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GDF-9 and BMP-15 direct the follicle symphony
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Abstract
Understanding the physiology underlying the complex dialog between the oocyte and its surrounding somatic cells within the
ovarian follicle has been crucial in defining optimal procedures for the development of clinical approaches in ART for women
suffering from infertility and ovarian dysfunction. Recent studies have implicated oocyte-secreted factors like growth differen-
tiation factor 9 (GDF-9) and bonemorphogenetic protein 15 (BMP-15), members of the transforming growth factor-beta (TGFβ)
superfamily, as potent regulators of folliculogenesis and ovulation. These two factors act as biologically active heterodimers or as
homodimers in a synergistic cooperation. Through autocrine and paracrine mechanisms, the GDF-9 and BMP-15 system has
been shown to regulate growth, differentiation, and function of granulosa and thecal cells during follicular development playing a
vital role in oocyte development, ovulation, fertilization, and embryonic competence. The present mini-review provides an
overview of recent findings relating GDF-9 and BMP-15 as fundamental factors implicated in the regulation of ovarian function
and discusses their potential role as markers of oocyte quality in women.
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The oocyte—a key player in ovarian function

The production of developmentally competent mammalian
oocytes engages a series of intercellular signaling events with-
in the ovarian follicle. Neural, endocrine, neuroendocrine, and
paracrine/autocrine act in harmony to synchronize communi-
cation between the oocyte and somatic cells at sequential
stages of folliculogenesis. This two-way communication is
essential for the nuclear and cytoplasmic maturation processes

that drive the meiotic, fertilization, and early embryonic com-
petencies sustaining embryogenesis. [1–9]

As long ago as 1959, the experiments of Falck and col-
leagues implicated the oocyte as a source of a luteinization
inhibitor in transplantation studies using rabbit follicles placed
in ectopic sites [10]. This study was the first to establish the
oocyte in controlling follicle luteinization. Although further
studies in the 1970s have shown that ablation of the oocyte
results in impaired folliculogenesis with spontaneous transfor-
mation of Graafian follicles into the corresponding corpus
luteum [11, 12], the regulatory capacity of the oocyte in
directing its own fate as well as growth and differentiation of
the follicle through secretion of oocyte-specific factors has
only been discussed for the last two decades [13–20]. The
oocyte is in fact an important regulator of GCs and cumulus
cell (CC) function. The paracrine factors synthetized and se-
creted by the oocyte act locally to direct the differentiation and
function of GCs. Besides having a mitogenic action, these
factors play a critical role in regulating hormones like
follicle-stimulating hormone (FSH), growth factor similar to
insulin-I and androgens, and overall improve oocyte develop-
mental competence [16, 17, 20–29]. Oocyte factors also have
a protective role towards GCs promoting expression of anti-
apoptotic proteins Bcl-2 and suppression of pro-apoptotic pro-
tein Bax in GCs and CCs by maintaining a morphogenic
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paracrine gradient of bone morphogenetic proteins [30].
Nowadays, it has been established that ovary-derived
transforming growth factor-β (TGF-β) superfamily members
play an integral role in inhibiting GC progesterone production
with subsequent luteinization and are important modulators of
ovarian function [31].

TGF-β superfamily protein members are
important regulators of folliculogenesis

The TGF-β superfamily is the largest family of protein secre-
tors in mammals and includes TGF-βs, anti-Mullerian hor-
mone (AMH), activins, inhibins, bone morphogenetic pro-
teins (BMPs), and growth differentiation factors (GDFs).
These proteins are synthesized as prepropeptide precursors
and then processed and secreted as homodimers or heterodi-
mers. Genes belonging to the TGF-β superfamily regulate
many aspects of development by activating transmembrane
serine/threonine kinase receptors [32].

Several members of the TGF-β superfamily which in-
clude bone morphogenetic proteins (BMPs) and growth dif-
ferentiation factors (GDFs) have been identified to play es-
sential roles in the regulation of folliculogenesis by
paracrine/autocrine mechanisms [31, 33–37]. Initial work
showed that two theca cell-derived morphogenetic proteins,
BMP-4 and BMP-7, inhibit FSH-dependent progesterone
production while stimulating FSH-dependent estradiol pro-
duction in rat GCs in vitro [38]. Subsequently, it was dem-
onstrated that BMP-15 and BMP-6 also inhibit FSH-
stimulated progesterone production without changing estra-
diol production in rat GCs [37]. In theca cells, BMP-7 has
been implicated in promoting vascular endothelial growth
factor (VEGF) responsible for the vascular network be-
tween theca cell layers and granulosa cells that turn the
resource of nutrients to the follicle [39, 40]. Among the
oocyte-derived BMP family members, the biological and
physiological activities of growth and differentiation
factor-9 (GDF-9) and BMP-15 (also called GDF-9B) have
been extensively researched, and essential roles for both
factors in female fertility have been identified in several
mammalian species [34, 37, 41–44].

GDF-9 and BMP-15 signaling pathways

BMP-15 gene is an X-linked gene and encodes a protein that
is secreted from oocytes beyond the primordial/primary stages
[44]. The GDF-9 gene is located in the long (q) arm of chro-
mosome 5. GDF-9 mRNA is synthesized only in the oocyte
from the primary 1-layer follicle stage until after ovulation
[45]. Both genes have rapidly evolved when compared to
other TGFß family members and have been subjected to

positive selection in the mammalian clade evidencing the im-
portance and particular functions of the GDF-9 and BMP-15
proteins produced and consequently their importance in fe-
male fertility [46, 47]. The mRNAs of both proteins are
expressed in female mice oocytes throughout folliculogenesis
with a very low or no expression in oocytes of primordial
follicles and a strong expression in oocytes at all stages of
developing follicles. GDF-9 mRNA is also detectable in
ovulated oocytes [42]. Like other members of the TGF-β
superfamily, GDF-9 is synthesized as a prepropeptide which
needs processing by furin-like proteases to result in an active
mature protein [48].

GDF-9 and BMP-15 have a high degree of amino acid
homology and similar protein structure. Both factors are close-
ly associated by expression pattern and function in the ovary
and interact with each other [49–51]. Increasing evidence has
shown a synergistic relationship between GDF-9 and BMP-15
as GDF-9/BMP-15 heterodimers, recently named as cumulin,
act as potent regulators of GCs and CC function and improve
oocyte quality [52, 53].

GDF-9 and BMP-15 bind to their corresponding receptors
in GCs, leading to a cascade of reactions of downstream genes
[49]. Besides significantly improving oocyte developmental
competence, these factors act directly on the GCs having crit-
ical effects on ovarian function, namely GC proliferation, dif-
ferentiation, steroidogenesis, apoptosis, and cumulus expan-
sion [6, 13, 15, 17, 30, 34, 35, 37, 68]. Both BMP-15 and
GDF-9 bind to specific transmembrane serine-threonine ki-
nase receptors that comprise the TGFβ superfamily and are
divided into two subclasses [69]: type I receptors which in-
clude seven receptors (ALK 1 to 7) and type II receptors that
comprises five receptors (Act RII, Act RIIB, AMHRII,
TGF-βRII, and BMPRII). GDF-9 binds to ALK5 [70, 71]
and to BMPRII [72, 73]. BMP-15 binds to receptor ALK6
and to BMPRII [34, 52]. When attached to their ligands, type
I and type II receptors form a heterodimeric complex where
the type II receptor (BMPRII) activates the type I receptor
(ALK5 and 6). Once activated, the type I receptor phosphor-
ylates specific receptor-regulatory SMAD proteins (R-
SMAD) that propagate the signal to the nucleus via interaction
with the common SMAD (Co-SMAD or SMAD4). This
SMAD complex then translocates to the nucleus to interact
with specific transcription factors to regulate the expression of
target genes [40, 52, 69, 74–76]. While BMP-15 joins
BMPRII and ALK6 and subsequently activates SMADS 1,
5, and 8, GDF-9 binds to BMPRII and ALK5 receptors and
activates SMAD 2 and 3 [40, 70–73, 77]. The BMP-15/GDF-
9 heterodimer cumulin needs to bind to the receptor BMPRII-
ALK4/5/7-ALK6 complex to activate SMAD 2 and 3 signal-
ing [52, 78–80]. BMP-15 and GDF-9 have synergistic effects
and can act through miR-375 to affect the expression levels of
type I receptor ALK4 and type II receptor BMPRII and the
activation of SMAD signaling pathway, which subsequently
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affected the proliferation, spread, and apoptosis of cumulus
cells [81]. The activation of SMAD signaling by the oocytes
and the requirement of SMAD2/3 signaling for cumulus cell
expansion can also vary between species. For instance, it is
notably contrasted in pigs and mice and involves essential
MAPK signals [82]. Furthermore, it has been shown that hu-
man GDF-9 and BMP-15 act synergistically to stimulate gran-
ulosa cell proliferation, a response that also involves species-
specific non-SMAD signaling pathways [79].

Lessons from knock-out mice

The importance of GDF-9 and BMP-15 factors in rats, mice,
sheep, porcine, and humans has been shown in individuals
that have mutations or deletions of these genes or through in
vitro studies through recombinant forms that mimic the oo-
cyte paracrine actions on GCs and CCs [6, 48, 67–72]. The
production of aGDF-9-null mouse model by theMatzuk lab
was fundamental to unraveling the role of GDF-9 in ovarian
function [68]. GDF-9 knockout female mice showed no
Graafian follicles, exhibiting a complete absence of normal
follicles beyond the primary stage and no differentiation of
the follicle compartments, no ovulation, and no pregnan-
cies. While GDF-9 null oocytes displayed normal meiotic
competence for early stage follicles, the most striking
change that occurs in these oocytes is its increase in size (a
70% increase in volume) in addition to an absence of corti-
cal granules and clustering of organelles around the germi-
nal vesicle suggesting that late secretory events are affected.
At the granulosa cell level, changes reflected a decreased
mitosis, lack of FSH receptor, overexpression of the kit li-
gand, and no apoptosis. These mice exhibited large numbers
of primordial follicles form and many advances to the point
at which the oocyte is fully grown and there is a single layer
of cuboidal GCs, but no theca. In the absence of GDF-9,
folliculogenesis stops at the primary stage. At about this
stage, the oocyte degenerates and an aberrant form of spon-
taneous luteinization of the follicle occurs [68, 73, 74].

We have established a GDF-9 mice colony with two foun-
der pairs of two null males and two heterozygous females
(generous gift from Dr. Martin Matzuk’s lab). Ovaries from
null and heterozygous females at different postnatal ages
(days 2, 8, and 20) were collected, fixed in 2%PFA, embedded
in paraffin, and sectioned. Some of these sections were stained
with mouse vasa homolog (MVH, a cytoplasmic germ cell
specific protein, gift from Dr. Noce), diluted 1:1200 in 1%
BSA, and counterstained with Harris hematoxylin containing
4% acetic acid, developed with horseradish peroxidase avidin
D (HRP; Vector; 1:500); diaminobenzidine (DAB) was used
as a substrate for HRP. MVH staining allowed us to confirm
previous observations regarding follicle and oocyte growth
more accurately. Fig. 1c, f clearly illustrate no follicle growth

beyond primary stage with fully-grown oocytes (Fig. 1f). We
have also observed that at postnatal day 2 (P2), null-GDF-9
ovaries already seem to have more primary follicles than het-
erozygous ovaries, which may be a sign of premature primor-
dial follicle activation (Fig. 1a, d) [93]. At P8, almost all fol-
licles had fully-grown oocytes in GDF-9 null ovaries (Fig. 1e),
whereas the GDF-9 heterozygous ovaries exhibited regular
follicle development with several follicle stages, from primor-
dial to secondary (Fig. 1b). Our MVH staining of the oocytes
cytoplasm also illustrated well oocyte degeneration in some of
the oocytes within the P20 GDF-9 null ovaries (Fig. 1f).

These findings are consistent with the fact that in humans,
mutations in GDF-9 and BMP-15 have been associated with
subfertility, high incidence of dizygotic twins, ovulation de-
fects, and with premature ovarian failure [76–80]. Altered
expression of these factors may cause damage to ovarian func-
tion and fertility in several species [35, 37, 81, 82].

In order to better illustrate the effects of the absence of
GDF-9 within the ovary, paraffin sections of P2 and P8
GDF-9-null and heterozygous ovaries were evaluated.
After antigen retrieval, and immunolocalization for stable
microtubules (acetylated-tubulin, green) and gap junctions
(connexin 43 red), these sections were counterstained with
Ethidiumhomodimer-2 (Eth-D2) for nucleus staining
(white) (Fig. 2a–d). Results have shown that the structural
differences between GDF-9 heterozygous and null ovaries
were accompanied by the cytoskeleton with acetylated tu-
bul in shaping the fol l ic le s t ructure (Fig. 2a–d) .
Interestingly, as previously observed, the oocytes in GDF-
9-null ovaries at P8 have shown different tubulin distribu-
tion and single granulosa cells layer (Fig. 2d), while similar
sized oocytes in GDF-9 heterozygous ovaries exhibited at
least two layers of granulosa cells (Fig. 2c). Regarding gap-
junction distribution, greater differences were observed be-
tween GDF-9-null and heterozygous ovaries. The null ova-
ries have shown irregular gap junctions and in some cases an
overexpression of connexin 43 protein in the extracellular
matrix of the primordial follicles, if compared with GDF-9
heterozygous follicles (Fig. 2a–b). Unpaired cell-cell com-
munication in GDF-null mice further confirms the impor-
tance of GDF-9 in follicle and oocyte development and ul-
timately in female reproduction in the mouse model.

GDF-9 and BMP impact folliculogenesis
and oocyte quality

Both GDF-9 and BMP-15 have been shown to impact
folliculogenesis and oocyte quality. Overall GDF-9 has been
implicated in follicular development at the transition of the
primary follicle to the secondary follicle stage. GDF-9 is also
implicated in GC differentiation, specifically in the transition
of preantral GC to CC in mice [56]. BMP-15 promotes follicle

J Assist Reprod Genet



maturation since the primordial gonadotropin independent
phases, regulates GC sensitivity to FSH action, prevents GC
apoptosis, increases oocyte developmental competence, and
regulates the ovulation quota [34, 36, 40, 57].

Apart from the gonadotrophins secreted by the pituitary
gland, oocyte-derived BMP-15 and GDF-9 participate in the
modulation of certain target genes related to ovulation and
luteinization [34, 58, 59]. Recently, gene expression studies
have shown how complex signaling systems are at follicle
activation and suggest ways, direct and indirect, through
which GDF-9 function may be manifest in normal or patho-
logical ovarian conditions [60].

Both GDF-9 and BMP-15 have been show to interact in
modulating the expression of certain proteins in GCs. For
example, Kit Ligand (KITL) is critical for the growth of oo-
cytes, and its level of expression is differentially controlled by
paracrine and hormonal factors. It has been shown that GDF-9
inhibits the expression of ligand kit by GCs, whereas BMP-15
stimulates its expression [16]. Oocyte-derived GDF-9 and
BMP-15 have also been shown to be involved in regulating

glycolysis and cholesterol synthesis by granulosa cells, essen-
tial processes for nourishing the oocyte with pyruvate, lactate,
and products resulting from the cholesterol biosynthetic path-
way via gap junctions [54, 55].

In human GCs, intra-ovarian BMPs and TGF-βI modulate
expression of connexin 43 (Cx43) and intercellular communi-
cation. Specifically, BMP-4, BMP-7, and BMP-15 suppress
Cx43 expression, whereas TGF-βI increase Cx43 expression
indicating regulatory roles for these factors [61, 62].

BMP-15 inhibits follicular luteinization by decreasing pro-
gesterone production through downregulating the expression
of the steroidogenic acute regulatory protein (StAR) [83].
Additionally, GDF-9 interacts with pituitary gonadotrophins
to further reduce progesterone production. After ovulation, the
rapid decrease of these oocyte factors in the corpus luteum
leads to elevation of StAR expression and consequent proges-
terone production [34].

The antral follicle stage is characterized by differentiation
of the GCs that surround the oocyte into two functional and
anatomical distinct sub lineages, the CCs and the mural GCs

a

b e

c f
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P8

P20

P2

GDF-9 Het GDF-9 KOFig. 1 Paraffin sections of P2, P8,
and P20 ovaries in GDF-9 het-
erozygous (a, b, c) and GDF-9
KO mice (d, e, f). Stereoscopic
images showing the phenotype of
the GDF-9 KO mice: absence of
secondary follicles (f), activation
of the follicular reserve (d), and
oocyte continuing growth (f)
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[84]. CCs, in contrast to mural GCs, exhibit higher prolifera-
tion rate, higher anti-Mullerian hormone expression, lower
steroidogenic capacity, and lower LH-receptor expression
and have the ability to secrete hyaluronic acid for cumulus
oocyte complex (COC) expansion [23, 27, 85].

The process of cumulus expansion represents the se-
cretion and apposition of hyaluronan-rich extracellular
matrix in the COC and is controlled by endocrine, para-
crine, and oocyte-derived factors [86–89]. Hyaluronan,
the backbone of the COC extracellular matrix, is the
product of the hyaluronan synthase 2 (Has2) and its
expression is upregulated by LH. These structure is fur-
ther stabilized by a complex network of binding pro-
teins, including versican, tumor necrosis factor-
stimulated gene 6 protein (TSG-6), inter-α trypsin in-
hibitor, and pentraxin 3 (PTX3) [90, 91]. BMP-15 and
GDF-9 have been implicated in upregulation of the cu-
mulus expansion-related genes Has2 and PTX3 [34, 52]
and therefore might be involved in maintaining the CC
phenotype by promoting cumulus expansion. Epidermal
growth factor (EGF)-like peptides and GDF-9 are also
involved in cumulus expansion as GDF-9 induces HAS2
expression and hyaluronan synthesis as well as prosta-
glandin E2 production which is essential for normal

ovulation [92]. Other BMPs have been implicated in
remodeling extracellular matrix formation, namely the
theca/stroma-derived BMPs (BMP4 and BMP7),
decomposing the structure of the extracellular matrix
in the neighboring mural GCs to facilitate separation
of COC and mural GCs in the human ovary and thus
regulating ovulation [34]. A schematic diagram
exhibiting the functional roles of the main TGF-β su-
perfamily member proteins in regulating ovarian func-
tion is shown in Fig. 3.

Although GDF-9 and BMP-15 regulate ovarian function,
it is important to reinforce the specific species differences
between these oocyte factors. These differences may reflect
inherent variations between mono- and poly-ovulatory
mammals [51, 63, 64]. In fact, BMP-15 action is more im-
portant in sheep (mono-ovulatory) rather than mice (poly-
ovulatory) in the first stages of follicle development [17].
Knocking-out the BMP-15 gene in mice unexpectedly re-
vealed minimal alterations in follicle development, but de-
fects are confined to the ovulation process, cumulus expan-
sion, and subsequent fertilization and fertility [51, 65]. In
contrast, GDF-9 has been shown to be a critical player of
follicle growth in mice [66]; it is latent in some species
(notably human) and requires activation [67].

Connexin 43 Acetylated-Tubulin
G

DF
-9

 - 
He

t
G

DF
-9

 - 
KO

P2 P8
a c

b d

Fig. 2 Paraffin sections of P2 and
P8 mouse ovaries stained for a
microtubule marker, acetylated-
tubulin (green), and a gap-
junction marker, connexin-43
(red), in GDF-9 Heterozygous (a,
c) and GDF-9 KO mice (b, d). It
is possible to observe irregular
gap junction distribution among
the GDF-9 KO ovaries (b–d)
within preganulosa and granulosa
cells and the absence of secondary
or graffian follicles
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Importance of BMP-15 and GDF-9 in human
fertility

The importance of BMP-15 and GDF-9 as fertility
markers in the human has received wide attention once
these factors play a critical role in granulosa cell differ-
entiation and ovarian architecture interfering consider-
ably in all stages of oocyte development and embryonic
quality [34, 36, 94]. Abnormal expression of these fac-
tors may be related to female infertility. [16]

Higher mature GDF-9 levels in the follicular fluid were
significantly correlated with oocyte nuclear maturation and
embryo quality [95].

Several BMPs have been implicated in female reproduc-
tive pathologies namely failure in embryo implantation and

female sterility [96, 97], polycystic ovary syndrome
(PCOS), primary ovarian insufficiency (POI) [98], and en-
dometriosis [99]. Also, given that reduced levels of BMP-
15 and/or GDF-9 in ewes are associated with increased ovu-
lation rate and litter size, women with GDF-9 (and possibly
BMP-15) mutations may have an increased number of dom-
inant follicles, resulting in an increased likelihood of bear-
ing dizygotic twins [100, 101].

Although expression levels of BMP-15 and GDF-9 in the
oocytes have shown to be higher in PCOSwomen, the expres-
sion levels of both BMP-15 and GDF-9 in CCs is lower in
PCOS women which may result in premature luteinization,
poor oocyte competence, and luteal dysfunction, leading to
higher miscarriage rates in these patients [102]. In vitro mat-
uration (IVM) protocols that take into account these two

Fig. 3 Schematic diagram exhibiting the functional roles of the main
TGF-β superfamily member proteins in regulating ovarian function.
GDF-9 and BMP-15 are implicated in the transition of the primordial
follicle to the primary follicle stage. In theca cells BMP-7 regulates
VEGF and thus the flow of nutrients within the follicle. GCs contribute
to oocyte antioxidant defense against reactive oxygen species (ROS)
[118] and to oocyte nutrients through glycolysis and cholesterol biosyn-
thesis which is regulated by oocyte-derived GDF-9 and BMP-15. The

paracrine interactions between BMP-15 and KITL are an example of a
negative feedback system: while oocyte-derived BMP-15 induces KITL
expression in granulosa cells, KITL from granulosa cells inhibits BMP-
15 secretion by the oocyte. Overall, the roles of GDF-9 and BMP-15 are
evidenced in regulating the function of GCs, GC communication, COC
expansion and hyaluronan production leading to ovulation, and in
preventing luteinization through inhibition of progesterone production
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factors might have potential therapeutic clinical applications
and may help women with PCOS to overcome infertility treat-
ments. Indeed, treatment of COCs with recombinant GDF-9,
BMP-15, or denuded oocytes during IVM led to higher rates
of blastocyst formation and fetal yield after IVM and in vitro
fertilization (IVF) of COCs in cattle [19, 103, 104], in mice
[105, 106], in goats [107], and in pigs [108].

Several BMP-15 genemutations have been reported in POI
patients [109–113]. GDF-9 variants do not seem to be in-
volved in POI [114] but the BMP-15 mutations reported in
POI patients reduce the synergy between BMP-15 and GDF-9
[115] evidencing the importance of the BMP-15/GFD-9 het-
erodimers in regulating ovarian function.

Modulation of TGF-β pathways might also influence re-
productive disorders. Recently, it was shown that dysregula-
tion of ALK6 in human GCs is associated with reduced ovar-
ian reserve and age-related decline in fertility [116]. Recent
studies have demonstrated a favorable effect of BMP-15 in
combination with FSH on the in vitro development of small
size mouse follicles to antral stage [117].

The BMP/GDF system has been show to control GC
development and function, cell-cell communication, ste-
roidogenesis, COC formation and expansion, oocyte matu-
ration, ovulation, and luteolysis. Thus, the physiological
roles of BMP-15 and GDF-9 in directing the follicular sym-
phony will provide a significant understanding on ovarian
architecture and function and the development of newmeth-
odologies in ART. The use of drugs that modulate TGF-β
pathways (Kushnir et al. in press) or the inclusion of BMPs
and GDFs in in vitro protocols will provide new approaches
in fertility treatments.
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