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Abstract 
 

Salamanders, like newts and axolotls, stand out among adult vertebrates for their 

outstanding capacity to regenerate whole body parts and restore complex structures 

upon injury. One of the best-known examples is their ability to fully regenerate a 

functional limb. Despite the important progress in the field, our understanding of the 

molecular cues that control limb regeneration is still limited. In this thesis, I focus on 

the mechanisms by which skeletal muscle stimulates limb regeneration. Skeletal 

muscle is particularly interesting because, in newts, it contributes to limb regeneration 

by dedifferentiation. This unique process is characterized by fragmentation of the 

multinucleated myofiber and subsequent cell cycle reentry by the derived 

mononucleate progeny. 

 

In Paper I, we sequenced and edited the ~20 Gigabases genome of the Iberian ribbed 

newt Pleurodeles waltl, a commonly used species for regeneration studies in 

salamanders. Using CRISPR/Cas9 technology we perturbed two key transcription 

factors (Pax3 and Pax7) that are involved in skeletal muscle development and 

regeneration in vertebrates. We found that contrary to mammals, in which Pax7 

expression by skeletal muscle stem cells is indispensable for regeneration, muscle 

regeneration was not altered when Pax7 gene was mutated in newts. Moreover, we 

observed that embryonic stem cell-specific microRNAs (mir-93b and mir-427), as well 

as Harbinger DNA transposons carrying the Myb-like proto-oncogene have expanded 

dramatically in the Pleurodeles waltl genome and are co-expressed during limb 

regeneration. This study provides a foundation for comparative genomic studies that 

could improve our understanding of the uneven distribution of regenerative capacities 

among vertebrates. 

 

In Paper II, we identified a microRNA, miR-10b-5p, which is highly abundant in muscle 

tissue across species and downregulated during early limb regeneration in newts. In 

contrast, miR-10b-5p displayed the opposite regulation in mammalian cultured 

myotubes, when these were induced to dedifferentiate. To investigate a possible 

function of miR-10b-5p in newt limb regeneration, we overexpressed it by mimic 

injection. We found that such manipulation of miR-10b-5p levels during the initial 

stages of regeneration slowed down the regeneration process. Moreover, we 

observed that overexpression of miR-10b-5p decreased the number of cycling cells 

and counteracted blastema growth. The identification of miR-10b-5p targets will be 

an important task for future studies. 
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In Paper III, we showed that blood clotting proteases cleaved and activated blood-

derived bone morphogenetic proteins (BMPs) to promote BMP signaling-dependent 

cell cycle re-entry by myofiber progeny. In particular, we found that protease-activated 

BMP4/7 heterodimers which were present in serum, strongly induced myotube cell 

cycle re-entry, with protease cleavage yielding a 30-fold potency increase of BMP4/7 

compared with canonical BMP4/7. Additionally, we observed that inhibition of BMP 

signaling, via muscle-specific dominant-negative receptor expression, reduced cell 

cycle re-entry in vitro and in vivo. Furthermore, in vivo inhibition of serine protease 

activity depressed cell cycle re-entry, which in turn could be rescued by cleaved- 

mimic BMP. This work provides a new molecular mechanism for the reversal of the 

differentiated state in muscle. 

 

In Paper IV, we carried out a comparative analysis of centrosome dynamics in mouse 

and newt muscle cells. We showed, through a detailed characterization of different 

centrosome components, that centrosomes were gradually disassembled during 

muscle differentiation in mammals. We also provided new insights into the underlying 

mechanisms and variations in gene expression during that inactivation process. On 

the other hand, we found that salamanders retained several centrosome components 

even in mature myofibers. Moreover, we observed that not only the centrosomes were 

maintained in salamander muscle, but they also appeared to be active as microtubule 

organizing centers. This study has elucidated fundamental differences between 

vertebrates at cellular level, which might help us to understand why species differ in 

their ability to produce regenerative progenitor cells. 
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 1 

1. Introduction 
 

Regeneration stands as one of the most fascinating phenomena in biology. Usually 

defined as the capacity of an organism to restore body parts that have been damaged or 

lost, it is a widespread feature throughout the animal kingdom, but the extent of 

regenerative responses varies considerably between organisms (Carlson, 2007). 

Humans, for instance, are not particularly good in repairing tissues and organs that have 

been affected by age, disease or trauma (Jaźwińska and Sallin, 2015), which raises an 

important question. Is this the result of an irreversible loss of regenerative abilities during 

mammalian evolution? Or is this due to acquired mechanisms that might suppress a latent 

regenerative capacity, thus having the potential to be unlocked? While arguments have 

been presented for both models over the years, the discussion could not be settled. A 

better understanding of the molecular mechanisms controlling regeneration should 

provide new perspectives to revisit this evolutionary question. 

  

The discovery of stem cells, which are present in many body tissues and can be recruited 

to repair damage (Blau, Brazelton and Weimann, 2001), has been particularly influential 

in the recent decades and revived the interest in human regeneration. Their self-

replicating and differentiation potential, makes them attractive candidates for new 

regenerative medicine therapies. However, despite holding great promise, the success 

of cell-based therapies has been relatively limited so far (Ankrum and Karp, 2010; Buzhor 

et al., 2014). In part, this reflects how we currently lack a complete understanding of how 

these cells are implicated in tissue growth, maintenance and regeneration. This has not 

affected the general ambition of enhancing regeneration of human body parts, but the 

reality highlights the need to take a step back and focus on expanding our knowledge 

regarding the basic principles that guide tissue regeneration.  

 

In order to do so, one of the best tools at our disposal is the study of other organisms with 

high regenerative capacity, which can contribute with important new insights about 

regulatory mechanisms at the cellular and molecular level. In particular, it is fundamental 

to understand what prevents different animals from regenerating similar body structures. 

What are the roadblocks to human regeneration and what allows regeneration in other 

organisms? Among vertebrates, salamanders, such as newts, have been instrumental in 

many of the fundamental discoveries made in regenerative biology (Brockes and Kumar, 

2008). They stand out for their exceptional regenerative capabilities and are well-known 

for restoring full limbs upon amputation (Stocum, 2017). The limb provides a particularly 

good system to study the regeneration process, as it is easily accessible for experimental 

manipulation and allows for regeneration to be monitored in a non-invasive fashion. 
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 2 

The process of salamander limb regeneration (Fig. 1) has been the central theme of this 

doctoral thesis, with a particular focus on the role of skeletal muscle and the events of 

muscle dedifferentiation. The following chapters are intended to provide the necessary 

background and the appropriate context to the different projects that constitute this work. 

Considering the broad range of topics described, I will, in the interest of clarity, only cover 

the aspects of each subject that I consider to be more relevant. 

   

Figure 1: Successive stages in the regeneration of newt limbs following amputation at proximal 

(right) and distal (left) levels. At the top are the original limbs, while below the intervals of 

regeneration are 7, 21, 25, 28, 32, 42, and 70 days after amputation. From proximal amputation, 

the limb elongates faster but differentiates slower than the limbs regenerating from a more distal 

level (Reproduced with permission from: Goss R.J. 1969).  
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 3 

2. The study of regeneration 
 

Despite being an old research field, the study of regeneration has progressed slowly for 

a long period. The lack of suitable techniques to dissect such a high degree of complexity 

has been a major obstacle to answer the prevailing questions. For most of its existence, 

regeneration research has been heavily dependent on morphological observations and 

grafting experiments, however, the expansion of molecular biology completely changed 

the landscape of the regenerative biology. With the constant development of new genetic 

tools, it has become possible to label and trace specific cells and tissues, which has been 

crucial to address questions of tissue origin and changes in the differentiation state of 

cells. In this chapter, I will provide an overview of the field, outlining how the initial curiosity 

in the natural phenomenon of regeneration led to the creation of a new scientific 

discipline, and elaborate on some of its major discoveries. I will then proceed by exploring 

what is known to date regarding mammalian and salamander regeneration. Lastly, I will 

conclude by describing the progress in regenerative medicine and how the study of 

regeneration has influenced the development of new therapies.  
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conclude by describing the progress in regenerative medicine and how the study of 

regeneration has influenced the development of new therapies.  

  

15



 

 4 

2.1 An historical perspective 

The phenomenon of regeneration has been known since the ancient civilizations, when it 

was observed that lizards could regrow their tails, as described by Aristotle (Aristotle and 

Barnes, 2014). Unsurprisingly, we can find several references to regenerative events in 

Greek mythology such as the legend of Prometheus who, in a punishment ordered by 

Zeus, was chained to a rock, where every day an eagle would come to feed on his liver, 

while every night the liver regenerated to its original form. Another example is the more 

popular legend of Heracles (or Hercules) and the Hydra, a serpent-like creature with 

multiple heads, that would regrow its heads every time they were severed by Heracles’ 

sword (Dinsmore, 1991; Graves, 2017). 

  

The first scientific demonstration, however, was only reported in 1686 when 

Melchisedech Thevenot presented the case of lizard tail regeneration to the Paris 

Academy of Science, with a series of observations confirming those already made by 

Aristotle two thousand years before. Later on, already in 1712, animal regeneration was 

revisited by René-Antoine Réaumur, a French naturalist who reported that crayfish could 

loose and regrow their appendages (Dinsmore, 1996). It is worth mentioning that, at the 

time, the concept of preformation was believed to be behind such regenerative events, in 

which regeneration would result from the expansion or unfolding of very small limbs 

already preformed at the base of the existent limb (Carlson, 2007). These earlier results 

were received with great excitement and scientists became eager to discover other 

examples throughout the animal kingdom. This was finally achieved in 1744, when 

Abraham Trembley reported that aquatic polyps or hydras, named for their resemblance 

to the famous mythological creature, also displayed regenerative abilities, thus confirming 

a more prevalent phenomenon in nature. But the impact of Trembley’s discovery was 

more than simply adding a new entry to the list of regenerative organisms. His 

observations strongly argued against the idea of preformation, since he observed that 

two full hydras would originate from one transected animal (Fig. 2). This had profound 

implications in the scientific and philosophical debate of the time and this disruptive 

context ultimately gave rise to the foundations of experimental zoology and more 

specifically to the discipline of developmental biology (Dinsmore, 1991, 1996; Leclère 

and Röttinger, 2017).  

 

The movement kept growing rapidly as similar observations were recorded in other 

studies using annelid worms, by C. Bonnet in 1745, snails, frog tadpoles and adult 

salamanders, by L. Spallanzani in 1768, and planarians by P. S. Pallas in 1774. The 

pioneer studies of Spallanzani, where he thoroughly characterized the regeneration of 

salamander tails, limbs and jaws, were particularly important because they placed 

vertebrate regeneration under the spotlight, unlike the lizard tail observations that 
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remained unnoticed by many in the scientific community. The fact that regeneration was 

not an exclusive feature of invertebrates and could also be seen in organisms of higher 

complexity was a turning point and attracted the interest of more scientists towards the 

study of this phenomenon. Additionally, Spallanzani’s work greatly contributed to the 

beginning of a gradual shift from scientific studies that were traditionally driven by highly 

descriptive observations towards a more experimental and hypothesis-driven approach 

to study nature (Dinsmore, 1996; Carlson, 2007). 

  

During the 19th century, and before the era of genetics, two key events took place that 

changed the understanding of biology. First, the formulation of the cell theory in 1839 by 

the joint work of Schleiden and Schwann, which postulated that the cell was the basic 

unit of both plants and animals (Ribatti, 2018). This new understanding of tissue 

composition stimulated the development of histological techniques, which became very 

powerful tools in regeneration research. Second, the theory of heredity proposed by 

August Weismann in 1892, which was based on the concept of the germ-plasm, an 

hereditary substance contained in the germ cells that carries information to the offspring 

(Churchill, 1968; Zou, 2015). Inspired by previous work from other biologists such as 

Charles Darwin and Alfred Wallace, which independently formulated the theory of 

evolution through natural selection in 1858 (Kutschera and Niklas, 2004), Weismann’s 

controversial hypothesis expanded this concept and attempted to explain simultaneously 

diverse biological phenomenon such as development, regeneration and evolution.  

 

Figure 2: Regeneration of the fresh water polyp (Hydra). Upon amputation, each fragment will give rise 

to a new animal by regenerating the missing body parts. (From: Leclère and Röttinger, 2017) 
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In the same period, Thomas Morgan, who later became famous for his studies on 

Drosophila genetics, also dedicated part of his career to the study of regeneration. His 

initial motivation was to understand differentiation in development, which he found difficult 

to comprehend simply by studying developing embryos (Sunderland, 2010). As 

regeneration was thought, by some, to mimic the basic processes of development, 

Morgan decided to use regeneration experiments to find the answers he was seeking and 

so he directed his efforts towards the study of the regenerative abilities of planarians 

(Morgan, 1898, 1901a) among other organisms. In order to better distinguish between 

the diverse cases of regeneration, he became committed to define a consistent 

nomenclature to be used in the classification of regenerative phenomena. In his book 

Regeneration (Morgan, 1901b), he subdivided regeneration in two different categories, 

which are still relevant today: “epimorphosis”, when the development of the new part is 

driven by cellular proliferation, and “morphallaxis”, which results from the reorganization 

of the existent material without proliferation. Additionally, in the same publication Morgan 

provided his main contribution to the field, by demonstrating that regeneration is a general 

feature of the organism’s growth and thus is relevant for the understanding of 

development. This was against Weismann’s view that regeneration should be studied as 

an adaptation and a product of natural selection. Despite his important contribution to 

regeneration studies, it is reported that Morgan eventually changed his focus to the 

emerging field of genetics because he believed regeneration was far too complex to be 

solved during his lifetime (Carlson, 2007). Interestingly, his predictions were not entirely 

unfounded as many of the questions he wondered about still remain unanswered today.  

 

During the 20th century and with the progress of histology, researchers started to 

describe in detail several regenerative processes in different species. Nevertheless, due 

to the apparent lack of capacity for many human tissues to regenerate, the interest in 

mammalian regeneration started to decrease gradually. In contrast, amphibian limb 

regeneration received special attention with several scientists shifting from pure 

observations towards experimental studies, to investigate the role of specific tissues in 

limb regeneration – Given its importance for this thesis, the work conducted during this 

period will be discussed later in greater detail. The field gained new momentum at the 

turn of the century with the expansion of stem cell research, after scientists identified stem 

cells in the adult body (Blau, Brazelton and Weimann, 2001) and realized the potential of 

for human tissue regeneration (Gage, 2000; Jankowski, Deasy and Huard, 2002). There 

are still high expectations for the use of stem cells today, but even though we witnessed 

an increasing number of tools for cell replacement therapies, our ability to functionally 

replace lost tissues is still limited and requires further research (Fox et al., 2014; Heslop 

et al., 2015). 
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2.2 Diversity of regenerative phenomena 

Although regeneration is generally defined as the capacity of an organism to restore 

tissues or organs that have been lost or damaged (Sánchez Alvarado and Tsonis, 2006; 

Brockes and Kumar, 2008), this has always been a matter of debate and not everyone 

agrees on a single definition. Regenerative biology is a broad research field and one of its 

main challenges comes from the fact that not all animals can regenerate body parts but 

also that not all the tissues within the body share the same regenerative potential (Goss, 

1969; Tsonis, 2000). Over the years, the increasing number of regenerative phenomena 

being described led to many discussions on how to create a classification system that 

could integrate all the examples into different types of regeneration. However, even today 

it is still hard to fit some of the known examples into specific categories, either because 

they are poorly understood or because of their unique features. A good example is the 

case of lens regeneration in newts which, in spite of being a well-studied phenomenon, 

has not been assigned to a particular type of regeneration. Regeneration phenomena can 

be grouped into four major types: Physiological regeneration, Reparative regeneration, 

Hypertrophy and Morphallaxis (Fig. 3) (Carlson, 2007). 

  

Figure 3:  Classification of the major types of regenerative phenomena present in the animal kingdom. In this 

classification they are divided between four main groups: Physiological regeneration, Reparative 

regeneration, Hypertrophy and Morphallaxis (Based on: Carlson, 2007). 
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Physiological regeneration is the term used to describe the cyclical replacement of worn-

out body parts during homeostasis in which older cells are eliminated and replaced by 

new cells. Mammals display various examples of physiological regeneration such as the 

renewal of the skin epidermis (Blanpain and Fuchs, 2009) and blood cells (Eaves, 2015), 

but perhaps the most remarkable example is the annual regeneration of deer antlers 

(Goss, 1983).  The latter is a stem-cell based process that results from the recruitment, 

proliferation and differentiation of local stem cells and constitutes the only known case of 

mammalian full appendage regeneration (Kierdorf and Kierdorf, 2011). Although these 

examples are grouped under the same category due to their cyclic nature, the difference 

in complexity is striking, showing that this designation does not imply a particular 

mechanism shared between the distinct processes. Instead, the term includes a variety 

of events that help mediating the normal equilibrium of different tissues in the body. 

  

Reparative regeneration refers to the repair of damaged cells, tissues or more complex 

structures like entire organs or multi-tissue body parts. This category also includes a 

multitude of underlying mechanisms, but in common is the context of replacement of a 

structure that was lost or damaged. An example of reparative regeneration at the tissue 

level is the repair of mammalian muscle (Dumont et al., 2015). When reparative 

regeneration regards more complex structures, it is called epimorphic, following the term 

coined by T. H. Morgan, but its definition has changed over time. Currently, epimorphic 

regeneration refers to the phenomena that involve the formation of a blastema, a mass of 

undifferentiated cells that gives rise to the regenerate. This is the definition used today by 

most authors and the one that will be taken into account throughout this thesis. Two of 

the best examples in vertebrates are limb regeneration in salamanders (Fig. 1) and fin 

regeneration in teleost fish (Fig. 4) (Brockes and Kumar, 2008; Pfefferli and Jaźwińska, 

2015). The former will be explored in detail later in this chapter.  

 

Hypertrophy is the increase in mass of certain internal organs to compensate a missing 

part, such as the liver (Michalopoulos, 2013), or a missing pair organ, like the kidneys 

(Addis and Lew, 1940). Here, the focus is on restoring the mass in order to regain its 

functionality, rather than recovering the original anatomical structure. In opposition to 

Figure 4:  Caudal fin regeneration in Zebrafish. The original fin (Uncut) presents a bi-lobed morphology, 

which is restored after 20 days post-amputation (dpa). The blastema, a mass of undifferentiated cells 

that contributes to the new tissue forms between 1 and 3 dpa. (From: Pfefferli and Jaźwińska, 2015) 
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epimorphic regeneration, where the regenerative response occurs mostly at the 

amputation site, in hypertrophy the regeneration events occur in the whole remainder of 

the organ. Interestingly, most of the organs with such capacity can also display it in 

contexts where there is a higher functional demand, even in the absence of injury or organ 

removal (Goss, 1966). Liver regeneration after partial hepatectomy provides one of the 

most-studied examples of hypertrophy, with most studies using the model of surgical 

removal of two-thirds of the liver in rodents. First proposed by Higgins and Anderson in 

1931, this model received a lot of interest with the increasing number of studies from 

transplanted human livers. However, it should be noted that mammalian livers generally 

regenerate through cell proliferation, with each cell type replacing its own cell 

compartment, rather than through an increase in cell size, so the term hyperplasia would 

be more appropriate to classify this process (Michalopoulos, 2013). Interestingly, when 

cell proliferation fails, liver regeneration can still occur through transdifferentiation events, 

such as hepatocytes transdifferentiating into biliary epithelial cells and vice-versa 

(Michalopoulos, 2011).  

 

Morphallaxis, concerns the reconstruction of the body after severe damage through 

remodeling events. This type of regeneration can be observed in Hydra and Planaria 

(Pellettieri, 2018). Even though planarians can also restore lost organs through 

epimorphic regeneration, when the body axes are disrupted by injury, the remaining 

tissues must reset their positional identities and redefine them according to the new 

anatomical locations (Fig. 5). For example, when only a small head fragment is left, part 

of those tissues that had an anterior identity will acquire posterior features. 

  

Figure 5: Schematic illustration of morphallactic and epimorphic regeneration in planarians. Head 

fragments reduce the size of the existing brain (A) and photoreceptors (B) through morphallaxis 

(blue), whereas trunk and tail fragments form these organs de novo in the blastema (a predominantly 

epimorphic response; red). Regeneration of the gut and pharynx (C) requires the combined action of 

both processes. (Reproduced with permission from: Pellettieri, 2018) 
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2.3 Regeneration in mammals 

Accumulating observations have shown that adult mammalian tissues harbor significant 

potential for flexibility and plasticity (Wagers and Weissman, 2004). First, it was 

established that the differentiated state of cells is not irreversible, but rather continuously 

maintained, and thus has the potential to be reverted (Blau et al., 1985). Second, resident 

cells with stem cell properties or potential were identified in a large spectrum of tissues 

(Tsai, Kittappa and McKay, 2002). Third, nuclear transfer and forced expression of 

defined factors show that the nuclei from adult cells can reconstitute an entire organism 

following appropriate manipulations (Gurdon, 1962; Takahashi et al., 2007). 

Nevertheless, mammalian vertebrates display very limited regeneration abilities in adult 

life including: renewal of blood cells, epithelium of skin and gut, replacement of muscle 

and bone tissue and compensatory growth of liver tissue (Odelberg, 2005; Godwin, 

2014a).  

 

In the event of an organ loss or severe injury, animals generally respond in two ways: 

regeneration or repair. Whereas regeneration restores both the integrity and functionality 

of the tissue, repair usually involves the formation of a scar that will seal the wound with 

no or partial replacement of the missing tissue (Jaźwińska and Sallin, 2015). Mammals 

generally respond to severe injuries with high deposition of extracellular matrix, 

characteristic of the fibrotic scar, which alters the organ structure and impairs its function 

(Zeisberg and Kalluri, 2013). Hence, the fibrotic process seems to be a major obstacle 

that prevents a regenerative response in mammals, suggesting a mutually exclusive 

relationship between regeneration and scar-formation (Singh et al., 2015). Interestingly, 

scar-free healing and regeneration of several tissues is consistently observed in mammals 

at early developmental stages, such as in the case of the neonatal mouse heart (Porrello 

and Olson, 2014), but is gradually lost during development (Godwin, 2014b).  

 

There are, however, few examples of mammals that found ways of bypassing these 

limitations during adulthood. One classic example is the already mentioned regeneration 

of deer antlers. Another recently discovered example is the case of the African spiny 

mouse, an emerging model for regeneration studies, which has the capacity to shed and 

subsequently regenerate big portions of its skin, a response that might have evolved to 

escape predators (Seifert et al., 2012). In addition, this study became the first reported 

case of mammalian autotomy and revealed the capacity of these mice to regenerate hair 

follicles, sebaceous glands, dermis and cartilage in a scar-free fashion. This highlights the 

importance of expanding our views towards unconventional model organisms. In 

particular, they might bring us closer to understand whether the limited regenerative 

response found in mammals results from critical molecular processes being no longer 

active, or if they are actively blocked in many adult mammalian tissues.  
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Considering that regeneration is widespread in the animal kingdom but without being 

present in all phyla, its origin has been at the center of one of the oldest debates in the 

field. Nevertheless, it remains unclear whether regeneration emerged independently 

during evolution or if it represents a common ancestral feature, which has been gradually 

lost over time in certain species (Brockes and Kumar, 2008; Bely and Nyberg, 2010). 

New evolutionary studies addressing the intricate relationships between different species 

are necessary to shine some light on this complex question.  

 

In humans, regenerating a full limb is still regarded by some as the Holy Grail of 

regenerative medicine, but different attempts to achieve this have been largely 

unsuccessful. This reflects to some extent the biological constraints of the mammalian 

system, the current limitations in the field of tissue engineering (see section 2.5), but also 

our poor understanding of the full complexity of regeneration and its molecular regulation 

(Ricci, 2013; See, Kulkarni and Pandit, 2013; Shieh and Cheng, 2015; Quijano et al., 

2016). Therefore, it is essential that we learn more about regeneration-competent 

organisms and salamanders are one example that can provide us with new insights 

regarding key mechanisms that allow regeneration to take place. 

  

 

 11 

Considering that regeneration is widespread in the animal kingdom but without being 

present in all phyla, its origin has been at the center of one of the oldest debates in the 

field. Nevertheless, it remains unclear whether regeneration emerged independently 

during evolution or if it represents a common ancestral feature, which has been gradually 

lost over time in certain species (Brockes and Kumar, 2008; Bely and Nyberg, 2010). 

New evolutionary studies addressing the intricate relationships between different species 

are necessary to shine some light on this complex question.  

 

In humans, regenerating a full limb is still regarded by some as the Holy Grail of 

regenerative medicine, but different attempts to achieve this have been largely 

unsuccessful. This reflects to some extent the biological constraints of the mammalian 

system, the current limitations in the field of tissue engineering (see section 2.5), but also 

our poor understanding of the full complexity of regeneration and its molecular regulation 

(Ricci, 2013; See, Kulkarni and Pandit, 2013; Shieh and Cheng, 2015; Quijano et al., 

2016). Therefore, it is essential that we learn more about regeneration-competent 

organisms and salamanders are one example that can provide us with new insights 

regarding key mechanisms that allow regeneration to take place. 

  

23



 

 12 

2.4 Regeneration in salamanders 
 

In contrast to mammals, some other vertebrates retain the exceptional ability to 

regenerate complex body parts throughout life. Among them, the most studied examples 

are the teleost fish, such as the zebrafish, and the aquatic salamanders, such as newts 

and axolotls (Brockes and Kumar, 2008). Research using zebrafish as a model organism 

has demonstrated the extensive capacity of this bony fish to regenerate several 

structures, like the fins (Fig. 4) (Akimenko et al., 1995; Pfefferli and Jaźwińska, 2015), the 

spinal cord (Becker et al., 1997), the retina (Vihtelic and Hyde, 2000) and the heart (Poss, 

Wilson and Keating, 2002). Salamanders, however, are regarded as the animals with the 

largest repertoire of structures that can be regenerated upon injury, which includes: jaws 

(Goss and Stagg, 1958; Ghosh, Thorogood and Ferretti, 1994), lens (Reyer, 1954; 

Tsonis, Madhavan, Tancous, et al., 2004), retina (Young, 1967; Mitashov, 1996), heart 

(Oberpriller and Oberpriller, 1974; Neff, Dent and Armstrong, 1996), tail and spinal cord 

(Holtzer, 1956; Diaz Quiroz and Echeverri, 2013), and limbs (Dinsmore, 1996; Stocum 

and Crawford, 2015). Among these regenerative phenomena, the case of limb 

regeneration in salamanders is one of the oldest being studied and remains as one of the 

most fascinating.  

 

 

2.4.1 Limb regeneration 

Limb regeneration in salamanders is a complex process that includes several 

morphological stages, but is generally characterized by three main events. Upon 

amputation, the stump tissue responds to the injury by a rapid wound healing phase, in 

which epithelial cells cover the exposed tissue, forming the wound epidermis. This 

provides important signals that will induce the formation of the blastema, a heterogeneous 

mass of mesenchymal cells that forms at the wound site originating from the stump 

tissues. These mesenchymal cells will then proliferate, re-differentiate and proceed to 

form the new appendage through morphogenesis (Fig. 6) (Iten and Bryant, 1973; 

Brockes and Kumar, 2002). This represents a classical example of epimorphic 

regeneration, as the regenerative response is mediated by a blastema (Carlson, 2007).  

 

 

 The wound epidermis and the apical epidermal cap 

The wound epidermis, which starts assembling immediately after amputation, is formed 

through the migration of epidermal basal cells. While the migrating cells do not proliferate 

(Hay and Fischman, 1961), a group of dividing epidermal cells located proximal to the 

wound area, provides a continuous stream of migrating cells (Lash, 1955; Repesh and 

Oberpriller, 1978, 1980). As the blastema cells accumulate, a thickening of the epidermis 
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can be observed, which will then allow the formation of the apical epidermal cap (AEC). 

The AEC is an analogous structure to the apical ectodermal ridge (AER) of amniote 

developing limbs, which functions as a distal signaling center that stimulates blastema 

proliferation (Stocum, 2017). The importance of the wound epidermis has been well 

documented in early studies, showing that removal or mechanical disruption of this 

structure can prevent regeneration (Goss, 1969). 

 The origin of the limb blastema 

The origin of the limb blastema has been a long-standing question in Regenerative Biology 

research. Two possible sources have been considered, proposing that either it is 

generated from the activation of resident stem cells or through the dedifferentiation of 

mature cells (Simon and Tanaka, 2013; Stocum, 2017). The blastema has long been 

defined as a dedifferentiation product, however, it is fundamental to distinguish between 

tissue- and cell-level dedifferentiation to better understand this question. While it was 

established that tissue dedifferentiation takes place, as it can be observed by the 

disorganization of the tissue structure upon damage (Iten and Bryant, 1973), it had long 

remained unresolved whether mature cells generate the pool of undifferentiated cells by 

reverting their differentiated state and re-entering the cell cycle (Brockes and Kumar, 

Figure 6: Main events during salamander limb regeneration. An intact limb consists of tissues of 

various types, including dermal, skeletal, neural, and vascular. After amputation, the wound heals to 

form an epidermal layer, the underlying tissues undergo remodeling of the extracellular matrix (ECM), 

and cells in the region secrete soluble factors. Upon thickening of the wound epidermis, the apical 

epidermal cap is generated, which will send stimulating signals for blastema formation. The blastema 

consists of a heterogeneous cell mass that originates through proliferation and migration of cells from 

the adjacent tissues. The blastema then gives rise to the various new tissues that are spatially 

patterned to reconstruct the original limb structure. (Reproduced with permission from: Quijano et 

al., 2016) 
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2002). Several studies have demonstrated that the blastema originates from the 

mesodermal tissues subjacent to the wound epidermis (Butler and O’Brien, 1942; 

Thornton, 1942), however, it is essential to consider how the different tissue types 

contribute to the regenerated limb.  

 

The wound epidermis, despite being critical for regeneration to occur, was shown not to 

contribute for the blastema (Riddiford, 1960). Another study found that dermal fibroblast-

derived cells account for nearly half of the blastema population, whereas the percentage 

of cartilage-derive cells was relatively low (Muneoka, Fox and Bryant, 1986). Other 

reports found similar results in relation to the skeletal elements (cartilage/bone), 

supporting a small or no contribution to the blastema (Steen, 1968; McCusker et al., 

2016). In fact, when the bone was removed from the limb prior to amputation, the limbs 

regenerated all the necessary tissues, including skeleton, suggesting that these tissues 

are not required for limb regeneration to occur (Thornton, 1938b; Goss, 1956). In 

contrast, other studies reported that cartilage grafts into irradiated limbs could lead to 

limb regeneration and contained different tissues, proposing that these derived from 

chondrocyte dedifferentiation (Eggert, 1966; Wallace, Maden and Wallace, 1974). These 

ambiguous results could be likely explained by the variation in experimental 

methodologies and conditions, which were found to have profound effects on the 

outcome of the studies (McCusker, Bryant and Gardiner, 2015). Moreover, Schwann 

cells (Wallace and Wallace, 1973)  and skeletal muscle (Thornton, 1938a; Hay, 1959; 

Hay and Fischman, 1961; Cameron, Hilgers and Hinterberger, 1986) were also found to 

be important cell sources for blastema formation. In particular, skeletal muscle has been 

extensively studied in this process (see section 2.4.2) and became over time the classical 

system to address the question of blastemal origin in limb regeneration (Brockes, 1997; 

Simon and Tanaka, 2013). A more recent study, using tissue-specific GFP-labelling, 

tracked the major limb tissues and confirmed that dermal fibroblasts, Schwann, skeletal 

and myogenic cells all contributed to blastema formation (Kragl et al., 2009). Importantly, 

the same study also found that, despite its homogeneous morphology, blastemal cells 

retained memory of their tissue origin, demonstrating their restricted potential in re-

differentiating into different tissues. The origin of the limb blastema is far from being 

solved, but the development of new tools that allow for the tracing of specific tissues, as 

the one previously mentioned, will likely be instrumental to explore the issue. 

 

 

 Nerve dependence 

Since limb regeneration was discovered, the study of this intricate system has produced 

a rich body of literature, providing us with a better understanding of its intrinsic properties. 

One of the most studied features of limb regeneration is the role of the nerves (Stocum, 
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2011). Nerve dependence was first discovered by Tweedy Todd in 1823, who showed 

that limb denervation could either impair or completely abolish regeneration, depending 

on the stage it was performed (Todd, 1823; Dinsmore, 1991). Nonetheless, these 

findings had no significant impact on the scientific community and went relatively 

unnoticed until the next century. Here, studies investigating the role of nerves in 

embryonic development eventually revived the interest in exploring it also in the context 

of regeneration. Early experiments by scientists such as Goldfarb, Locatelli and Schotté 

were fundamental in the field to fuel the debate and generated substantial disagreement 

on this issue. While some denied the nerve influence in regeneration, others argued that 

successful regeneration upon denervation was the result of inadequate procedures, or 

poor maintenance of the denervated state (Singer, 1952; Wallace, 1981).  

 

Several studies followed where the nerve control of early regeneration was thoroughly 

investigated and, ultimately, it became generally accepted that regeneration was a nerve-

dependent process (Fig. 7). First, it was observed that limb denervation, typically 

performed through nerve transection, leads to neuronal disintegration (chromatolysis) 

(Tweedle, 1971) and degeneration of the distal part of the axons, a process known as 

Wallerian degeneration (Singer, 1946), named after its discoverer (Waller, 1850). Later 

on, Schotté’s detailed investigation through denervation experiments was instrumental to 

establish that limb regeneration was highly dependent on the presence of nerves (Butler 

and Schotté, 1941; Schotte and Butler, 1941; Schotté and Butler, 1944). This was 

followed by a long series of studies performed by Marcus Singer, where he made several 

crucial findings: 1) Both motor and sensory nerves contribute for regeneration; 2) The 

critical factor for regeneration to occur is not the type, but the extent of innervation. 

Regeneration occurs if the number of axons in the amputation area is above a certain 

threshold; 3) The threshold varies according to the position along the proximal-distal (PD) 

axis of the limb (Singer, 1952). Based on this work, Singer developed the neurotrophic 

hypothesis, which stated that the survival and proliferation of the blastema required 

certain chemical factors that were provided by the nerves (Stocum, 2011). This theory 

was essential to set the foundations for the future studies, which focused on identifying 

neurotrophic factors that would mediate this regulatory function on regeneration.  

 

The most notable exception to this theory emerged when studies with aneurogenic limbs 

(i.e. nerve deprived) reported their capacity to regenerate (Fig. 7) (Yntema, 1959, 1959). 

This can be achieved by excising the neural tube of an embryo, which still develops 

relatively normally, but lacks the capacity to move or eat. Consequently, their survival can 

only be ensured if joined in parabiosis with a normal larva and sharing a common 

circulation. These experiments were fundamental to determine that while nerve 

dependence originates during limb development, regeneration does not become nerve-

dependent if limb innervation is prevented (Stocum, 2011). This provides a useful 
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distinction between development and regeneration. The phenomenon of the aneurogenic 

limb has led many to question the validity of the neurotrophic theory, but instead of 

abandoning it completely, some modifications were proposed so the theory could also 

accommodate these cases. In the modified version of the trophic theory it was considered 

that other tissues can also produce their trophic substance initially but, upon innervation, 

they become dependent of the presence of nerves and the neurotrophic factor (Wallace, 

1981). Thus, the modified version still maintained the idea that limb regeneration was 

quantitatively dependent on some factor that was delivered by the axons. So the pursuit 

for such a factor continued. 

Currently, we are still lacking a complete understanding of the nerve roles in regeneration, 

but some relevant factors, which support the trophic theory, have been identified so far. 

Over 30 years ago, Glial growth factor 2/Neuregulin-1 (Ggf2/NRG1) was proposed as 

neurotrophic factor as it was shown to be present in the blastema, expressed by the 

dorsal root ganglia (DRG) neurons and its levels become reduced upon denervation 

(Brockes, 1984). Additionally, more recent studies have demonstrated that Ggf2 has the 

potential to rescue regeneration in denervated limbs, and that is expressed in the basal 

cells of the wound epidermis and most of the blastema (Wang, Marchionni and Tassava, 

2000; Farkas et al., 2016). Another interesting case is the newt anterior gradient (nAG) 

protein. This secreted protein has also been shown to be sufficient to rescue regeneration 

Figure 7: Nerve dependence of salamander limb regeneration. Denervated limbs, where the nerve is 

transected, fail to regenerate, whereas nerve-deprived limbs (aneurogenic) can complete regeneration. 

(From: http://www.mun.ca/biology/desmid/brian/BIOL3530/DEVO_13/devo_13.html) 
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in denervated limbs (Kumar et al., 2007). Furthermore, this component was observed to 

act as a ligand for a blastema cell-surface protein called Prod1, which is expressed in a 

gradient along the proximal-distal axis of the limb (Da Silva, Gates and Brockes, 2002). 

This protein receptor was identified as an important component that determines a proper 

positional identity in regenerating tissues (Kumar, Gates and Brockes, 2007) and helped 

uncovering an important regulatory mechanism of regeneration.  

 

Recently, different combinations of other factors such as FGF and BMP proteins have 

also emerged as interesting neurotrophic candidates, as they are sufficient to replace the 

absent nerve in certain conditions (Makanae, Mitogawa and Satoh, 2014; Satoh et al., 

2016). Interestingly, these studies were conducted using the accessory limb model 

(ALM), an alternative system designed to study limb regeneration without amputation 

(Endo, Bryant and Gardiner, 2004). Instead, it involves the removal of a piece of skin and 

the deviation of a nerve to the wound site. This induces the formation of a blastema and 

triggers the regeneration of an ectopic limb, providing a useful model to investigate the 

roles of new nerve factor candidates. Altogether, these results strongly support Singer’s 

neurotrophic theory and point towards an interdependent relationship between the 

nerves, the wound epidermis and the blastema cells. 

 

 

 The immune system 

Regeneration studies have also focused in other important properties such as the roles 

of the immune system. An interesting perspective is that differences in the immune 

system operating mechanisms, might account for differences in regenerative capacity. 

This has been proposed upon the observation that regeneration inversely correlates with 

the maturation of the immune system (Godwin and Brockes, 2006). Frogs, which are 

evolutionarily close to salamanders, are a good example to illustrate this point, since they 

gradually lose regenerative potential and scar-free repair during development, while the 

immune system matures (Bertolotti, Malagoli and Franchini, 2013).  

 

The notion that the immune system impinges on salamander limb regeneration is not new. 

In fact, it has been previously addressed in several studies, where irradiation or 

immunosuppressant therapies have been shown to affect regeneration (Mescher and 

Neff, 2006; Godwin and Rosenthal, 2014). However, with the development of new 

molecular tools and the consequent improvement in our understanding of the immune 

system features and associated roles, this issue is now being revisited. This renewed 

interest led to the discovery that macrophages are essential to mediate the early 

response to injury and, when depleted systemically, limb regeneration fails due to 

extensive fibrosis and dysregulation of extracellular matrix (ECM) components (Godwin, 
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 The immune system 
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Pinto and Rosenthal, 2013). In other words, some components of the immune response 

help creating a permissive environment for regeneration. Moreover, a follow up study 

found macrophages to be also necessary for salamander heart regeneration and the 

identified mechanisms recapitulate those observed in the limb  (Godwin et al., 2017). 

Remarkably, similar observations have been made in zebrafish where macrophages were 

observed to modulate tail fin regeneration (Petrie et al., 2015), suggesting that different 

species might rely on the same general mechanisms to ensure regeneration.  

 

In mammals, the well documented roles of the immune system in inflammation and scar 

formation are best illustrated by the fact that embryos are capable of scar-free wound 

healing until they start developing certain immune cell types (Mescher and Neff, 2005). 

Recently, work performed with the African spiny mouse elucidated a similar requirement 

for macrophages to elicit a regenerative response upon injury (Simkin et al., 2017). This 

further establishes macrophages (and inflammation) as interesting targets for 

regeneration studies and might have a positive implication in our aspirations of improving 

mammalian regeneration.   
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2.4.2  Skeletal muscle dedifferentiation 

Skeletal muscle in vertebrates is mainly composed by long multinucleated fibers 

(myofibers), which are surrounded by a network of blood vessels and nerves, and bound 

together by layers of ECM. They are formed during development, in a process called 

myogenesis, where precursor mononucleated cells (myoblasts), commit to differentiation 

by exiting the cell cycle (myocytes) and fuse to form multinucleated myotubes (Fig. 8), 

which will later mature into myofibers (Fig. 9) (Stockdale and Holtzer, 1961; Buckingham, 

2001; Dumont et al., 2015; Hernandez-Torres et al., 2017). Although skeletal muscle has 

previously been described as an important source of the blastema, the mechanisms by 

which cells are derived from this tissue have been a subject of long and controversial 

discussions (Brockes, 1997; Slack, 2006). In this context, dedifferentiation refers to 

fragmentation of the myofibers during appendage regeneration, in a process called 

cellularization, with the muscle-derived mononucleate progeny contributing to the 

blastema, where they proliferate. 

Several studies have attempted to show regeneration happening via dedifferentiation, first 

based on histological observations (Chalkley, 1954; Hay, 1959) and later through short-

term labelling of myofibers or transplanted cultured myotubes (Namenwirth, 1974; Lo, 

Allen and Brockes, 1993; Kumar et al., 2000; Echeverri, Clarke and Tanaka, 2001). 

During the same period, it was discovered that myofibers in frog and rat muscle harbor a 

population of resident stem cells (Katz, 1961; Mauro, 1961), named satellite cells for their 

location between the plasma membrane of the myofiber (sarcolemma) and the basal 

lamina (Fig. 9). These cells were later found to be a common feature among vertebrates, 

Figure 8: Skeletal myogenesis occurs from precursor cells that are mononucleated and can 

proliferate. After several rounds of proliferation, myoblasts exit the cell cycle and become myocytes. 

Myocytes can undergo a fusion process to form multinucleated myotubes that eventually mature into 

myofibers. (Reproduced with permission and adapted from: Dumont et al., 2015). 
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including salamanders (Popiela, 1976), thus challenging the idea of dedifferentiation and 

sparking the debate. For many years, electron microscopy was the only definitive method 

of identification of satellite cells but, more recently, several molecular markers have been 

described that can be used to label these cells (Dumont et al., 2015). One of the most 

prominent of those markers is Paired box protein 7 (Pax7), a transcription factor which 

allowed for the identification and characterization of a population of satellite cells that 

becomes active in newts upon limb amputation (Cameron, Hilgers and Hinterberger, 

1986; Morrison et al., 2006; Kragl et al., 2009). Moreover, this population was observed 

to be stable and maintained in the regenerated limb after repeated amputations 

(Morrison, Borg and Simon, 2010). Nevertheless, due to the limitations of the available 

techniques, a conclusive answer based on quantitative estimations and long-term 

labelling that would allow to fate-map endogenous myofibers, was still lacking. 

More recently, this situation has changed with the emergence of new techniques which 

contributed to overcome this gap. Namely, through long-term tracing of muscle-derived 

progenitor cells, it was demonstrated that skeletal muscle dedifferentiation is an integral 

part of limb regeneration in newts (Sandoval-Guzmán et al., 2014). In contrast, the same 

study found no evidence of muscle dedifferentiation in the limb of another salamander 

species, the axolotl. Instead, we observed that muscle regeneration in this species is 

exclusively mediated by the activation of Pax7+ satellite cells in the outgrowing limb (Fig. 

10). These results show how closely related species might display different strategies to 

regenerate limbs after injury. Interestingly, mammals are also capable to regenerate 

injured skeletal muscle, stimulated by the activation of satellite cells, even though this 

regeneration does not involve the formation of a blastema and depends on the type and 

Figure 9: Subcellular architecture of skeletal myofibers. Mature myofibers containing a high number 

of myonuclei (MN) and are formed by a bundle of myofibrils, which provide the contractile properties. 

In addition, satellite cells (SC), a population of resident stem cells is localized between the myofiber 

membrane (sarcolemma) and the extracellular matrix layer (basal lamina), and plays important roles 

in muscle repair and regeneration. (Adapted from: Hernandez-Torres et al., 2017) 
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severity of the injury (Chargé and Rudnicki, 2004; Turner and Badylak, 2012). Currently, 

the remaining challenge is to understand the what mechanisms trigger skeletal muscle 

dedifferentiation. 

 

 Initiation of dedifferentiation 

To understand how a terminally differentiated cell type in a stable quiescent state reverts 

its differentiated profile, a number of groups have attempted to uncover how 

dedifferentiation is initiated. Another key question is to what extent such mechanisms are 

conserved and inducible in mammalian cells. In this context, a study using mammalian 

cultured myotubes found that compounds, which induce microtubule depolymerization, 

such as myoseverin, had the potential to induce fragmentation of the multinucleated 

muscle cell (Rosania et al., 2000). However, a more thorough analysis, through time lapse 

microscopy, determined that the generated mononucleate progeny did not survive and, 

therefore, failed to resume the cell cycle (Duckmanton et al., 2005). Although other 

studies presented evidence for myotube fragmentation leading to proliferating 

mononucleate cells, it is worth mentioning that they did not use proper lineage-tracing 

tools, so it should not be excluded that these cells could have originated from pre-existent 

mononucleate cells in the cultures (Odelberg, Kollhoff and Keating, 2000; McGann, 

Odelberg and Keating, 2001; Kumar et al., 2004; Jung and Williams, 2011). 

Figure 10: Limb regeneration mechanisms between different salamander species. In the newt, 

myofiber fragmentation results in proliferating, Pax7− mononuclear cells in the blastema that give 

rise to the skeletal muscle in the new limb. In contrast, myofibers in axolotl do not generate 

proliferating cells, and do not contribute to newly regenerated muscle. Instead, resident 

Pax7+ cells provide the regeneration activity. (Reproduced with permission from: Sandoval-

Guzmán et al. 2014). 
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In the last few years, substantial progress has been made in the development of new fate-

mapping techniques. Taking advantage of these tools, one recent study  

established a direct association between programmed cell death (PCD) and myogenic 

dedifferentiation (Wang et al., 2015). Through in vivo molecular manipulations, they 

observed that newt muscle dedifferentiation depended on an apoptotic response that was 

not fully executed (Fig.11). Furthermore, by studying cultured myotubes, they 

demonstrated that it was possible to derive proliferating progeny from terminally 

differentiated muscle cells by first initiating a PCD response and subsequently blocking 

the full execution of the apoptotic process. In contrast, mammalian myotube-derived 

mononucleate cells only resumed proliferation upon knockdown of p53 gene, thus 

providing a key platform to address differences between newts and mammals. Overall, 

these evidence might reflect an evolved strategy in newts to divert an injury-mediated cell 

death response into mechanisms that fuel regeneration.  

 

 

 

 Cell cycle re-entry 

Tissue regeneration can occur through distinct general mechanisms such as 

dedifferentiation and/or transdifferentiation (Jopling, Boue and Belmonte, 2011). 

Dedifferentiation, as already described, involves terminally differentiated cells that regress 

to a less-differentiated stage within the same cell lineage and then proliferate to replace 

the missing tissue. Aside from the case of the newt muscle, this event can also be 

observed in cardiomyocytes during zebrafish heart regeneration (Jopling et al., 2010; 

Kikuchi et al., 2010), and in mammalian myelinating Schwann cells upon nerve damage 

Dedifferentiation 

Cellular  

Injury 

Programmed 

Cell death 
Death 

Point of 

No return 

Figure 11:  Model for initiation of dedifferentiation during newt limb regeneration. Cellular injury typically 

initiates a programmed cell death response which ultimately results in cell death. However, if the full 

execution of the programmed cell death process is prevented at an adequate point, cell survival can be 

manifested in the production of dedifferentiated cells. This suggests that cell dedifferentiation might be 

induced through an apoptotic response that is not fully executed. (Based on: Wang et al. 2015) 
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(Chen, Yu and Strickland, 2007). Transdifferentiation allows cells to dedifferentiate even 

further, to a point where they can switch lineage and re-differentiate into a different cell 

type. This phenomenon takes place during newt lens regeneration and it was first 

observed by Gustav Wolff in 1894 (Reyer, 1954). Surgical removal of the lens 

(lentectomy), induces the pigment epithelial cells (PECs) from the dorsal iris to 

dedifferentiate and re-enter the cell cycle to create a new lens vesicle that generates the 

new cells of the lens (Tsonis, Madhavan, Tancous, et al., 2004). Importantly, this occurs 

without contribution of the ventral PECs, as only the dorsal PECs transdifferentiate in vivo 

to form the new lens. Another relevant process to take into account is cellular 

reprogramming, where differentiated cells revert to a pluripotent state, which can give 

rise to almost any cell type (Jopling, Boue and Belmonte, 2011). However, 

reprogramming into pluripotency has not been established as an actual regenerative 

response and is mostly induced artificially for potential therapeutic purposes approaches 

(Yamanaka and Blau, 2010). Whereas cell cycle re-entry has been shown to be non-

essential for dedifferentiation or transdifferentiation to happen (Tsonis, Madhavan, Call, 

et al., 2004; Monje et al., 2010), it is still necessary for proper regeneration. This 

emphasizes the importance of identifying molecular pathways that induce the proliferation 

of dedifferentiating muscle cells. 

 

In the late nineties, a study reported that cultured newt skeletal myotubes re-entered the 

cell cycle when exposed to serum, which occurred through phosphorylation of the 

retinoblastoma (Rb) protein  (Tanaka et al., 1997). This contrasted with previous 

observations in mammalian myotubes (Olwin and Hauschka, 1988) and pointed towards 

the presence of certain components in serum that could induce myotubes to revert their 

post-mitotic state. A follow up study from the same lab, showed that treatment with serum 

proteases which regulated blood clotting, such as Thrombin and Plasmin, strongly 

enhanced the effect of cell cycle re-entry (Tanaka, Drechsel and Brockes, 1999). In 

addition, Thrombin proteolytic activity was found to be elevated in the end of the stump 

from regenerating limbs. The underlying mechanism of this phenomenon remained 

elusive, but it was proposed that Thrombin was an indirect mediator generating some 

factor that acted on the myotubes. Overall, these studies contributed to establish an 

important link between injury response and dedifferentiation. This association gained 

further support when similar effects of Thrombin were observed in newt lens regeneration 

(Simon and Brockes, 2002) and by the fact that an extract from newt regenerating limbs 

had the potential to induce dedifferentiation of mammalian myotubes (McGann, Odelberg 

and Keating, 2001). These compelling results greatly encouraged scientists to pursue the 

factors that were cleaved by clotting proteases and triggered cell cycle re-entry during 

regeneration. 
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Recent findings have identified a MARCKS-like protein (MLP), which was expressed in 

epithelial cells and promoted the proliferation of both resident stem cells and myofiber-

derived progeny (Sugiura et al., 2016). Although this factor stands out as an important 

component for triggering dedifferentiation, its connection to serum proteases remains 

unclear. Several canonical signaling pathways have also been implicated in amphibian 

regeneration, such as WNT- , FGF- (Hayashi, Mizuno and Kondoh, 2008; Lin and Slack, 

2008), and BMP-signaling (Grogg et al., 2005; Beck et al., 2006), typically on the basis 

that inhibition of some components impaired the regenerative response. These results 

raised the possibility that these pathways might be activated by injury, a hypothesis that 

has been explored in Paper III, where we identified components from the BMP pathway 

which acted as downstream targets of serum proteases and induced cell cycle re-entry 

of myotubes.  
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2.5 Regenerative medicine and future directions 

One of the main reasons why the field of regeneration research appeals to most people, 

is the prospect of inducing regeneration of structures that do not have that capacity. The 

rich history of regeneration research has generally contributed to raise the hopes of 

translating the acquired knowledge into clinical applications. Regenerative medicine, as 

it has been labeled, aspires to repair or replace tissue or organ functions which have been 

lost due to age, disease, injury or developmental defects. This field aims to do so, either 

by stimulating damaged tissues/organs to self-repair or, when not possible, to grow them 

in the lab for transplantation (Maienschein, 2011; Terzic et al., 2015). Stimulating human 

limb regeneration has proved to be an elusive goal so far, but considerable progress has 

been made both in cell therapy and tissue engineering. 

 

Cell-based therapies include a variety of cell sources for tissue repair such as stem, 

progenitor, tissue-specific primary cells and stem cell derivatives. Depending on the 

therapeutic approach, the cells can be injected intravenously, transplanted into the injury 

site or recruited from the patient’s tissues to stimulate self-repair (Buzhor et al., 2014). 

Stem cells are regarded as the most suitable option due to their potential for self-renewal 

and differentiation. Furthermore, tissue-specific resident stem cells have the capacity to 

migrate to the affected area, differentiate and replace the damaged cells (Blau, Brazelton 

and Weimann, 2001). Nevertheless, since this self-repair mechanism is often insufficient 

to revert the pathological processes in many diseases, external cell therapy is usually 

necessary. In these cases, the cells used can be either derived from the same patient 

(autologous) or derived from a donor (allogeneic). The former has the advantage of 

posing a low risk of adverse immune reaction, whereas the latter allows for off-the-shelf 

tissues to be produced in big scale (Mao and Mooney, 2015; Mount et al., 2015). 

 

The majority of cell-based therapies is currently still experimental or undergoing clinical 

trials (Ankrum and Karp, 2010; Buzhor et al., 2014), but there are some exceptions that 

successfully made it into the clinic. Since regenerative medicine emerged as an industry, 

a dozen of therapies have received approval from the regulating agencies and reached 

the market (Mao and Mooney, 2015). One of the best cases is the well-established 

haematopoietic stem cell transplantation, which is widely used in the treatment of blood 

related disorders (Weissman and Shizuru, 2008). Other examples of the already 

approved therapies include autologous chondrocytes for the treatment of articular 

cartilage defects (Dewan et al., 2014), autologous keratinocytes to repair severely burnt 

skin (Gardien, Middelkoop and Ulrich, 2014) and allogeneic fibroblasts to treat diabetic 

foot ulcers (Harding, Sumner and Cardinal, 2013). 
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Tissue engineering, which can be considered a sub-field within regenerative medicine 

has also made substantial progress (Fig. 12) (Khademhosseini and Langer, 2016). This 

is linked to the steady development of new biomaterials, since tissue engineering typically 

depends on scaffolds that provide the proper architecture, onto which cells are seeded 

to develop into the new organ, in an organized fashion (Mao and Mooney, 2015). Notably, 

the development of tissue-engineered skin and bladders has advanced rapidly, fueled by 

emerging techniques such as 3D-Bioprinting (Atala et al., 2006; Tarassoli et al., 2018). A 

critical component of the biomaterials used in these products is how they integrate into 

the host environment, thus making biocompatibility and biodegradability essential 

features. Ultimately, the goal is to develop materials that do not lead to adverse responses 

or toxic byproducts, and that degrade at a similar rate to the growth of new tissue, at the 

Figure 12:  Summary of tissue engineering progress in the past decade. Additional cell sources have become 

available, including induced Pluripotent Stem Cells (iPSCs) and adult stem cells, as well as genetic editing 

tools that enable greater cell manipulation. Improved chemistries and growth factor delivery mechanisms, 

as well as advances in understanding biophysical cues on cellular behaviors and tissue architecture 

technologies have contributed to engineering tissues of considerably improved structural, compositional 

and functional resemblance to their native counterparts. (Reproduced with permission from: 

Khademhosseini and Langer, 2016). 
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site where they are implanted (Lee, Kasper and Mikos, 2014). Because function is 

strongly dependent on tissue and organ architecture, the ability of scaffolds to recreate 

structure, usually determines the success in recapitulating the healthy tissue (Nelson and 

Bissell, 2006). One way to faithfully capture organ architecture in engineered tissues is to 

decellularize organs and then seed them with cells before transplantation. This allows for 

removal of cells and molecules that could trigger an immunogenic response, while 

maintaining the organ structure and its native mechanical properties and extracellular 

matrix (Crapo, Gilbert and Badylak, 2011).  

 

Overall, the efficacy of regenerative medicine based therapies has been variable, but 

some products were shown to perform better or are at least comparable to previous 

treatments (Dewan et al., 2014). Moreover, several cell therapy applications are in 

advanced developmental stages and hold great translational promise for the treatment of 

several prominent disorders (Buzhor et al., 2014). However, it is important to bear in mind 

that it is still a considerable challenge to bring such therapies to the market. First, because 

earning market approval for these products typically entails long time investments and 

high costs (Mount et al., 2015). Second, because cell-based products, which are to be 

transplanted to patients, harbor several potential risks such as the potential to form 

tumors (tumorigenicity) or the possibility of immune rejection (immunogenicity) (Heslop 

et al., 2015). This requires a balance to be established between minimizing potential risk 

and ensuring that new treatments are not kept from patients unnecessarily. Naturally, this 

depends on an accurate assessment of the associated risks but, as therapy safety is still 

poorly understood, it is vital to be cautious in the translation of potential therapies to the 

clinic. Overall, despite the important advances that have been made, all these factors 

should be considered to avoid unrealistic expectations towards the future of regenerative 

medicine. 
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3.  The pursuit of the salamander genome 

Salamanders form one of the main groups of amphibians. They are typically grouped into 

ten different families, which display considerable biological differences between and 

within them (Brockes, 2015). For instance, while many salamander species undergo a 

process of metamorphosis as they develop into adults, others are paedomorphic, which 

means they retain their larval features during adulthood (Johnson and Voss, 2013). 

Moreover, many species from the family Plethodontidae (or lungless salamanders), have 

a direct development from embryo to adult, without going through larval stages, as it is 

typical of most species (Gómez et al., 2017). Interestingly, as previously mentioned, the 

mechanisms which are employed for limb regeneration by different species can also vary 

(Sandoval-Guzmán et al., 2014). This highlights the importance of taking interspecific 

variations into account, particularly when attempting to understand the processes behind 

the regenerative capacities of salamanders. To do so, it is fundamental to be able to 

investigate genome regulation and its evolution, however, the lack of genomic resources 

has been a long-lasting limitation in the field. In this chapter, I will discuss how the 

evolution of the sequencing technologies allowed the sequencing and assembly of the 

first salamander genomes and the main obstacles that have prevented a faster progress 

in the area until very recently. 
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3.1 The giant genomes of salamanders 

Among vertebrate species, most of the largest genomes are found in salamanders, 

ranging from ~14 – 120 Gigabases (Gb) (Fig. 13) (Brockes, 2015). For comparison, this 

is much larger than the human genome, which is about 3.5 Gb (Gregory, 2018). As in 

other organisms, genome size in salamanders positively correlates with chromosome 

size, but not with chromosome number (Olmo and Morescalchi, 1975; Gregory, 2005; 

Sessions, 2008). Consequently, harboring a larger genome is usually linked with an 

increase in cell size and cell cycle length, which has an impact on several biological 

aspects of an organism. Salamander species with larger genomes typically display slower 

rates of metabolism, embryonic development and regeneration than species with smaller 

genomes  (Gregory, 2003; Litvinchuk, Rosanov and Borkin, 2007; Sessions, 2008).  

 

So what are the causes behind such gigantic genomes? While this is not yet fully 

understood, several studies have showed that highly abundant transposable elements 

(TE) and long intronic sequences were two important features in salamanders (Batistoni 

et al., 1995; Marracci et al., 1996; Smith et al., 2009; Zhu et al., 2012). TEs, in particular, 

Figure 13:  Salamanders have the largest genomes when compared to other vertebrate groups. The 

species represented are (from the top): Human (Homo sapiens), Mouse (Mus musculus), Chicken 

(Gallus gallus), Lizard (Anolis carolinensis), Frogs (Xenopus laevis, Xenopus tropicalis), Salamanders 

(Pleurodeles waltl, Notophthalmus viridescens, Ambystoma mexicanum) and Zebrafish (Danio rerio). 

MYA-Million years ago, Gb-Gigabases (Adapted from: Elewa et al. 2017). 
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which are mainly divided between retrotransposons (class I) and DNA transposons (class 

II) (Wicker et al., 2007), have been shown to cover up to 47% of the entire genome in 

some species (Sun et al., 2012). In addition, this same study found the long terminal 

repeat (LTR) retrotransposon to be a highly represented category and account for 

roughly one-third of the genome. The existence of these overrepresented elements offers 

relevant candidates to be investigated in the context of regeneration. Consistent with this 

hypothesis, another family of retrotransposons, the non-LTR long interspersed nucleotide 

element- 1 (LINE-1), was recently implicated in axolotl limb regeneration (Zhu et al., 

2012). This study found that LINE-1, which is typically active in germ cells, was highly 

upregulated during limb regeneration, establishing a germ-like state that might play a role 

in stimulating cell dedifferentiation.  

 

Although salamanders display remarkable features as a regeneration model, the absence 

of a reference genome has negatively impacted the development of new genetic tools, 

which could contribute to new knowledge regarding the molecular pathways involved in 

regeneration. For a long time, this has remained an elusive goal as the large genome size, 

the abundance of repetitive elements and the lack of a closely related genome, made it a 

time-consuming, costly, and challenging task (Looso et al., 2013; Looso, 2014). 
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3.2 Genome sequencing 

To understand the limitations associated with sequencing such large genomes, it is 

important to place it into the context of the history of sequencing technologies. Since it 

was developed in the 1970s, the method of Sanger sequencing (Sanger, Nicklen and 

Coulson, 1977) has remained as the gold standard for at least 30 years. This technique 

transformed biology as it supplied scientists with the necessary tools to analyze entire 

genes and, later, full genomes. However, the growing demand for higher throughput 

fostered the development and commercialization of next-generation sequencing (NGS) 

technologies. The first of its kind was released in 2005 and it received this name to 

highlight the improvement in comparison with Sanger sequencing, which was defined as 

a first-generation technology. The higher scalability provided by NGS, fueled the 

sequencing of entire genomes at an extraordinary speed (Shendure and Ji, 2008; van 

Dijk et al., 2014).  

 

Whereas this NGS revolution allowed for the sequencing of many species genomes, it 

had a considerable disadvantage as these technologies generated relatively short reads. 

This turned genome assembly into a more complex task and relied on the development 

of new alignment algorithms (van Dijk et al., 2014). Naturally, this was particularly 

problematic for large genomes such as the ones from salamanders. Nonetheless, these 

technologies still had an important role in salamander research, as they promoted several 

efforts to generate transcriptomic and proteomic resources from different species 

including newts (Abdullayev et al., 2013; Looso et al., 2013), axolotls (Stewart et al., 

2013; Wu et al., 2013; Bryant et al., 2017; Caballero-Pérez et al., 2018) and others (Che 

et al., 2014; Nakamura et al., 2014). Although they have led to valuable new insights and 

working tools for the study of regeneration, these resources are limited and do not allow 

large-scale analysis of species-specific genes or gene family evolution. 

 

Later on, new methods have emerged to handle the NGS shortcomings, the so called 

third-generation sequencing, which allowed for much longer reads than ever before, 

making it suitable for de novo genome assemblies (van Dijk et al., 2014). These advances 

in sequencing technologies became a decisive factor to overcome previous constraints. 

Ultimately, this resulted in the recent publication of two studies where the genomes of the 

Iberian-Ribbed newt (Pleurodeles waltl) (Paper I) and the Mexican axolotl (Ambystoma 

mexicanum) (Nowoshilow et al., 2018) were successfully sequenced and assembled. 

This is a major leap forward which opens up new possibilities and will be a driving force 

to generate new momentum in the field. 
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3.3 Genome editing and transgenic lines 

Despite being an attractive model to study regeneration, salamanders have features that 

make it a challenging animal model to work with. Apart from the large genome size, some 

salamander species, as in the case for newts, also reproduce through a complex and 

long life cycle (Fig. 14), making it more difficult to breed under laboratory conditions, when 

compared to other model organisms. These factors have greatly restricted genetic 

studies and the efforts in establishing salamander transgenic lines (Kumar and Simon, 

2015). Gene function studies have traditionally relied on tools like ectopic overexpression 

or transient knockdown via morpholinos of genes of interest (Kumar et al., 2004; Schnapp 

and Tanaka, 2005). However, alternative techniques which can remove or completely 

inactivate genes are desirable as they can yield more definitive evidence when evaluating 

the implication of those genes in regeneration (Housden et al., 2016). 

 

In spite of the numerous challenges, some labs have succeeded in establishing 

transgenic salamander lines. While transgenic animals have been generated for different 

newt species (Casco-Robles et al., 2011; Hayashi et al., 2013), most of the recent 

developments were achieved in axolotl (Khattak et al., 2013). These lines led to valuable 

findings such as: 1) The different cells in the blastema retain the information of their tissue 

origin during limb regeneration (Kragl et al., 2009); 2) Blood stem cells do not contribute 

Figure 14:  Life cycle of two newt species commonly used in research. Both of these species (Red-spotted 

and Iberian-ribbed newts) display a similar cycle that typically includes: Embryonic development from the 

egg stage (Right) into the fully aquatic larva (Bottom). The larvae subsequently undergo metamorphosis 

into juveniles/efts (Left), which will then grow and sexually mature as they turn into adults (Top). (Figure 

by: Alberto Joven) 
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to muscle or nerve formation during tail regeneration, showing no significant plasticity 

(Sobkow et al., 2006); 3) The induced expression of the mammalian tumor suppressor 

p16INK4a negatively impairs spinal cord regeneration (Khattak et al., 2013). Recently, the 

rapid development of CRISPR-Cas9, a breakthrough technology which enables genome 

engineering in a specific and simple way, has completely transformed biological research 

(Doudna and Charpentier, 2014). In particular, this became a crucial resource to 

generate new salamander genome edited lines, which helped uncovering new functional 

features of factors such as Sox2, Pax3 and Pax7 during tail (Fei et al., 2014) and limb 

regeneration (Paper I; Fei et al., 2017; Nowoshilow et al., 2018). Together with the 

recently sequenced salamander genomes, this technology will likely be shaping the future 

of salamander research and regenerative biology in years to come. 
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4.  Non-coding small RNAs 
 

During the past two decades, we have seen an exponential increase of identified RNA 

transcripts that are not translated into proteins. These have been generally classified as 

non-coding RNAs (ncRNAs), a new class that strikingly contrasts to the traditional 

functions of messenger RNA (mRNA) (Fig. 15) (Santosh, Varshney and Yadava, 2015). 

While a few examples of ncRNAs were already known previously, such as ribosomal RNA 

(rRNA) and transfer RNA (tRNA), they have never been considered separately, due to 

their roles in protein-translation machinery (Hüttenhofer, Schattner and Polacek, 2005). 

Since Molecular Biology was, until this point, focused on protein-mediated regulation, 

where non-coding genes were thought to be “junk DNA”, the emergence of ncRNAs has 

contributed to a paradigm shift in the field, with some labelling it as the Noncoding RNA 

revolution (Cech and Steitz, 2014) for its profound impact on post transcriptional 

regulation of gene expression. In fact, it has been estimated that in the entire human 

genome, only ~1% of genes actually encode for proteins (Rands et al., 2014), meaning 

that, until recently, most of our genome remained largely unexplored.  

 

Figure 15: Diversity of RNA categories. RNAs are divided into two major classes: coding, which 

corresponds to messenger RNA (mRNA), and non-coding RNA (ncRNA). NcRNAs are divided 

between housekeeping ncRNAs, which are involved in protein translation and consist of transfer RNA 

(tRNA) and ribosomal RNA (rRNA), and regulatory ncRNAs. Regulatory ncRNAs are classified based 

on their size into long ncRNA (lncRNA) and small ncRNA. Small ncRNAs are subclassified into 

microRNA (miRNA), small nucleolar RNA (snoRNA), small interfering RNA (siRNA), small nuclear 

RNA (snRNA), and PIWI-interacting RNA (piRNA). (From: Inamura, 2017) 
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Figure 15: Diversity of RNA categories. RNAs are divided into two major classes: coding, which 

corresponds to messenger RNA (mRNA), and non-coding RNA (ncRNA). NcRNAs are divided 

between housekeeping ncRNAs, which are involved in protein translation and consist of transfer RNA 

(tRNA) and ribosomal RNA (rRNA), and regulatory ncRNAs. Regulatory ncRNAs are classified based 

on their size into long ncRNA (lncRNA) and small ncRNA. Small ncRNAs are subclassified into 

microRNA (miRNA), small nucleolar RNA (snoRNA), small interfering RNA (siRNA), small nuclear 

RNA (snRNA), and PIWI-interacting RNA (piRNA). (From: Inamura, 2017) 
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Among other factors,  one of the main driving forces that was fundamental to bring the 

ncRNAs into the spotlight was the development of the NGS technologies, which achieved 

a level of resolution that was not possible before (Metzker, 2010). Consequently, this led 

to a substantial increase in the number of large scale sequencing studies in a variety of 

organisms and tissues, which have greatly contributed to characterize all the ncRNAs we 

know today. Currently, many classes of ncRNAs have been identified so far and they are 

primarily distinguished based on their sizes, between short non-coding RNA (sncRNAs) 

with < 30 nucleotides (nts) and long non-coding RNA (lncRNAs) with > 200 nts (Santosh, 

Varshney and Yadava, 2015; Inamura, 2017). 

 

LncRNAs consist in a very heterogeneous class of RNAs that includes thousands of 

different species with a big range of sizes. They can originate from various locations in 

the genome from introns to intergenic regions and have been shown to regulate gene 

expression at different levels. LncRNAs can function both as ligands for proteins and as 

mediators that guide regulator complexes to specific DNA or RNA target sites. This 

flexible scaffold nature is critical to link proteins and/or other RNAs that would not interact 

otherwise (Fatica and Bozzoni, 2014).  

 

The short non-coding category includes several established groups where microRNAs 

(miRNAs) represents the most prominent and well-studied (described in detail in the next 

section). Other classes include small interfering RNAs (siRNAs) that can act through 

different pathways to regulate gene expression at transcriptional and post-transcritptional 

level (Claycomb, 2014), small nuclear (snRNAs) and small nucleolar RNA (snoRNAs), 

which are important components of the splicing machinery (Matera, Terns and Terns, 

2007) and PIWI-interacting RNAs (piRNAs), best known for silencing mobile elements 

such as retrotransposons (Weick and Miska, 2014). The common denominator between 

the different classes appears to be their regulatory roles in gene expression, however, 

while the function of many newly identified ncRNAs remains elusive, it cannot be excluded 

that some might not be functional. 

 

The work included in this thesis only features miRNAs and, therefore, that will be the focus 

of the rest of the chapter. In the following sections I will describe how miRNAs are 

generated and what are their reported roles in development, disease and regeneration.  

 

 

  

 

 35 

Among other factors,  one of the main driving forces that was fundamental to bring the 

ncRNAs into the spotlight was the development of the NGS technologies, which achieved 

a level of resolution that was not possible before (Metzker, 2010). Consequently, this led 

to a substantial increase in the number of large scale sequencing studies in a variety of 

organisms and tissues, which have greatly contributed to characterize all the ncRNAs we 

know today. Currently, many classes of ncRNAs have been identified so far and they are 

primarily distinguished based on their sizes, between short non-coding RNA (sncRNAs) 

with < 30 nucleotides (nts) and long non-coding RNA (lncRNAs) with > 200 nts (Santosh, 

Varshney and Yadava, 2015; Inamura, 2017). 

 

LncRNAs consist in a very heterogeneous class of RNAs that includes thousands of 

different species with a big range of sizes. They can originate from various locations in 

the genome from introns to intergenic regions and have been shown to regulate gene 

expression at different levels. LncRNAs can function both as ligands for proteins and as 

mediators that guide regulator complexes to specific DNA or RNA target sites. This 

flexible scaffold nature is critical to link proteins and/or other RNAs that would not interact 

otherwise (Fatica and Bozzoni, 2014).  

 

The short non-coding category includes several established groups where microRNAs 

(miRNAs) represents the most prominent and well-studied (described in detail in the next 

section). Other classes include small interfering RNAs (siRNAs) that can act through 

different pathways to regulate gene expression at transcriptional and post-transcritptional 

level (Claycomb, 2014), small nuclear (snRNAs) and small nucleolar RNA (snoRNAs), 

which are important components of the splicing machinery (Matera, Terns and Terns, 

2007) and PIWI-interacting RNAs (piRNAs), best known for silencing mobile elements 

such as retrotransposons (Weick and Miska, 2014). The common denominator between 

the different classes appears to be their regulatory roles in gene expression, however, 

while the function of many newly identified ncRNAs remains elusive, it cannot be excluded 

that some might not be functional. 

 

The work included in this thesis only features miRNAs and, therefore, that will be the focus 

of the rest of the chapter. In the following sections I will describe how miRNAs are 

generated and what are their reported roles in development, disease and regeneration.  

 

 

  

47



 

 36 

4.1 microRNA biogenesis 

Among the different emerging classes of ncRNAs, one of the most rapidly growing is the 

class of miRNAs. They were first discovered in the early 1990s, when two studies reported 

the down-regulation of the gene lin-14, at a post-transcriptional level, by the gene lin-4 in 

Caenorhabditis elegans, suggesting a mechanism of RNA-RNA interaction through 

sequence complementarity (Lee, Feinbaum and Ambros, 1993; Wightman, Ha and 

Ruvkun, 1993). However, it was only when a second miRNA (let-7) was discovered years 

later, that miRNAs started to generate an increased interest in the scientific community 

(Pasquinelli et al., 2000; Reinhart et al., 2000). Soon, several groups started to observe 

a high degree of sequence conservation among different species and miRNAs were finally 

classified as a distinct class of regulatory RNAs (Lagos-Quintana et al., 2001; Lau et al., 

2001; Lee and Ambros, 2001), opening the doors to a completely new research field. 

Currently, miRNAs are defined as endogenous and short non-coding RNA molecules (20-

22 nts) that regulate gene expression post-transcriptionally. This regulation mainly occurs 

through the binding to the 3’ untranslated region (3’ UTR) of specific mRNA targets, 

leading to mRNA degradation and/or translational repression (Bushati and Cohen, 2007). 

Despite their specific binding to targets, some miRNAs can regulate hundreds of different 

transcripts (Lim et al., 2005). The increased attention given to miRNAs can be explained 

by their role as regulators of fundamental processes in cell fate determination and their 

involvement in several diseases, with the potential to be used as biomarkers (Bushati and 

Cohen, 2007; Pritchard, Cheng and Tewari, 2012). 

 

Several components that are involved in the processing of miRNAs into a mature form 

have been identified so far and compose today the canonical miRNA Biogenesis pathway 

(Fig. 16) (Lin and Gregory, 2015). The formation of functional miRNAs starts with 

transcription into long primary miRNA transcripts (pri-miRNAs) by RNA polymerases II or 

III  (Lee et al., 2004; Borchert, Lanier and Davidson, 2006), which is subsequently cleaved 

by the Microprocessor complex, which includes Drosha and DiGeorge syndrome critical 

region 8 (DGCR8), in the nucleus (Gregory et al., 2004). The resulting precursor hairpins 

(pre-miRNAs) are exported to the cytoplasm by Exportin-5 (Lund et al., 2004), where 

they are cleaved to their mature length by the RNase Dicer complex, forming miRNA 

duplexes (Hutvágner et al., 2001). One of the strands from these duplexes (guide strand) 

is then loaded together with Argonaute proteins (Ago) into the miRNA-induced silencing 

complex (miRISC), where it guides RISC to silence the respective target mRNAs 

(Schwarz et al., 2003; Chendrimada et al., 2005; Robb and Rana, 2007). In particular, 

the seed region, which refers to the nucleotides 2 to 8 that form the most conserved 

region of miRNAs, is important for target binding and therefore, it can be a useful feature 

for target prediction (Thomson, Bracken and Goodall, 2011). Target silencing can result 

in mRNA decay (through cleavage or deadenylation) or translational repression, 
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depending on how the miRNA binds to its target (Fabian and Sonenberg, 2012; Iwakawa 

and Tomari, 2015). Interestingly, certain miRNAs have also been shown to have the 

capacity to promote translation in quiescent cells (Vasudevan, Tong and Steitz, 2007). 

 

In recent years, accumulating evidence from deep-sequencing studies indicates the 

existence of a high number of sequence variants in different tissues, both at the level of 

the precursors and the mature forms (isomirs) (Guo and Chen, 2014). Different sources 

for this variance have emerged such as RNA editing, nucleotide trimming or nucleotide 

addition (Neilsen, Goodall and Bracken, 2012; Vickers et al., 2013). Interestingly, these 

modifications can work as a mechanism of regulating miRNA abundance through 

stabilization or targeting for degradation (Boele et al., 2014), suggesting a relevant 

biological role that might be tissue/cell-specific and that was previously overlooked.  

Figure 16: Overview of miRNA biogenesis pathway. MicroRNA (miRNA) genes are transcribed as 

primary mi RNAs (pri-miRNAs) by RNA polymerase II (Pol II) in the nucleus. The long pri-miRNAs are 

cleaved by Microprocessor, which includes DROSHA and DiGeorge syndrome critical region 8 

(DGCR8), to produce the 60–70-nucleotide precursor miRNAs (pre-mi RNAs). The pre-mi RNAs are 

then exported from the nucleus to the cytoplasm by exportin 5 (XPO5) and further processed by 

DICER1, a ribonuclease III (RIII) enzyme that produces the mature miRNAs. One strand of the mature 

miRNA (the guide strand) is loaded into the miRNA-induced silencing complex (miRISC), which 

contains DICER1 and Argonaute (AGO) proteins, directs the miRISC to target mRNAs by sequence 

complementary binding and mediates gene suppression by targeted mRNA degradation and 

translational repression in processing bodies (P-bodies). TRBP-transactivation-responsive RNA-

binding protein. (Reproduced with permission from: Lin and Gregory 2015). 
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4.2 microRNAs in development 

As regulatory molecules that coordinate gene expression, miRNAs are implicated in a big 

range of biological processes that determine the fate of cells and tissues in an organism. 

In humans for instance, it has been estimated that more than 60% of all protein-coding 

genes are directly targeted and therefore regulated by miRNAs (Friedman et al., 2009). 

Although the level of repression induced by a single miRNA on a specific target is 

generally modest (Baek et al., 2008; Selbach et al., 2008), individual miRNAs can 

modulate hundreds of targets, often within the same biological pathways,  which can have 

a great impact in overall cell behavior (Grün et al., 2005; Lim et al., 2005; Friedman et al., 

2009). These particular features make miRNAs “the micromanagers of gene expression”, 

as this fine-tuning of transcript levels is fundamental to determine and achieve 

homeostasis (Bartel and Chen, 2004). Unsurprisingly, abolishing miRNA biogenesis by 

knocking-out Dicer leads to early lethality in mice (Bernstein et al., 2003) and zebrafish 

(Wienholds et al., 2003), whereas DGCR8 deletion compromises proliferation and 

differentiation in mouse embryonic stem cells (Wang et al., 2007). On the other hand, the 

deletion of single miRNAs in vivo has no substantial effect on viability and does not 

produce obvious phenotypes in most cases (Park, Choi and McManus, 2010). This can 

be partly due to miRNA redundancy, by which other similar miRNAs might compensate 

for the ones missing (Fischer et al., 2015).  

 

Nonetheless, loss-of-function studies have been an important tool to elucidate miRNA 

function, such as their major roles in coordinating the development of various organ 

systems. This is often accomplished through distinct sets of tissue-specific miRNAs that 

modulate development with unique temporal and spatial expression patterns, thus 

contributing to tissue identity (Sood et al., 2006; Guo et al., 2014). In the mammalian 

nervous system, miRNAs contribute for neuronal progenitor cells maturation into early 

neurons by inhibiting cell proliferation and subsequently inducing differentiation (Nishino 

et al., 2008; Zhao et al., 2009), or through brain-specific alternative splicing of pre-

mRNAs (Makeyev et al., 2007).  In the developing heart, miRNAs have been mostly 

studied in the cardiomyocytes, where they control cardiac growth and differentiation by 

repressing multiple cell cycle regulators (Liu et al., 2008; Porrello et al., 2011), 

transcription factors (Zhao, Samal and Srivastava, 2005) and the tumor suppressor PTEN 

(Chen et al., 2013). Other regulatory roles have been described for miRNAs in skeletal 

muscle myogenesis (Crist et al., 2009), differentiation and stratification of skin (Lena et 

al., 2008; Yi et al., 2008), fetal lung branching (Bhaskaran et al., 2009)  and insulin 

secretion during pancreatic development (Poy et al., 2004).  
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4.3 microRNAs in disease  

MiRNAs have been found to be deregulated in a variety of diseases, which rapidly turned 

them into attractive potential therapeutic targets. Consistently with their functions in 

organogenesis, they are involved in cardiovascular disease (Olson, 2014), 

neurodegenerative disorders such as Alzheimer’s or Parkinson’s (Abe and Bonini, 2013) 

and numerous autoimmune diseases like diabetes, multiple sclerosis, rheumatoid arthritis 

and others (Singh et al., 2013; Qu, Li and Fu, 2014). Additionally, miRNA expression 

profiles were found to be a reliable tool to identify origin and differentiation state of human 

tumors, whereas mRNA profiles proved to be highly inaccurate (Lu et al., 2005). This 

important discovery highlighted their potential for cancer diagnosis and, since then, 

miRNAs have been widely studied in diverse cancer types, where they are typically 

divided between two groups: tumor suppressor and oncogenic miRNAs (oncomirs) 

(Catela Ivkovic et al., 2017). Tumor suppressor miRNAs, which usually target oncogenes, 

are generally downregulated in a cancer context, whereas oncomirs modulate tumor 

suppressor genes and tend to be overexpressed in cancer.  

 

Notably, miRNAs were also shown to be capable of regulating distant cells, without direct 

cell-to-cell interaction. These so called circulatory miRNAs are secreted from cells to the 

extracellular environment packaged into exosomes (Valadi et al., 2007), high-density 

lipoprotein particles (Vickers et al., 2011), or bound to protein complexes (Arroyo et al., 

2011), which makes them highly stable by providing protection against RNAse 

degradation (Cortez et al., 2011). Furthermore, circulatory miRNAs were found to be 

present in bloodstream and other body fluids, which makes them easily accessible and 

raises the interest in their potential as disease biomarkers (Chen et al., 2008; Mitchell et 

al., 2008). In particular, this important feature can provide new insights into our 

understanding of cancer progression and development of metastases (Liu et al., 2016), 

which might lead to improvements in our diagnosis and prognosis capacity. 

 

Since early on, the strong link between miRNAs and disease has led to the design of 

multiple therapeutic strategies based on miRNAs. The current approaches are generally 

divided between the replacement of lost miRNAs, through the use of miRNA mimics, and 

inhibiting overexpressed miRNAs, with antagomiRs or miRNA sponges being the most 

common (van Rooij and Kauppinen, 2014). Despite promising candidates during 

preclinical research, most of those investigated so far have not progressed into advanced 

clinical evaluation, emphasizing the challenges of developing drugs from small molecules. 

On the other hand, a few drugs developed to target miRNAs involved in hepatitis C, 

hepatic cancer, lung cancer and T-cell lymphoma have already reached clinical trials 

(Catela Ivkovic et al., 2017), thus holding hope for miRNA-based therapies in the future.  
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4.4 microRNAs in regeneration 

Injury-induced regeneration is characterized by rapid changes in gene expression that 

require a strict regulation in order to trigger an adequate response. With the emergence 

of miRNAs as prominent agents in the regulation of gene expression in a tissue-specific 

fashion (Sood et al., 2006; Guo et al., 2014), it was not surprising that they have become 

interesting candidates in regeneration studies.  

 

This assumption was first addressed in vertebrate regeneration in 2006 and 2007, by 

profiling the miRNA expression in newt lens and inner ear hair cells regeneration (Makarev 

et al., 2006; Tsonis et al., 2007). Without functional assays, these were the first studies 

reporting conserved microRNAs in the newt and correlating their altered expression with 

regeneration. Later on, this time through gain- and loss-of-function experiments, it was 

observed that the depletion of miR-133, via FGF signaling, is required for proper fin 

regeneration in zebrafish (Yin et al., 2008). Similar results were found a year later, where 

the inhibition of miR-196 impaired tail regeneration in axolotl, thus revealing an essential 

component for a precise gene regulation (Sehm et al., 2009). These studies have showed 

a high degree of evolutionary conservation among vertebrate species and opened the 

doors to several others that followed (Yu et al., 2011; Holman et al., 2012; Yin et al., 2012; 

Witman et al., 2013; Lepp and Carlone, 2014; Rajaram et al., 2014). Such interspecific 

similarities pose an important feature of the study of miRNAs as they can offer new 

opportunities in the identification of common regulatory networks that are required for 

tissue regeneration (King and Yin, 2016).  

 

Despite their implication in regeneration and their functional role in appendage 

regeneration (Yin et al., 2008; Sehm et al., 2009; Holman et al., 2012), very little is known 

about their function in salamander limb regeneration, particularly in the context of muscle 

dedifferentiation. In mammals, some interesting reports have started to elucidate 

important roles of miRNAs in muscle regeneration. In skeletal muscle of adult mice, miR-

206 was found to be essential for satellite cell differentiation during regeneration and to 

slow the progression of Duchenne muscular dystrophy (Liu et al., 2012). In another study, 

a functional screening identified different miRNA candidates that induced cardiac 

regeneration and nearly full recovery of functional parameters in mice upon myocardial 

infarction (Eulalio et al., 2012). Moreover, it has also been shown that miRNAs may 

regulate cellular reprogramming (Judson et al., 2009), which is consistent with the idea 

that miRNAs are likely to impinge on cellular dedifferentiation. Therefore, we have 

explored these possibilities in Paper II. 
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5. Centrosomes and post-mitotic state 

Centrosomes are cell organelles that are present in most eukaryotic cells. They have 

been studied for over a century and are best known for their role as major microtubule 

organizing center (MTOC), which directs the microtubules to form the mitotic spindle 

during cell division (Schatten, Hueser and Chakrabarti, 2000). However, they play 

additional roles in cell motility, signaling, adhesion, coordination of protein trafficking and 

regulate cell polarity, usually microtubule-related functions (Conduit, Wainman and Raff, 

2015; Werner, Pimenta-Marques and Bettencourt-Dias, 2017). Several studies have 

showed that a functional centrosome is required for cell cycle progression, as centrosome 

ablation (Hinchcliffe et al., 2001; Khodjakov and Rieder, 2001), knockdown of 

centrosome proteins (Srsen et al., 2006; Mikule et al., 2007) and chemical inhibition of 

centriole biogenesis (Wong et al., 2015), resulted in mitotic arrest. In this chapter I will 

cover the current knowledge regarding centrosome formation, their main roles in 

homeostasis and disease, and discuss potential functions in muscle differentiation and 

regeneration. 
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5.1 Centrosome assembly and function 

Centrosomes are composed by two barrel-shaped microtubule structures, the centrioles, 

that are surrounded by a matrix of different proteins collectively called the pericentriolar 

material (PCM) (Fig. 17). Besides being integral part of the centrosome, centrioles are 

also necessary for assembly of cilia and flagella (Bettencourt-Dias, 2013). When a cell 

enters the cell cycle (G1-phase) it only has one centrosome, with two centrioles: the 

mother (older one) and the daughter centriole. During S-phase, these centrioles duplicate 

with two new centrioles forming orthogonally to the already existing ones. Towards the 

end of the interphase, when the cell is in G2-phase, the new daughter centrioles reach 

their maximum length and mature through the recruitment of components to the PCM, 

thus forming the centrosome. Once the cell enters mitosis, the two centrosomes separate 

and nucleate microtubules in order to assemble the mitotic spindle. Upon mitosis, both 

daughter cells have inherited one centrosome each, which will assure the continuation of 

the cell division process. If the cell does not proceed to a new cell cycle, then centrosome 

inactivation or ciliogenesis may occur (Fig. 18) (Conduit, Wainman and Raff, 2015; 

Werner, Pimenta-Marques and Bettencourt-Dias, 2017). In most quiescent cells, the 

mother centriole docks to the cell membrane and initiates the formation of a single cilium 

(Ishikawa and Marshall, 2011). This primary cilium is non-motile but behaves as a sensor 

for chemical and mechanical signals during vertebrate development (Goetz and 

Anderson, 2010). 

Figure 17: The structure of centrosomes. Each centrosome is composed of two centrioles (mother and 

daughter) and surrounded by a matrix of proteins called the pericentriolar material (PCM). The older 

centriole (mother) displays subdistal appendages, where microtubules are docked, and distal 

appendages, which are important for docking to the cell membrane. The canonical centriole has nine 

microtubule triplets and this nine-fold symmetry is in part provided by the cartwheel, one of the first 

centriole structures that is assembled. The cartwheel is then lost during centriole maturation. (From: 

Bettencourt-Dias, 2013) 

 

 42 

5.1 Centrosome assembly and function 

Centrosomes are composed by two barrel-shaped microtubule structures, the centrioles, 

that are surrounded by a matrix of different proteins collectively called the pericentriolar 

material (PCM) (Fig. 17). Besides being integral part of the centrosome, centrioles are 

also necessary for assembly of cilia and flagella (Bettencourt-Dias, 2013). When a cell 

enters the cell cycle (G1-phase) it only has one centrosome, with two centrioles: the 

mother (older one) and the daughter centriole. During S-phase, these centrioles duplicate 

with two new centrioles forming orthogonally to the already existing ones. Towards the 

end of the interphase, when the cell is in G2-phase, the new daughter centrioles reach 

their maximum length and mature through the recruitment of components to the PCM, 

thus forming the centrosome. Once the cell enters mitosis, the two centrosomes separate 

and nucleate microtubules in order to assemble the mitotic spindle. Upon mitosis, both 

daughter cells have inherited one centrosome each, which will assure the continuation of 

the cell division process. If the cell does not proceed to a new cell cycle, then centrosome 

inactivation or ciliogenesis may occur (Fig. 18) (Conduit, Wainman and Raff, 2015; 

Werner, Pimenta-Marques and Bettencourt-Dias, 2017). In most quiescent cells, the 

mother centriole docks to the cell membrane and initiates the formation of a single cilium 

(Ishikawa and Marshall, 2011). This primary cilium is non-motile but behaves as a sensor 

for chemical and mechanical signals during vertebrate development (Goetz and 

Anderson, 2010). 

Figure 17: The structure of centrosomes. Each centrosome is composed of two centrioles (mother and 

daughter) and surrounded by a matrix of proteins called the pericentriolar material (PCM). The older 

centriole (mother) displays subdistal appendages, where microtubules are docked, and distal 

appendages, which are important for docking to the cell membrane. The canonical centriole has nine 

microtubule triplets and this nine-fold symmetry is in part provided by the cartwheel, one of the first 

centriole structures that is assembled. The cartwheel is then lost during centriole maturation. (From: 

Bettencourt-Dias, 2013) 

54



 

 43 

 

Figure 18: Centrosome duplication during the cell cycle. a) A 'newborn' cell in the G1 phase of the cell 

cycle usually contains two centrioles that are often joined together by a flexible linker (red). The 

centrioles can form centrosomes by organizing pericentriolar material (PCM) around themselves. b) 

The centrioles duplicate in the S phase, each forming a daughter centriole that is tightly apposed at 

to the original mother centriole in an 'engaged' configuration. Although the centrioles in most cells in 

G1–S organize very little PCM, this PCM is highly organized around the mother centriole (see part c). 

d) As cells enter mitosis (G2–M), the two pairs of centrioles start to move apart as the linkage 

between them is broken. The mother centrioles start to recruit much larger amounts of PCM, and this 

is thought to be organized by a 'scaffold' structure that assembles around the mother centrioles (see 

part e). f) The enlarged PCM allows the centrosomes to nucleate and organize many more 

microtubules, which then play an important part in assembling and positioning the mitotic spindle. As 

cells exit mitosis, the chromosomes segregate on the mitotic spindle and the mother and daughter 

centrioles disengage. g) In many animal cells that have exited the cell cycle, the centriole pair 

migrates to the cell surface, and the mother centriole forms a basal body from which a cilium extends. 

The cilium is known to have many important functions in cells, and cilium dysfunction is associated 

with many human pathologies. (Reproduced with permission from: Conduit et al., 2015) 
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In order to explain how centrosomes are assembled, it is fundamental to understand 

centriole assembly, as they are required for an efficient aggregation of the PCM 

(Bobinnec et al., 1998). Studies in worms (C. elegans) have been driving the progress in 

this field with several outstanding discoveries, which contributed to establish a whole set 

of core proteins, such as the Spindle assembly abnormal 4 (Sas4) (Kirkham et al., 2003),  

that are necessary for centriole assembly in all eukaryotes (Gönczy, 2012; Jana, Marteil 

and Bettencourt-Dias, 2014). The current challenge is to understand how these core 

components interact with each other and how they ensure that centrioles are properly 

assembled.  

 

New evidence has emerged, through structural analysis of different proteins, which 

helped elucidating some of these mechanisms (Kitagawa et al., 2011; Van Breugel et al., 

2011). When the new centrioles are formed after duplication, the subsequent assembly 

of the PCM starts. Although the levels of the PCM differ among cell types, they are overall 

reduced during interphase (Fig. 18) (Conduit, Wainman and Raff, 2015). In this stage, 

PCM only forms around the mother centriole, and displays a great level of organization 

(Lawo et al., 2012; Mennella et al., 2012). As cells progress towards mitosis and 

centrioles mature, the amount of PCM recruited by the centrioles highly increases (Mahen 

and Venkitaraman, 2012). This maturation process relies on phosphorylation events from 

different mitotic protein kinases such as Polo-like kinase 1 (Plk1) (Lane and Nigg, 1996). 

Subsequently, Plk1 was found to be involved in the recruitment of gamma-tubulin (-tub) 

and pericentrin (PCNT) (Casenghi et al., 2003; Haren, Stearns and Lüders, 2009), two 

important components of the PCM that mediate microtubule nucleation (Zimmerman et 

al., 2004).  
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5.2 Centrosome functions and conservation in evolution 

During cell division, when the centrosome assumes the role of MTOC, it promotes 

chromosome segregation by assembling the mitotic spindle. Even though centrosomes 

have several other functions that go beyond cell division, these generally involve 

microtubules. They can coordinate protein trafficking by establishing microtubule tracks 

that motor proteins use to transport different cellular components across the cell. 

Additionally, they can modulate the transport speed and modify certain components 

before they proceed to their target location (Bettencourt-Dias, 2013; Royle, 2013). 

Centrosomes are also responsible for ensuring cell polarity in a variety of processes. In 

fertilization, centrosomes were found to be necessary for the union of the maternal and 

paternal genomes to occur in mouse, sea urchin (Schatten et al., 1986) and C.elegans 

(Zonies et al., 2010) eggs. In development, centrosome-based asymmetric cell divisions 

were also observed in mammals, with implications in human embryonic stem cell 

proliferation (Fuentealba et al., 2008) and in the mouse developing neocortex (Wang et 

al., 2009). As previously mentioned, centrioles in quiescent cells can switch between a 

centrosome to a cilia-forming basal body upon migration to the cell surface. Despite not 

being fully understood how this shift in animal cells occurs, as centrioles dictate 

centrosome properties, it is worth mentioning that the primary cilium is known to also play 

important functions during vertebrate development. Among other roles, it can work as a 

sensory organelle to a big range of stimuli originating from different signaling pathways 

(Goetz and Anderson, 2010; Bornens, 2012). For instance, this signaling was shown to 

be critical for survival and patterning of mouse embryos (Huangfu et al., 2003). 

Interestingly, whereas some cell lineages do not form primary cilia, such as the immune 

system, which establishes transient immune synapses through centrosomes 

(Stinchcombe et al., 2006), others like renal epithelia form primary cilia that play a critical 

role in the physiology of the kidney (Nauli et al., 2003). What drives different cells to adopt 

distinct behaviors within the same organism remains unclear, but the extensive research 

in this field might soon contribute to a better understanding of this issue.  

 

Centrosomes can be found across all the major eukaryotic groups and their conserved 

structure suggests that this could be an ancestral feature. While they are not present in 

all species, they were found in all animals studied and determined to be essential for their 

development (Debec, Sullivan and Bettencourt-Dias, 2010; Azimzadeh, 2014). However, 

there are some exceptional cases where they are dispensable. For instance, during early 

mouse embryogenesis, centrioles are naturally absent during the first cell-divisions of the 

blastomere (Szollosi, Calarco and Donahue, 1972). Additionally, when fruit flies have an 

homozygous mutation in the sas4 gene, which is required for centriole duplication, this 

generates morphologically normal animals that are born without centrioles but die shortly 

after birth (Basto et al., 2006). Surprisingly, planarians were recently found to be the first 
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animal species that completely lacks centrosomes, despite having centrioles to assemble 

cilia (Azimzadeh et al., 2012). This raises the question: are centrosomes strictly 

necessary for cell division? The current view is that it is not a general requirement since, 

besides being species-specific, it also depends on the cell type/tissue. While they might 

not be critical for cell division in some tissues, they are still indispensable in others, which 

seems to be the case in many organisms (Rodrigues-Martins et al., 2008; Debec, Sullivan 

and Bettencourt-Dias, 2010). When looking at the distribution of centrosomes among 

eukaryotic organisms, a strong correlation can be observed between the presence of 

centrioles and cilia/flagella, whereas the presence of centrioles does not reflect existence 

of centrosomes in many cases. This observation indicates that the assembly of 

cilia/flagella might be the ancestral and most important function of the centrioles, rather 

than centrosome assembly (Bettencourt-Dias, 2013).    

  

 

 46 

animal species that completely lacks centrosomes, despite having centrioles to assemble 

cilia (Azimzadeh et al., 2012). This raises the question: are centrosomes strictly 

necessary for cell division? The current view is that it is not a general requirement since, 

besides being species-specific, it also depends on the cell type/tissue. While they might 

not be critical for cell division in some tissues, they are still indispensable in others, which 

seems to be the case in many organisms (Rodrigues-Martins et al., 2008; Debec, Sullivan 

and Bettencourt-Dias, 2010). When looking at the distribution of centrosomes among 

eukaryotic organisms, a strong correlation can be observed between the presence of 

centrioles and cilia/flagella, whereas the presence of centrioles does not reflect existence 

of centrosomes in many cases. This observation indicates that the assembly of 

cilia/flagella might be the ancestral and most important function of the centrioles, rather 

than centrosome assembly (Bettencourt-Dias, 2013).    

  

58



 

 47 

5.3 Centrosome-related diseases 

Centrosome and centriole dysfunction have a broad range of implications in human health 

and have been linked to numerous diseases. Theodor Boveri, who extensively studied 

and named the centrosome (discovered earlier by Flemming and Van Beneden) 

(Schatten, Hueser and Chakrabarti, 2000; Delattre and Gönczy, 2004), was the first to 

link centrosome aberrations with disease more than 100 years ago. Strikingly, even 

before oncogenes and tumor suppressor genes were discovered, Boveri proposed that 

tumor formation resulted from loss of cell polarity and chromosome segregation 

abnormalities, further suggesting that centrosome structural defects were a major cause 

for these imbalances (Boveri, 2008). Boveri’s influential work has provided the basis for 

many cancer studies that followed but, despite several observations that support an 

association between tumor formation and centrosome dysfunction, it is still a matter of 

debate whether these defects directly promote tumorigenesis or are simply a by-product 

of abnormal cell division (Bettencourt-Dias et al., 2011; Nigg, Čajánek and Arquint, 

2014).  

 

More recently, his work was revived after being reported that knockdown of the tumor 

suppressor p53, downregulated in most mammalian tumors, led to multiple centrosomes 

in mouse fibroblasts (Fukasawa et al., 1996). Additionally, it was found that dysregulation 

in centrosome duplication is common in a variety of tumors (Lingle et al., 1998; Pihan et 

al., 1998). These studies were fundamental to uncover a potential genetic link between 

centrosome aberrations and tumor development, which is still being investigated (Wu et 

al., 2012; Nam and Van Deursen, 2014), further supporting Boveri’s early predictions. 

Besides cancer, centrosome/centriole defects can also lead to neurodevelopmental 

disorders that might result in brain size anomalies and dwarfism, and ciliopathies (defects 

in cilia structure or function), which are associated with bronchitis, sinusitis, sperm 

immotility and changes in body symmetry (Bettencourt-Dias et al., 2011; Nigg, Čajánek 

and Arquint, 2014).  

 

 

 

  

 

 47 

5.3 Centrosome-related diseases 

Centrosome and centriole dysfunction have a broad range of implications in human health 

and have been linked to numerous diseases. Theodor Boveri, who extensively studied 

and named the centrosome (discovered earlier by Flemming and Van Beneden) 

(Schatten, Hueser and Chakrabarti, 2000; Delattre and Gönczy, 2004), was the first to 

link centrosome aberrations with disease more than 100 years ago. Strikingly, even 

before oncogenes and tumor suppressor genes were discovered, Boveri proposed that 

tumor formation resulted from loss of cell polarity and chromosome segregation 

abnormalities, further suggesting that centrosome structural defects were a major cause 

for these imbalances (Boveri, 2008). Boveri’s influential work has provided the basis for 

many cancer studies that followed but, despite several observations that support an 

association between tumor formation and centrosome dysfunction, it is still a matter of 

debate whether these defects directly promote tumorigenesis or are simply a by-product 

of abnormal cell division (Bettencourt-Dias et al., 2011; Nigg, Čajánek and Arquint, 

2014).  

 

More recently, his work was revived after being reported that knockdown of the tumor 

suppressor p53, downregulated in most mammalian tumors, led to multiple centrosomes 

in mouse fibroblasts (Fukasawa et al., 1996). Additionally, it was found that dysregulation 

in centrosome duplication is common in a variety of tumors (Lingle et al., 1998; Pihan et 

al., 1998). These studies were fundamental to uncover a potential genetic link between 

centrosome aberrations and tumor development, which is still being investigated (Wu et 

al., 2012; Nam and Van Deursen, 2014), further supporting Boveri’s early predictions. 

Besides cancer, centrosome/centriole defects can also lead to neurodevelopmental 

disorders that might result in brain size anomalies and dwarfism, and ciliopathies (defects 

in cilia structure or function), which are associated with bronchitis, sinusitis, sperm 

immotility and changes in body symmetry (Bettencourt-Dias et al., 2011; Nigg, Čajánek 

and Arquint, 2014).  

 

 

 

  

59



 

 48 

5.4 Centrosomes and skeletal muscle 

During the last decade, several studies have highlighted the prominent roles of 

centrosomes in asymmetric cell division, which is particularly relevant for stem cell 

maintenance and cell differentiation (Schatten and Sun, 2011). In addition, it has been 

known that centrosomes often become inactivated (i.e. lose their MTOC capacity) in 

animal cells that undergo differentiation. This is the case for neurons, epithelial cells and 

muscle cells, which establish alternative non-centrosomal MTOCs, thus resulting in a 

reorganization of the microtubule network (Lüders and Stearns, 2007; Jaworski, 

Hoogenraad and Akhmanova, 2008; Sanchez and Feldman, 2017). In particular, skeletal 

muscle, which is composed by long and post-mitotic multinucleated myofibers that derive 

from the fusion of mononucleated myoblasts (Dumont et al., 2015; Sampath, Sampath 

and Millay, 2018), switches from a radial network of microtubules to a parallel array of 

filaments along the extended cytoplasm (Fig. 19) (Warren, 1974; Tassin, Maro and 

Bornens, 1985; Connolly, Kiosses and Kalnins, 1986). Upon this transition, most of the 

microtubule nucleating capacity is taken over by the nuclear membrane (Tassin, Maro 

and Bornens, 1985; Bugnard, Zaal and Ralston, 2005; Srsen et al., 2009).  

 

Currently, the fate of centrosome components during myogenic differentiation is still an 

ongoing debate. This is due to the fact that earlier studies on the topic generally found 

that centrioles were missing or rarely seen in mature myotubes/myofibers (Przybylski, 

1971; Connolly, Kiosses and Kalnins, 1986), while others reported they were relocated 

and not associated with nuclei once differentiation takes place (Warren, 1974; Tassin, 

Maro and Bornens, 1985). These conflicting observations could be partially explained by 

a combination of factors such as the different techniques used (electron microscopy and 

immunohistochemistry), species tested (muscle from chick embryos, frog tadpoles and 

human biopsies) and possible differences between differentiation stages of the cells 

Figure 19: Microtubule reorganization during skeletal muscle differentiation. In mononucleated 

myoblasts (Left), the single microtubule-organizing center (MTOC) organizes a radial microtubule 

array. Upon differentiation into multinucleated myotubes (Right), the nuclear envelopes take over 

the role as MTOCs and the microtubule network is re-organized into a parallel distribution. 

(Reproduced with permission and adapted from: Lüders and Stearns 2007) 
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the role as MTOCs and the microtubule network is re-organized into a parallel distribution. 

(Reproduced with permission and adapted from: Lüders and Stearns 2007) 
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observed. Later on, several groups have tried to address this question and increasing 

evidence suggests that, upon differentiation, the centrosome disassembles with several 

of its components being redistributed to sites that nucleate microtubules, both in the 

nuclear envelope and cytoplasm (Musa et al., 2003; Bugnard, Zaal and Ralston, 2005; 

Srsen et al., 2009). Interestingly, a recent study in cardiac muscle reported that 

centrosome integrity was lost in adult mouse cardiomyocytes, contrary to what happened 

in adult zebrafish or newt cardiomyocytes, both of which with the capacity to proliferate 

(Zebrowski et al., 2015). This strongly suggests the existence of interspecific differences 

in centrosome maintenance mechanisms that we still do not understand completely. 

Additionally, it indicates that centrosome integrity might be associated with the capacity 

of certain cells to revert the post-mitotic state during regeneration events, as it happens 

in newts. Uncovering the molecular mechanisms that lead to centrosome 

loss/redistribution in mammals, but its maintenance in newts, could provide new insights 

to clarify existent roadblocks to regeneration. In the work presented in paper IV, we have 

explored these questions.  

 

  

 

 49 

observed. Later on, several groups have tried to address this question and increasing 

evidence suggests that, upon differentiation, the centrosome disassembles with several 

of its components being redistributed to sites that nucleate microtubules, both in the 

nuclear envelope and cytoplasm (Musa et al., 2003; Bugnard, Zaal and Ralston, 2005; 

Srsen et al., 2009). Interestingly, a recent study in cardiac muscle reported that 

centrosome integrity was lost in adult mouse cardiomyocytes, contrary to what happened 

in adult zebrafish or newt cardiomyocytes, both of which with the capacity to proliferate 

(Zebrowski et al., 2015). This strongly suggests the existence of interspecific differences 

in centrosome maintenance mechanisms that we still do not understand completely. 

Additionally, it indicates that centrosome integrity might be associated with the capacity 

of certain cells to revert the post-mitotic state during regeneration events, as it happens 

in newts. Uncovering the molecular mechanisms that lead to centrosome 

loss/redistribution in mammals, but its maintenance in newts, could provide new insights 

to clarify existent roadblocks to regeneration. In the work presented in paper IV, we have 

explored these questions.  

 

  

61



 

 50 

6.  Present investigation 
 

6.1 Aims  

The general aim of this thesis was to investigate the events of muscle dedifferentiation 

during limb regeneration in newts and to gain a better understanding of how the process 

is regulated at the molecular level. In addition, we intended to provide new insights on 

how this regulation allows dedifferentiation to occur in newts while preventing it in 

mammals. In order to elucidate underlying regulatory mechanisms of salamander limb 

regeneration, we studied this process at different cellular and molecular levels such as: 

genomic sequences (Paper I), non-coding transcripts (Paper II), canonical signaling 

pathway proteins (Paper III) and intracellular organelles (Paper IV). In particular, the 

specific aims for each study were: 

 

 Paper I – Sequencing of a salamander genome 

We aimed to sequence and assemble the first salamander genome to understand how 

genome size and content relate to regeneration capacity. 

 

 Paper II – microRNAs in limb regeneration 

We attempted to identify microRNAs that regulate salamander limb regeneration and to 

determine their mechanisms of action. 

 

 Paper III – BMP signaling in muscle dedifferentiation 

The goal was to identify a long-sought serum component that induces newt myonuclei to 

reenter the cell cycle. 

 

 Paper IV – Centrosomes in skeletal muscle 

This study intended to clarify whether centrosomes are maintained upon skeletal muscle 

differentiation in mammals and salamanders, and to uncover a possible role for these 

cellular organelles in the process of dedifferentiation during salamander limb 

regeneration.    
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6.2 Paper I – Sequencing of a salamander genome 

Salamanders have been used for a long time as a research model to study regeneration. 

However, in comparison to other model organisms, the lack of available genomic 

resources has hindered the progress in the development of new genetic tools that can 

help us to explore their remarkable regenerative capacities (Kumar and Simon, 2015). In 

this study we aimed to fill this gap by sequencing and assembling the first salamander 

genome. The genome of the Iberian-ribbed newt (Pleurodeles waltl) provided us with a 

platform to further investigate the genomic landscape of salamanders and uncover 

particular features of their giant genomes. 

  

 Summary of the results 

Salamanders have been reported to harbor some of the biggest genomes in the animal 

kingdom (Brockes, 2015). In particular, the genome size of the Iberian-ribbed newt was 

around 20 Gb, making it several times bigger than the human genome and one of the 

largest sequenced to date (Gregory, 2018). One of the main features of this large 

genome was the high abundance and diversity of repetitive elements such as class I and 

class II transposable elements. We found two thirds of this genome repetitive content to 

be formed by Gypsy retrotransposons and Harbinger transposons, which have strikingly 

expanded in salamanders. Moreover, the genome displayed a high frequency of two 

miRNA gene copies, specifically miR-427 and miR-93b, with the latter appearing to be a 

salamander-specific expansion. Interestingly, both of these miRNAs were found to 

contain a seed sequence that has been previously associated with embryonic stem-cell 

specificity and cell cycle regulation.  

 

To assess whether they were regulated in regeneration, we mapped total RNA-seq reads 

from several different tissues, including regenerating limbs, and observed that the 

primary transcripts of both miRNAs were upregulated at 3 days post-amputation (dpa). 

A similar pattern was observed for some Harbinger and Gypsy elements, showing that 

these also responded to injury. Next we proceeded to investigate the presence of two 

transcription factors that are known to be important for early development (Pax3) and 

skeletal muscle regeneration (Pax7) (Epstein, 2000; Sandoval-Guzmán et al., 2014; 

Buckingham and Relaix, 2015). Through manual curation of this gene family and in situ 

hybridization analysis, we detected the presence and expression of both of these paralog 

genes. To test their functionality, we generated knock-outs for each of those genes, 

through CRISPR/Cas9 technology. Pax7-/- mutants (F1) showed no impairment or 

defects in muscle development, whereas Pax3 mosaic-mutants (F0) died prematurely or 

developed anomalies such as the lack of muscle tissue in the limbs. Surprisingly, when 

we evaluated their limb regenerative capacity, we found the animals in both cases to 

regenerate normally. Whereas Pax7-/- gave rise to normal limbs with skeletal muscle, the 
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Pax3 mosaic-mutants regenerated limbs with appropriate morphology but without 

muscle. 

 

 Discussion and future work  

The sequencing and partial assembly of salamander genomes have been delayed due to 

the complexity and very large size of salamander genomes (Looso et al., 2013; Looso, 

2014). With this study, we have taken a step further by providing a new tool that can 

become instrumental in the study of salamander regeneration. 

 

We have here elucidated that the expansion of specific transposable elements and 

miRNA genes were some of the features partially responsible for the large genome size 

of the Iberian-ribbed newt. Together with their regulation during limb regeneration, this 

data might help us discovering new mechanisms of salamander regeneration. In 

particular, in Xenopus and Zebrafish, miR-427 (known as miR-430 in Zebrafish) was 

shown to mediate clearing of maternal RNAs during development, when the embryos 

switch to express their own genes (Giraldez et al., 2006; Lund et al., 2009). We 

hypothesize that this miRNA might assume a similar role as a master regulator during limb 

regeneration, where it can stimulate cell plasticity, so that processes like dedifferentiation 

can occur. To test this hypothesis, functional studies through manipulation of the miRNA 

levels should be performed and evaluate whether there is an effect in limb regeneration. 

 

Through our loss of function studies on Pax3 and Pax7, we were able to show that limb 

regeneration occurred in the absence of skeletal muscle and that, when muscle was 

absent, other tissues did not contribute for muscle formation after amputation. In addition, 

we observed that the importance of Pax3 for mammalian embryonic development 

(Epstein, 2000) was conserved in the Iberian-ribbed newt. Interestingly, other 

salamanders such as the Mexican axolotl lack the Pax3 gene (Nowoshilow et al., 2018), 

which suggests that Pax7 (or other paralogues) might have additional functions in this 

species. Pax7 is a canonical marker for satellite cells, which are important to ensure 

muscle regeneration in mammals and salamanders (Buckingham and Relaix, 2015; Fei 

et al., 2017). In the newt, however, dedifferentiation of fully mature myofibers also 

provides an important contribution to the regenerate (Sandoval-Guzmán et al., 2014), 

which can potentially compensate for the lack of satellite cells. To answer this question, 

it is essential that we perform muscle lineage-tracing studies in the future.  

 

Taken together, these data highlight how the information we gained from the salamander 

genome opens new possibilities for the study of limb regeneration. In the future, we hope 

this will be a valuable resource to develop new tools for functional studies, such as 

transgenic lines, making salamanders even more attractive model organisms. 
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6.3 Paper II – microRNAs in limb regeneration  

 
MiRNAs have been shown to be important regulators of gene expression and to be 

associated with tissue-specificity (Sood et al., 2006; Guo et al., 2014). Moreover, several 

reports have elucidated miRNA roles in tissue regeneration (Yin et al., 2008, 2012; Sehm 

et al., 2009; Holman et al., 2012; Witman et al., 2013). Here, we profiled miRNAs that 

were regulated during newt limb regeneration and identified that regulation of miR-10b-

5p was an important factor. In addition, by performing a cross-species study, we identified 

miRNAs with distinct regulation comparing newt and mammalian muscle cells, in an 

attempt to uncover miRNA-based differences that might explain their different 

dedifferentiation capacity. 

 

 Summary of the results 

To profile miRNAs during limb regeneration with special focus on skeletal muscle, we 

performed small RNA-seq from newt blastemas and stump muscle during limb 

regeneration. We found that many miRNAs were strongly regulated, with a group of few 

miRNAs representing the vast majority of all miRNAs in the sample. From these, miR-10b-

5p stood out as the most abundant overall, which showed a lower expression level in the 

blastema compared to the stump or uninjured muscle. Interestingly, RNA-seq profiling of 

mammalian myotubes showed the opposite expression trend, in a cell based assay where 

they are stimulated to reverse their differentiated state. Therefore, we decided to explore 

miR-10b-5p further, to determine whether it played an important function in regeneration.  

 

We then proceeded to characterize the expression levels and patterns in newt limb 

regeneration. Through qPCR analysis we observed that miR-10b-5p was downregulated 

upon amputation and gradually restored to normal levels after 18 days. Furthermore, in 

situ hybridization revealed this miRNA to be highly abundant in skeletal muscle tissue 

overall and in the 18 day-blastema. These data indicated that miR-10b-5p might be 

implicated in the regenerative response of the newt. To test it, we employed a mimic-

based approach to overexpress miR-10b-5p during limb regeneration, when it was 

downregulated, resulting in a delay in the regenerative process. While none of the mimic 

injected limbs failed to regenerate to digit stages, half of them displayed shortening in limb 

size. This led us to hypothesize that miR-10b-5p could be coordinating cell proliferation. 

We then employed a BrdU assay, after mimic injection, to detect the proportion of cycling 

cells in the regenerating limbs. We estimated that the proportion of cells in S-phase was 

significantly reduced in limbs where mir-10b-5p was overexpressed, and that the size of 

the blastemas was substantially reduced. To assess whether this reduced growth was 

induced by programmed cell death, we performed a TUNEL assay in mimic-injected 

limbs, but found no differences in the level of cell death when compared to control limbs. 
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 Discussion and future work  

Taken together, our data indicate that miR-10b-5p is downregulated during limb 

regeneration and that this downregulation is necessary to ensure a proper regenerative 

response. While overexpression of miR-10b-5p did not severely impaired regeneration, it 

was shown to affect the proportion of cycling cells and consequently blastema formation.  

 

One of the main limitations we faced in the analysis of the small RNA-seq data was the 

absence of annotated miRNAs for the Red-spotted newt, the species in which the miRNA 

screen was performed. This prevented us from efficiently discriminating between the 

different isoforms and determining the mature sequence of miR-10b-5p. However, the 

characterization and functional experiments for miR-10b-5p were performed with Iberian-

ribbed newts, whose genome and transcriptome we recently sequenced (Paper I). These 

resources can now help us to circumvent the previous problems and help us identifying 

the miRNA precursors.  

 

It is still premature to establish a role for miR-10b-5p in regeneration, as we did not yet 

identify its acting mechanism during this process. Thus, the next logical step is to define 

candidate targets to be tested. We can predict this based on sequence complementarity 

between the seed sequence of miR-10b-5p and 3’UTR regions from the available 

transcriptome. Once putative candidates have been selected, we can measure their 

mRNA and protein levels, through qRT-PCR and western blot, and assess the 

downstream effects of miR-10b-5p manipulation. In addition, we can perform reporter 

assays to determine specific mRNA-miRNA interactions. This technique allows us to 

express a luciferase reporter-3’UTR construct and evaluate whether its expression is 

altered upon miRNA manipulation as a sign of direct binding. 

 

In relation to the obtained mild phenotype, it is important to consider two points. First, the 

effects of injected mimics are transient and, therefore, the overexpression effect ceases 

once the mimic is cleared out of the system. To address this, we could electroporate a 

miRNA expressing construct, which would stably express the miRNA gene, and 

investigate how it affects regeneration. Second, it is plausible that certain compensatory 

mechanisms are in place, possibly through other miRNAs, which prevent a more severe 

phenotype. To explore this option, we can inject combinations of mimics that would 

overexpress different miRNAs simultaneously to examine its effects on limb regeneration. 

  

In the future, to further elucidate a potential role of miR-10b-5p in muscle dedifferentiation 

specifically, one could use a transgenic line that allows for in vivo tracing of muscle cells 

during regeneration (as in Paper IV), so we can explore how the manipulation of miR-10b-

5p affects this process in particular. 
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6.4 Paper III – BMP signaling in muscle dedifferentiation 
 

Around 20 years ago, it was reported that serum proteases which regulate blood clotting 

seemed to be involved in initiation of regeneration (Tanaka et al., 1997). This conclusion 

was based on the observation that when cultured newt myotubes were exposed to serum, 

they re-entered the cell cycle. Additionally, thrombin and plasmin were identified as 

important serum components which could trigger this response (Tanaka, Drechsel and 

Brockes, 1999). However, the downstream mechanisms and targets of these proteases 

have remained elusive. In this study, we provide new insights into these mechanisms by 

showing that members of the BMP signaling pathway are specifically targeted by 

thrombin and plasmin, and that these cleaved forms of BMPs are necessary to induce 

dedifferentiation in vivo. 

 

 Summary of the results 

In order to identify the S-phase re-entry inducing factor (SPRF), we employed a series of 

experiments which included column chromatography, SDS-PAGE and mass 

spectrometry. Through these analyses, we identified 34 major proteins such as BMP4, 

BMP5 and BMP7. Upon testing, only BMP4 induced a myotube response and correlated 

with S-phase re-entry activity. Moreover, we found BMP4 to be required and sufficient for 

S-phase re-entry. Interestingly, native BMP4-containing dimers from purification fractions 

were found to be much more potent in inducing cell-cycle re-entry than recombinant 

proteins. 

 

Considering the involvement of serum proteases in activating the SPRF, we investigated 

whether BMPs were targeted directly by thrombin and plasmin. Treatments with these 

proteases resulted in a significantly higher activity of BMPs in inducing S-phase re-entry 

in myotubes, suggesting they were more potent when cleaved. By mapping the target 

sites on BMP4, we found multiple sites for both proteases, with thrombin cleaving the 

peptide with higher selectivity. 

 

We then proceeded to test the role of BMP signaling in cell cycle re-entry of skeletal 

muscle cells in vivo. To do so, we induced the expression of dominant-negative BMP 

receptors specifically in newt skeletal muscle. Through an EdU assay to measure cycling 

cells during regeneration (EdU+), we observed that expression of all the tested dominant-

negative receptors induced a 20-25% reduction in the number of EdU+ cells, showing that 

BMP signaling was implicated in regeneration-induced cell cycle re-entry in vivo. Further 

molecular analysis of BMP signaling, through a luciferase reporter assay, indicated that 

BMP signaling proceeded through the activation of downstream SMAD targets. In 

particular, dedifferentiated cells were positive for phosphorylated SMAD1/5/8, thus 

confirming SMAD activity. 
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Lastly, to examine the relevance of BMP protease activity for muscle cell-cycle re-entry 

in vivo, we induced the expression of a mutant BMP4 (N-BMP4), which mimicked the 

cleaved BMP4 form, in the regenerating blastema. We found that, when compared to 

wildtype BMP, this cleaved-like BMP4 resulted in a higher cycling index of 

dedifferentiating muscle-derived progeny. Furthermore, when inhibitors of thrombin and 

plasmin were injected in regenerating limbs, this decreased the number of cells that 

incorporated EdU, showing that fewer cells were re-entering the cell cycle. Consistently, 

this effect was rescued by the expression of N-BMP4 during limb regeneration. 
 

 Discussion and future work  

Muscle dedifferentiation is a known key step in newt limb regeneration (Sandoval-

Guzmán et al., 2014). In this report, we showed that BMPs were serum factors that 

stimulated cell cycle re-entry of differentiated newt skeletal myotubes and myofibers. This 

activity was triggered by serum proteases, including thrombin and plasmin, that 

specifically cleaved BMP, thus enhancing its activity. In this model, skeletal myofibers in 

intact limbs are not in contact with plasma BMPs which circulate within blood vessels. 

Upon limb amputation, the severed vessels leak plasma BMPs into the surrounding 

tissues, thus initiating the clotting cascade and the subsequent cleavage of BMPs. The 

myofiber-derived progeny is then exposed to and respond to the activated BMPs by re-

entering the cell cycle. 

 

It is important to note that while previous studies have implicated BMP signaling in early 

steps of amphibian limb regeneration (Beck et al., 2006; Guimond et al., 2010), due to 

the employed methodology, it was not possible to determine whether the negative effects 

on proliferation were directly mediated by BMPs. In our study, through cell-autonomous 

inhibition of BMP signaling, we confirmed that muscle-derived cell cycle re-entry was 

directly enhanced by components of the BMP pathway. Our data also suggested that this 

pathway might work in parallel with other pathways, as the inhibition of BMP signaling 

only led to a partial decrease in S-phase re-entry. 

 

In summary, this work provides new insights into the underlying mechanisms of limb 

regeneration. Particularly, we gained a new understanding in how local injuries can 

induce the activation of the BMP signaling pathway and how this pathway acts directly at 

the cellular level to form the blastema from mature muscle fibers. Overall, this can have 

important implications for promoting a proliferative state during regeneration, which could 

open new possibilities within Regenerative medicine.   
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6.5 Paper IV – Centrosomes in skeletal muscle 
 

Centrosomes are known to play different functions in the cell but best known for their role 

as MTOC during cell division, in which they assemble the mitotic spindle that segregates 

the chromosomes (Werner, Pimenta-Marques and Bettencourt-Dias, 2017). 

Differentiation of skeletal muscle, a tissue formed by multinucleated post-mitotic cells 

(Dumont et al., 2015), induces modifications to the centrosomes. However, the type and 

extent of these modifications remains poorly understood, as available literature points 

towards centrosome degradation or relocalization as a consequence of mitotic arrest 

(Przybylski, 1971; Warren, 1974; Tassin, Maro and Bornens, 1985; Connolly, Kiosses 

and Kalnins, 1986). In this study, we clarify this issue and identify important differences 

between mammalian and salamander muscle. Further analyses are ongoing to uncover 

a possible role for these cellular organelles in the process of dedifferentiation during 

salamander limb regeneration.    

 

 Summary of the results 

To characterize centrosome modifications upon muscle differentiation, we isolated 

primary myoblasts from mice and cultured them in low serum conditions to induce 

differentiation. Through immunostainings, we thoroughly evaluated the presence of 

several essential components of the centrosome (both PCM and centriolar) during 

several stages of mammalian muscle differentiation. We observed that once myoblasts 

committed to differentiation, this triggered a gradual depletion of those components, 

starting with the disassembly of the PCM and followed by the centriolar proteins. In late 

stages of differentiation, all the analyzed components were absent, with the exception of 

the centriolar CEP135 and Centrobin (CNTB). Nevertheless, they were undetected in 

primary mouse myofibers through super resolution microscopy. 

 

We then focused on the early stages of differentiation in order to identify the events that 

initiate centrosome disassembly. Here we observed that CNTB, typically associated 

exclusively with the daughter centriole (Ogungbenro et al., 2018), was present in both 

centrioles once the cell withdrew from the cell cycle. This precluded the location shift of 

pericentrin (PCNT) from the centrosome to the nuclear envelope, a known step in muscle 

differentiation (Srsen et al., 2009), showing that this might be one of the earliest events 

taking place when muscle cells commit to differentiation. Interestingly, no major 

differences were found in gene expression of different components, apart from the PCM 

component Plk1, which decreased in later stages of differentiation. By contrast, we 

detected an increase in its protein levels during the same period. Depletion of Plk1 

through siRNA impaired the formation of late myotubes, suggesting that regulation of 

myogenesis in mouse might involve Plk1. 
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In opposition to the mouse, we found centrosomes to be maintained in newt primary 

myofibers, with no indication of loss of the analyzed components. Strikingly, through 

regrowth assays, we observed that these centrosomes were still active MTOCs as they 

polymerized microtubules in these terminally differentiated muscle cells. To test whether 

there was a correlation between centrosome maintenance and dedifferentiation, we 

employed linage tracing of dedifferentiated muscle cells, during salamander limb 

regeneration. We detected centrosomes in the majority of the myofiber-derived progeny, 

both in cycling and non-cycling cells, suggesting that the centrosome might not be 

required for blastema cell proliferation. 

 

 Discussion and future work  

This study provides evidence suggesting that the mechanisms of centrosome elimination 

which are present in the mouse are not conserved in the newt. Or, alternatively, newts 

might have evolved different ways of protecting their muscle tissue from centrosome 

disassembly. One of the current limitations is the fact that we relied exclusively on 

immunostainings to determine absence of given components. Ultimately, to be certain 

that the centriole structure is not present anymore, it would be important to confirm with 

other techniques such as electron microscopy. Additionally, it would be interesting to test 

whether culturing myotubes for longer periods would lead to the loss of the remaining 

components or if myotubes in vitro lack the capacity to acquire the same features of fully 

mature muscle fibers.  

 

Although we could not establish a mechanism behind centrosome inactivation, our data 

suggest that CNTB relocation is an important event in the early stages of differentiation 

when centrosome loss starts. However, functional studies already performed, through 

siRNA-mediated knock-down of CNTB, have proven to be inconclusive. Plk1 on the other 

hand, which showed promising results as a regulator of late differentiation stages and has 

been implicated in zebrafish heart regeneration (Jopling et al., 2010), is an interesting 

candidate to further explore differences between the two species.    

 

Centrosomes were recently shown to be disengaged in mammalian cardiac muscle, in 

clear contrast to engaged centrosomes observed in other species with heart regeneration 

potential, such as newts and zebrafish (Zebrowski et al., 2015). Similarly, we aim to 

determine whether this is recapitulated in skeletal muscle, which would further support a 

link to limb regeneration. Furthermore, one should investigate through lineage-tracing if 

artificial induction of mammalian muscle dedifferentiation requires de novo formation of a 

centrosome structure, or if they are not necessary factors in this process. Finally, as the 

centrosomes found in the newt muscle were shown to be functional, it would be 

informative to perturb centrosome function and assay how this would influence myogenic 

dedifferentiation.  
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7.  Conclusions and future perspectives 
 

The long and rich history of regenerative biology has generated several major discoveries 

in experimental research. Nevertheless, despite the initial optimism towards the possibility 

of regenerating lost body parts in humans, the progress in our understanding of 

regenerative phenomena has moved at a slower pace than previously anticipated. This 

strongly reflects how the complexity level of regeneration was largely underestimated. A 

good example to illustrate this point is the evolution of liver regeneration research. During 

the early studies of this process, the general conviction was that the action of an individual 

factor, either stimulator or inhibitor, was the key to understand liver regeneration. Later 

on, it became clear that this was not the case, as specific pathways started to be 

implicated in triggering the regenerative response (Fausto, Campbell and Riehle, 2006). 

Currently, the available literature in the field exposes a great deal of complexity, with a 

variety of receptors, growth factors, cytokines and signaling pathways being reported as 

important components in this context (Michalopoulos, 2013). This further supports the 

idea that tissue and organ regeneration involve an intricate network of interactions that 

ultimately leads to an appropriate response. 

 

Nature displays a remarkable variety of means by which injured or lost tissues can be 

restored (Birnbaum and Alvarado, 2008; Brockes and Kumar, 2008). This is best 

reflected in cases where seemingly similar processes, such as salamander limb and tail 

regeneration, can occur in distinct ways. Despite specific similarities between these two 

processes, including epidermal wound healing and a dedifferentiation phase that 

contributes to blastema formation, detailed experimental and molecular analyses have 

revealed a number of fundamental differences. First, while the regenerating limb requires 

the presence of peripheral nerves (Singer, 1952), regenerating tail depends on the 

presence of the spinal cord (Holtzer, 1956). Second, the cell types that can switch cell 

lineage differs. In the limb, muscle-derived cells were observed in cartilage tissue (Lo, 

Allen and Brockes, 1993), while in the tail, it was reported that spinal cord cells can 

differentiate into muscle and cartilage (Echeverri and Tanaka, 2002). Third, even though 

the ablation of muscle and skin performed unilaterally over half the limb circumference 

gives rise to half limbs (Goss, 1957), the same procedure in the tail causes no 

regeneration defects (Dinsmore, 1981). 

    

Whereas the great complexity of regenerative phenomena can be discouraging for some 

researchers, a more optimistic perspective would highlight the immense possibilities that 

remain unexplored in regeneration research today. Moreover, we now have an array of 

new tools at our disposal to study them. In this thesis I have described how the field of 

regenerative biology has progressed over the years and, in my view, the most important 

milestones that have been achieved. I have focused on salamander research to greater 
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detail mainly for being the central topic of this work, but also to emphasize how this model 

organism has been instrumental in leading to many of those major discoveries. 

Furthermore, the studies included in this thesis have led to new insights into the 

mechanisms that govern salamander limb regeneration and, in particular, that are 

involved in skeletal muscle dedifferentiation. Ultimately, while many questions remained 

unanswered and new ones have emerged, we have been able to:   

 

1) Identify unique features of a gigantic newt genome, namely the expansion of 

transposable elements and miRNAs. Moreover, we found an association between these 

features and limb regeneration. This study also equipped the field with a new resource 

that can be valuable for future regeneration studies (Paper I);  

 

2) Profile miRNAs that are regulated during newt limb regeneration, and determine that 

an appropriate regulation of miR-10b-5p is important for blastema formation and for limb 

regeneration to occur at a normal rate (Paper II);  

 

3) Establish a molecular mechanism of how limb regeneration is initiated upon injury. 

More specifically, we identified components of the BMP signaling pathway that are 

essential to promote myofiber dedifferentiation and subsequent blastema formation 

(Paper III);  

  

4) Demonstrate that centrosome elimination that follows skeletal muscle differentiation in 

mammals, does not occur in newt skeletal muscle. We observed that newts maintain 

centrosomes in fully mature myofibers and that these are still functional MTOCs. This 

might have implications for cell-cycle re-entry which takes place upon myofiber 

dedifferentiation and, consistently, we found a majority of muscle-derived cells in the newt 

regenerating limb to contain centrosomes (Paper IV).  

 

These and previous studies emphasize the importance of studying less conventional 

organisms, such as salamanders and zebrafish, to understand natural phenomena like 

regeneration. As mammals do not display a similar level of regenerative capacity, the 

lessons we learn from these alternative models might become essential for the 

development of future therapies in regenerative medicine. 
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guided me after my arrival. You helped me finding my first accommodation, and patiently 
showed me how everything works in the lab. Thank you for all the support and the nice 
lunch football discussions. Daniel, you left us too soon, but maybe it was for the best, 
because I could not understand your peculiar interest for knowing how to say the word 
sausage in different languages. Matthew, I always appreciated your calmness and 
positive thinking. With you I learnt an important lesson: When you lack good data for the 
lab meeting, always bring more fika. Thank you for also reminding me, in moments of 
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storm, that everything will work out fine in the end. It seems simple but sometimes is hard 
to remember. Speaking of storm, I hope that Aston Villa will soon be ready to leave the 
intensive care unit. Goyalla, how is life? It was interesting to see your evolution from shy 
Shahul to (usually shirtless) party animal Shahul. I enjoyed every single argument we had 
over lunch, mostly about useless things. Thank you for introducing me to the Holi festival 
and to show me that indian food can be tasty without melting my throat. Laure, my (always 
organized) desk and lab bench neighbor. Nobody else shared my taste for indie music, 
so it was great to have you around. Even if that meant having to use up some energy to 
unplug your laptop every day. Tiago, we can all agree you were the second best 
Portuguese in the lab. Or in other words… you were the second most awesome. You are 
the only one of us with a pathological addiction for building snowmen. I’m not sure how 
that happened but I’m surprised you haven’t yet discovered an app that can make them 
for you. I admire your obsession for detail in all the things you do and I am genuinely 
looking forward to see your future unfolding. Speaking of future, it is rapidly approaching 
the time in which I start remembering and worrying about your paparazzi tendencies. But 
remember, I know where you live and the PhD gave me some practice with sharp tools! 
Alberto, the salamander whisperer, I think it is a good sign that, even though we worked 
in the same lab, most of my memories are from parties (including joint birthdays), 
snowboarding, barbecues and other fun activities we enjoyed together. “La primavera 
trompetera ya llego!” ♪♫. But the most important lesson is to never forget to bring your 
backpack! Please send my greetings to Argos (and perhaps a biscuit).  
 
Iv, I am happy the only pandemic outbreak we had to handle as scientists was during a 
board game. That was a fun night! I will remember your history lessons in shiny wigs and 
your team building spirit. Thank you for correcting my English whenever was necessary 
and best of luck for the remainder of your own journey. Ahmed, your excitement for 
science is contagious, thank you for showing me the importance of keeping a positive 
mindset. Justyna, even though it was impossible to drag you to the weekly after-work 
beer, I wish you would have stayed with us a bit longer, so you could keep telling me how 
you thought I looked like a post-doc. Eric, I am happy you always kept the salamanders 
happy by giving them food and music. As some of them came from France, I’m sure they 
appreciated the French radio station. Anoop, I have a hard time imagining how this thesis 
could have been finished without your help, knowledge and wisdom! Your contribution 
was essential to finish many experiments, but I am also incredibly grateful for all the 
advice, discussions about regeneration and proofreading! You are like the encyclopedia 
of regeneration and I have learnt a lot from you since you joined the lab. Zeyu, you are a 
hard-worker and I am sure you will succeed in the journey you are starting now. Good 
luck! Alex, keep taking good care of the salamanders and remember they also enjoy a 
good mojito on fridays after work. Elayia, the most recent member. You slowly started 
helping me with a few things here and there, but soon became a critical part of the team. 
Thank you for all your efforts, especially after I left the lab! I hope you enjoy your time in 
Stockholm, and don’t worry about the darkness, it always passes. 

To our recurrent collaborators, Nevin, Sharknado team partner! Thank you for helping 
me out at the beginning with all the tips about microRNA work. Elif, I am thankful for your 
constant availability to help out and to have a chat. Teşekkür ederim! 
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 CMB  

To all the members of the Frisén lab, thank you for the good atmosphere and fun 
interactions over the years. Pedro R., thank you for introducing me to MF and for bringing 
me along for my first after-work pub. Mehdi, sometimes I walk around Stockholm and I 
swear I can hear you laughing somewhere far, far away. In those moments I know you 
are probably having a good time listening to the famous hit “The Rhythm of Chenai”. 
Margherita, thank you for tagging along for celtic punk rock concerts. Giuseppe, lab 
neighbor and pub crew member, you are one of the most reliable people I know and 
someone one can really count on. But then again, I just seem to have a thing for Italians, 
so maybe is not an objective opinion. Helena Lönnqvist, you are a force of nature and I 
admire how you keep everything on track with such dedication. You went out of your way 
to help me countless times, and I am eternally grateful for all your support.  
 
To all the friends in the different corners of CMB I was lucky to meet over the years. 
Helena Storvall, your Halloween costumes never disappoint. Excited to see what your 
planning for the next party! Parvin, it was fun to hang out with you all the way since we 
were sharing the office, to randomly meeting at startup-related events. Good luck with 
your thesis, you have done a great job already! Tati, “You don’t have my number” ♬♪. 
Well, you actually do, but you know what I mean. A big high five for letting me use the 
water bath in your lab, it turned out to be quite important! When are we gonna do more 
night racing in the ski slopes? Mauricio, I am equally thankful for all the beers and 
bioinformatic support sessions we had together. But I will hardly miss them in the same 
proportion. Please ask your mother not to save all the turtles and leave some for me. 
Gianvito, the master of lampreys, when are you gonna start playing foosball? Maybe I will 
increase my chances of convincing you if I ship a foosball table to Burning man. Bettina, 
long live the Ice Queen! Can you come for a visit every second week so I don’t have to 
go to Kunigunda? I am anxiously waiting for our diving trip together (we can tell Simi it is 
just a surfing trip). Katrin (or Alice), “Hola, que tal?” You are so dedicated to the german 
cause, that you already started practicing the language to integrate faster in Mallorca 
after your retirement. Now that I am gone, please go easy on the new students, we 
wouldn’t want to scare them and make them leave the table during the meal right? David 
G., No pressure pretty girl, but the future of the winter conference depends on you. And 
one more thing… just get a bike helmet already! Daniel, thank you for helping out with 
my crazy ideas of hosting a concert in MF and for all the Oktoberfest parties. Arguably 
the best ones outside of Germany. Marion, I have never witnessed such a deep bond 
between a person and cheese! And wine! And… well… food in general. Your clown 
costume still haunts me at night sometimes. More often than my own defense. Enikő (or 
Enőki), some days I can still feel the smell of that tasty langosz you made in CMB. You 
shouldn’t miss the big opportunity to scale it up in Biomedicum. Imagine all the chances 
you would get to network and mingle! No matter how life unfolds, just remember how 
important it is to listen to the raisins. Miguelito, Amadora’s biggest export. Sorry, I did not 
mean that literally, but because you are such a rockstar! Nobody slides on the dancefloor 
like you, please let me know when you have your knee replacement surgery so I can 
come by for a visit. 
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I am grateful to all the staff in CMB doing their best so everything runs smoothly. Lina and 
Margaret, always with an open door to help with all my paperwork-related struggles. 
Zdravko and Andreas, our problem solvers and occasionally life savers. The living proof 
that not all heroes wear capes! Elizabeth, Janet, Veronica and Rosa, thank you for all the 
kindness, the big daily smiles and for pretending you understood my fake spanish 
(muchas gracias!). Florian, thank you for your precious help with the microscopes and 
for spending time to explain me how things actually work. Linda Lindell, thank you for 
having our student backs and for always keeping an uplifting mood. CMB was not the 
same while you were gone. Linda Thörn, you are a kind soul, always available to listen 
and provide some comforting words. Your unlimited efforts to help with the organization 
of different events are worth a nomination for the best staff member awards (someone 
should create that). Matti, I am thankful for your constant support towards student-driven 
initiatives, which truly make CMB and KI fun places to work in, but also for all the career 
advice and travelling stories. I just hope that, by now, you finally acknowledge that 
Portuguese and Spanish are two separate languages. 
 
 

 CMB Pub  

So many good memories with this one. It always gave me a chance to catch up with many 
“long time no see” friends. I believe we made CMB the coolest department in town and 
of course this was only possible with an amazing crew behind it. Helena C., whatever I 
write will never really do you justice so, instead, I will just wave my arms in the air like an 
inflatable arm-flailing tube man while writing this (not easy I can tell you). Now that you 
have visualized that in your mind, let me just thank you for all the laughter over the years! 
And for your pants. Thibaud, the best Odlaw (Waldo villain) ever entering in CMB. I still 
owe you some Hela cells, let me know if you ever want them back. Isabelle, the queen of 
dressing up who would totally come to work in full costume if that would not attract weird 
looks. Because people should definitely fight for their right to wear leopard underwear on 
top of their clothes! As a member of your admission committee, I look forward to your 
defense. No pressure. Pedro V., what to say? The only thing that comes to my mind is 
“Où est ton papa? Dis-moi où est ton papa? Papaoutai! Papaoutai!” ♪♫. Meeting the 
famous Veliça from FCUL in Stockholm, was a powerful reminder of how small this world 
is. Keep it up with the fantastic work with pedromics, because I feel that time flies when 
you are having a pun. Thank you for the awesome job with the cover (it’s my favorite part 
of the thesis). Milind, the parties at your place were so much fun! I just hope I didn’t make 
a mess with my mushrooms and fire balls. Yildiz (or kırmızı), I miss exchanging useless 
words in each other languages. The pubs were definitely not the same without you 
hijacking the playlist, good old times! Let me know if you ever want to go back to relax on 
a black ski slope. Anna, nobody plays the tambourines in karaoke like you do. But I also 
don’t think anyone else sees the point in doing so. Thank you for teaching me 오리 고기, 
I should now be able to survive in South Korea without starving. Fosco, after you and 
Davide left, my foosball skills severely suffered from the lack of training during working 
hours. Please come back so we can fix that before I start my next job. Steffi, thank you 
for explaining me the differences between Bulgarians and Macedonians so eloquently. 
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 KI bubble  

To my remaining KI friends from other departments who wished they worked in CMB 
(even if they didn’t acknowledge it). Alča, I hope I can one day climb mountains half as 
high as the ones you climb. If you keep aiming that high, you seriously risk achieving great 
things! Teresa F., you’re a fighter and I’m sure your future has some good surprises 
waiting for you. I always enjoyed your friendship and the nice chats we had, except the 
time we went to watch the final of the Europa League. Damn you Sevilla! Raquel V., 
former short-term university teacher and TV star! I am still waiting to see you paddling on 
a dragon boat. Thank you for dropping by CMB once in a while for a quick catch up. 
Theresa M., it is amazing to see you having so much initiative in all these different events, 
I wish there would be more like you. See you soon in industry! Nina, I lost count to all the 
ski slopes we covered but it was a lot of fun. Let me know when you are ready for the next 
riddle, I have not used them all! Thank you for showing me that Opera is not as bad as I 
thought. Mei Ling, thank you for showing me Peter Russell, it was fun to see you laughing 
that hard. I feel the time for a new chapter has arrived and hope things will work out well 
from now on. I’m cheering for you! Greg, it was fun to hang out with you in Bodrum and 
in the parties that followed. I guess I managed to keep all these memories because, unlike 
Tiago, I remember your face. Mirjam, when are we going to 3D-print some more stuff? 
Beep me up when you have time, I could use a shield for my defense. Anneliese, thank 
you for bringing me into the scientific illustration world. Looking forward to the next 
gatherings! 
 
To the Winter conference gang, this was one of the coolest initiatives I had the chance to 
part of during my PhD. It was amazing to see how the whole event evolved and I hope 
others will now keep carrying the torch for many years to come. Sebastian, the fearless 
captain of this enterprise. Little did we know, after the famous ping pong nights in Bodrum, 
all parties we would enjoy together. It was sad to see you leave but I hope everything 
works out well in Japan! Mat, you are present in most of my memories from KI. That 
basically means a lot of conversations about autophagy. You are one of the coolest I had 
the chance to hang out with and, now that you stopped fooling around with your defense 
date just for us to have a joint party, guess who will be the DJ in my party? (Hint: someone 
with a doctoral degree). Burcu, I believe I won’t ever meet anyone else who enjoys 
listening to horror movies while pipetting in the lab. No matter what mood or time of the 
day, you are always someone fun to be around and your happiness spreads easily. 
Antonio, you had to leave but your killer moves on the dance floor stayed with us. All the 
best for the med school journey! Caroline, you were one of the core elements from the 
start and, in the process, you became a great friend. Always caring, happy to meet up 
and also checking on me to make sure I was surviving during crazy periods. Now that I 
am in Huddinge, it’s time to make up for the lost time. Veronika, we met long time ago 
during a very frosty night in Solvik, in the middle of that majestic winter wonderland. I am 
happy we had the chance to enjoy a lot of other events together after that. But please 
stay safe, no point in insisting on a career in extreme sports anymore. Sandra, my 
favourite Menorcan! The one who just managed to meet everyone in KI in a very short 
time. Always amazed me! I’m happy we upgraded it to proper friends after just meeting 
through Ana. Sander it was great to have you onboard for the memorable edition in Åre! 
Tina, it was awesome to see you taking over the last edition of the conference with such 
enthusiasm! 
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To all the members of the Stockholm RNA club: Roger, Pinar, Sara, Lidi, Florian, Linda, 
Friederike, Felix, David, Emelie, Linnea, Bobby and Emma, it was truly rewarding to be 
part of this initiative from the very beginning with some of you and to see all the others 
getting involved to bring more people into the RNA world! Roger, you were the driving 
force behind this project for the whole time and I know how sometimes it was a struggle 
to keep it going. I admire your persistence and hope this will not turn into dust after you 
leave. Apart from the RNA-related memories, I will of course also remember the nice 
encounters we had in the badminton court.  
 
On a separate note, I would like to thank Alexandra Elbakyan for her continuous 
fight, with personal sacrifice, for the equal access to scientific information. Her 
work has been an inspiration and a valuable resource throughout the writing of 
this thesis. “Be the change that you wish to see in the world.”    
 

 Home, sweet Lappis  

After living in Lappis for so long, this certainly represents a big part of what Stockholm is 
to me. Over the years, the family I formed there kept growing. Fra, I am having withdrawal 
symptoms from not hearing about the twins for so long. Thank you for introducing me to 
Taralli (life changing!) and for informing me about all things that come from Kuneo. I wish 
that winter night we walked all the way to lappis through the snow could be repeated, it 
was incredible! Daniele, the man of the woods! it is awesome to finally have you with us. 
I wish I would see you more often but you guys are always kayaking around the world. 
Davide, I could thank you for all the qPCR tips, but what I remember more often is all the 
exercise we did together. Foosball games, pushing shopping carts full of hydrating 
beverages and carrying furniture around Lappis, that’s a lot of arm workout. A reunion 
Finland shall happen soon! Justyna K., it was unfortunate you were not in Stockholm for 
longer because it was great to have you around. And I don’t say it just because of all the 
vodka tasting. Please tell Giulia she is welcome to randomly call me again whenever she 
feels like. Jöelle, the best Cruella de Vil I have seen! Even though I have only seen two 
and one was a cartoon. I did not forget the promised trip to Giethoorn, but it is hard to 
handle the long bucket list. Nico, the brother from another mother. Our dinners are one 
of my best memories in Stockholm. Not so much for the food portion size because that 
was usually non-sense, but mostly for all the laughter (≥ 80% of the time making fun of 
Elisa) and for the occasional pragmatic advice. Also, I think it is time for you to watch The 
Bridge. Caro, it was sad when you left us to pursue a career in the weather agency, 
especially because I miss arancini and you never have good inside information about the 
weather anyways. Please tell your dad to call me Dr. Leon from now on. Elisa Curry 
Kahlúa, (or Princess of Lebanon), thank you for showing me that members of the royalty 
can also be skilled in the kitchen. However, I won’t say you make the best tiramisu 
because Francesca might read this one day. Simone, my second favourite Simo. I am 
almost a free man again, which means it is time to go to the vinyl store! Alina, it was such 
a fun time when you were around, with the corridor dinners and all the big hiking plans 
that never took off after the first trip. Thank you for hosting me in Mainz and for showing 
me that Germany can also have good wine! It is your turn to come and visit. Ozan, yo 
man! It is time to switch the laptop for the racket, let’s go back to the court. I believe that 
I will feel lighter after the defense and so I will have bigger chances of trashing you. But 
maybe that is just me daydreaming. 
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 Stockholm syndrome  

To all my Portuguese fellow emigrants Nuno, Andreia, Diogo, Joana, Catarina, Cristina, 
Cláudia, Moutinho, Antero, Filipa, and Mariana who also deeply bonded with the city that 
kept us in captivity within its borders, thank you for all the memorable moments over the 
years. Antero, és um tipo porreiro, mas estaria a mentir se dissesse que não gostei de te 
encher a cara com pó de várias cores no Karolinska. Andreia (ou meia-leca), tentei 
impingir-te o snowboard e não ficaste convencida. A ver se corre melhor com o 
mergulho. Pelo menos é mais difícil caíres. Diogo, (ou Frouto) quando é que vamos aos 
bifes outra vez? Estás sempre pela Ásia hoje em dia, não fica muito em caminho. Cláudia, 
Acho que está na hora de ir à Costa Rica, estamos à espera de quê? Moutinho, está na 
hora de desistir da carreira no futebol, tendo em conta os teus joelhos acabados e pés 
quadrados. Por outro lado, a carreira de palhaço continua a ser uma opção bastante 
válida em que todos te reconhem um grande potencial. Erik, the infiltrated swede who is 
by now more Portuguese than many of us. At least when it comes to the waves. Thank 
you for all the support with sound systems, moving apartments and tie knot tutorials. 
    
Leonor, foi óptimo ter-te aqui “ao lado” mesmo que não nos tenhamos encontrado tanto 
quanto gostaria. Mesmo assim, curti à grande todos os Valborgs, aniversários, 
halloweens e restantes eventos. Obrigado por me teres introduzido ao mundo do 
Douglas Adams! Joana, confesso que já não me faz muito sentido continuar a chamar-
te sueca. Mostraste-me a cultura deste país, tentaste ensinar-me a língua e levaste-me 
a andar sobre um lago congelado pela primeira vez. Apesar da distância actual e de 
viveres desconectada das redes socias, fico feliz por irmos mantendo o contacto. Espero 
ver-te em breve.    

 The Core  

From the Croatian trip to all the dinners, parties and other gatherings, thank you for all 
the pretty epic memories. Just wait for the next episodes because, as always, I might 
have some new stories to tell. Hanna (or nagy), our favorite Balkan! Except when you 
drove us around during the holidays, that was a bit too intense. I can’t really say there is 
a time in Stockholm before you, because we met at the very beginning. And it has been 
a hell of a ride! One of my proudest moments was to convince you to try tuna. Which says 
a lot about how picky you are. Raquel T., the most badass from Barreiro! Thank you for 
all the courier services over the years that brought me my suit, my ID card and packages 
of rice! If only you would know that making me a Pastel de Nata offer would have triggered 
so many requests, you would have reconsidered your actions. November is coming, so it 
is time for film festival! Garcia, thank you for vacating the room that saved me from the 
bed bugs. That was a small step for you, but a big step for my sanity! When are we gonna 
go snorkeling (like hell)? I should have more time after the defense. If you want, you can 
bring your sloth, no questions asked. But let’s not talk about Frequencies again. Bettina, 
Get a grape! I’m not sure I will forgive you for leaving us like this, you never warned us 
that it was for good. We only adopted Viktoria to the group as a temporary solution, but 
now it has been so long, I don’t even remember how your pineapple-shaped head looks 
like anymore. Just come back already. Viktoria, Don’t read the one above, it’s not actually 
true. We adopted you because it is fun trying to guess every time we meet what colour 
your hair will be. I hope you learnt your lesson regarding passports. It is nice to live on the 
edge sometimes, but no need to bring everyone along. 
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 Last, but certainly not least  

To all my friends from home who always “kept me close” while I was gone and made me 
look forward to our summer and Christmas reunions. Ao grupo dos Lóris Gordos: Pipas, 
Euclides, Zaca, Pimenta, Bruna, Petrov, Lia, Rita Martins, Maria, Unas, David, obrigado 
por estarem sempre na mesma, parvos como é preciso. Petrov, fazes falta cá na Suécia. 
Já não tenho quem acampe no meu sofá ou que queira fazer maratonas de Saw comigo. 
Joaninha das Neves e Rita Borba, não se esqueçam que me devem um Oktoberfest. 

Para a Bela, por seres aquela fonte de inspiração que se vai mantendo sempre intacta. 
És um exemplo de perseverança de que muito me orgulho. Continua assim, porque um 
dia arriscas-te a ser recompensada. Obrigado pela ajuda com a tese, posters e 
conselhos no geral. Quando quiseres voltar a fazer o teste da mini, sabes onde me 
encontrar. Conto ter um desempenho melhor desta vez. E, já agora, obrigado também à 
Dani (Bethânia), que muito teve que nos ouvir discutir sobre novelas de laboratório. 

Para os meus pais, obrigado por estarem sempre presentes, independentemente de 
onde eu esteja fisicamente, e por me terem apoiado em todas as minhas escolhas que 
me trouxeram até aqui. Durante estes anos, voltar a casa sempre me ajudou a recarregar 
baterias e em grande parte porque vocês não se poupam a esforços para que assim 
seja. Por isso, este prémio também é vosso. Apesar do vosso tamanho, adoro-vos em 
grandes quantidades. 

To Simi, the other half of this team, who always kept me going even when the motivation 
was lost and that gave me a push whenever I got stuck. I am incredibly grateful for all 
your love, help, support, patience (to some extent), and for always reminding me how “I 
am gonna be just fine”. It turns out that, against all odds, that might actually be right. Soon 
the roles will be reversed and I hope to live up to the challenge.  
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