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ABSTRACT 
Extracellular vesicles (EVs) are released from all cell types, and carry a wide setup 

of proteins, nucleic acids, lipids and other cargo. The overall aim of this thesis is to 

explore EV-based immune therapy, but also to find clues on mechanisms of the 

inflammatory disease sarcoidosis, and of lung cancer. Exosomes from dendritic 

cells (DCs) pulsed with antigen can induce antigen-specific responses in vitro and 

in vivo. Study I is an investigation comparing exosomes and microvesicles (MVs), 

which may complement exosomes therapeutically. We found surprisingly similar 

phenotypes of the two EV subtypes, including size distribution and immune-

stimulatory molecule expression. However, when tested in vivo, only exosomes 

induced a significant antigen-specific CD8+ T cell response. Antigenic re-

stimulations ex vivo did, however, suggested that also MVs had such capacity, and 

both vesicle types induced antigen-specific IgG production. We further targeted the 

inflammatory disease pulmonary sarcoidosis in study II and study III with the aim 

to increase understanding of disease mechanisms, but also to search for disease 

biomarker candidates, and possible new treatment regimens. Broad proteomic 

characterizations of exosomes from patients revealed high abundance of pro-

inflammatory molecules including leukotriene (LT)-forming enzymes. Large 

portions of the complement system were elevated, and we flagged vitamin D-

binding protein as a possible biomarker for sarcoidosis. Functional tests of patient 

exosomes further suggested that they can engage monocytes and favor release of 

pro-inflammatory cytokines. The effects were partly dependent on LTs, and we 

could reduce cytokine production using the commercially available LT receptor 

antagonist Montelukast. Study IV on exosomes in lung cancer is focused on how 

exosomes may contribute to tumor progression via LTs. Exosomes from pleural 

effusions of patients favored generation of tumorigenic LTD4, as well as tumor cell 

migration, which could be reduced using Montelukast. In summary, this thesis 

highlights the importance of investigating all EV subtypes in both basic and applied 

research. Further, the ability of EVs to contribute to inflammatory processes in the 

lungs underscores the potential of EVs in understanding disease mechanisms and 

finding diagnostic and prognostic disease markers. Finally, all three lung studies II-

IV point to the possibility of interfering with LTs in inflammatory conditions, with 

possible applications also in cancer therapy.  



POPULAR SCIENTIFIC SUMMARY 
Synthetical nanoparticles are developed and used in state-of-the-art applications, 

and offer exciting new technical possibilities. Like many other innovations, nature 

has its own sophisticated equivalence. Every cell type of your body is capable of 

releasing nanoparticles fully loaded with cargo that can be shipped to other cells. 

These biological nanoparticles, or extracellular vesicles (EVs), can be down to 30 

nanometers in diameter. This is extremely small considering that the beard of an 

average man has been anecdotally reported to grow 5-10 nanometers per second! 

Interestingly, these little entities travel around in you, and based on thousands of 

published studies, they seem to contribute to many of your biological functions 

including keeping the immune system in check.  

Research on EVs isolated from blood, urine, or saliva provides clues about how 

diseases affect you via EVs, and explores the potential to diagnose diseases based 

on EVs. Another idea is to use EVs as vaccine or treatment, as they can stimulate 

your own immune system to fight a virus or tumor. 

Exosomes are intensely investigated EVs, and in this thesis we tested also another 

EV type for its ability to stimulate an immune response. We found that both EV types 

could stimulate immune cells in mice, which suggests that treatments based on EVs 

should include both EV types. We also investigated exosomes from patients with the 

lung disease sarcoidosis. These exosomes were enriched in molecules which can 

induce inflammation, and when testing them on blood cells from healthy volunteers, 

they indeed induced inflammatory effects. Lastly, we also tested exosomes from 

lung cancer patients, and found signs that they can help tumor cells to survive and 

possibly also to spread the cancer. Several of these effects depended on molecules 

involved in inflammation. We could reduce several of these inflammatory effects 

using an asthma drug which reduces inflammation, suggesting that this drug may 

protect from cancer progression, and perhaps can be used in inflammatory diseases. 

In summary, we show that several EV types should be tested further for their 

possible use in new treatments, and that they may contribute to inflammations and 

even cancer in the lungs. 
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1 THE IMMUNE SYSTEM 
 

The human immune system has evolved over millions of years to recognize and 

neutralize threats with as little effort and collateral damage as possible. The result is 

a system of enormous complexity. This is a brief overview of the most central 

concepts including lymphocytes and the mononuclear phagocyte system. The 

central aspects of immunity addressed in the studies of this thesis include induction 

of an antigen-specific immune response or inflammation. Immune stimulatory 

mechanisms are therefore mainly described below. 

B CELLS 

B cells comprise follicular B (FOB) cells residing in follicles of peripheral lymphoid 

organs, marginal zone B (MZB) cells of the spleen capturing blood-borne antigens, 

and B1 cells which confer mucosal immunity by monitoring pleural and peritoneal 

cavities. The latter two respond rapidly, and independently of T cells whereas FOB 

cells undergo somatic mutation and affinity maturation in germinal center (GC) 

reactions [1]. B cells are generated in the bone marrow, where their B cell receptor 

(BCR) is assembled from a heavy and a light chain, composed of a unique 

combination of three gene segments (V, D and J). This results in a cell surface-

bound immunoglobulin (Ig) with high specificity for one antigenic epitope. At this 

stage, in the bone marrow, if a BCR recognizes any antigen it is highly likely self-

structures. Any such BCR will therefore be treated as autoreactive, and the B cell will 

undergo receptor editing, basically switching the BCR specificity. Failure to do so will 

induce apoptosis or anergy in the B cell. This central tolerance induction reduces the 

number of mature autoreactive B cells to approximately 10% for adults, still a 

surprisingly high number, which however rarely causes problems as autoreactive B 

cells in the periphery are anergic [2].The BCR can increase its affinity greatly, and be 

produced in great quantities when needed. For this to occur, a GC reaction has to 

take place which is located to peripheral lymphoid organs. B cells are attracted to 

follicles by follicular dendritic cells (FDCs) which release CXCL13 to attract T and B 

cells [3]. The FDCs there display antigen to B cells, which in turn recognize the 

antigen and migrate towards the T cell zone, where antigen-specific T cells meet 

their B cell counterpart. The B cell has now internalized the antigen, processed it and 

here presents it to the CD4+ T follicular helper (TFH) cell, which via its T cell receptor 
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(TCR) recognizes the MHC-antigen complex on the B cell. In return the T cell ligates 

its CD40L to the B cell CD40, which is necessary for the B cell to further differentiate 

either into plasma cells secreting high affinity antibodies, or into memory B cells [4]. 

In parallel with this, some B cells exit the GC early as plasma blasts to generate low 

affinity antibodies. These act as a first line of defense, until the long-lived plasma 

cells are finally produced, releasing high-affinity antibodies. These long-lived PCs 

home to the bone marrow via unknown signaling, and reside there dependent on 

partly unknown mediators which may include IL-6 and TNF [5]. 

Memory B cells are generated via GCs, but can also be formed independently of T 

cell help via mechanisms far less investigated, but generally the T cell-dependent 

(GC-induced) memory B cells generate more robust secondary responses. The 

memory B cells express surface-oriented Ig, and depending on the Ig isotype they 

elicit different secondary responses. IgG+ memory B cells more readily differentiate 

into plasma cells, whereas IgM+ B cells are more prone to re-enter GC reactions. 

They also show great differences in how long they maintain immunological memory, 

i.e. the capacity to induce a robust secondary response [6]. 

T CELLS 

T cells are selected in the thymus for their ability to recognize foreign, but not self, 

peptides presented in self-MHC. T cell progenitors are attracted to the thymus, 

where they stepwise become CD4+CD8+ and are positively selected by cortical 

thymic epithelial cells (cTECs) based on their ability to recognize self-MHC with low 

affinity. Thereafter, the T cells differentiate to single positive cells (CD4+ or CD8+), 

and encounter medullary thymic epithelial cells (mTECs) which display self-antigens, 

and any T cells recognizing self will be deleted in a negative selection process [7]. 

Elegantly, however, a CD4+T cell recognizing self-antigen in the thymus can also 

follow another path and differentiate into a regulatory T cell (Treg) with the capacity 

to modulate tolerance [8]. In pursuit of an antigen, the T cells circulate between the 

blood and lymphoid organs to find an antigen-presenting cell (APC) presenting the 

antigen peptide they recognize. Most commonly, the antigen encounter takes place 

in peripheral lymphoid organs such as a lymph node which represents a crossing 

point for APCs and lymphocytes [9]. 

Necessary for antigen recognition is the T cell receptor (TCR), composed of an 

alpha and a beta chain, which in conjunction with CD3, can engage the MHC-
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peptide complex expressed by an APC. Consequently, the T cell and the APC form 

an immunological synapse, where the TCR-MHC interaction is accompanied by 

association of adhesion molecules including CD54 binding to lymphocyte function-

associated antigen 1 (LFA-1). Further, the T cell is equipped with the immune 

stimulatory receptor CD28, as well as the inhibitory CTLA-4 which both can be 

engaged by the costimulatory CD80/CD86 on the APC. As CD28 interaction with 

CD80/CD86 is a necessity for T cell activation, the competition for CD80/CD86 

provides a tool to steer the T cell response towards immunogenic or tolerogenic 

responses [10]. 

Activated CD8+ T cells differentiate into cytotoxic T lymphocytes (CTL) capable of 

recognizing MHC I with associated peptide, and recognize and kill cells expressing 

foreign peptides derived from pathogens or tumors. CD4+ T cells on the other hand 

rather support other immune cells including CD8+ T cells, B cells, and NK cells to 

tailor the immune response according to the infection or threat. CD4+ T cells can 

differentiate into many subtypes including T helper (Th)1, Th2 and Th17 cells 

depending on the stimulatory environment, including Th-skewing cytokines and 

costimulation [11]. 

Th1 cells are classically described as promoting an immune response to intracellular 

pathogens including viruses, with IFNγ being the hallmark cytokine. Th2 cells on the 

other hand, release IL-4, IL-5 and IL-13, are vital in fighting parasitic infections but 

also play a major role in allergies. Th2 cells are also closely associated with ILC2s, 

which react to epithelial cell-released IL-25 and IL-33 by producing Th2 cytokines 

[12]. 

Th17 cells reside in the intestines during steady state, where the local microbiota 

contributes to Th17 cell development. Here the Th17 cells have an immune 

regulatory role and contribute to maintaining the integrity of the mucosal barrier. 

However, Th17 cells can contribute significantly to inflammatory disorders, a 

pathogenic role which seems to be shaped by environmental factors including 

dietary components and microbiotal imbalance [13]. 

MONONUCLEAR PHAGOCYTES 

Monocytes, DCs and macrophages are closely associated to one another to the 

degree that they are referred to as the mononuclear phagocytes [14]. All three are 
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capable of phagocytosing pathogens, to process them for destruction and antigen 

presentation to other immune cells. Monocytes can differentiate into monocyte-

derived DCs and macrophages, and were previously considered precursors of tissue 

macrophages, whereas more recent appreciations are that tissue macrophages at 

steady state are generally derived from precursor cells seeded in the tissues already 

at embryonic stages [15]. During inflammation, however, there is a substantial 

increase in migration of monocytes into inflamed tissues where they can contribute 

to an expanding pool of macrophages and DCs to participate in resolving the 

inflammation [15]. Monocytes in the blood can be categorized in classical, 

intermediate and non-classical based on their expressions of CD14 and CD16. 

Generally, the classical monocytes (CD14+CD16-) which are the most abundant of 

the three, are considered to have the most potent migratory abilities and respond to 

infection and inflammation by migrating to the affected tissue. The intermediate 

(CD14+CD16+) and the non-classical (CD14-CD16+) are less prone to emigrate from 

circulation, and are dedicated to patrolling the endothelial linings of the blood 

vessels. Of note, the majority of monocyte migration studies are based on mouse 

experiments. There is phenotypic and functional overlap with human monocyte 

counterparts, but there are clearly gaps in the understanding of human monocyte 

behavior in vivo. Monocytes are equipped with chemokine receptors including 

CCR2, upon which they rely for their exit from the bone marrow into systemic 

circulation when stromal cells of the bone marrow releases CCL2. Monocytes 

constitutively migrate to tissues in steady state, but during immunological challenge, 

the trafficking is dramatically increased. Monocytes are attracted to the site of 

inflammation where they undergo substantial transcriptional changes and generate 

pro-inflammatory cytokines such as TNF, and can differentiate to DCs or 

macrophages with inflammatory capacities [16]. Monocytes are also capable of 

presenting antigen, and contribute to mounting adaptive immune responses. When 

activated, they upregulate MHC, costimulatory molecules, and as they are the most 

commonly occurring APC, their contribution to antigen presentation may have been 

underestimated [17]. 

Macrophages are present throughout the body, in most organs and tissues. Their 

phenotype is shaped by the local milieu of cytokines and growth factors. The 

proportions of tissue resident macrophages and monocyte-derived macrophages 

depend on the state of inflammation, and which tissue is affected. Macrophages 

display a vast number of functions. To name a few examples, both in lymph nodes 
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and within the marginal zone (MZ) of the spleen are macrophages which cross-talk 

with B cells to keep them correctly positioned, and display captured antigen to the B 

cells. In the lungs are alveolar macrophages contributing to remove excess amounts 

of surfactant, and in the liver are macrophages (Kupffer cells) which not only monitor 

for pathogens, but also aid in degrading erythrocytes to maintain homeostasis [18]. 

DCs are described as the most professional APCs of the immune system, with high 

expressions of MHC II and costimulatory molecules. To heighten their ability to act 

as immunological sentinels, DCs are also competent cross-presenters, displaying 

external antigenic peptides in MHC I. The ability to present both endogenous and 

exogenous antigens, combined with a high capacity to activate antigen-specific 

lymphocytes is the key to DC supremacy as professional APCs. Categorizing DCs is 

a challenging task. Mouse and human DCs do not fully overlap phenotypically and 

functionally, and in vitro studies of DCs are greatly dependent on the culturing 

conditions including the combination of growth factors present. In a simplified 

manner, however, human DCs can be subdivided into plasmacytoid DCs (pDCs), 

and classical DCs (cDCs). The cDCs can be further divided into cDC1 (CD141+) and 

cDC2 (CD1c+).The pDCs respond vigorously to viral infection, by sensing viral 

components mainly via TLR7 and TLR9, and releasing large amounts of interferons 

as well as cytokines including TNF and IL-6. The cDCs are generally located in 

tissues, and their main roles are to maintain immunological tolerance in steady state, 

and to prime adaptive immune responses against pathogens. CD141+ cDCs are 

mainly described to cross-present antigens to CD8+ T cells, and promote Th1 

responses, whereas CD1c+ cDCs more potently primes CD4+ T cells and are able to 

favor Th1, Th2 or Th17 responses [19]. 

To prevent the risk of DCs priming an immune response to self-antigen, the elegant 

solution is that costimulatory molecule expression on the DCs is required for T cell 

activation. Signals inducing DC-expressed costimulators include TLR ligands, pro-

inflammatory cytokines and the binding of CD40 to CD40 ligand. In absence of such 

signals, costimulatory molecules are not sufficiently expressed to activate the T cells, 

and instead of immunogenic activation the T cells are tolerized. Beyond their ability 

to initiate a specific response, DCs thus play important homeostatic roles in immunity 

[20]. 

DC-based immune therapy of cancer represents a personalized medicine with great 

potential, with the aim of raising an immune response against the tumor. As of 2018, 
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over 200 clinical trials using DC-based vaccines have been conducted, but the 

optimal settings to generate the most efficient vaccines are yet to be established 

[21]. The central concept of DC-vaccines is that antigen-loaded DCs are generated 

and expanded ex vivo, re-infused into the patient where they hopefully encounter T 

and B cells and prime an immune response against the tumor. The phenotype of 

cultured DCs is directly dependent on the culturing conditions and the source of the 

DC precursor cells, whether they are progenitors or monocytes. Further, many 

different antigen loading strategies can be applied, resulting in DCs of greatly varying 

capacity to prime an anti-tumor response in the patients [22, 23]. Melanoma is a 

highly immunogenic cancer type, which is positive when designing DC-based 

vaccines where the aim is to obtain as efficient immune response as possible. 

Several early DC-vaccine studies were aimed at treating melanoma, generally with 

successful inductions of tumor antigen-specific CTLs, but of varying clinical efficacy 

[24-26]. Since then, many cancer types have been included in trials including liver 

and prostate cancer, leukemia and myeloma [21]. DC-based cancer vaccines show 

great promise, but many challenges are yet to be solved, and so far only one 

vaccine has been approved by the US food and drug administration, targeting 

prostate cancer [27]. 

On a final note, innate lymphoid cells (ILCs) are tissue-resident lymphoid-like cells 

derived from lymphoid progenitors, but lacking the highly specific antigen receptors 

of B and T cells. ILCs share T cell properties in terms of transcription factor 

expressions and cytokine production, and are categorized in relationship to their Th 

cell counterparts. ILC1s produce IFNγ, the main Th1 cytokine, whereas ILC2s 

secrete Th2-skewing cytokines including IL-5, IL-9 and IL-13, and ILC3s match the 

Th17 cell cytokine profile including IL-17 and IL-22. Emerging evidence of ILCs in 

immunity suggest they exert a role as sentinels for threats including infection and 

tissue damage, mainly via cytokine receptor expression. Thus, they act as second 

messengers, by responding to a cytokine change induced by other cells, and in turn 

rapidly release their own cytokines. This fine-tuning of immune responses likely 

contributes to steady state homeostasis, but also tumor surveillance and to counter 

infections. ILC dysregulation has been associated with primarily asthma, where ILC2 

activities further amplify an already exaggerated Th2 cytokine response [28, 29]. 
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2 EXTRACELLULAR VESICLES 
 

Extracellular vesicles (EVs) comprise several categories of vesicles released from 

probably all cell types, mediating intercellular communication in steady state and 

disease. Most frequently studied are the exosomes, for which the scientific interest 

has risen to substantial proportions. Other EVs include microvesicles (MVs) and 

apoptotic bodies, which are less investigated. Anecdotally, exosomes are reported in 

nearly 7500 publications, apoptotic bodies and MVs in approximately 3000 

publications each, to be compared e.g. to “innate lymphoid cells” reported in 1600 

publications (PubMed database, August 2018). Apoptotic bodies are generally 

released during apoptosis, and are vehicles for disassembling the dying cell with as 

little immunological effect as possible, and are therefore less suited to function in 

immunogenic settings. There is however a generally increasing understanding that 

the overlap in characteristics and functionality between the EV subtypes is greater 

than previously appreciated, and broad investigations beyond just exosomes are 

warranted. EV nomenclature is still debated, and MVs are sometimes termed 

”microparticles, ”ectosomes” or ”shedding vesicles”. Other EV descriptions are 

based on the cellular origin or function of the EVs e.g. prostasomes released from 

the prostate or tolerosomes which induce immunological tolerance. Attempts have 

been made for a uniform nomenclature, resulting in the agreement to disagree. 

However, the term EVs should refer to all released EVs [30-36], and is used 

throughout this thesis. 

EV BIOGENESIS AND COMPOSITION  

Exosomes are formed when early endosomes mature to late endosomes, and 

undergo an inward budding process which produces intraluminal vesicles (ILV) 

inside the endosomes, which when filled with ILVs are named multivesicular bodies 

(MVB). MVBs have two distinct destinies; fusing with a lysosome to degrade and 

recycle its interior cargo, or fusing with the cell membrane to expel its contents of 

ILVs to the extracellular environment. The fusion with the cell membrane releases 

the ILVs, which are generally 50-100 nm in size, and are thereafter defined as 

exosomes. MVs, on the other hand, are instead formed through pinching of the cell 

membrane, which is an ATP-dependent process involving rearrangements of actin 

cytoskeletal components [37]. MV formation is accompanied by an increase in 
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intracellular Ca2+, resulting in shedding of vesicles being 100-350 nm diameter [32, 

35, 38]. In the original finding of MVs released side-by-side with exosomes, however 

sizes of MV up to 1000nm in diameter [39] were noted.  

Extensive proteomic studies conducted on EVs of various origin has revealed 

thousands of proteins in EVs, which together with the results from some lipidomic 

studies have been added to a common and public database (”Vesiclepedia”) [40]. 

The proteins seemingly most conserved between exosomes of different origins are 

the tetraspanins CD9, CD63 and CD81 [41], as well as components of endosomal 

pathways including ESCRT, TSG101 and Alix [34]. In exosome formation, several 

subtypes of MVBs have been found, and endosomal sorting complexes required for 

transport (ESCRT) believed to be vital for exosome formation can be silenced with 

only partial loss of exosome production [42]. Complete independence of ESCRTs for 

the formation of some exosomes was shown in 2008 when a central concept of 

exosome formation as either ESCRT-dependent or -independent was coined [43]. In 

an attempt to dissect exosome formation mechanisms, Ostrowski et al [44] silenced 

several Rab proteins - members of small GTPases implicated in exosome formation. 

They found that Rab 27a and 27b were vital to exosome biogenesis in their 

experimental settings, but that silencing both proteins was not enough to completely 

abrogate vesicle release. The two Rab proteins were also found to contribute to 

formation of phenotypically different MVBs, suggesting a complex system of vesicle 

biogenesis with redundant and overlapping mechanisms for formation of subtypes of 

EVs. The same research group later blocked the same Rab proteins in tumor cells, 

and this time found that Rab 27a blockade affected tumor growth, presumably via 

decreased exosomal release, whereas 27b blockade had no effect on exosome 

release or tumor growth [45]. Rab 27 silencing also results in release of vesicles with 

reduced CD63, TSG101 and HSP70, whereas CD9 levels remain unchanged [46]. 

These studies point to a complexity of the EV systems, with consequences for the 

research as there are seemingly no EV-exclusive pathways which can be modified 

for investigative purposes. 

As mentioned, it is of increasing interest to distinguish between the EV subtypes to 

evaluate their respective biological activities, but also their potential in applied 

settings. Considering their MVB origin, exosomes should reasonably have 

membrane and cargo composition overlapping with that of late endosomal 

compartments, whereas MVs should carry mainly plasma membrane components.  



 

 9 

It has however become increasingly clear that the differences between vesicle 

subtypes are more diffuse than previously imagined. The ESCRT components 

involved in exosome formation and some of their interacting molecules e.g. TSG101 

and ALIX are involved also in the release of MV [35], so distinguishing between 

exosomes and MVs based on these markers may not be suitable. Tetraspanins 

have long been considered “exosome markers”, but are also present in cytoplasmic 

membranes, and consequently MV membranes [41]. More recent proteomic 

evaluations of multiple EV subtypes showed that CD9, CD63 and CD81, as well as 

several other markers previously considered exosome-defining were found also in 

EVs corresponding to MVs [47].  

Another possibility would be to segregate EVs based on lipid profiles. Lipid 

compositions of exosomal membranes generally display enrichment of cholesterol, 

phosphatidylserine (PS), and sphingomyelin compared to the cytoplasmic 

membrane [31]. Up to two thirds of small EV components are lipids, based on 

calculations assuming a 5 nm membrane thickness [48]. Despite this, surprisingly 

few broad lipidomic investigations of EVs which could be used to discriminate EV 

subtypes have been conducted. One explanation may be the complexity of lipid 

metabolism, a recent lipidomic analysis of exosomes and MVs detected nearly 2000 

lipid species in the vesicles [49]. Two lipid species enriched in MVs compared to 

exosomes were ceramide and sphingomyelin, but further lipidomic investigations are 

warranted, preferably based on vesicles from several cell types and species. 

Lastly, RNA contents of EVs may also define their subtype and, possibly, 

physiological activity. The finding of functional RNA in EVs [50] spiked interest as it 

opened up a whole new world of intercellular communication in need of investigation. 

There are controversies in EV-RNA research, however. It has been discussed 

whether EV-associated RNA is circulating in quantities high enough to be of 

biological significance. Chevillet et al reported that carefully conducted calculations 

estimate that far less than one miRNA molecule was present per exosome [51]. 

Further, it is unclear whether RNA is tethered to the exosomes or actually inside 

them [52]. This could clearly question whether RNA is indeed packed in EVs or 

merely attached to them during isolation, and if so how this would be of biological 

significance. However, the RNA profiles seem to differ between EV subtypes [53], 

the same for miRNA species [54], and ongoing EV-RNA research is likely to 

contribute to further understanding of EV subtypes within the near future [55]. 
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How specific cargo is incorporated into EVs is not fully understood, but the 

mechanisms involved greatly overlap with those of endosomal recycling and 

intracellular protein sorting. For both exosomes and MVs, cargo is clustered in the 

cytosolic membrane (for MVs) or endosomal membranes (for exosomes) with 

support from tetraspanins. ESCRT components regularly sort proteins tagged by 

ubiquitination into MVBs, for subsequent degradation. As mentioned above, an 

alternative fate of the MVB is to release its contents including ILVs, which then are 

defined as exosomes. By ubiquitinating proteins, they may thus be sorted into MVBs 

of which some will be incorporated in released exosomes [56]. However, 

ubiquitination is not a pre-requisite for sorting into exosomes, as shown by Buschow 

et al who showed that MHC II sorting into exosomes was independent of 

ubiquitination, but depended on CD9 [57]. Further suggestions of tetraspanin-

associated cargo sorting into exosomes include CD81-enriched micro domains 

where proteins are clustered [58], and CD63-mediated sorting into endosomes [59]. 

This tetraspanin-associated cargo loading of exosomes is most strongly associated 

with ESCRT-independent loading [60]. MHC II loading into EVs is expected, as MHC 

II peptide loading occurs in late endosomes [61], coinciding with the site of exosome 

biogenesis. MHC I, on the other hand, is loaded with antigen peptides in the 

endoplasmic reticulum [61] separate from endosomes, so it is interesting that 

exosomes also can express MHC I. ARF6 is a protein involved in intracellular 

trafficking of MHC I and other molecules, and has been shown to regulate 

incorporation of both MHC I and integrins in exosomes [62]. Fully understanding how 

cargo is incorporated into EVs will open for applications aimed at modulating these 

processes. 

CELLULAR UPTAKE OF EVS 

For EVs to convey an intercellular message, the cargo of interest must be 

incorporated and delivered to the right compartment. In vivo, exosomes have been 

found to have short half-life in circulation. The levels of intravenously injected 

exosomes were reduced to half after approximately 2 minutes [63], which has been 

confirmed with exosomes from several different cell sources [64]. This may be 

limiting for certain drug delivery applications where long circulatory half-life often is 

warranted. On the other hand, it may also be an advantage if the EVs are taken up 

by the desired target cell. How to engineer EVs to reach a certain destination is 

complex, but equipping them with surface molecules affecting their uptake is a main 
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approach. To mention some of the molecules on the surface of EVs involved in their 

cell engagement and following uptake, tetraspanins as well as integrins and lectins 

are prime candidates. The optimal set of molecules on EV surfaces for their efficient 

targeting will most likely depend on both which specific exosome population is used, 

as well as properties of the recipient cell type. By blocking molecules on either EVs 

or recipient DCs, Morelli et al [65] elegantly showed that molecules important for 

uptake included phosphatidylserine (PS), tetraspanins CD9 and CD81, CD54, and 

lactadherin on the EVs. On the DC surface, the αv/β3 integrin, and CD54 was most 

important. A similarly conducted experiment later confirmed a role for CD54 also on 

EVs, then binding to LFA-1 on DCs, as well as a role of the lectin DEC-205 on DCs 

for EV uptake [66]. This was supported by the finding that LFA-1 expression on T 

cells was vital for capture of DC-released exosomes [67]. Exosomes from breast 

milk with expressions of mucin-1 (MUC-1) have been shown to partly be dependent 

on the pathogen-recognizing molecule DC-SIGN for their uptake by DCs [68], further 

pointing to surface molecule dependency of EV uptake. B cell-derived exosomes 

were taken up by macrophages of the spleen in a report showing interaction with 

CD169 on the macrophages binding to sialic acids on the exosomes [63]. As 

mentioned above, PS is strongly enriched on exosomes [34], and has for long been 

known as an important component in recognition of apoptotic cells by macrophages 

[69]. Further, EV uptake is reduced if any of the PS-recognizing molecules TIM4 

[70], or Annexin V [67, 71] are blocked, speaking for a role of PS in EV binding to 

target cells. 

After association to the target cells, EVs can be internalized via several possible 

pathways. Substantial evidence point to EV uptake as an active process, including 

dramatically reduced uptake in cold incubations, as well as uptake by fixed cells, and 

by cells with disrupted endocytic pathways [72]. There is evidence of EVs fusing with 

the recipient cell membranes [73, 74], or being phagocytosed [70, 75], the latter 

possibly via PS expression on the EVs [71]. Clathrin-mediated endocytosis (CME) is 

dependent on the binding of ligands to receptors which are anchored by clathrin in 

the recipient cell [76]. This represents the most specific uptake mechanism. CME-

dependent uptake of exosomes have been found [77, 78], which argues for a 

possibility of EVs to engage highly specific targets. Taken together, EVs are able to 

enter cells in many different ways, so therapeutic strategies based on EV uptake, or 

blocking of detrimental EV-communication, must be carefully designed. 
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EVS IN IMMUNITY AND CANCER 

Published findings have shown that EVs are likely released from all cell types and 

transport thousands of proteins, lipids and other molecules. So to define their 

activities is a task as comprehensive as describing what proteins do. However, 

focusing on the role of EVs in the immune system, they have been ascribed both 

stimulatory and inhibitory effects.  

On a brief note, an example of beneficial immune inhibitory EVs is pregnancy-

associated EV release contributing to immune tolerance of fetal tissue. As reviewed 

in [79], placental exosomes seem have immune inhibitory functions and 

downregulate activities of both T cells and NK cells. Interestingly, however, MVs 

from the same source can engage monocytes and B cells to produce a large number 

of pro-inflammatory cytokines including TNF, IFNγ, IL-1β and IL-12 [79].  

Focusing on pathogenic roles of immune inhibitory EVs, however, overwhelming 

evidence show that tumor-derived EVs are important players in cancer. The 

multitude of publications on cancer EVs do not present a uniform picture of their 

phenotype and behavior, but instead point to the complex nature of cancer itself, 

with as many phenotypic variants as can be imagined. Programmed death ligand 1 

(PDL-1) binds PD-1 on immune cells and inhibits their activation. In a study of head 

and neck squamous cell carcinoma (HNSCC), plasma exosomes from 40 patients 

showed a PD-L1 expression correlating strongly to disease activity and the presence 

of lymph node metastasis [80]. Although less clear-cut, glioblastoma EVs have also 

been found to express PD-L1 and prevent T cell activation [81]. Further, tumor EVs 

have been found to induce Treg activity and survival [82], and promote 

immunosuppressive activities of myeloid-derived suppressor cells [83, 84].  

Beyond immune inhibitory effects, tumor EVs have been implicated in metastasis 

mechanisms by promoting cell migration and a tumor-supportive milieu. For 

example, melanoma exosomes can travel to draining lymph nodes to settle there 

and both attract melanoma cells and support the metastatic formation [85]. Further, a 

major finding revealed a role of exosomes in directing metastatic migration, 

preparing a metastatic niche, as well as maintaining a chronic low-level 

inflammation, which is associated with tumor progression [78]. Exosomes from 

tumors metastasizing to the lungs, liver or the brain preferentially engaged cells of 

the destination tissue, and could even alter the metastatic destination of other 
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tumors. The different metastatic destinations were associated with differential 

expressions of integrins on the exosomes [86]. In line with the observed ability of 

exosomes to maintain a low degree of inflammation, Nabet et al found that breast 

cancer cells stimulated fibroblasts to release exosomes carrying RNA species 

recognized as danger-associated molecular patterns (DAMPS) [87]. Other harmful 

cancer EV strategies involve chemo resistance induction and contribution to a 

pathogenic tumor microenvironment (TME). In breast cancer, EVs were shown to 

transport the full mitochondrial genome, and in a tumor model of therapy-resistant 

breast cancer, the delivery of this cargo favored an exit from a dormant state of 

tumor cells [88]. There are plenty of findings supporting the idea that EVs favor 

chemo resistance in tumor cells [89-93]. Further, cancer associated fibroblasts 

(CAF) are stromal cells contributing to tumorigenesis and metastasis by releasing 

cytokines and growth factors, and favoring angiogenesis [94]. Exosomes from 

tumors promote differentiation and tumor-favoring activities of CAF [95, 96], 

supporting the TME. Other EV strategies contributing to a pathological TME induce 

modulating vascularization [97-99], or even to reduce nutrient uptake of non-tumor 

cells [100]. 

EV-BASED IMMUNE THERAPY 

How can we utilize EVs to improve human health? Aside of implementing the 

knowledge gained on basic physiological functions for better understanding of 

human health, the main areas of EV-based medicine are diagnostics and immune 

therapy. To briefly touch upon EV-based diagnostics, the concept is to isolate 

vesicles, preferably from a body fluid accessible with as little invasivity as possible, 

and characterize their cargo, most likely proteins or nucleic acids. RNA transported 

by EVs show different compositional profile compared to healthy subjects in many 

cancer types investigated so far including glioma, breast cancer, colorectal cancer, 

ovarian cancer and melanoma, as reviewed by Jia et al [101]. The first exosome-

based diagnostic tool for cancer has been approved by the US food and drug 

administration (FDA), tested in clinical cohorts of prostate cancer patients and is 

based on a disease-specific pattern of exosomal RNA (www.exosomedx.com). 

Focusing on EV-based therapy, there have been suggestions to interfere with the 

function of harmful EVs in disease, by inhibiting formation, release or uptake of EVs 

[102]. Yet another way could be to reduce the circulatory burden of exosomes, as 
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suggested by Marleau et al, which could be based on techniques already in use to 

reduce viral loads in blood [103]. Interestingly, tetraspanins are involved in all steps 

of cancer metastasis, and tetraspanin-blocking antibodies have shown some 

promise in cancer settings [104]. Antibodies targeting CD9 reduced tumor cell 

proliferation and tumorigenicity in vivo in a colon carcinoma setting [105], and human 

gastric cancer cells implanted in mice showed reduced proliferation and 

angiogenesis [106]. When targeting either CD9 or CD63 with antibodies in a 

metastatic breast cancer model in mice, the metastases to lungs and liver were 

significantly reduced [107]. EVs are strongly enriched in tetraspanins, but whether 

the therapeutic antibodies did target EVs has not been elucidated, and as 

tetraspanins are involved in many cellular processes the risk of off-target effects are 

substantial. Further, as several of the studies mentioned above are based on human 

cancer cells implanted in mice, the therapeutic antibodies used are less likely to 

have side-effects, so in a more realistic setting there is greater risk of unacceptable 

toxicity.  

A more plausible therapeutic implementation of EV knowledge is drug delivery, or 

priming antigen-specific immune responses. It should be mentioned that EVs from 

hematopoietic or mesenchymal stem cells have been proven efficient in inducing 

tissue repair after myocardial infarctions, and tissue damage in kidneys, muscle 

tissue and even pancreatic cells [102]. This thesis is however focused on 

immunogenic EVs for antigen-specific response induction. For cancer vaccination or 

therapy, the most likely approach is using tumor antigen-carrying EVs released from 

APCs [102]. As mentioned above, DCs have been thoroughly tested in nearly 200 

clinical trials with varying success. As tumor cells can induce anergy or apoptosis in 

therapeutic DCs [22, 23], DC-derived EVs represent an attractive alternative 

approach, either alone or in combination with DCs [108]. 

DC-EVs are capable of priming CD8+T cells in vitro and in vivo, and attracted great 

attention when they were found to reduce tumor burden in vivo by inducing an 

antigen-specific T cell-dependent immune response [109]. In dissecting the 

mechanisms behind this, Thery et al found that exosomes activate antigen-specific 

CD4+ T cells in vivo, which was confirmed in vitro but only in the presence of DCs 

[110]. This suggested that EVs need APCs for optimal immunogenicity, but Hwang 

et al showed an ability of EVs to directly prime naive CD8+ T cells in vitro [111]. 

Montecalvo et al found in an engraftment model that donor tissue exosomes did not 
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directly activate T cells but were shuttled via host engraftment-infiltrating DCs to 

splenic DCs, which in turn induced an immune response [112]. Taken together, it is 

highly likely that although EVs may prime T (or B) cells directly, the presence of 

APCs strongly increases the chance of a successful immune response. Further, the 

maturation status of the DCs is of importance for the EV immunogenicity. Exosomes 

from mature DCs are 50-100 times more efficient compared to immature DC-

exosomes in activating naive T cells [113].  Nolte-´t Hoen et al found that DC-

exosomes released during DC-T cell interaction transferred MHC II to the T cells, 

and again that cellular LFA-1 played a central role [67]. Our group demonstrated that 

B cell-derived exosomes from allergy patients presented allergen, induced T cell 

proliferation and favored a Th2-like cytokine release [114]. Further, DC-exosomes 

are far more potent in inducing an antigen-specific immune response if they carry 

both T-, and B cell antigen epitopes, and successful induction of CD8+ T cell 

responses have been found to be dependent on B cells [115, 116].  

In cancer research, phase I clinical trials using patient cell-derived exosomes to 

induce anti-tumor responses have been completed, but with limited clinical 

improvement of patient health status [117, 118]. One possible explanation to the low 

efficacy of the exosomes is that they were derived from immature DCs, but also a 

phase II trial based on mature DC-exosomes showed very modest clinical success 

[119]. The above mentioned B cell dependency could be one reason for this. On the 

positive side, the trials showed little toxicity induced by EVs, which encourages 

continued optimization of EV-based therapy. To just briefly mention other areas of 

EV-based immune therapy, exosomes have been used successfully in vaccine 

models to confer protection against e.g. Mycobacteria [120], avian parasites [121] 

and Leishmanial species [122]. 

TECHNICAL ASPECTS OF EV RESEARCH 

In 1987, Johnstone et al [123] used differential ultracentrifugation (UC) to isolate 

exosomes, and centrifugation is still the most frequently used technique with 

adjusted protocols [124]. Other options of isolation include size exclusion 

chromatography (SEC) and ultrafiltration (UF), all three techniques having 

advantages and limitations [125]. UC is straight-forward and easy to use with all 

sample-contacting equipment easy to sterilize, but initial costs of ultracentrifuges and 

rotors are very high. SEC is most likely to isolate vesicles without disrupting 
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membranes or altering their biological activities [126]. Caveats of the techniques 

include filtration-associated risk of shearing vesicles into smaller fragments and 

clogging filters. UC is also associated with exceptionally high forces leading to 

collapsed and fused vesicles, and SEC requires substantial setup, tuning and 

training, and vesicle isolation is solely based on their size [125]. The choice of 

isolation method will affect downstream analyses of the vesicles, and in ideal several 

methods should be used in parallel, which however often is not feasible.   

Characterization of the vesicles should be conducted using several methods such as 

electron microscopy, ELISA, Western Blot, and conventional flow cytometry in which 

the EVs have to be bound to beads due to their small size [124]. There is increasing 

usage of direct flow cytometry, independent of beads, to analyze EVs. The technique 

is based on tuning the settings of the flow cytometer, and detecting vesicles based 

on fluorescence rather than forward/side scatter properties, however with the 

substantial limitation of a resolution around 100 nm [127]. Transmission electron 

microscopy (TEM) has been frequently used, and is still one of very few imaging 

techniques with resolution high enough to visualize single exosomes. Exosomes are 

commonly noted as having a cup-shaped appearance when imaged by TEM [124], 

and a fully rounded shape when cryo electron microscopy is used [128], a 

consequence of TEM sample preparation where the specimen is dried. 

A method initially developed for industrial nanoparticles, nanoparticle tracking 

analysis (NTA), has been used to measure concentrations and size distributions of 

exosomes. Early versions of the instruments showed large variations in the results 

depending on user and the settings applied [129], with the conclusion that NTA must 

be used with carefully evaluated settings and very well standardized protocols. By 

comparing NTA with other methods for size estimation of EVs, Van der pol et al 

found that ”the minimum detectable vesicle sizes were 70-90 nm for NTA” [130], 

indicating that large portions of all exosomes are outside of the dynamic range of the 

instrument. Further, evaluations of NTA are often conducted using beads, which are 

inherently homogenous in sizes and properties compared to biological vesicles. As 

exosomes span a size range from at least 40-100 nm [34], but up to 30-150 nm [46] 

the smallest and the largest exosomes differ greatly in properties affecting how much 

light they disperse in NTA analysis [130], leading to large potential errors in light 

scattering-based analysis.  
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When studying proteins, inhibiting their release can reveal many clues on their 

functions. As EVs are far more complexly composed entities, no methods are 

available to robustly inhibit their production or release. GW4869 is a compound 

reducing exosome release by inhibiting sphingomyelinases [43], and this has been 

used repeatedly but as it interferes with lipid metabolism it most likely has broad off 

target effects. 

As mentioned above, studies of EV uptake have shown that they are taken up by 

several mechanisms including receptor-mediated endocytosis and membrane fusion 

[72]. However, many of the studies are based on staining EVs with lipophilic dyes 

such as PKH67, R18 or DiL, followed by fluorescence microscopy-based detection 

of EVs, a method with resolution insufficient to detect single EVs [72]. This, taken 

together with the fact that lipophilic dyes themselves may cause aggregation, and 

possibly alter the EV uptake, or leak into the cytoplasmic membranes, speaks for 

that results must be interpreted with caution. However, they may provide important 

clues to EV uptake mechanisms. Touching upon these difficulties in isolation, 

characterization and nomenclature of EVs, attempts have been made to encourage 

broad investigations and very clear descriptions of how experiments were conducted 

in each publication [131].
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3 THE LUNGS 
 

LUNG IMMUNE COMPONENTS 

A consequence of inhaling large volumes of air is exposure of the airways to 

antigens and irritants of the surroundings. Biological and chemical dangers such as 

airborne pathogens, pollen, cigarette smoke, and particulate dust are all constantly 

challenging the airways. The nasal cavity, the pharynx and the lungs are fitted with 

sophisticated defensive systems to counteract infection, and to resolve any insult to 

the barriers shielding us from environmental hazards. Epithelial cells collaborate with 

innate immune cells including granulocytes, DCs, and ILCs, via effector molecules 

including cytokines, chemokines and lipid mediators to confer immunological 

protection in the lungs. 

Epithelial cells compose tight epithelial barriers, the first line of defense against 

aggressors, equipped with cilia and mucus-lined surfaces which capture, immobilize 

and shuttle threats upwards and out of the airways [132]. Beyond a role as physical 

barrier, airway epithelium is actively involved in upholding immunity e.g. by 

monitoring for dangers via pattern recognition receptors (PRRs) including toll-like 

receptors (TLRs) [133] and RIG1 [134]. Upon recognition of pathogens or injury, 

epithelial cells contribute to immune activation in part by producing and secreting 

antimicrobial products including lysozyme, aggressive oxidant species [132], and 

antimicrobial peptides including cathelicidin (LL37) and defensins [132, 135]. 

Epithelial-derived GM-CSF, IL-25 and IL-33 further potently activates DCs, ILCs and 

basophils and inflict airway inflammation [136].  

Mast cells, which can be activated by epithelial signals including IL-33, are 

important players in pulmonary inflammation, capable of releasing potent pro-

inflammatory cytokines, chemokines and pre-formed granules [137]. Mast cells act 

both as sentinels monitoring airways for threat, with a broad repertoire of PRRs, and 

FCε receptors binding IgE antibodies which upon antigen recognition leads to Fc 

receptor crosslinking and consequential release of inflammatory granule contents 

including histamine, TNF and antimicrobial peptides [137]. Mast cells are also an 

important source of eicosanoids including LTs, which can be released already a few 

minutes after activation [137], and mast cell released LTB4 can further enhance the 

inflammation by promoting chemo attraction of mast cell progenitors [138].  
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ILCs (generally described in chapter 1) are lymphoid-like cells lacking antigen 

receptors and instead respond to soluble factors by releasing cytokines modulating 

inflammation [139]. ILC group 2 (ILC2) produce Th2 promoting cytokines including 

IL-4, IL-5 and IL-13 and increased ILC2 activity has been associated to airway 

disorder including asthma [139]. Again speaking for a role of epithelial cells in 

modulating airway inflammation, epithelial cell-derived IL-25 and IL-33 can contribute 

to ILC2 activation, and as IL-33 can activate mast cells it is not surprising that also 

ILC2s appear to co-operate with mast cells. ILC2s and mast cells have been found 

in proximity of one another in the airways [140], and mast cell-released 

prostaglandin D2 (PGD2) potently enhances ILC2 activation mediated by IL-25 and 

IL-33 [140]. So, epithelial cells have the potential to activate both mast cells and 

ILCs, and mast cells add positively to the ILC2 effect via PGD2, which further can 

upregulate the ILC2 receptors for IL-25 and IL-33 [141] leading to a self-amplifying 

spiral of pro-inflammatory events. 

DCs, in conjunction with other innate immune cells of the airways including 

macrophages, and granulocytes, are all components of a robust system to maintain 

immune integrity [142]. Broadly, DCs in the lungs capture and clear pathogens, with 

following tolerogenic or immunogenic response induction [143]. DC populations in 

the lungs are a complicated matter. Based on mainly mouse studies, there are at 

least three defined pulmonary DC subsets, monocyte-derived DC (moDC), 

plasmacytoid DCs (pDCs), and conventional DCs (cDC) which can be divided in 

CD103+ DCs and CD11b+DCs [142]. The two latter DCs are also considered 

migratory, as they are most capable of capturing antigen and transporting it to local 

lymph nodes to prime immune responses. The airways consist of the conducting 

(upper) airways in which relatively few DCs are present, and with low capacity of 

sampling the airway lumen [144], whereas DCs present beneath the epithelial cells 

of the alveoli are richly branching their dendrites into the airway lumen for antigen 

sampling [145].  Infections initiated in the airways stimulate DC activity, influenza e.g. 

triggers antigen-experienced DCs to migrate to draining lymph nodes [146] in a 

CCR7-dependent manner [147] to prime CD8+ T cells to counter the viral infection. 

Also B cells are primed, and antibodies class-switched to IgA are generated to 

reside in the airway mucosa where they can bind and immobilize antigens including 

respiratory viruses, and act together with tissue resident memory T cells which are 

highly abundant in the mucosa and confer protection against pathogens [148]. 

Based on which (migratory) DC subset is performing this activity, effector or memory 
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CD8+T cells are primed [149] to shape the most efficient response to each pathogen 

and circumstance. Connecting back to epithelial cells, the local environment 

including expression of the DC differentiation-inducing FMS-like tyrosine kinase 3 

ligand (FLT3L) affects DC phenotype, and the lungs are supplied with FLT3L likely 

by epithelial cells  [150], pointing to a complex interplay affecting DC phenotype, and 

again involvement of epithelial cells in shaping pulmonary immune components.  

Macrophages are capable of presenting antigen, however alveolar macrophages 

(AMs) are generally inefficient at doing so as they normally have low levels of 

costimulatory molecules [151] and even can inactivate antigen-specific CD4+ T cells 

[152]. AMs develop from embryonically seeded precursors rather than monocytes 

[153], and during steady state they are they are kept in check by epithelial cells via 

both direct contact to inhibitory receptors. Epithelial cell-expressed CD200 binds 

macrophage-expressed CD200R to inhibit pro-inflammatory responses [154]. 

Further, epithelial cells release IL-10 which binds the IL-10R on AMs. Moreover, 

integrins on the epithelial cell surfaces adhere to TGFβ, which in turn binds TGFβ 

receptors on AMs, resulting in an anti-inflammatory state of the AMs, with 

downstream further promotion of FoxP3 expression in T regulatory cells [155]. 

However, during infection or insult, damage to the epithelial cells reduces their IL-10 

production, and disturbs their ability to regulate AMs via TGFβ and CD200 

(mentioned above), resulting in activation of the AMs [156]. The AMs turn into potent 

factories of pro-inflammatory molecules including interferons, IL-12, IL-23 and IL-1β 

which sets off a series of events leading to activation and attraction of lymphoid cells, 

neutrophils and monocytes with a following inflammatory cascade [156].  

Beyond cellular protectors of the airways, eicosanoids are signal mediating lipids 

with substantial impact on pulmonary immunity. Together, the eicosanoids are 

several hundred species with a very large number of biological activities in both 

steady state and disease, most studied are their effects on inflammation [157]. They 

are all derived from arachidonic acid, which can be processed by cyclooxygenases 

(COX enzymes) to form prostanoids including prostaglandins (PGs), by 

lipoxygenases (LOX enzymes) to form LTs, or by cytochrome P450 enzymes 

generating hydroxy-or epoxy-eicosatetranoids [158]. Some of the eicosanoids most 

studied in immunological contexts are prostaglandin E2 (PGE2), a product of the 

COX pathway, and the cysteinyl-LTs (CysLTs) which are products of 5-lipoxygenase 

(5-LO) enzymatic conversion. The enzymes catalyzing each step throughout 
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eicosanoid metabolism are differentially expressed in different cell types, so to most 

efficiently generate eicosanoids e.g. during inflammation, cells harboring different 

intermediates and/or eicosanoid forming enzymes work in concert to complete the 

biogenesis, a behavior termed transcellular eicosanoid biosynthesis [157].  

 

A schematic, simplified, overview of the eicosanoids most relevant to this thesis. Exosomes 

associated to LTA4H and 5-LO are reported in study II, whereas exosomes harboring GGT-

1 are investigated in study IV. 

PGs are often strongly pro-inflammatory, and reducing their biogenesis by inhibiting 

COX enzymes using non-steroidal anti-inflammatory drugs (NSAID) such as aspirin 

is a common strategy to reduce systemic inflammations and fever [157, 158]. 

However, PGs are not inflammatory under all circumstances. PGE2 has four different 

receptors (EP1-EP4), and depending on the expressions of these, PGE2 can even act 

in an anti-inflammatory fashion in the lungs and to dilate bronchi [159]. Notably in a 

cancer setting, PGE2 can even prevent apoptosis in epithelial tumor cells [160]. 

CysLTs, on the other hand, are strongly associated with inflammation. Concerning 

pulmonary disorders they promote bronchoconstriction, as summarized by the LT-

discovering scientist Samuelsson [161], as well as migration of leukocytes including 

neutrophils [162]. In asthma, the levels of CysLTs are highly increased, and amongst 
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detrimental activities in allergies are CysLT-induced increase in vascular 

permeability, attraction and activation of type 2 ILCs as well as elevated airway 

resistance [163]. LTs are targets for therapy in asthma using LT receptor antagonists 

(LTRA) including Montelukast [157, 163].  

SARCOIDOSIS  

Sarcoidosis is an inflammatory disorder of unknown cause. It has the potential to 

affect any organ of the body, and is associated with granuloma formation which can 

lead to irreversible damage. Although it has been studied since it was first described 

in 1869, it is not known what causes sarcoidosis or why some patients are affected 

by an acute form of disease (with better prognosis), whereas other have a slow 

onset disease progression associated with chronicity. Factors complicating research 

on sarcoidosis include a wide heterogeneity of patients and cohorts, complex 

diagnostic procedures and pathological traits overlapping with other diseases. There 

is a great need to understand the disease better, to facilitate diagnostic and 

prognostic procedures and to find new treatment regimens. 

Sarcoidosis results in anything from asymptomatic disease and complete recovery to 

neurological dysfunction and death [164]. Although any organ can be affected, there 

is a clear predominance for symptoms from the lungs (in more than 90% of cases) 

[165]. This thesis is based on investigations of pulmonary sarcoidosis patients, 

whose symptoms most commonly include shortness of breath (dyspnea) and dry 

cough [166].  Generally, 35-40% of sarcoidosis patients presents with the acute form 

of disease [167], known as Löfgren’s syndrome (LS). This after Sven Löfgren, who 

studied patients with signs of swollen hilar lymph nodes (bilateral hilar 

lymphadenopathy, BHL) and subcutaneous inflammations (erythema nodosum 

(EN)), and eventually associated these events with a sarcoidosis patient phenotype 

[168]. The majority of LS patients display with arthritis of the ankle joints, BHL, and 

EN [169], the latter to a larger extent displayed by female patients [170]. LS patients 

generally have a better prognosis, in particular those with the HLA-DRB1*03 

haplotype, which is strongly associated with a complete remission within two years 

[171]. The proportions of patients developing chronic disease also varies with 

studies, but around 25% is commonly reported [172], which is a substantial 

proportion and associates with long-term medication and severe consequences.  
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Epidemiology of sarcoidosis 

Epidemiological numbers vary greatly between studies, and large cohort studies of 

sarcoidosis are few. Sweden is one of the countries with highest sarcoidosis 

prevalence [166], and a large study recently conducted by Arkema et al reported a 

prevalence of 160 per 100´000 inhabitants [173]. This is strikingly higher than in the 

US, where a study on 29´000 US patients found a prevalence of 60 patients per 

100´000 adults [174]. The study further showed that majority of patients were 55 or 

older at time of diagnosis, with a higher prevalence in females and almost threefold 

higher prevalence in African Americans compared to Caucasians [174]. This has 

been supported by other reports, showing up to eightfold higher prevalence in 

African Americans compared to Caucasian Americans [166], and a large cohort 

study reported mortality rates up to twelve times higher for the African Americans 

[175].  

Sarcoidosis diagnostic and therapeutic approaches 

Examination includes lung function test, blood sampling, bronchoscopy with 

bronchoalveolar lavage (BAL), and chest radiography to rule out e.g. tuberculosis 

and define sarcoidosis [176]. The ratio of BAL CD4+ to CD8+ T cells is typically 

elevated (<3.5) in sarcoidosis patients as a result of CD4+ T cell accumulation and 

expansion in BAL. Chest radiography is conducted to certify diagnosis and to stage 

the disease from 0-IV based on degree of pulmonary involvement from none (0) to 

full fibrotic development (IV). Combined with measures to exclude other disease 

such as infections including tuberculosis, and the identification of sarcoid 

granulomas in tissue or lymph node biopsies, a diagnosis is confirmed [176]. 

Searches for biomarkers have so far not resulted in any clinically applied tool. 

Elevated serum levels of angiotensin converting enzyme (ACE), and general 

cytokine profiles associated with inflammation have been observed [176], but not 

proven sufficient to diagnose sarcoidosis. There are reports suggesting possible 

sarcoidosis biomarkers, which include the acute phase protein Serum Amyloid A 

[177], and Chitotriosidase, which is produced by activated macrophages and has 

been associated with sarcoidosis [178, 179].  

Treatment is generally aimed at dampening the symptoms, and initial stage disease 

is usually observed without medical intervention. In later stages, treatments are 

aimed at reducing the risk of fibrotic development, and decreasing inflammation and 
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pain by using corticosteroids, anti-inflammatory agents including NSAID, and 

cytotoxic agents, mainly Methotrexate [166]. In a large US study of more than 9000 

sarcoidosis patients, 23% were pharmacologically treated, the most common 

medication was glucocorticoids with 56% of the patients treated  [174]. 

Corticosteroids are however associated with side effects and toxicity [172], and 

efforts should be made to carefully evaluate its necessity. A recent cohort study 

aimed at reducing corticosteroid usage showed that the antimetabolite drugs 

Methotrexate or Azathioprine could be used to reduce corticosteroid dosage [180]. 

An option for steroid refractory disease is anti-TNF therapy. Infliximab has shown 

improvements in lung function in sarcoidosis patients [181, 182], and Adalimumab 

reduced cough and shortness of breath [183]. As a last resort, the most severely ill 

sarcoidosis patients receive lung transplantation, which however is associated with a 

median survival time of less than six years post transplantation [184]. 

Sarcoidosis genetics 

Familial studies show a higher risk for sarcoidosis in families with at least one patient 

[185, 186]. A recent study of 23´880 sarcoidosis patients in Sweden reported a 3.7-

fold increased risk for sarcoidosis in families with at least one case [187]. A twin 

study showed that for monozygotic siblings to a sarcoidosis patient, the risk of 

disease was increased 80 times [188].  This clearly indicates a genetic component 

contributing to sarcoidosis, one such predisposition seems to include HLA genes. 

HLA-DRB1*03 has long been associated with sarcoidosis [189], in particular with 

acute onset and good prognosis [189], which has been firmly established [171]. Also 

HLA-DQB1*0201 has been associated with a good prognosis [190], although this 

haplotype is closely linked to HLA-DRB1*03. DRB1*04, on the other hand, even 

seems to confer protection against sarcoidosis [189, 191], and HLA-DRB1*01 

protects against sarcoidosis [192], or against chronicity within non-LS patients [167]. 

Further, Berlin et al found that HLA-DRB1*15 was more frequent amongst patients 

with chronic disease [189], and it has been reported that the combined HLA-

DRB1*1501-HLADQB1*0602 predisposes for a worse outcome [193].  

Altogether, there is strong evidence of a genetic predisposition for sarcoidosis based 

on familial studies, as well as beneficial or detrimental associations to HLA 

haplotype. Further, as HLA molecules present antigens to CD4+T cells, it is not 

surprising that particular subsets of CD4+ T cells have been found expanded in 

sarcoidosis.  
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Immunology of sarcoidosis 

A generally accepted hypothesis for how sarcoidosis is induced is that an 

environmental trigger such as a pathogen or a toxic irritant sets off a series of 

immunological events in those who are genetically predisposed, leading to formation 

of granulomas and dissemination of disease [165, 194]. CD4+ T cells are expanded 

in the BAL fluid to the degree that it is included for the diagnostic procedures [195]. 

The CD4/CD8 ratio is however not conclusive evidence of sarcoidosis as the ratio 

can vary greatly [196] and a recent study of sarcoidosis publications conclude that 

the ratio itself should only be used in conjunction with other parameters to diagnose 

sarcoidosis [197]. The role for T cells is however central in sarcoidosis, which is 

typically considered a Th1 skewed disorder [165] with increased expression of 

inflammatory cytokines including IFNγ, IL-1β, IL-6 and TNF [198-200], and generally 

reduced levels of Th2 cytokines [165].  

The central hallmark of sarcoidosis is the granuloma formation, which occurs in 

affected tissues and is the result of a series of immunological events. Granulomas 

consist of a core of epithelioid, and multinucleated giant cells, surrounded by mainly 

CD4+ T cells [201]. TNF is central to granuloma formation [202], and alveolar 

macrophages from sarcoidosis patients release TNF spontaneously [203], and 

vigorously [204] and they are suggested to even be the main source of TNF in 

sarcoidosis patients [205]. Genetic alterations of TNF is associated with increased 

risk of developing sarcoidosis [206], further speaking for a central role of TNF. Other 

key cytokines involved in sarcoidosis include IL-12 and IL-18. The two cytokines in 

combination have synergistic effects leading to favor Th1 skewing by strongly 

increasing production of IFNγ [207, 208], which is central in sarcoid inflammation. 

And, clearly, in sarcoidosis, both IL-12 and IL-18 are elevated in BAL fluid [209, 210], 

and have been proven to favor IFNγ production in the patients [211]. Also the 

epithelial lining fluid of sarcoidosis patients contains elevated IL-18 levels, matching 

an increased expression of the IL-18 receptor on CD4+ T cells in patients, possibly 

amplifying IL-2 generation from these CD4+ T cells [212]. 

What initiates sarcoid inflammation and granuloma formation is not known, and 

putative antigens and triggers have been searched for. Dust exposure and living and 

working near hospital environments have been reported to associate with 

sarcoidosis [198, 213]. Mold, nanoparticles and mycobacteria in working and living 
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environments have also been connected to sarcoidosis, but surprisingly smoking has 

been suggested to correlate with a lower risk of sarcoidosis [214]. It was noted that 

rescue workers of the World Trade Center catastrophe in 2011 presented with higher 

incidence of sarcoidosis-like disease [215]. This has however been questioned, 

referring to insufficient proof of causality [216]. For almost 100 years, mycobacteria 

have been pointed out as a pathogen possibly implicated in sarcoidosis [217]. 

Mycobacterial DNA has been found in 50% of lung samples from sarcoidosis 

patients [217], and the mycobacterial enzyme Mycobacterium tuberculosis catalase-

peroxidase (mKatG) has been found in sarcoidosis patients but not in healthy 

controls [218]. The role of Mycobacteria was further implicated in sarcoidosis by the 

finding of mKatG-reactive T cells in patients [219]. Mycobacterial involvement has 

however not been found in all patient groups and cohorts, and evidence of a 

disease-driving role by mycobacteria is lacking [217]. 

Stronger support of disease-driving antigens have however been found based on 

investigations of T cell receptors. As mentioned above, HLA-DRB1*03 is associated 

with sarcoidosis, although the acute form with good prognosis. When isolating lung 

cells from HLA-DRB1*03-positive sarcoidosis patients and eluting peptides from their 

HLA, Wahlström et al found peptides matching self-antigens including vimentin. 

Further, CD4+ T cells with a specific alpha chain of the TCR have been found 

expanded in patients with HLA-DRB1*03 [220]. Also beta chain variants of the TCR 

has been shown to be expanded in sarcoidosis patients [221], and even a 

combination of alpha and beta chains; Vα 2.3, Vβ 22 [222]. This strongly implies 

reactivity towards a specific antigen or antigens. And, most striking, in a model fitting, 

peptides of the protein vimentin was found to fit perfectly in HLA-DRB1*03 as well as 

matching the Vα 2.3, Vβ 22 TCR [222].  

LUNG CANCER 
Lung cancer is one of the deadliest cancers, and its prevalence is increasing rapidly. 

Beyond the necessity to understand lung cancer mechanism to improve detection 

and treatment regimens from an ethical perspective, there are also enormous 

societal costs associated with lung cancer.  

Epidemiology 

In the US, lung cancer has increased dramatically the past century and cancer-

related death due to lung cancer was before 1940 rare, but has increased by 
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multitudes compared to other cancer forms [223]. Globally, the risk of dying by 

cancer is largest for lung cancer, and lung cancer has been predicted to increase in 

women due to changed smoking habits [224]. The five year survival rate is around 

18% for the US population [225], one reason for very high death rates is the late 

discovery of most cases, at the point where substantial pathological alterations 

throughout the airways are irreversible [225].  

Immunology and pathology  

Lung cancer is divided in subtypes depending on the cellular origin. Non-small cell 

lung cancer (NSCLC) is the most common type, representing around 85% of all 

patients, with the remaining 15% being small cell lung cancer (SCLC) [226]. NSCLC 

is further subdivided in adenocarcinoma, and squamous or large cell cancer, and 

adenocarcinoma is the by far most common diagnose amongst lung cancer patients 

[224, 226]. 

Tumor growth is the result of disturbed cellular homeostasis leading to the classical 

hallmarks of cancer which essentially defines immortal and invasive cells growing 

out of control [227]. The alterations contributing to tumorigenesis are generally 

induced by mutations. For lung cancer it is strongly related with inhaled irritants, 

mainly cigarette smoke, but also exposure to other toxic substances such as 

industrial dust including asbestos fibers, or inhalation of radon gas [228]. For lung 

cancer to metastasize, tumor cells must detach by degrading the surrounding 

extracellular matrix, migrate directly into a neighboring tissue or extravasate into 

blood or lymph circulation, and last settle and form a metastasis [229]. 

Genetical aberrations in lung cancer 

Frequently occurring oncogenic mutations in lung cancer involve proteins with large 

impact on cell growth and differentiation including the epidermal growth factor 

receptor (EGFR), the anaplastic lymphoma kinase (ALK) and KRAS (from Kirsten 

Rat Sarcoma Virus) [226]. The alterations are induced during years of smoking, but 

giving up smoking after many years is no guarantee to safeguard against lung 

cancer. As many smoking-induced alterations represent permanent damage, 

smoking correlates with a lifelong increased risk of lung cancer, and 50% of 

diagnosed cases are ex-smokers [225].   
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Diagnosis and treatment 

The majority of cancer-related deaths are due to metastatic spread, and lung cancer 

is often diagnosed at a point where substantial metastatic spread has already 

occurred [226]. Diagnostic procedures include biopsies of the lungs and affected 

tissues combined with radiology (most frequently computer tomography (CT)) to 

confirm and define the tumor characteristics and stage of disease, which includes 

the degree of spread to lymph nodes [226]. 

Early treatments were entirely based on chemotherapy, with a median survival of 8 

months after diagnosis compared to 4-5 months for untreated lung cancer [230]. 

Improved drug development and usage has increased survival to 12 months [231].  

However, first line of treatment depends on the stage of the disease. Stages I and II 

of (non-small cell) lung cancer are the most uniform stages (later stages are more 

heterogeneous and treatments must be individualized), and are approached with 

surgery to remove tumor mass, whereas stage II to III patients usually undergo 

combined surgery and chemotherapy. Radiotherapy has been reported to actually 

associate with a worse outcome compared to surgery, although comparisons may 

be unfair as there is a bias in which patients are selected for the two treatment 

options. However, more recent  development of radiotherapy, as well as its use as a 

post-operative combination therapy supports its role in at least some patients [232]. 

Immune therapy provides new outsights for treatment, and patients with high 

expressions of the checkpoint blocking (immune inhibitory) PD-L1 are actually 

suggested to receive the PD-1 blocking antibody treatment Pembrolizumab as first 

line of treatment [233]. 
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4 PULMONARY EVS 
 

With their great diversity in phenotype, cargo and mediated effects it is highly likely 

that EVs play roles in intercellular communication also between cells of the airways.  

The airways can be sampled for luminal contents using bronchoalveolar lavage 

(BAL), and the first findings of human airway EVs revealed BAL fluid (BALF) 

exosomes with surface expressions of MHC I and II, costimulatory CD86 and CD54 

[234]. CD54 is a key molecule in immune crosstalk, as it binds LFA-1, which is 

expressed by most leukocytes [235] and mediates adhesion. This cocktail of immune 

stimulatory molecules speaks for that BALF EVs interact with immune cells and 

contribute to disease and/or immune homeostasis. We recently postulated the 

hypothesis that pulmonary EVs even may be a general vehicle initiating or 

aggravating inflammation also in non-pulmonary disorders [236].  

CELLULAR ORIGIN OF LUNG EVS  

An important question in dissecting the roles of EVs in the lungs is what cells they 

originate from. Mapping the EV cell sources is difficult, and further complicating is 

the fact that the condition of the releasing cell affects the EV amounts and 

phenotypes being released. It is thus highly likely that during steady state the 

released EVs differ from those released during inflammation or disease. It is 

tempting to assume that the most numerous cells of the airways are the main source 

of EVs. It is however not necessarily the most common lung EVs that are of greatest 

interest, certainly not so in disease where even a minority of EVs may be 

responsible for pathogenic effects. 

However, considering epithelial cells, they line the entire airways, and it is highly 

likely that epithelial EVs thus are present in the respiratory system. Epithelial cells 

are readily exposed to inhaled antigens and irritants, and it is becoming increasingly 

clear that epithelial cells are important players in pulmonary immunity [237], possibly 

also releasing EVs upon stimuli. Epithelial cells of the bronchi co-express CD63 and 

CD81, which was considered evidence that they are a central source of EVs in the 

lungs [238]. Several findings point to a role of epithelial cell-derived exosomes 

modulating lung immunity by interacting with mononuclear cells. Gazdhar et al 

cultured monocytes in media conditioned by bronchial epithelial cells, which favored 
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expansion of inflammatory monocytes positive for CD141, CD123 and DC-SIGN 

[239]. Further, they found monocytes of the same unique phenotype expanded in 

sarcoidosis patient BAL fluid. Connecting the dots, it is tempting to assume that the 

monocyte-engaging media conditioned by the epithelial cells is indeed enriched in 

EVs. In an attempt to dissect further the role of epithelial exosomes, the exosome 

inhibitor GW4869 [43] (mentioned earlier) was used in an asthma model which 

alleviated symptoms of asthma, presumably by decreasing leukocyte infiltration 

[238], however with the cautionary note that GW4869 most likely has unwanted 

effects beyond reduced exosomal release. In support of a role for epithelial cell-

derived EVs as contributors to inflammation, experiments exposing epithelial cells to 

cigarette smoke extract (CSE) has repeatedly been shown to result in release of pro-

inflammatory EVs. In vitro modeling of chronic obstructive pulmonary disease 

(COPD) showed that epithelial cells released large amounts of exosomes upon 

CSE-stimulation, and that these exosomes contributed to IL-8 production by shuttling 

the protein cysteine-rich angiogenic protein 61 (CCN1), which is associated to 

chronic inflammation in both COPD, RA and cancer [240]. CSE-stimulated bronchial 

epithelial cells release EVs with seemingly pro-fibrotic features including promoting 

differentiation of fibroblasts of the lungs into myofibroblasts [241]. 

The most numerous immune cells in BALF are macrophages. Alveolar 

macrophages (AMs) are central in pulmonary immunity, contributing with 

surveillance and phagocytic capacity. In COPD they are strongly expanded [242], 

and in Sarcoidosis there is a general increase in all leukocytes in the BAL fluid with 

macrophage counts rising several fold [202]. Findings have supported a role for AM-

derived EVs in inflammation in pulmonary compartments, e.g. by reversing IFNγ-

mediated induction of signal transducer and activator of transcription (STAT) [243]. 

They were also found to be taken up by alveolar epithelial cells, speaking for an 

intercellular communication within the lungs mediated by EVs which also could 

transport suppressor of cytokine signaling (SOCS) proteins [243]. Mycobacteria are 

intracellular bacteria infecting alveolar macrophages, which in turn release EVs 

capable of modulating inflammation [244] and even priming CD4+ as well as CD8+ T 

cells [245].   

Although far less frequent than macrophages, granulocytes are present throughout 

the airways, and are a possible source of pulmonary EVs. Eosinophils and 

neutrophils respond to noxious stimuli via pattern recognition receptors, and can 
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release potent pro-inflammatory granules [246, 247]. They both release EVs, 

potentially with cargo modulating inflammation during both steady state and disease. 

Neutrophils are strongly associated with pulmonary disorders including asthma and 

allergy and can release exosomes with antibacterial peptides including 

myeloperoxidase [248]. Interesting from an asthma perspective, where LTs are 

mediating inflammatory effects, neutrophil EVs are capable of transporting 

arachidonic acid, the starting substrate for LT synthesis, to platelets and contribute to 

innate immunity [249]. Again this EV –based crosstalk is more complex than just 

contributing to disease, as it was shown that neutrophilic EVs engaging platelets 

actually reduced the mortality in a model of lung inflammation [249]. For asthma 

patients, cultured eosinophils release more exosomes compared to healthy controls, 

and both healthy and patient eosinophils activated by IFNγ increase EV release 

[250]. The granulocytes perhaps most associated to airway disease are mast cells. 

Mast cells are central in airway immunity, equipped with PRRs and surface-bound 

IgE readily acting upon antigen encounter. They too release EVs, and in an attempt 

to map the proteomes of mast cell EVs, Veerappan et al compared exosomes 

isolated from tracheal aspirations, and from a human mast cell line and found great 

similarities [251] indicating that mast cell EVs indeed are present in human airways. 

Mast cell EVs have further been found to engage both DCs [252], B and T cells 

[253], and endothelial cells [254] to induce maturation, proliferation and activation 

respectively. 

Beyond the innate cells mentioned above, it is possible that also DCs contribute to 

the pool of airway EVs, although DCs are in clear minority compared to most other 

cells of the airways. Considering that sarcoidosis BALF exosomes are enriched in 

MHC II [255], it is however possible that many of them are APC-derived and that e.g. 

DCs play immune modulatory roles in the lungs via EVs. 

T cells are expanded in sarcoidosis, as discussed above, and may be another 

source of pulmonary EVs. T cells release exosome-sized ILVs with cytolytic granules 

[256, 257], and upon activation they release exosomes with incorporated portions of 

the TCR [258]. T cell exosomes may also act as deadly vehicles, as they can 

incorporate membrane-bound Fas ligand [259, 260] and thereby regulate immunity 

by inducing apoptosis in recipient cells. In an in vivo tumor model, T cell exosomes 

induced elevated expression of a metalloproteinase implicated in tumor migration, 

and favored lung tumor invasivity [261]. Activated T cells seem to release exosomes 
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stimulating bystander T cells [262], including promoting CD8+T cell-release of 

IFNγ and granzyme B [263].  

In conclusion, many cell types present throughout the airways are capable of 

releasing EVs with cargo and functions that may contribute to pathological 

development or aggravation in the respiratory system. 

EVS IN LUNG DISEASE 

The Gabrielsson group showed that exosomes with MHC II and costimulatory 

molecules are present in bronchoalveolar lavage fluid (BALF) [234], which directed 

attention to pulmonary EVs. In asthma patients, BALF exosomes have a 

dysregulated miRNA profile [264], carry LT-forming enzymes, and promote LT 

formation and IL-8 generation in bronchial epithelial cells [265]. Asthma patient 

eosinophils release more exosomes compared to healthy controls [250], and 

Kulshreshtha et al reported that IL-13 stimulated epithelial cells released exosomes 

capable of increasing macrophage proliferation and chemotaxis [238].  

Fibrotic diseases including Idiopathic pulmonary fibrosis (IPF) and sarcoidosis have 

also been associated with potentially pathological EVs. IPF patients have serum 

exosomes enriched for micro RNA (miR)-21-5p, which is mostly of biomarker interest 

[266], but may also reveal clues about the disease. IPF involves imbalance in WNT-

protein signaling, and recently, primary lung fibroblasts from IPF patients were found 

to release EVs enriched in WNT-5A, and contribute to fibroblast proliferation and 

TGFβ formation, suggesting EV contribution to IPF [267]. In pulmonary sarcoidosis, 

exosomes isolated from BALF are elevated in numbers and enriched in MCH class I 

and II compared to healthy controls [255]. Patient exosomes further stimulated 

PBMCs to produce more IL-13 and IFNγ, as well as bronchial epithelial cells to 

release more IL-8 compared to healthy exosome stimulations [255]. However, which 

cells within the PBMC compartment that exosomes engage was not studied, leading 

to the design of study III (below) in this thesis. Also in COPD, implications of EV 

involvement have been found, including transport of CCN1 (as mentioned above) by 

exosomes from cigarette smoke-exposed epithelial cells [240], and a suggested 

COPD fibrosis-promoting feature of exosomes via miR-210 [241].  
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In summary, many interesting findings point to a role of exosomes and other EVs in 

lung diseases, but clinical studies on pulmonary EVs are still very few, and this 

thesis contributes with three studies (II-IV) on clinical samples.  

 

 

 

Schematic figure of pulmonary EV cargo and effects. Based on the findings of us and 

others, it is clear that EVs from the lungs, but also other compartments, can incorporate both 

nucleic acids and proteins with a potential to engage the immune system in numerous ways. 

VDBP = Vitamin D Binding Protein (study II). 
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5 METHODS  
 

Most methods used in the projects of this thesis are commonly used immunoassays, 

for detailed description see the materials and methods section of each study. EV 

research does, however, involve techniques less commonly used as well as 

adaptations of methods, which may require explanation. For these, a section follows 

below. 

Overview of methods used 

Method Study 
 

I II III IV 

Lipidomics 
   

x 

Cytometric bead array 
  

x 
 

Western blot x x 
 

x 

Migration assay 
   

x 

Patient sample 

 

 
x x x 

Ultracentrifugation x x x x 

ELISA x x 
 

x 

ELISpot x 
   

Flow cytometry x x x x 

Animal studies x 
   

Nanoparticle tracking 

 

x x 
 

x 

Cell culture x 
 

x x 

Electron microscopy x x 
 

x 

Sucrose gradients 
 

x 
 

x 

 

EV Flow cytometry 

Flow cytometry is designed to detect cells, which are magnitudes larger than EVs, 

and is therefore not suitable for direct acquisition of single EVs. There are alternative 

approaches to solve this issue, including using modified instruments to enhance 
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resolution and setting primary gates according to fluorescence rather than 

forward/side scatter properties [127]. We and others apply a technique based on 

using beads large enough to be detected in the flow cytometer FSC/SSC panel. The 

beads can be coated with antibodies directed against exosome epitopes of choice, 

most commonly we target CD9, CD63 or MHC II. The antibody-coated beads are 

incubated with the EV samples to capture and bind EVs to the beads. The beads are 

washed and the captured EVs can be stained using a conventional flow cytometric 

protocol. The advantage of this adapted flow cytometry is that it requires relatively 

little material (compared to e.g. western blot analysis). It is also robust in the sense 

that the beads are very easily detected in the flow cytometer, and a fluorescent 

signal is only achieved if both a capturing and a detection antibody have bound their 

targets, which reduces false positive signals. The main disadvantage of the method 

is that only a subgroup of EVs are captured, and the choice of capturing antibody will 

strongly affect the results.  

Nanoparticle Tracking Analysis (NTA) 

This technique is based on a converted microscope combined with a laser and a 

high resolution camera. The laser is passed through the sample in a chamber, and 

live video sequences are recorded and analyzed using a designated software. The 

software detects the refracted laser light of each particle in the sample, and tracks its 

movements. All nano-sized entities are constantly vibrating (Brownian motions), and 

these vibrations are proportional to particle size. The NTA software can therefore 

calculate the particle size distribution of the sample. The software also reports 

absolute particle concentration, which we however interpret carefully. The instrument 

is calibrated and tested using monodisperse suspensions of synthetical 

nanoparticles. Aquiring polydisperse, biological samples is associated with a far 

greater complexity including a very large difference in capacity to refract light 

(refractive index) between the smallest and the largest particles. The resulting 

absolute concentrations must therefore be very carefully evaluated, and all technical 

parameters must be strictly controlled not to induce any bias. In study I and II, where 

particle concentration analyses were made using NTA, the results are therefore 

always discussed in relation to another sample, for example between patients and 

healthy volunteer exosomes.
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6 RESULTS AND DISCUSSION 
 

The four projects included in this thesis are built on previous findings of the 

Gabrielsson group and others, indicating immunogenic potential of exosomes. 

Previous findings have contributed to improved engineering of exosomes for immune 

therapy, the discovery of exosomes in human BALF, and exosomal capacities to 

transport and generate LTs.  Study I on exosomes and MVs in vivo was designed to 

further broaden investigations on EVs and shift focus from only exosomes to include 

several EV subtypes. Study II and III are continuations of the discovery of BALF 

exosomes. These clinical collaborations focus on sarcoidosis patient exosomes, and 

in study III also MVs, with the aim to contribute to understanding the disease better 

but also to search for possible biomarkers. Study II presents a substantial proteomic 

characterization of the patient exosomes and a highlights a possible biomarker. 

Many of the proteins upregulated in patients were immune modulatory with potential 

effects on monocytes including chemotaxis. Considering that sarcoidosis is an 

inflammatory disorder, project III was designed to functionally evaluate whether the 

patient EVs can engage and stimulate monocytes to modulate cytokine production. 

Project IV aims at shedding light on the role of exosomes in a lung cancer setting, 

with main focus on their LT-associated effects on tumor cell migration and survival. 

  

STUDY I – EXOSOMES AND MICROVESICLES IN VIVO 

Concept and main findings 

An exciting application where EVs may contribute to human health is immune 

therapy. As exosomes can transport antigen and induce antigen-specific immune 

responses in vivo [268], they have the potential to reach clinical use. Exosomes 

have been intensely investigated since the first reports of their immunogenic 

capacity, whereas MVs have attracted far less attention in these settings. Study I 

was designed to address the abilities of also MVs to generate antigen-specific 

immune responses in vivo. Bone marrow-derived DCs (BMDCs) can be pulsed with 

ovalbumin (OVA), which together with MHC and costimulatory molecules is 

incorporated into BMDC exosomes with OVA-specific immunogenic capacity [109, 

116, 269, 270]. In the current study we expanded the setting to also include MVs 
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isolated from the same BMDC cell cultures, to compare exosomes and MVs side-by-

side.  

Characterizations of the two EV types showed great phenotypic overlap. Similar 

surface marker expressions were found for exosomes and MVs including MHC I and 

II, CD54, CD80, CD86, and CD40. The vesicle size distributions were also similar, 

MVs being slightly larger, and approximately equal numbers of exosomes and MVs 

seemed to be released per cell. EM imaging further showed that exosomes and MVs 

resemble each other morphologically. We thus hypothesized that both EV subtypes 

have immune-modulatory capacities. To evaluate this in vivo, both vesicle types 

were injected into C57Bl/6 mice with a boosting dose after seven days and 

immunological analysis conducted 14 days after the initial immunization. Mice 

immunized with exosomes showed significantly increased proportions of OVA 

pentamer+ CD8+ T cells, as well as OVA-specific IgG production, which is supported 

by previous findings [115, 116, 269]. MVs on the other hand showed no induction of 

CD8+T cell responses, and only a slight production of OVA-specific IgG. Further, the 

proportions of GCB cells were elevated by exosomes only, and surprisingly the 

effect was independent of the OVA antigen being present on the vesicles. In 

IFNγ ELISpot assays, splenocytes from the immunized mice were re-stimulated with 

the whole OVA antigen or either of its MHC I or MHC II immune-dominant peptides. 

When re-stimulating with the MHC I peptide, splenocytes from both exosome-treated 

and MV-treated mice displayed a significant, and equally high, IFNγ response. 

Further, we hypothesized that MVs and exosomes combined may have synergistic 

effects, so mice were also immunized with a combination of the two EVs. However, 

this did not show effects stronger than what the exosomes were inducing. To 

investigate how exosomes have this immunogenic advantage over MVs, we 

analyzed the contents of OVA in the vesicles. Substantially higher levels of OVA 

were found on the surface of the exosomes by ELISA. By western blot analysis, 

OVA was found strongly enriched in exosomes, but OVA was barely detectable in in 

the MVs.  

Discussion 

Exosomes have a history, and promising future, of investigations concerning their 

immunogenicity and possible use in therapy. MVs are most frequently bypassed in 

studies. Accumulating evidence is however indicating that MVs may be more similar 
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to exosomes than previously realized, and on a speculative basis possibly even 

more stimulatory given the right conditions. Our findings that MVs and exosomes 

seem to be fairly similar in size contradict previous appreciations of MVs as much 

larger than exosomes [32]. The size of the vesicles may affect how they traffic 

circulatory systems, and where and how they are taken up, so equal sizes speaks 

for similar abilities from this viewpoint. On a technical note, NTA which was used to 

determine the EV sizes is not suitable for greatly polydispersed samples, and if MVs 

have a very large size span, analyses of these would be more error prone. However, 

by EM imaging we also found quite similar sizes, which is further supported by a 

recent publication [271]. There it was reported that the diameters of DC-derived 

exosomes were 150 nm and MVs 168 nm, to be compared to our findings of 153 nm 

and 170 nm respectively. The overlap also in surface marker expressions further 

strengthens an image of exosomes and MVs as rather close siblings. The 

expressions of syntenin and actinin was, however, inversely expressed in the two 

vesicle pellets, indicating that they are indeed different vesicle types [47], and that 

MVs are not just exosome-contaminated pellets. 

Interestingly, exosomes, but not MVs, induced OVA-specific CD8+ T cells as 

detected by pentamer-based staining, whereas both EVs induced splenocytes to 

react similarly to MHC I peptide re-stimulation. As the re-stimulation is conducted for 

22 hours, it is possible that the two EV types induce CD8+ T cell responses with 

different kinetics. It is thus possible that longer time is needed for MVs to induce their 

strongest effect. Further, although less potent than exosomes, the ability of MVs to 

induce an OVA-specific response is interesting when considering that we found very 

little OVA associated to the MVs by ELISA and no OVA at all by western blot. Is then 

less antigen needed when associated to MVs, suggesting a strong immunogenic 

potential?  

Another intriguing question is how OVA can be taken up by MVs. DCs are capable of 

antigen uptake via several pathways including phagocytosis, macropinocytosis and 

receptor-mediated endocytosis [272]. As all three pathways converge into the MVBs 

[272] where exosomes are formed, it is possible that DC exosomes incorporate 

exogenous antigen. Further, beyond cargo derived from endosomes, exosomes can 

also incorporate molecules from the cytosol as a result of recruitment of cytoplasmic 

components to membrane micro-domains [56]. MVs can be packed with cargo from 

the cytosol in the same manner [56], but clearly not from endosomal compartments. 
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One possibility is, that OVA bound to the surface of the DC would be incorporated 

into forming MVs. As mentioned above, DCs have several options for antigen uptake 

and OVA has been shown to be taken up by micropinocytosis, but mainly by 

receptor-mediated endocytosis dependent on the mannose receptor [273, 274]. In 

our system where OVA is added in enormous amounts, it is possible that phagocytic 

mechanisms of the DCs are saturated. On a speculative basis, this could lead to 

OVA being present both in the cytosol (from where it may be incorporated into MVs), 

as well as stuck to the surface of the DCs bound to receptors such as the mannose 

receptor. Budding MVs would thus be able to depart from the cell with OVA attached 

to them. 

On a final note, we found great overlap in phenotype but distinct functional activities 

of exosomes and MVs. Recently, Tkach et al reported that DC-derived MVs and 

exosomes had very similar stimulatory effects on T cells in vitro [271]. As the two 

studies have nearly identical EV isolation protocols, it is highly interesting to relate 

the findings. Tkach et al found that immature DCs released both exosomes and MVs 

favoring release of Th1-skewing cytokines from primary CD4+ T cells, and after 

maturing the DCs with IFNγ, both exosomes and MVs induced CD4+ T cell 

proliferation equally efficient [271]. Although in vitro evaluations cannot always be 

extrapolated to the in vivo situtation, the study supports our findings of an 

immunogenic potential of MVs. 

 

STUDY II – CHARACTERIZATIONS OF SARCOIDOSIS EXOSOMES 

Concept and main findings 

A main focus of this thesis is pulmonary sarcoidosis, and how EVs may play a role in 

the course of disease, or be exploited for biomarker search. In study II we 

investigated exosomes isolated from the BALF of sarcoidosis patients, to 

characterize their proteomic content and thereby draw a road map for further 

investigation and biomarker search. Patient and healthy control BALF exosomes 

were analyzed by proteomic characterizations, flow cytometry, ELISA and Western 

Blot. 

Flow cytometry was initially used to verify that the exosomes in the current study 

overlap characteristically with what has been published previously. We therefore 
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used beads coated with anti-MHC II as capturing antibodies, as previously published 

[255] and found CD9 and CD63 which verified a vesicular character as well as MHC 

II and CD54, supporting an immune-modulatory role of the exosomes.  

Next, the proteomic analysis detected more than 690 proteins in the BALF 

exosomes, which provides an excellent outsight for further investigation of proteins 

implicated in sarcoidosis, and possibly EV-associated mechanisms in lung diseases 

in general. A brief technical note is that the proteomic technique ITRAQ (isobaric tag 

for relative and absolute quantification) is in the current setting conducted in a semi-

quantitative manner, so protein levels are not reported in absolute amounts. To 

relate the expressions in patients and healthy individuals, all results were therefore 

normalized to internal controls, which were composed of a mix of patient and healthy 

exosomes. The expression of each protein can thus be presented as a proportion 

relative to the internal control, and the relative abundance of each protein is 

presented.  

Many proteins upregulated in patient exosomes were associated with inflammation, 

including immunoglobulins, many components of the complement system, and the 

LT-forming enzyme LTA4H. Of the complement components, C3 was elevated two-

fold on sarcoidosis exosomes, and western blotting validated an enrichment on 

patient exosomes. Vitamin D metabolism is frequently disturbed in sarcoidosis 

patients [166], and we found a clear increase in the Vitamin D binding protein 

(VDBP) in patient exosomes. Indeed, others who investigated the full BALF 

proteome of sarcoidosis patients have highlighted Vitamin D metabolism, and 

multiple components of the complement system [275, 276], and even VDPB [276] as 

strongly elevated in sarcoidosis. We validated the VDBP findings by ELISA, and 

found that VDBP was significantly higher on BALF exosomes from sarcoidosis 

patients compared to healthy control exosomes, but also compared to exosomes 

from six patients with inflammatory lung disorders other than sarcoidosis. To further 

evaluate the potential of exosomal VDBP as biomarker, we also tested exosomes 

isolated from patient serum. Again, we found a significant increase in exosomal 

VDBP for patients compared to healthy. Moreover, when also analyzing whole 

plasma we did not see this difference, which speaks for an enrichment of VDBP in 

exosomes specifically. 
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Discussion 

EVs are laborious to investigate, and patient material including BALF adds further 

heterogeneity and complexity. Broad characterizations are therefore highly 

warranted. Our findings in study II of nearly 700 proteins in the BALF exosomes is 

promising for future EV experiments in sarcoidosis, possibly also for other pulmonary 

investigations. Although the patient cohort used in the proteomic characterization 

was quite small (n=15 patients + 5 healthy), the list of proteins can be used both to 

study differences between patient/healthy, but also regardless of differences as a list 

of protein candidates for further pursuit of biomarkers. 

Perhaps most striking, virtually all complement components were increased, 

whereas complement regulatory CD55 was decreased. Both alveolar type II 

epithelial cells and bronchial epithelial cells can produce and release complement 

proteins, and increased complement activity has been reported in lung disorders 

including asthma, IPF, and COPD [277]. Further, previous findings of LT-

components in exosomes [265, 278] were again supported in the current study, now 

in sarcoidosis patient BALF with a different pattern in patients compared to controls. 

LTs are fundamentally associated with inflammatory lung disease including asthma 

[279], and our current findings imply a role for exosomal LTs in lung disorders. 

The findings of increased exosomal VDBP according to both proteomics, and in 

validation experiments was interesting. Sarcoidosis patients frequently show 

dysregulated Vitamin D metabolism, possibly as a consequence of cells within the 

granulomas which are hyperactive in metabolizing Vitamin D [280, 281]. Further, 

beyond transporting Vitamin D to tissues, VDBP can activate macrophages [282] 

and in concert with complement components stimulate chemotaxis of monocytes 

[283] and neutrophils [284]. A speculation is that exosomes carrying VDBP, as well 

as other chemotactic proteins, exit pulmonary compartments and reach circulation 

where they engage immune cells to favor migration.  

From a biomarker point-of-view, although there was an overlap in the levels of 

exosomal VDBP between patients and healthy, one has to consider that this was a 

proof-of-principle that disease-associated markers may be enriched on plasma 

exosomes in sarcoidosis (and other pulmonary disorders for that matter). Refined 

and optimized settings could very well produce diagnostic aid based on EVs, 

especially if several molecules are studied in combination. 
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Sarcoidosis can affect multiple organs, and it is not clear if the disease spreads from 

one organ to another or if it simultaneously develops in several organs. Transplanted 

individuals receiving organs from donors with sarcoidosis have been found to 

develop sarcoidosis [285-289], which speaks for an ability to disseminate. EVs are 

capable of passing the blood-brain-barrier as well as other borders of cellular 

integrity. Further, they have inherent abilities to transport antigen and prime antigen-

specific immune responses, but also to shuttle thousands of proteins and to induce 

pro-inflammatory effects in both innate and adaptive immunity. Is it possible that EVs 

could transfer sarcoidosis-inducing effects between organs? Sarcoidosis is an 

inflammatory disorder, and study II, together with previous reports, indicates that 

exosomes can promote an inflammatory milieu, possibly contributing to sarcoid 

progression. 

 

STUDY III – FUNCTIONAL TESTS OF SARCOIDOSIS EVS 

Concept and main findings 

Previous findings indicated that sarcoidosis BALF exosomes have pro-inflammatory 

effects including induction of IFNγ in autologous PBMCs [255]. Study II further 

highlighted the cargo of sarcoidosis exosomes as enriched in pro-inflammatory 

molecules affecting both innate and adaptive immunity [290]. Study III is a 

continuation of this track, with the aim to functionally evaluate exosomal 

inflammatory capacities. Although sarcoidosis is caused by unclear mechanisms, 

inflammation and granuloma formation are central aspects. In inflammation, innate 

immune cells including neutrophils and monocytes are rapidly recruited to the site of 

inflammation and contribute to inflammatory events [16, 291]. Our findings in study II 

included increased exosomal complement components and VDBP, as well as 

proteins with chemotactic properties on T cells and monocytes (in supplementary 

material, [290]). We therefore hypothesized that BALF exosomes contribute to 

sarcoid inflammation, in part by engaging innate immune cells and induce cytokine 

release, which would accelerate inflammatory events. When stimulating allogeneic 

PBMCs for six hours with patient exosomes, and analyzing the cells by intracellular 

flow cytometry we found that IFNγ was not increased in CD4+ or CD8+ T cells or 

natural killer (NK) cells (the latter potently releasing IFNγ during first hours of 

infection [292]). There was a significant increase of IFNγ in monocytes, however of 
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low magnitude and not with dose-dependency. IFNγ release in the cell cultures was 

also evaluated, but no detectable levels were seen after six or 22 hours. However, 

IL-1β+ monocytes were significantly, and strongly, increased in a dose-dependent 

manner by patient exosomes (but not by healthy control exosomes). To include 

several EV subtypes, and to delineate whether the monocyte effect is dependent on 

bystander PBMCs or is a direct effect on the monocytes, we stimulated either whole 

PBMCs or enriched monocytes with exosomes or MVs. Patient exosomes induced 

significant IL-1β induction on monocytes both within the PBMC population and on 

enriched monocytes, which speaks for a direct activation of the monocytes induced 

by the patient exosomes. MVs had trends of similar effects as the exosomes, but not 

of significant difference to PBS stimulations. We further analyzed the release of 

more innate early cytokines in the supernatants and found IL-6, IL-1β and TNF 

induced by patient, but not healthy, exosomes at six hours and for some also after 

22 hours. Further, CCL2 was strongly induced by the exosomes from a number of 

patients. As study II showed an increase in LT-forming enzymes in patient 

exosomes, we added the LT receptor antagonist Montelukast to investigate whether 

any of these effects were LT-dependent. The high levels of CCL2 induced by some 

patients were significantly reduced by Montelukast. Reactive oxygen species (ROS) 

were also induced in both PBMCs and monocytes by patient exosomes compared to 

healthy exosome stimulations, which adds to an image of pro-inflammatory EVs in 

sarcoidosis. 

Discussion 

We could not detect responses supporting an IFNγ-inducing role of sarcoidosis EVs, 

which was seen in a previous study from our group. It is however possible that the 

discrepancies in these findings are due to the different setup of the two studies.  We 

here used an allogeneic system with healthy donor PBMC recipient cells, whereas 

the previous publication was based on autologous patient recipient cells. Exosomes 

can prime lymphocytes directly, but in allogeneic system there is no self MHC 

recognition and therefore no direct priming of T cells can occur. Looking into other 

early innate cytokines, however, the induction of IL-1β both intracellularly in 

monocytes and released by both PBMCs, and monocytes, was clearly promoted by 

patient exosomes. As also IL-6, TNF, and CCL2 were released significantly more by 

cells stimulated with patient exosomes compared to healthy, this suggests a pro-

inflammatory nature of the sarcoidosis exosomes. The induced cytokines are all 
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implicated in sarcoidosis [293], strengthening the image of EVs contributing to 

sarcoid inflammation.  

The finding that also cultures enriched for monocytes could be induced by 

sarcoidosis exosomes to release the cytokines, was highly interesting, and suggests 

that these cells are a major responder cell to exosomes in the lung. Monocytes have 

also been implicated in sarcoidosis, with expanded intermediate monocytes [294, 

295], which is a population capable of producing large amounts of TNF [296]. 

Strikingly, sarcoidosis patients with expanded intermediate monocytes have been 

shown to have the best response to anti-TNF therapy [297]. It is thus possible that 

exosomes contribute to sarcoid inflammation by engaging monocytes to release pro-

inflammatory cytokines. Monocytes express the CysLT1 receptor [298] and respond 

to LT-mediated signaling, one effect being production of CCL2 [299]. The 

Montelukast-induced reduction of the highest CCL2 response by exosomes provides 

outsight for clinical applications.  

 

STUDY IV – LUNG CANCER PLEURAL EFFUSION EXOSOMES 

Main findings 

Here we studied exosomes isolated from pleural effusions of patients with lung 

cancer to investigate their capacities to promote tumor cell survival and migration by 

modulating LT metabolism. LTs are implicated in cancer, and a lower expression of 

CysLT1R is associated with better prognosis in colorectal [300] and breast cancer 

[301]. One of the most tumorigenic LTs is LTD4, which binds CysLTR1 with high 

affinity [302]. We here found that cultured tumor cells from the PEs of lung cancer 

patients released low levels of LTD4. However, exosomes from the same PEs were 

enriched in the enzyme GGT-1, which converts LTC4 to LTD4. We verified a capacity 

of the exosomes to promote this conversion by adding LTC4, and noted a rapid 

conversion to LTD4. Further, the amounts of LTC4 available for conversion to LTD4 in 

situ may therefore directly limit the tumorigenic effects of PE exosomes. We 

therefore investigated cellular sources of LTC4 in the PEs and found that monocytic 

cells had a greatly increased ability to generate LTs. They had an almost 100-fold 

higher capacity than the mixed cancer cell population in the PEs, strongly suggesting 

that monocytic cells are a plentiful source of LTC4 within the TME. 
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Exosomes have been thoroughly proven to support the TME and favor metastastic 

migration, and to even prepare a metastatic niche [86]. Exosomes from seven lung 

cancer patients were therefore further tested for their capacity to promote migration 

of the lung epithelial cancer-cell line A549, as well as of cells isolated from one of the 

patients. The exosomes clearly accelerated wound healing in a migration assay, 

indicating a potential to favor migration and metastasis of tumor cells in lung cancer. 

The tumor cells isolated from the PE were also sensitive to the CysLT receptor 

antagonist Montelukast, and they could partly be rescued by PE exosomes. 

Discussion 

Study IV expands the scope of this thesis to also touch upon cancer-promoting 

features of exosomes. As mentioned, GGT-1 converts LTC4 to LTD4, and LTD4 

levels have been correlated with cancer in the liver [303], as well as the stomach and 

the lungs [304]. Further, GGT-1 has been found in prostate cancer exosomes and 

even been suggested as a biomarker [305]. Our findings of GGT-1 in the PE 

exosomes are thus supported by previous reports, but also strengthens the 

hypothesis that exosomes contribute to tumorigenic LT formation. The PE exosomal 

capacity to actually also generate LTD4 provided proof that the GGT-1 was indeed 

intact and functional. Moreover, as exosomes promoted cancer cell migration which 

was reduced by Montelukast, it is even clearer that the cancer exosomes use LT 

pathways to contribute to pathogenesis. 

Previous findings have reported that Montelukast interferes with survival or 

progression of lung cancer cells [306], and prostate cancer cells [307], and it was 

found to inhibit tumor growth in a mouse model of colon cancer [308]. We here found 

that Montelukast induced apoptosis in patient tumor cells, and perhaps most 

interestingly that the effect was decreased by PE exosomes. Taken together, PE 

exosomes are enriched in GGT-1 which favors generation of tumorigenic LTD4, and 

they favor migration and survival of cancer cells in a LT-dependent manner. 
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7 CONCLUDING REMARKS 
 

EVs have a potential to revolutionize biological research and human medicine. 

Clinical trials based on EVs have already been conducted, and the number of EV 

publications is increasing exponentially. Previously considered randomly released 

waste disposal vehicles, EVs are today evaluated for their characteristics, functions, 

and potential applications in most areas of medical research. This thesis hopefully 

contributes to the field. 

Study I on MVs and exosomes showed only modest efficacies of the MVs, but even 

so, it is of great importance to consider MVs when designing immune therapies, 

searching for biomarkers, or mapping EV functions. It is highly likely that settings 

optimized for generation of efficient exosomes and MVs are not the same. Thus, 

based on study I, re-evaluating all aspects of cell culturing and antigen-loading may 

very well reveal greater potential of the MVs. Should EV subtypes favor different 

immune responses, one could argue that combined EV populations provide broader 

responses. Or could it be that different EV subtypes are suitable depending on the 

character of the tumor or pathogen against which an immune response is warranted, 

which require different immune responses? 

Sarcoidosis is caused by unclear factors, and diagnostic as well as prognostic 

evaluations are difficult and consume time and resources. The proteomic 

characterization of sarcoidosis exosomes in study II with its validations of selected 

findings provided a long list of protein candidates for biomarker hunting, but also for 

providing clues and perhaps drug targets in the mysterious disorder. Study II and III 
can hopefully contribute to increased understanding of sarcoidosis, but also how 

inflammation may be spread both within pulmonary compartments, but also to 

distant sites. Study IV touches upon cancer, and the role of exosomes, and supports 

findings in study II and III on LT association to lung EVs.   

To what degree EVs play a role in sarcoidosis and lung cancer remains to be fully 

elucidated, but we have found clear indications that pulmonary EVs contribute to 

inflammation. Inflammation is central to many pathologies including sarcoidosis, but 

also to cancer, which is strongly associated with a low level of chronic inflammation. 
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EVs are capable of inducing inflammation via many different mechanisms. 

Exosomes [210] but also MVs [211, 212] can transport IL-1β, and have even been 

suggested to be one of the main exocytic transport mechanisms for IL-1β [309]. 

Inflammations in pulmonary compartments often lead to increased permeability of 

endothelial barriers [218]. Further, in multiple sclerosis (MS) there are inflammatory 

EVs in the affected areas [207-209], which plausibly contributes to degraded 

endothelial integrity [209], and increased leakage across the blood brain barrier 

[208]. There is also plenty of evidence showing that EVs can cross healthy blood 

brain barriers [203-206]. In conclusion, it is possible that EVs deliver their cargo and 

induce effects beyond barriers, either by crossing them or by promoting their 

degradation. 

On a final note, it is highly interesting to connect the inflammatory capacities of EVs 

to their cargo of LT components. Exosome-modulated LT pathways may contribute 

to pathology in multiple lung disorders, presumably also to inflammation in other 

contexts. This underlines the clinical potential for LT receptor antagonists, which are 

safe, well-tolerated, and readily available. 
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