0 ∈ ℜ,
∀ε > 0, N(a0) is a neighborhood; 4) The set B

+ = {a ∈ ℜ, B(a) > 0} is compact.
The popular membership functions for fuzzy numbers are the triangular func-

tion

µB = F (λ1, λ2, λ3) =

{
a−λ1

λ2−λ1
λ1 ≤ a ≤ λ2

λ3−ζ
λ3−λ2

λ2 ≤ a ≤ λ3
(1)

otherwise µB = 0, and trapezoidal function

µB = F (λ1, λ2, λ3, λ4) =


a−λ1

λ2−λ1
λ1 ≤ a ≤ λ2

λ4−a
λ4−λ3

λ3 ≤ a ≤ λ4

1 λ2 ≤ a ≤ λ3

(2)

otherwise µB = 0.
Definition 2. A Z-number has two components Z = [B(a), p̃]. The primary

component B(a) is defined as restriction on a real-valued uncertain variable a.
The secondary component p̃ is defined as a measure of reliability of B.

The probability measure is

P̃ =

∫
ℜ
µB(a)p̃(a)da (3)

where p̃ is denoted as the probability density of a, also ℜ is denoted as the
restriction on p̃. For discrete Z-numbers

P̃ (B) =
n∑

i=1

µB(ai)p̃(ai) (4)
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Definition 3. The α-level of the fuzzy number B is illustrated as ([28]),

[B]α = {a ∈ ℜ : B(a) ≥ α} (5)

where 0 < α ≤ 1, B ∈ E.

Since α ∈ [0, 1], [B]α is bounded which is defined as Bα ≤ [B]α ≤ B
α
. The

α-level of B between Bα and B
α
is stated as

[B]α =
(
Bα, B

α
)

(6)

Definition 4. The Z-numbers have three elementary operations; ⊕,⊖, and ⊙
which are named as addition, subtraction, and multiplication.

Suppose Z1 = (B1, p̃1) and Z2 = (B2, p̃2) be two discrete Z-numbers express-
ing the uncertain variables a1 and a2,

∑n
ι=1 p̃1(a1ι) = 1,

∑n
ι=1 p̃2(a2ι) = 1. The

operations are displayed as

Z12 = Z1 ∗ Z2 = (B1 ∗B2, p̃1 ∗ p̃2) (7)

where ∗ ∈ {⊕,⊖,⊙}.
We have

[B1 ⊕B2]
α = [B1]

α + [B2]
α = [Bα

1 +Bα
2 , B

α

1 +B
α

2 ] (8)

[B1 ⊖B2]
α = [B1]

r − [B2]
α = [Bα

1 −Bα
2 , B

α

1 −B
α

2 ] (9)

[B1 ⊙B2]
α =

(
min{Bα

1B
α
2 , B

α
1B

α

2 , B
α

1B
α
2 , B

α

1B
α

2 }
max{Bα

1B
α
2 , B

α
1B

α

2 , B
α

1B
α
2 , B

α

1B
α

2 }

)
(10)

For all p̃1 ∗ p̃2 operations, we have

p̃1 ∗ p̃2 =
∑
i

p̃1(a1,i)p̃2(a2,(n−i)) = p̃12(a) (11)

Definition 5. Absolute value of a triangular fuzzy number B(a) = F (λ1, λ2, λ3)
is defined as

|B(a)| = |λ1|+ |λ2|+ |λ3| (12)

3 Numerical solution of fully fuzzy nonlinear system with
feedback neural network

In this section a new method based on feedback neural network is proposed in
order to obtain the numerical solutions of FFNS.
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3.1 Fully fuzzy nonlinear systems

The FFNS is stated as below{
S11 ⊙ p⊙ q ⊕ ...⊕ S1n ⊙ pn ⊙ qn = G1

S21 ⊙ p⊙ q ⊕ ...⊕ S2n ⊙ pn ⊙ qn = G2
(13)

where S1j , S2j , p, q,G1, G2 belong to Z-number set (for j = 1, ..., n). In order
to obtain estimated solutions, a feedback neural network which is equivalent to
Eq. (13) is suggested. The proposed network is shown in Figure 1.
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Figure 1. Fully fuzzy nonlinear system in the form of feedback neural network.

3.2 Computation of fuzzy output

We propose a four layer feedback neural network where, the α-level sets of the
Z-number parameters Sqj are nonnegative, i.e., 0 ≤ Sα

qj ≤ S
α

qj where j = 1, ..., n
and q = 1, 2. We have

• Input units
[p]α = (pα, pα)
[q]α = (qα, qα)

(14)

• First hidden units

[uj ]
α = (uα

j , u
α
j ), j = 1, ..., n

[vj ]
α = (vαj , v

α
j ), j = 1, ..., n

(15)

where

uα
j =


pα(pα)j−1, pα ≥ 0
pα(pα)j−1, pα < 0, j is even
pα(pα)j−1, pα < 0, j is odd

(16)

uα
j =


pα(pα)j−1, pα ≥ 0
pα(pα)j−1, pα < 0, j is even
pα(pα)j−1, pα < 0, j is odd

(17)
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vαj =


qα(qα)j−1, qα ≥ 0
qα(qα)j−1, qα < 0, j is even
qα(qα)j−1, qα < 0, j is odd

(18)

vαj =


qα(qα)j−1, qα ≥ 0
qα(qα)j−1, qα < 0, j is even
qα(qα)j−1, qα < 0, j is odd

(19)

• Second hidden units

[oj ]
α = (oαj , o

α
j ), j = 1, ..., n (20)

where

oαj =


uα
j v

α
j , u

α
j ≥ 0, vαj ≥ 0

uα
j v

α
j , u

α
j < 0, vαj ≥ 0

uα
j v

α
j , u

α
j < 0, vαj < 0

uα
j v

α
j , u

α
j ≥ 0, vαj < 0

(21)

and

oαj =


uα
j v

α
j , u

α
j ≥ 0, vαj ≥ 0

uα
j v

α
j , u

α
j < 0, vαj ≥ 0

uα
j v

α
j , u

α
j ≥ 0, vαj < 0

uα
j v

α
j , u

α
j < 0, vαj < 0

(22)

• Output unit

[Φq]
α = (Φα

q , Φ
α

q ), q = 1, 2 (23)

where

[Φq]
α
=

(∑
jϵM Sα

qjo
α
j +

∑
jϵN S

α

qjo
α
j ,∑

jϵC S
α

qjo
α
j +

∑
jϵD Sα

qjo
α
j

)
(24)

where M = {j| oαj ≥ 0}, N = {j| oαj < 0}, C = {j| oαj ≥ 0}, D = {j| oαj < 0}.
A cost function for α-level sets of the Z-number output Φq and the corre-

sponding target output Gq is defined as below

eq = eαq + eαq
eαq = 1

2 (G
α
q − Φα

q )
2

eαq = 1
2 (G

α

q − Φ
α

q )
2

(25)

3.3 Learning algorithm

Z-number quantities p = ((p1, p2, p3, p4), p) as well as q = ((q1, q2, q3, q4), p) are
initialized at random Z-numbers. For Z-number variable p adjust rule is stated
as below ([14, 29]),

pr(k + 1) = pr(k)⊕∆pr(k), r = 1, 2, 3, 4

∆pr(k) = −η
∂eq
∂pr ⊕ γ∆pr(k − 1)

(26)
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where η is the learning rate and γ is the momentum term constant.
∂eq
∂pr is

computed as below

∂eq
∂pr

=
∂eαq
∂pr

+
∂eαq
∂pr

(27)

Therefore,

∂eαq
∂pr =

∂eαq
∂Φα

q

∂Φα
q

∂pr = −(Gα
q − Φα

q )
∂Φα

q

∂pr (28)

where

∂Φα
q

∂pr =
∑

jϵM

∂Φα
q

∂oα
j

∂oαj
∂uα

j

∂uα
j

∂(pα)j
∂(pα)j

∂pr

+
∑

jϵN

∂Φα
q

∂oα
j

∂oαj
∂uα

j

∂uα
j

∂(pα)j
∂(pα)j

∂pr

(29)

and

∂eαq
∂pr =

∂eαq

∂Φ
α

q

∂Φ
α

q

∂pr = −(G
α

q − Φ
α

q )
∂Φ

α

q

∂pr (30)

where

∂Φ
α

q

∂pr =
∑

jϵC

∂Φ
α

q

∂oαj

∂oαj
∂uα

j

∂uα
j

∂(pα)j
∂(pα)j

∂pr

+
∑

jϵD

∂Φ
α

q

∂oαj

∂oαj
∂uα

j

∂uα
j

∂(pα)j
∂(pα)j

∂pr

(31)

In above relations the derivatives
∂(pα)j

∂pr and ∂(pα)j

∂pr can be written as below

∂(pα)j

∂pr =
∂(pα)j

∂pα

∂pα

∂pr

=



j(pα)j−1


1− α, r = 1
α, r = 2
0, r = 3
0, r = 4

, pα ≥ 0

j(pα)j−1


0, r = 1
α, r = 2
1− α, r = 3
0, r = 4

, pα < 0, j is even

j(pα)j−1


0, r = 1
α, r = 2
1− α, r = 3
0, r = 4

, pα < 0, j is odd

(32)
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and
∂(pα)j

∂pr = ∂(pα)j

∂pα
∂pα

∂pr

=



j(pα)j−1


1− α, r = 1
α, r = 2
0, r = 3
0, r = 4

, pα ≥ 0

j(pα)j−1


0, r = 1
α, r = 2
1− α, r = 3
0, r = 4

, pα < 0, j is even

j(pα)j−1


0, r = 1
α, r = 2
1− α, r = 3
0, r = 4

, pα < 0, j is odd

(33)

The connection weights pj are updated as follows

pj(k + 1) = (p(k + 1))j , j = 2, ..., n (34)

We can adjust the Z-number parameter q like p.

4 Applications

In this section, a real example is used to demonstrate how to apply feedback
neural network in order to find the solutions of FFNS.

Example 1 Consider the series circuit consisting a voltage source and two
bulbs, see Figure 2. The power of bulbs is defined as a function of V and I.
P1(v, i) = V I is power of first bulb and P1(v, i) = V 2I2 is the power of second
bulb, where V is the Voltage and I is the current of bulbs having Z-number
amount. The total power equation for circuit is defined as follow

((7, 9, 11), p(0.7, 0.81, 0.9))⊙ V ⊙ I ⊕ ((2, 5, 7), p(0.7, 0.8, 0.9))⊙ V 2 ⊙ I2

= ((29, 1201, 6011), p(0.7, 0.8, 0.91))
((9, 10, 12), p(0.7, 0.8, 0.9))⊙ V ⊙ I ⊕ ((4, 6, 9), p(0.7, 0.85, 0.9))⊙ V 2 ⊙ I2

= ((55, 1501, 8001), p(0.75, 0.8, 0.9))

V = ((−5,−3,−2), p(0.8, 0.9, 1)) and I = ((−4,−3,−1), p(0.8, 0.9, 1)) are the
exact solutions. The neural network shown in Figure 1 is utilized in order to esti-
mate the solutions V and I. The maximum learning rate of neural network is η =
0.001. The neural network starts from V (0) = ((−8,−6,−5), p(0.7, 0.8, 0.9)) and
I(0) = ((−7,−6,−4), p(0.75, 0.8, 0.9)). The approximation results are demon-
strated in Table 1. The error between the approximate solution and the exact
solution is demonstrated in Figure 3.



8 Raheleh Jafari et al.

 

Figure 2. Series circuit

Table 1. Neural network approximation for the solutions
k V (k) I (k)

1 ((−7.8876,−5.9203,−4.9099), p(0.7, 0.8, 0.9)) ((−6.8909,−5.9392,−3.9151), p(0.7, 0.8, 0.9))

2 ((−7.5038,−5.6027,−4.5932), p(0.7, 0.8, 0.9)) ((−6.5488,−5.6312,−3.6009), p(0.7, 0.8, 0.9))

3 ((−7.2192,−5.3202,−4.2984), p(0.7, 0.8, 0.9)) ((−6.2472,−5.3533,−3.2783), p(0.7, 0.8, 0.9))
...

...
...

97 ((−5.0107,−3.0113,−2.0127), p(0.7, 0.8, 0.9)) ((−4.0112,−3.0106,−1.0121), p(0.7, 0.8, 0.9))

98 ((−5.0073,−3.0086,−2.0096), p(0.7, 0.8, 0.9)) ((−4.0089,−3.0078,−1.0093), p(0.7, 0.8, 0.9))

99 ((−5.0043,−3.0055,−2.0062), p(0.7, 0.8, 0.9)) ((−4.0056,−3.0049,−1.0061), p(0.7, 0.8, 0.9))
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Figure 3. The error between the approximate solution and the exact solution

5 Conclusion

In this work, a new method based on the feedback neural network is proposed in
order to approximate the solutions of FFNS. In order to obtain the approximate
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solutions of FFNS a learning algorithm based on the gradient descent method
is applied. An example is laid down in order to demonstrate the high accuracy
of this suggested technique. The future work is the application of the mentioned
methodology for FFNS equations on the basis of Z-numbers.
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