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“I have not failed. I’ve just found 10,000 ways that won’t work.”

Thomas A. Edison

“It is not true that people stop pursuing dreams because they grow old, they grow old

because they stop pursuing dreams.”

Gabriel Garćıa Márquez



Abstract

Neurological and age-related diseases affect human mobility at different levels causing

partial or total loss of such faculty. There is a significant need to improve safe and

efficient ambulation of patients with gait impairments. In this context, walkers present

important benefits for human mobility, improving balance and reducing the load on their

lower limbs. Most importantly, walkers induce the use of patient’s residual mobility ca-

pacities in different environments. In the field of robotic technologies for gait assistance,

a new category of walkers has emerged, integrating robotic technology, electronics and

mechanics. Such devices are known as “robotic walkers”, “intelligent walkers” or “smart

walkers”

One of the specific and important common aspects to the field of assistive technologies

and rehabilitation robotics is the intrinsic interaction between the human and the robot.

In this thesis, the concept of Human-Robot Interaction (HRI) for human locomotion

assistance is explored. This interaction is composed of two interdependent components.

On the one hand, the key role of a robot in a Physical HRI (pHRI) is the generation

of supplementary forces to empower the human locomotion. This involves a net flux of

power between both actors. On the other hand, one of the crucial roles of a Cognitive

HRI (cHRI) is to make the human aware of the possibilities of the robot while allowing

him to maintain control of the robot at all times.

This doctoral thesis presents a new multimodal human-robot interface for testing and

validating control strategies applied to a robotic walkers for assisting human mobility

and gait rehabilitation. This interface extracts navigation intentions from a novel sensor

fusion method that combines: (i) a Laser Range Finder (LRF) sensor to estimate the

users legs’ kinematics, (ii) wearable Inertial Measurement Unit (IMU) sensors to capture

the human and robot orientations and (iii) force sensors measure the physical interaction

between the human’s upper limbs and the robotic walker.

Two close control loops were developed to naturally adapt the walker position and to

perform body weight support strategies. First, a force interaction controller generates

velocity outputs to the walker based on the upper-limbs physical interaction. Second,

a inverse kinematic controller keeps the walker within a desired position to the human

improving such interaction.

The proposed control strategies are suitable for natural human-robot interaction as

shown during the experimental validation. Moreover, methods for sensor fusion to es-

timate the control inputs were presented and validated. In the experimental studies,

the parameters estimation was precise and unbiased. It also showed repeatability when

speed changes and continuous turns were performed.
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Chapter 1

Introduction

This work focuses on a human-robot interaction (HRI) strategy for human mobility

assistance. The integration of HRI concepts in the smart walkers field is addressed to

enable natural channels of communication between the walker and the human. Addition-

ally, this thesis presents a multimodal human-robot interface that provides a means of

testing and validating control strategies for robotic walkers for assisting human mobility

and gait rehabilitation. This chapter presents some remarks regarding the motivation of

this research and the research goals. The main contributions and the structure of this

document are also presented at the end of this chapter.

1.1 Motivation

Different conditions, such as stroke, spinal cord injury and cerebral palsy affect human

mobility causing partial or total loss of locomotion capacities. Specifically, stroke rep-

resents a major problem in clinical medicine being a leading cause of disability in the

developed world [1]. Stroke survivors typically show significantly reduced gait speed,

shortened step length and loss of balance in their gait patterns and often experience

falls [2]. Regarding spinal cord injury, it is estimated that over 130,000 people each year

survive a traumatic spinal cord injury and begin a “new and different life” bound to a

wheelchair for 40 years or more [3]. These conditions generate a strong demand for more

interactive and natural solutions for people who might spend a significant part of their

life with the assistance of a technical aid.
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Additionally, the prospect of survival in children with severe level of impairment has

increased in recent years [4]. In the same way, people over 60 years old are increasing from

600 million to 2 billion between the years 2000 and 2050 [5]. Under those circumstances,

maximization of mobility has been identified as one of the main objectives for the injured

individuals [6]. There is a significant need to improve the ability of patients with gait

impairments to have safe and efficient ambulation. Thus, new strategies are necessary

to promote, maintain, and rehabilitate the functional capacities and, thereby, diminish

the required assistance and the economical demands that this condition represents for

the patient, the caregivers and the society [4].

In this context, assistive devices appear as a potential solution since they may reduce

the load on a fragile joint and increase stability to empower the user’s locomotion using

residual motor capacities. Accordingly, conventional walkers are important examples

of assistive devices because of their structural simplicity, low cost and rehabilitation

potential. Walkers increase static and dynamic stability in addition to provide partial

body weight support during functional tasks [7].

In the field of robotic technologies for gait assistance, a new category of walkers has

emerged, integrating robotic technology, electronics and mechanics. Such devices are

known as “robotic walkers”, “intelligent walkers” or “smart walkers” [8]. They present

a great number of functionalities and are capable of providing mobility assistance at

different functional levels, better adjusted to the individual needs of the user [8, 9].

Several research projects in many countries are focused on robots for assisting elderly

and/or people with disabilities. In this scenario, assistive robots are expected not only to

navigate within the user environment, but also interact with people, and robot developers

should focus on both the robot and the user, more specifically on the interaction of both

agents. It should be taken into account that, first, robots should be instructed as

effectively and intuitively as a human [10] and, second, that the direct contact between

human and robots must be detected as a control input to prevent human injuries and

to guide the robot in its tasks. In this direction, researchers worldwide are studying

social factors related to the Human-Robot Interaction (HRI) in human environments

and great attention is being focused on the Cognitive Human-Robot Interaction (cHRI)

[11].
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1.2 Background

This thesis is based on previous researches which were developed either inside of our

group or within the execution of collaboration projects.

The ASAS Project (translation from Spanish ”Pseudo-robotic walker for enhancing

user’s security”) introduced the development of a basic smart walker physical struc-

ture [12]. In this project, some important features were implemented on a commercial

walker as it can be seen in Fig. 1.1(a). The mechanical structure was modified to

provide forearm supporting platforms, which are more comfortable and stable than the

conventional handlebars. Such platforms also stabilize the trunk and the upper-limbs

during the walker-assisted gait. Two motorized wheels were also installed allowing more

control of the device’s motion. It also included a basic Human-Machine Interface (HMI)

to control the walker’s motion. Such interface is composed of two push-buttons located

on each handlebar, at the height of the user’s thumbs.

(a) (b)

Figure 1.1: Previous Smart Walkers related to this thesis. (a) ASAS Walker. (b)
SIMBIOSIS Walker.

However, such approach presents some disadvantages regarding the user’s interfaces.

Each push-button commands a corresponding motorized wheel: when the right push-

button is pressed, the right motor moves forward. That way, when the user presses both

buttons, the walker moves forward. The user needed previous training and good motor

coordination to properly command the robotic walker.
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SIMBIOSIS, an improvement of a ASAS walker, was a sequential project that aimed

to develop a multimodal interface that combines upper-limbs reaction forces and lower-

limbs cadence estimation using ultrasonic sensors [13]. Such interface allowed natural

interaction as the user’s guiding intentions were detected and transmitted to the walker’s

control system. The SIMBIOSIS Walker is shown in Fig. 1.1(b). Such project presents

a complete study of different filtering strategies to extract guiding intentions from the

upper-limb reaction forces acquired by force sensors installed in the forearm supporting

platforms. As a conclusion of this study, a method to estimate the upper-limb mo-

tion intentions was developed. This thesis relies on such estimation algorithms for the

extraction of the control inputs as presented in section 5.4.2.

Nevertheless, the SIMBIOSIS Project proposed a basic control strategy only to demon-

strate the effectiveness of the estimation algorithms. Although experimental results

showed that this approach allows natural interaction with the device, robust control

for human-walker interaction and the user’s dependability were not taken into account.

Therefore, this thesis is focused on the development of natural and robust human-walker

control strategies, which are based on the development of a new multimodal interface.

1.3 Objectives

The primary objective of this thesis is to design new control strategies to develop a more

natural, safer and more adaptable human-walker interaction. Beyond this general goal,

there are several specific objectives that are presented below.

1. To study the human motion intentions during walker-assisted gait in order to

extract human-walker interaction parameters.

2. To integrate HRI sensing modalities that promote natural human-walker interac-

tion.

3. To design a multimodal interface for testing and validating control strategies for

robotic walkers.

4. To design and validate a cognitive HRI control strategy for walker-assisted gait.

5. To develop a control strategy based on cognitive and physical HRI for walker-

assisted gait.
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1.4 Contributions

The key contributions of this thesis are the development of a novel multimodal HRI

control strategy and two new sensor fusion methods to estimate the control inputs.

Objectively, the most important technical and scientific contributions of the research

presented in this work are listed below.

1. Formulation of a control strategy for cognitive HRI during walking. Such controller

was evaluated using a mobile robot and a robotic walker.

2. Proposal and validation of a new method to obtain human-robot interaction pa-

rameters synchronized with gait cycles and acquired with Laser Range Finder

(LRF) and Inertial Measurement Units (IMU).

3. Proposal and validation of a new method to continuously estimate human-walker

interaction parameters based on the adaptive estimation and filtering of gait com-

ponents from LRF and IMU sensors.

4. Design and validation of a multimodal interface for walker-assisted gait based on

the combination of LRF, IMU and 3D force sensors.

5. Development of a control strategy based on cognitive and physical HRI for walker-

assisted gait.

1.5 Publications

The work presented in this thesis has been the subject of the following scientific publi-

cations:

1. (Journal Paper) Carlos A. Cifuentes, Camilo Rodriguez, Anselmo Frizera-Neto,

Teodiano Freire Bastos-Filho, and Ricardo Carelli, Multimodal Human–Robot In-

teraction for Walker-Assisted Gait, IEEE Systems Journal, (In Press).

2. (Journal Paper) Carlos A. Cifuentes, Anselmo Frizera, Ricardo Carelli and Teo-

diano Bastos, Human–robot interaction based on wearable IMU sensor and laser

range finder, Robotics and Autonomous Systems, Volume 62, Issue 10, October

2014, pages 1425–1439.

http://dx.doi.org/10.1109/JSYST.2014.2318698
http://dx.doi.org/10.1109/JSYST.2014.2318698
http://dx.doi.org/10.1016/j.robot.2014.06.001
http://dx.doi.org/10.1016/j.robot.2014.06.001
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3. (Conference Proceeding) Carlos A. Cifuentes, Camilo Rodriguez, Anselmo Friz-

era, and Teodiano Bastos, Sensor Fusion to Control a Robotic Walker Based on

Upper-Limbs Reaction Forces and Gait Kinematics, 5th IEEE RAS & EMBS In-

ternational Conference on Biomedical Robotics and Biomechatronics (BioRob)

(August 12-15, 2014). São Paulo, Brazil, pages 1098-1103.

4. (Book Chapter) Anselmo Frizera Neto, Arlindo Elias, Carlos A. Cifuentes, Camilo

Rodriguez and Teodiano Bastos and Ricardo Carelli, Smart Walkers: Advanced

Robotic Human Walking-Aid Systems, Intelligent Assistive Robots Springer Tracts

in Advanced Robotics, Springer International Publishing, Volume 106, 2015, pages

103-131.

5. (Book Chapter) Anselmo Frizera Neto, Arlindo Elias, Carlos A. Cifuentes, Car-

los Valadao, Junior Schneider, Camilo Rodriguez, and Ricardo Carelli, Walkers,

Devices for Mobility and Manipulation for People with Reduced Abilities, CRC

Press, Volume 1, 2014, pages 141-166.

Several other works were also published as a consequence of the interaction with other

researchers during the development of this work. The most important ones are listed

below.

1. (Journal Paper) Maria Martins, Arlindo Elias, Carlos A. Cifuentes, Manuel Al-

fonso, Anselmo Frizera, Cristina Santos and Ramón Ceres, Assessment of walker-

assisted gait based on Principal Component Analysis and wireless inertial sensors,

Brazilian Journal of Biomedical Engineering, Volume 30, Issue 3, September 2014,

pages 220-231.

2. (Conference Proceeding) Luca Tausel, Carlos A. Cifuentes, Camilo Rodriguez,

Anselmo Frizera and Teodiano Bastos, Human-walker interaction on slopes based

on LRF and IMU sensors, 5th IEEE RAS & EMBS International Conference on

Biomedical Robotics and Biomechatronics (BioRob) (August 12-15, 2014). São

Paulo, Brazil, pages 1098-1103.

3. (Conference Proceeding) T. Bastos, A. Frizera, G. Borges, E. Caicedo, C. Rodŕıguez,

M. Bôrtole and C. Cifuentes, Motor and bioelectric evaluation of human move-

ments through inertial and myoelectric sensors, Biosignals and Biorobotics Con-

ference (BRC), (February 12-15, 2014), Rio de Janerio, Brazil, pages 1-5.

http://dx.doi.org/10.1109/BIOROB.2014.6913927
http://dx.doi.org/10.1109/BIOROB.2014.6913927
http://dx.doi.org/10.1007/978-3-319-12922-8_4
http://dx.doi.org/10.1007/978-3-319-12922-8_4
http://www.crcnetbase.com/doi/abs/10.1201/b16870-7
http://dx.doi.org/10.1590/rbeb.2014.020
http://dx.doi.org/10.1590/rbeb.2014.020
http://dx.doi.org/10.1109/BIOROB.2014.6913781
http://dx.doi.org/10.1109/BIOROB.2014.6913781
http://dx.doi.org/10.1109/BRC.2013.6487450
http://dx.doi.org/10.1109/BRC.2013.6487450
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4. (Conference Proceeding) Maria Martins, Carlos Cifuentes, Arlindo Elias, Valmir

Schneider, Anselmo Frizera and Cristina Santos, Assessment of Walker-assisted

Human Interaction from LRF and Wearable Wireless Inertial Sensors, Interna-

tional Congress on Neurotechnology, Electronics and Informatics, (September 18-

20, 2013). Vilamoura, Algarve, Portugal, pages 143-151.

5. (Journal Paper) A. A. A. Braidot, C. Cifuentes, A. Frizera Neto, M. Frisoli and A.

Santiago ZigBee Wearable Sensor Development for Upper Limb Robotics Reha-

bilitation, IEEE Latin America Transactions, Volume 11, Issue 1, February 2013,

pages 408-413.

6. (Book Chapter) Carlos A. Cifuentes, Ariel Braidot, Melisa Frisoli, Alfonso San-

tiago, Anselmo Frizera and Juan Moreno, Evaluation of IMU ZigBee Sensors for

Upper Limb Rehabilitation, Converging Clinical and Engineering Research on Neu-

rorehabilitation, Springer Berlin Heidelberg, Volume 1, 2013, pages 461-465.

7. (Book Chapter - available only in Spanish and Portuguese) Anselmo Frizera,

Ramón Ceres, José Maŕıa Azoŕın, Carlos A. Cifuentes, Teodiano Freire Bastos,

Eduardo Rocon, Alejandro Clemotte y Eduardo Iáñez, Interfaces Multimodales,

La Interacción de Personas con Discapacidad con el Computador: Experiencias y

posibilidades en Iberoamérica, CYTED, Volume 1, 2013, pages 147-172.

8. (Book Chapter) Anselmo Frizera, Carlos A. Cifuentes and Teodiano Freire Bas-

tos, Motion Capture System Based on the Integration of 3D Accelerometer in a

Wireless Inertial Measurement Unit, Accelerometers: Principles, Structure and

Applications, Nova Science Publishers, Volume 1, 2013, pages 57-77.

9. (Conference Proceeding) Carlos Cifuentes, Ariel Braidot, Luis Rodŕıguez, Melisa

Frisoli, Alfonso Santiago and Anselmo Frizera, Development of a wearable ZigBee

sensor system for upper limb rehabilitation robotics, 4th IEEE RAS & EMBS

International Conference on Biomedical Robotics and Biomechatronics (BioRob)

(June 24-27, 2012). Rome, Italy, pages 1989-1994.

1.6 Book Organization

This PhD Thesis report is structured as follows.

http://dx.doi.org/10.5220/0004624201430151
http://dx.doi.org/10.5220/0004624201430151
http://dx.doi.org/10.1109/tla.2013.6502838
http://dx.doi.org/10.1109/tla.2013.6502838
http://dx.doi.org/10.1007/978-3-642-34546-3_75
http://dx.doi.org/10.1007/978-3-642-34546-3_75
https://docs.google.com/forms/d/1OjrHYEELwUOFZecpJoRAeLKIgzvLFYaY_KE7HA1I6i0/viewform
https://www.novapublishers.com/catalog/product_info.php?products_id=45058&osCsid=72c65b3e6e04af9dd78d127ed5962638
https://www.novapublishers.com/catalog/product_info.php?products_id=45058&osCsid=72c65b3e6e04af9dd78d127ed5962638
http://dx.doi.org/10.1109/BioRob.2012.6290926
http://dx.doi.org/10.1109/BioRob.2012.6290926


Chapter 1. Introduction 8

Chapter 2 presents some remarks regarding the conditions that affect mobility, the

assistive devices for enhancing mobility, functional compensation during walking and

devices for gait rehabilitation. The chapter also presents some advantages regarding the

use of walkers as assistive and rehabilitation devices.

Chapter 3 addresses the literature review concerning human-robot interaction, paying

a special attention to the interfaces that have been implemented or can be useful for

human-walker interaction. That chapter also presents the concept of dual human-robot

interaction in assisted locomotion.

Chapter 4 begins with the formulation of cognitive HRI control strategy for human

tracking applied to a mobile robot. Afterwards, a method for estimation of control

inputs is proposed and validated. The LRF and IMU sensors are introduced as sensor

interfaces for human tracking. Finally, an experimental study is performed to validate

both the estimation of interaction parameters and the control implementation using a

mobile robot.

Chapter 5 addresses the integration of the control strategy proposed in Chapter 4 on a

robotic walker. Some remarks regarding the human-robot physical link demanded a new

human-walker parameters detection method, which was formulated and validated. That

chapter also presents a new robotic walker platform to fulfill the sensor and interaction

requirements. Finally, an experimental study is performed to validate both the control

parameters detection and the control implementation.

Chapter 6 introduces upper-limb reaction forces as a physical HRI interface. A multi-

modal interface for human mobility assistance is presented. That interface is evaluated

as a tool for understanding the human motion intentions during walker-assisted gait. A

final control strategy based on physical and cognitive HRI is presented and validated to

conclude the scope of this thesis.

Finally, Chapter 7 presents the conclusions and some recommendations for future works.



Chapter 2

Assistive Devices: Human

Mobility and Gait Rehabilitation

2.1 Introduction

Mobility is one of the most important human faculties and can be defined as the ability of

an individual to move freely through multiple environments and perform daily personal

tasks with ease [14]. Neurological and age-related diseases affect human mobility at

different levels causing partial or total loss of such faculty. In addition, mobility decreases

gradually with age. Evidences show that mobility restrictions are also associated with

cognitive and psychosocial disturbances, which further impairs the quality of life of

the individual [15]. In this context, new technologies have emerged to improve the

life conditions of people with motor impairments. Some remarks regarding mobility

dysfunctions, assistive devices for enhancing mobility, functional compensation during

walking and devices for gait rehabilitation will be presented in this chapter.

2.2 Conditions that Affect Mobility

Different conditions, such as stroke, spinal cord injury and cerebral palsy affect human

mobility causing partial or total loss of locomotion capacities. In addition, it is known

that mobility decreases gradually with age as a consequence of neurological, muscular

9
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and/or osteoarticular deterioration. The next paragraphs will present general definitions

and statistics regarding such conditions.

A stroke is the consequence of cell death within the brain relating to either internal

bleeding or a blockage in one of the two main supplying arteries. Currently, it represents

a major problem in clinical medicine being a leading cause of disability in the developed

world [1]. Neurological impairments after stroke have tendencies of causing hemiparesis

or partial paralysis, which can deprive patients of performing activities of daily living

(ADL) like walking.

Stroke survivors typically show significantly reduced gait speed, shortened step length

and loss of balance in their gait patterns and often experience falls [2]. With the proven

fact that repetitive and persistent stimulation could restore and reorganize defective mo-

tor functions caused by neurological disorders, there is a strong need for new therapeutic

interventions [16].

Spinal Cord Injury (SCI) consists of any alteration of the spinal cord that affects the

sensory-motor and autonomous systems under the level of lesion. Based on a conser-

vative average of annual incidence of 22 people/million population in the western and

developing world, it is estimated that over 130,000 people each year survive a traumatic

spinal cord injury and begin a “new and different life” bound to a wheelchair for 40

years or more [3].

SCI is a devastating clinical circumstance due to the functional loss resulting on a great

impact on the functional independence of the person, affecting the quality of life, life

expectancy and causing important economic problems, considering the costs associated

with primary care and loss of income. Rehabilitation of SCI is aimed towards the max-

imization of user independence and adequate management of secondary lesion-related

diseases. Maximization of mobility has been identified as one of the main objectives for

the injured individuals [6].

Cerebral palsy (CP) is a disorder of posture and movement due to a defect or lesion

in the immature brain [17]. The impairments are permanent, but not unchanging, and

cause activity limitation and participation restrictions. CP is the most common cause of

permanent serious physical disability in childhood, with an overall prevalence of around
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2 per 1000 live births. It is estimated that 650,000 families in Europe either have a child

with CP or support an adult with CP [18].

The prospect of survival in children with severe level of impairment has increased in

recent years. That way, new strategies are needed to help to promote, maintain, and

rehabilitate the functional capacity, and thereby diminish the dedication, the required

assistance and the economical demands that this condition represents for the patient,

the caregivers and the society [4].

Finally, it is important to mention that the world’s population over 60 years old will

more than triple (from 600 million to 2 billion) between the years 2000 and 2050 [5].

The majority of this increase is occurring in less developed countries where this group

will rise from 400 million, in the year 2000, to 1.7 billion by the year 2050 [5].

Disordered gait, defined as a gait that is slowed, aesthetically abnormal, or both, is not

necessarily an inevitable consequence of aging, but rather a reflection of the increased

prevalence and severity of associated diseases [19]. Common diagnosis among people

over 60 years old also include cardiovascular conditions, dementia, diabetes, arthritis,

osteoporosis, and stroke [20]. These conditions all have the potential to impact the

human mobility. Thus, there is a significant need to improve the ability for older adults

to have safe and efficient ambulation, as this may help to reduce the incident of fall and

fractures. That way, some studies have shown that walking programs with a frequency

of at least 3 to 5 times per week have been found to increase walking endurance and

distance [21].

2.3 Mobility Assistive Devices

Although most gait/mobility disturbances are well recognized, only a small number of

such conditions can be fully reversed by surgical procedures or rehabilitation approaches.

Therapeutic alternatives, in such cases, include the selection and prescription of assistive

devices to provide adequate functional compensation and to stop the progression of the

disability and to improve the overall quality of life of the affected subjects [22].

The choice of the most appropriate assistive device requires careful analysis and inter-

pretation of the clinical features associated with the subject’s residual motor capacity,
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including cognitive function, vision, vestibular function, muscle force (trunk and limbs),

degenerative status of lower and upper limb joints, overall physical conditioning of the

patient and also additional characteristics of the environment in which the patient lives

and interacts. Severe dysfunctions in one or more of such features can compromise the

safe use of the device and increase the risk of falls or compromise locomotion performance

due to energy expenditure [23].

Based on the levels of mobility restriction, the patients may be classified into two broad

functional groups:

1. Individuals with total loss of the mobility capacity.

2. Individuals with partial loss of mobility, presenting different levels of residual motor

capacity.

Individuals belonging to the first group have completely lost the ability of move by them-

selves and are at high risk of confinement in bed and, consequently, to suffer the effects

of prolonged immobility. Examples of subjects in this functional group include patients

with complete spinal cord injury, advanced neurodegenerative pathologies, severe lower

limb osteoarthritis and fractures of the spine/lower limb bones. In such cases, however,

the motion can be performed by assistive technology known as the alternative devices.

Without the use of such equipments, the locomotion may become an impossible task for

these patients, even through small distances [12]. Some examples of alternative devices

are (robotic) wheelchairs and special vehicles, including adapted scooters.

The mobility provided by alternative devices can help patients to gain a certain amount

of independence during daily tasks and may have positive impact on self-esteem and so-

cial interaction. However, the prolonged use of such devices do not prevent immobility-

related adaptations in spine and lower limbs, characterized by loss of bone mass, circu-

latory disorders, pressure ulcers and other physiological impairments [24].

The second functional group is composed of individuals that present some level of resid-

ual motor capacity, which can be empowered by an assistive device. In other words, the

use of such augmentative devices aims to empower the user’s natural means of locomo-

tion, taking advantage of the remaining motor capabilities. In the last decade, researches

in the field of intelligent augmentative devices have increased, with focus on the imple-

mentation of advanced robotic solutions for people with disability and robot-assisted
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rehabilitation therapy interventions for motor recovery after neurologic injuries. The

augmentative devices can be classified into (i) self-ported or wearable and (ii) external

devices.

The wearable devices are mainly represented by orthoses and protheses. An orthosis is

a mechanical structure that maps on to the anatomy of the human limb. Its purpose

is to restore lost or weak functions. A prosthesis is an electromechanical device that

substitutes lost limbs after amputation.

External devices are represented by canes, crutches and walkers and will be addressed

in detail in the next section.

2.4 Devices for Functional Compensation of Gait

The human gait starts as a nerve impulse in the central nervous system and ends with

the generation of the ground reaction forces [25]. Conventionally, the heel strike is used

for dividing the gait cycles. The gait cycle is divided into two phases: stance and swing.

Both the beginning and the end of stance involve a period of bilateral foot contact with

the floor (double support). Alternatively, during the swing phase, the foot is in the air

and the leg is swinging through preparation for the next foot strike [26].

Patients with mobility dysfunctions present significant functional limitations, including

the inability to support the body weight through the lower-limbs, generate propulsive

forces, move the limbs swiftly through an appropriately timed trajectory and control

lateral stability. They employ compensatory strategies to continue forward propulsion

with a stable base of support. Internally based compensatory strategies include reduced

gait velocity, increased stance and double support time, knee hyperextension in stance,

and hip circumduction during swing phase [27]. External devices provide weight support

during walking and enable functional compensation strategies to improve the patient’s

mobility. Benefits and limitations of theses devices are discussed as follows.

Canes are more commonly used to increase gait stability rather than to partial weight-

support. A simple single point cane may prevent or reduce falls in patients with imbal-

ance. Crutches allow a direct support of the body, thus providing great stability and

balance in walking and a greater weight support compared with canes. However, the
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crutches are cumbersome and provide unnatural gait patterns. Therefore, the amount of

weight support is neither constant nor quantifiable because it depends on the strength

of the patient as well as the degree of control of their upper-limbs and trunk [28].

Other external devices are the walkers, which are characterized for their structural sim-

plicity, low cost and great rehabilitation potential. Walkers are usually prescribed for

patients in need of gait assistance, to increase static and dynamic stability and also

to provide partial body weight support during functional tasks [7]. Such devices em-

power the residual motor capacities of the user, allowing a natural way of locomotion

and, thus, preventing immobility-related changes. Additionally, evidence shows that

walker-assisted gait is related to important psychological benefits, including increased

confidence and safety perception during ambulation [29].

The standard frame (Fig. 2.1a) is the most common configuration of a passive walker.

It is based on a metal frame with four rigid legs that must contact the ground simul-

taneously during each step. It is considered the most stable model, but requires a slow

and controlled gait pattern, since the user must lift the device completely off the ground

and move it ahead before taking a step forward [23].

Critics regarding the use of standard frames arise from evidence of increased force levels

exerted by the upper limbs during locomotion [30]. The gait pattern imposed by the

device also increases the user’s energy expenditure by 217% during level walking when

compared to unassisted or wheeled walker-assisted gait (presented below). Such find-

ings restrict the prescription of standard walkers for patients presenting severe levels of

metabolic, cardiac or respiratory dysfunctions [31]. Patients with cognitive disorders are

also not among the scope of potential users of standard frames. This recommendation

is mainly based on the results presented in [32], which reported that gait assisted by

standard walkers requires higher levels of attention when compared to canes or other

walker models to avoid the risk of falls.

The two-wheeled walkers (Fig. 2.1b) are another variation of conventional walkers. Al-

though similar to standard frames in many aspects, these versions are characterized by

the presence of two wheels mounted on the front legs (front-wheeled walkers). Such

models are recommended for more active subjects or patients that have a hard time in

lifting the device from the ground. The wheels allow the performance of a more natural

gait pattern, but evidence shows that dynamic stability during walking is lower than
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standard frame assistance, and the energy expenditure is 84% higher when compared to

normal ambulation [22, 23].

Rollator walkers (Fig. 2.1c) can be seen as a modification of the two-wheeled models.

It presents four wheels attached to the legs of the walker. These models allow faster

locomotion and better performance of a natural gait pattern during locomotion. Such

devices also present lower energetic expenditure compared to other walker models. How-

ever, rollators are considered the most unstable walker version and the risk of falls is

significantly increased in situations that require full body-weight support of the user, due

to uncontrolled displacement of the device. In a clinical setting, rollators may be recom-

mended for patients that require a broad walking base without the need of continuous

body-weight support. The design of such models allows great number of adaptations,

like breaking system at the handles (to increase static stability), different wheel sizes,

robust frames, adaptation of seat cushions, among others [22, 31].

Another assistive device is the hands-free walker (Fig. 2.1d). It includes adaptations

in order to minimize weight bearing by the upper extremities at the same time as it

promotes continuous body-weight support. Hands-free walkers mutually differ in where

they connect to the subject, in how many degrees of freedom of motion they allow, and in

how driven/steerable/actuated they are. Complexity and cost are also points to observe.

Some of the devices offer the possibility to assist in sit-to-stance transition, to perform

turns during walking or to be automatically driven and steered [33]. These walkers

assure the safety of a person that is walking, which is a strong need for individuals with

hemiplegia, as most of them need assistance with their posture while standing, as well

as with the swing phase of the paretic leg [34]. It is also common to find hands-free

walkers integrated with wearable orthoses in devices for children with CP [35].

In the field of robotic technologies for gait assistance, there are several ongoing projects

regarding robotic versions of walkers and other guidance devices. In this context, a

new category of walkers has emerged, integrating robotic technology, electronics and

mechanics. Such devices are known as “robotic walkers”, “intelligent walkers” or “smart

walkers” [8]. Such devices present a great number of functionalities and are capable

of providing mobility assistance at different functional levels, better adjusted to the

individual needs of the user [8, 9].
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Figure 2.1: Walker frames. (a) Standard. (b) Two-wheeled. (c) Rollator. (d) Hands-
free

Robotic walkers are usually mounted over a rollator frame. This configuration takes

advantage of the versatility of the four wheels and the ability to maintain approxi-

mate natural patterns of walking. Stability issues are approached with special security

mechanisms to prevent falls and undesirable movement intentions from the user [9].

The development of Human Machine Interfaces (HMI) to interpret the user’s commands

enables the implementation of different control strategies, which may allow safer human-

walker mobility. Consequently, HMI in Smart walkers will be broadly discussed in the

next chapter.

2.5 Trends in Gait Rehabilitation

Although the majority of patients with mobility dysfunctions using augmented devices

achieve some level of ambulation, there continues to be a strong need for therapeutic

interventions that can reduce the long-term need for physical assistance and result in

a biomechanically efficient and stable locomotor gait pattern that does not do damage
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over time. However, the conventional rehabilitation procedures require excessive labor-

ing efforts of therapists in assisting walking of severely affected subjects, setting the

paretic limb and controlling trunk movements. Under those circumstances, rehabilita-

tion process is often not completely successful for reasons such as: limited amount of

walking possible in each therapy session, exhaustion, falling, injuries and the patient’s

fear of falling.

In this context, Body Weight Support (BWS) Systems have come to play an important

role in gait rehabilitation. Partial unloading of the body weight allows neurologically

challenged patients with weak muscles to practice gait training more efficiently. Fur-

thermore, robot-assisted rehabilitation therapy is as an emerging form of rehabilitation

treatment for motor recovery after neurological injuries. Robotic devices can help pa-

tients achieve the intensive, repetitive practice needed to stimulate neural recovery,

reducing the need for supervision and improving cost-benefit profiles [36].

Treadmill based devices are the most prevalent robotic rehabilitation methods, and

Lokomat (Hocoma, Switzerland) [37] is the most clinically tested system and one of

the firsts of its type. In this device, pelvic vertical movements, hip and knee joints are

driven by orthoses linked to the treadmill frame. Other related devices are also available:

AutoAmbulator (HealthSouth, US) [38], Lopes [39], ALEX [40], PAM & POGO [41].

However, these types of systems provide only forward movement with predetermined

paths to ensure accurate reproduction of physiological kinematics. This way, patients

are constrained to a fixed platform and a predetermined gait pattern, which is not

natural and leads to less satisfactory functional outcomes. In contrast, a growing body

of clinical studies suggests that effective training in neurorehabilitation allows subjects

to participate actively and perform unhindered movements, according to strategies like

“Assist as Needed” [42] or the “challenge point” concept [43].

Additionally, there are controversy on the assumption that walking on a treadmill could

represent an actual gait on the over-ground in terms of body mass shifting, body mass

acceleration and sensorimotor feedback (such as proprioceptive inputs). Walking on

treadmill indicates significantly greater cadence, smaller stride length and stride time as

well as reductions in the majority of joint angles, moments, powers and pelvic rotation

excursion compared with over-ground walking [44, 45].
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Finally, as a matter of fact, over-ground walking is considered as the most natural gait

pattern with actual foot contact. Thus, over-ground walking rehabilitation devices are

recommended for increasing gait performance as well as having natural gait patterns.

In this context, mobile gait rehabilitation devices that combine mobile platforms (smart

walkers) with BWS system can enable free walking over ground in different environments

such as outside or at home, offering more realistic, flexible and motivating training

conditions.

This chapter showed a brief panorama of mobility dysfunctions and some trends re-

garding assistive and rehabilitation devices for gait. In this context, the human-robot

interaction field enables the development of more effective and safer robotic walkers and

gait trainers. The next chapter will discuss some relevant works in smart walkers and

robotics along with some topics of human-robot interaction applied in human mobility

assistance.



Chapter 3

Human-Robot Interaction for

Assisting Human Locomotion

3.1 Introduction

Industrial robotics has been a developing area for more than 30 years. Initially, robotic

applications were performed in confined workplaces, but although robots were guided for

humans from control panels, they did not have autonomous capabilities for cooperating

in doing actions with humans on the environment [11]. Nowadays, the use of robotics

is extending from the industrial field to living and working places. Service robots for

personal and domestic use include vacuum and floor cleaning, lawn-mowing robots, and

entertainment and leisure robots as toy robots, hobby systems, education and research.

A successful example was introduced by iRobot with the vacuum cleaner robots in 2002,

and more than 10 million home robots have been sold worldwide by this company [46].

In this context, intelligent service robotics is a research field that became very popular

over the past years. It covers a wide range of scenarios, such as interactive guiding

robots in museums [47], exhibitions [48] and shopping malls [49]. In the same manner,

several research projects in many countries are focused on robots for assisting elderly

and/or people with disabilities. Sales on this important future market of service robots

will be about 12,400 units in the period of 2014-2017 [50]. This market is expected

to increase substantially within the next 20 years. In this scenario, the mobile robots

19
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are expected to cover a wide range of applications, such as hospital support [51] and

humanoid assistance for elderly people [52].

In the future, applications for services robots may include medical, domestic, personal

assistance home care, public-oriented service, cooperative material handling, power ex-

tenders, physical rehabilitation devices, physical training and entertainment. Due to

the fact that service robots will often share their workspace with humans, and a direct

contact between human and robots will be inevitable, robot developers should focus on

both the robot and the user, more specifically on the interaction of both agents. This

should take into account that, first, robots should be instructed as effectively and intu-

itively as a human [10] and, second, that the direct contact between human and robots

must be detected as a control input to prevent human injuries and to guide the robot in

its tasks. In this direction, researchers worldwide are studying the social factors related

to the Human-Robot Interaction (HRI) in human environments and great attention is

being focused on the Cognitive Human-Robot Interaction (cHRI) [11].

Previous approaches to guide mobile robots often involved the human as an obstacle,

which had to be avoided in any case. In contrast, this chapter will adapt concepts of

human-robot interaction to propose new strategies, in which a robot must behave in a

human assistive way, not avoiding the human, in order to promote the human locomo-

tion. This could be applied in the design of new devices for functional compensation

and rehabilitation of the gait according to the last chapter.

3.2 Dual Human-Robot Interaction in Assisted Locomo-

tion

Humans beings interact with the environment through cognitive processes, sequences of

tasks that include reasoning, planing, and finally the execution of a previously identified

problem or goal. From this process, the robots may use information regarding human

expressions and/or physiological phenomena to adapt, learn and optimize their functions,

or even to transmit back a response resulting from a cognitive process performed within

the robot. This concept is named as Cognitive Human-Robot Interaction (cHRI) [53].



Chapter 3. Human-Robot Interaction for Assisting Human Locomotion 21

Considering that both agents (human and robot) share the same space, a physical

Human-Robot Interaction (pHRI) may also occur. In pHRI, humans and robots share

the same workspace, exchanging forces, and, possibly, cooperating.

The dual cognitive and physical interaction with humans applied in wearable robotics is

explained by Pons et al [53]. This concept can be extended in walker-assisted gait. Thus,

on the one hand, the key role of a robot in a pHRI is the generation of supplementary

forces to empower the human locomotion. This involves a net flux of power between

both actors. On the other hand, one of the crucial roles of a cHRI is to make the human

aware of the possibilities of the robot while allowing him to maintain control of the robot

at all times.

In this thesis, control strategies based on the combination of cognitive and physical in-

teractions in the context of human locomotion assistance are explored. Thus, physical

interaction can help in setting rules for cognitive evaluations of the environment during

interaction tasks. For instance, a smart walker could provide the user different levels

of force feedback according to different types of therapy, or regarding inadequate gait

patterns. Complementarily, the cognitive aspects may improve the physical interaction

by setting suitable control interaction parameters such as human velocity tracking (cog-

nitive process), and reaching the desired human-robot distance and robot orientation

during the walking.

In Fig. 3.1, the components involved in a cHRI are shown. In such example, a robot

acts as a companion in front of the human [54]. This approach is deeply addressed in

this thesis. This application proposal can be useful in factories, supermarkets, libraries,

restaurants or other environment where the user needs to access items to be dispensed,

such as tools, materials or merchandise. In such cases, the robot acts as a carrier device.

cHRI systems present often a bidirectional communication channels. On the one hand,

robot’s sensors measure the human actions and expressions. On the other hand, the

actuators transmit the robotic cognitive information to the user. In other words, the

user observes the state of the system through a feedback sent immediately after the user

command is executed. This configuration performs a close loop human-robot interaction

in order to develop a natural cooperation during the human walking.
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Figure 3.1: cHRI applied in a carrier robot.

In Fig. 3.1, the carrier robot application does not require the human physical contact to

be guided. However, physical contact situations should be integrated into the control law

or, at least, considered in the safety requirements to avoid risks to the user. Additionally,

the integration of force interaction may allow the system to assist an elderly or fragile

person who needs body-weight support to walk. This application describes the scope of

smart walkers as an assistive device, as aforementioned in the previous chapter. That

way, this configuration could integrate concepts of HRI in the smart walkers field. This

configuration will be deeply addressed in the fifth chapter.

In this context, the combination of cHRI and pHRI could enable the development of more

adaptable and safer robotic walkers, which could be beneficial to improve the human-

walker interaction. This concept can be applied in different walker frames to improve

the locomotion capacities as it can be seen in Fig. 3.2. In Fig. 3.2a, the carrier robot

configuration provides partial body-support during the walking. In the same manner,

this concept can be applied in an overground walking rehabilitation device as it can be

seen in Fig. 3.2b.
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Figure 3.2: Applications of pHRI. (a) Functional compensation of the gait. (b)
Overground walking rehabilitation.

3.3 Human-Robot Interfaces

Humans perceive the environment in which they live through their senses, such as vision,

hearing, touch, smell and taste. They act on the environment using their actuators

including body segments, hands, face, and voice. Human-to-human interaction is based

on sensory perception of actuator actions. A natural communication among humans

also involves multiple and concurrent modes of communication [55].

The goal of effective interaction between user and robot assistant makes it essential

to provide a number of broadly utilizable and potentially redundant communication

channels. This way, any HRI system that aspires to have the same naturalness should

be multimodal. Different sensors can, in that case, be related to different communica-

tion modalities [55]. The integration of classic Human-Computer interfaces (HCi) like

graphical input-output devices, with newer types of interfaces, such as speech or visual

interfaces, tactile sensors, Laser Range Finder Sensors (LRF), Inertial Measurement

Units (IMU) and force/torque sensors, facilitates this task [10].

In order to propose a multimodal interface based on the combination of cognitive and

physical interaction to assist the human locomotion, this section will discuss different

modalities that have been broadly used for robotics. At the same time, some relevant
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works related to smart walkers and sensor devices will be addressed. These sensor

modalities are grouped in two categories: cHRi and pHRi.

3.3.1 Cognitive Human-Robot Interfaces

A cognitive Human–Robot interface (cHRi) is explicitly developed to support the flow

of information in the cognitive interaction (possibly two-way) between the robot and

the human. Information is the result of processing, manipulating and organizing data,

and so the cHRi in the human-robot direction is based on data acquired by a set of

sensors to measure bioelectrical and biomechanical variables [53]. Consequently, some

cognitive sensor interfaces that could be useful in mobility assistance will be showed

in this section, such as: audio sensing, visual sensing, active ranging sensing and full-

body motion capturing. It is important to state that bioelectrical signals are not taken

into account in this thesis, and the interfaces here presented are focused on interaction

between both a human and a robotic walker.

3.3.1.1 Audio Sensing

Human voice is a natural way of communication. Although the development of a voice

controlled robot system could be useful in HRI applications, this communication channel

could be slow for specific human-robot scenarios, such as emergency situations or specific

cases that requires a fast human reaction.

A voice recognition strategy to command the navigation of mobile robot systems over

specific environment conditions was developed in [56]. However, according to the au-

thor’s knowledge, there are not reported successful cases in the field of mobility as-

sistance. Thus, a robust speech recognition and understanding is still a research topic.

Additionally, the recognition process in noisy environments has to be addressed, and also

in the understanding of the meaning of the words. The robot and the human must have

a common understanding of the situation [10], which can be very complex considering

the wide range of scenarios for real-life mobility devices.
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3.3.1.2 Visual Sensing

From a practical standpoint, visual sensing involves the processing of huge amounts of

information in real time, which could put undue demands on the processing power of

the system being controlled. Furthermore, visual sensing requires an unoccluded view

of the human, putting restrictions on the motion of the user and the physical setting for

HCI [55].

Nonetheless, a video camera, along with a set of techniques for processing and interpret-

ing the image sequence, can make it possible to incorporate a variety of human-actions

modalities into HRI through visual sensing. These actions may include hand gestures

for applications, such as the ability of distinguishing the gesture from no sign [57], a

human pointing at objects or locations of interest to the robot, or an autonomous robot

asking for directions from humans and interpreting those directions [58].

Gaze direction normally indicates a person’s interest in his/her surrounding, so it can be

exploited as a very easy way to tell the robot what a user wants [59]. Additionally, head

gestures recognition has been used to guide movements of an intelligent wheelchair [60],

or body movements capturing as an interface to be used in non-specific environments

[61]. As it can be observed, gesture and mimic recognition is an ongoing research activity

in the fields of human-computer and the human-robot dialog.

Recently, there are some related works that use visual sensing for smart walkers in

indoor environments. For instance, in [62], for monitoring and control purposes, a fast

feet position and orientation detection algorithm is proposed. It is based on an on-board

camera depth sensor and does not require the use of any marker. Moreover, a robotic

walker that localizes the user, estimates the body pose and recognizes human actions,

gestures and intentions was presented in [63].

3.3.1.3 Active Ranging Sensing

A Laser Range Finder (LRF) is a time-of-flight sensor that achieves significant improve-

ments over the ultrasonic range sensor as perform good measurement precision and

accuracy in a planar range of measurement. This type of sensor consists of a trans-

mitter that illuminates a target with a laser beam, and a receiver capable of detecting

the component of light returned. These devices produce a range estimate based on the
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time needed for the light to reach the target and return to the sensor device. In most

commercial devices, the light beam rotates in mirror and sweeps through a mechanic

device to cover a target plane [64].

Human tracking is essential for mobile service robots and human-robot interaction ap-

plications. There are a variety of approaches, and most of them employ both visual

sensing and/or LRF devices [65–68]. However, when the robot is tracking a person in

outdoors, visual measurement errors are expected to increase. For this reason, some

researches apply LRF human tracking [69–73]. The use of LRF is advantageous because

it is robust with respect to illumination changes in the environment.

One common way for human detection by LRF is scanning legs. In this case, apart from

tracking the position of the human in relation to the robot, other important human

gait information can be obtained allowing a more adaptable human-robot interaction.

Step length, cadence, velocities, legs orientation, and gait phases (stance and swing)

are some examples of information that can be obtained from tracking the human legs.

Nevertheless, it is important to observe that the tracking system has to deal with specific

situations, such as clothing. Therefore the use of some clothes that fully covers user’s

legs, such as long skirts, is a limitation and it is not considered in this thesis.

A basic technique for leg detection uses the acquired data from LRF, defining the mea-

surement range that violates the static environment assumption to determine the leg

position [68]. Other approaches make use of specific geometrical shapes to determine

the leg position. In [69], circle shapes are suggested to extract leg data. In [70, 71], the

approach is inductive on the basis of sufficient measurements without specific assump-

tions of shapes and also exploiting a human walking model. Such approaches do not

present an exhaustive experimental evaluation and do not explain how the performance

of the detection algorithm is affected when the legs cannot be detected. It is important

to mention that leg obstruction is very common in circle or curved paths, when one leg

can be placed behind the other from the sensor point-of-view.

In the field of Smart Walkers, legs tracking approach has been also implemented; some

relevant examples are [74–76]. In [74], two infrared sensors were used and, in [75, 76],

two LRF sensors were used to perform the scanning of each leg. This interface does not

require the user to produce any specific trained command to generate walker motion.
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Another proposal suggests the use of LRF for human torso tracking [72, 73]. An advan-

tage of this approach is that the scanned data presents smaller variations caused by the

oscillatory movements during the human gait, and obstruction and occlusion issues when

performing curved paths do not represent a problem. As a disadvantage, human gait

information (a fully modeled process) is not measured and cannot be used as an extra

input to the system. The works presented in [72, 73] propose the estimation of body

pose information using particle filters. However, the human tracking is not effective

when detecting non-human objects with similar shape and width of human segments.

3.3.1.4 Full-Body Motion Capturing

Several systems are available to measure the motion of the human body. Traditionally,

such systems are based on three-dimensional photogrammetry, which are considered a

gold standard for human movement analysis due to the great precision. However, these

systems present some important disadvantages related to the high cost, occlusion of

markers by the body or external elements [77] and, most importantly, low portability to

be used in HRI applications.

The popularization of MicroElectroMechanical Systems (MEMS) had an important im-

pact in several sectors of the industry and in the research community [78, 79]. Such

elements are integrated into many devices for final consumers, such as laptops, mobile

phones, entertainments, and mobile robots [80]. Developments of small and light inertial

sensors based on MEMS have allowed their use on human body limbs without interfering

in natural movements of the user [81, 82].

Body segment orientation can be estimated by using the combination of different sensors

through data fusion techniques. Usually, accelerometers (inclination), gyroscopes (an-

gular velocity), magnetometers (heading angle), and temperature sensors (for thermal

drift compensation) are used together by means of fusion algorithms [83]. This composes

an inertial sensor or IMU (Inertial Measurement Unit). The combination of linear ac-

celerations, angular velocities and the reference of the Earth’s magnetic field allows the

measurement of tridimensional orientation of the device. By placing IMUs in different

body segments, it is possible to obtain a complete description of the human joint kine-

matics during the execution of different tasks. Finally, considering the recent evolution
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of the communication devices, it is possible to build IMUs that can also transmit those

measurements wirelessly [84, 85].

In addition, the development of wearable IMU systems presents important advantages

in the field of human motion capturing: portability, high accuracy and ease of use in

unstructured environments. The integration of the wearable sensors and mobile robots is

expected to enable a new generation of service robots and health-care applications [86].

Nevertheless, wearable IMU sensors are appearing in this field, offering the possibility of

combining human tracking with human gesture detection and body posture estimation

[87–89]. The next section addresses some approaches that combine LRF and IMU sensors

in mobile robotics applications.

3.3.1.5 Human Tracking: LRF and IMU sensors

As previously mentioned, the human tracking performed by a LRF sensor is often not

effective when detecting non-human objects with similar shape and width of human

segments. In addition, the use of wearable IMU sensors (already fully integrated in

personal mobile devices) on the human’s body may present important advantages by

eliminating the possibility of uncertain situations regarding LRF sensors. Consequently,

the combination of LRF and wearable IMU sensors are appearing in this field as it offers

the possibility of combining human tracking with human gesture detection and body

posture estimation [87–89].

Considering the combination of LRF and IMU sensors for human tracking, in [87],

a method for combining kinematic measurements from a LRF mounted on the robot

and an IMU carried by the human is shown. A proposal to extract human velocity

and position is also presented. However, that study does not provide any information

regarding the validation of the proposed method. In [88], a study in which several

robots were programmed to follow a person for the purpose of mapping a building for

firefighters’ rescue missions is presented. This sensor combination is employed to avoid

the use of information obtained from artificial vision systems, such as cameras. In this

case, the objective is to map the building for situations in which there is low visibility

caused by fire. An IMU was used for mapping and locating the current position of a

firefighter and, finally, providing the subject an exit path. Finally, a method for human

motion capturing in large areas is described in [89], which shows a tracking approach that
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aims to provide globally aligned full body posture estimates by combining information

from sensor on a mobile robot and multiple wearable IMU sensors attached to the human

subject.

Summarizing, works found in the literature indicate a trend for future developments in

the field of human tracking using mobile robots that rely on the integration of LRF

and human motion capturing by means of wearable IMU sensors. This approach needs

further investigation, and appropriate sensor integration algorithms have to be imple-

mented, which is the main focus of this thesis.

3.3.2 Physical Human Robot Interfaces

A physical Human–Robot interface (pHRi) is based on a set of actuators and a rigid

structure that is used to transmit forces to the human musculoskeletal system. The

close physical interaction through this interface imposes strict requirements on robots

as regards safety and dependability [53]. Some sensors that may be used in physical

interfaces related to mobility assistance will be presented in this section: position and

motion sensing, tactile and force sensing and also some issues regarding force signal

processing to control the motion of robotic walkers.

3.3.2.1 Position and Motion Sensing

A large number of interface devices have been built to sense the position and motion of

the human hand and other body parts for use in HCI. One of the simplest variations of

such interface is the keyboard, where the touch of a particular key indicates that one

of a set of possible inputs was selected. More accurate position and motion sensing in

a 2-D plane is used in interface devices such as a mouse, light pen, stylus and tactile

displays. Three dimensional position/motion sensing is commonly done through a joy-

stick, a trackball or hand glove devices [55]. In human mobility assistance, conventional

interfaces such as buttons [90, 91], joysticks [92] and touch screens [93] have been used

to directly guide a robotic walker.

These interfaces present important delays and loss of information in the conversion of

human movements into discrete and unnatural events. In that case, some issues can
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be analyzed, such as the information that may be lost in the translation of the human-

intentions task into discrete events, delays that are introduced when natural cognitive

process are encoded into and imposed to sequential task and the necessary training phase

that is needed to teach the user to generate no natural commands [94].

3.3.2.2 Tactile and Force Sensing

Direct physical contact represents undoubtedly the most subtle and critical form of

interaction between humans and machines. Any motion of a machine, which occurs

in close proximity to a human, and any force exerted by the robot has to be soft and

compliant and must never exceed the force exerted by the human to protect her/him

[10].

Handlebars, as an alternative, are a common way of providing not only guidance but

also weight support in mobility assistance devices. Some approaches [95–97] integrate

pressure and force sensors into handlebars to get user’s movement intention. Other

approaches replace the handlebars with forearm supporting platforms, which allow a

better posture and stability during gait. Usually, a sensor interface is integrated inside

this platform, such as a joystick [98], a 3D force sensor [99] or two 3D force sensors

(one for each forearm support) [13]. This integration presents a more natural way to

command the walker motion without previous training. Some remarks regarding the

processing of interaction force signals during walker-assisted gait will be addressed in

the next section.

3.3.2.3 Extraction of Upper-Limbs Guiding Intentions

In previous works [13, 100, 101], the components of upper limb reaction forces during the

walker-assisted gait were identified and characterized. These approaches presented pre-

liminary human-walker trials performed without traction or controlled motions, which

were useful to detect the presence of noise or elucidate undesired components that could

affect the control strategy. This integration presents a more natural way to command

the walker motion without previous training.

In [100], a study showed that vertical components of forces are highly correlated with

gait phases. This work identified that the gait cadence and the user’s partial body
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weight are represented for independent components contained into each force signal. A

methodology to extract user’s navigation commands related to components from upper-

body force interaction data was presented in [13] and [101]. In these studies, a low-

pass filter is used to eliminate the frequency components introduced by ground-wheel

interaction and an adaptive notch filter was implemented to reject the interaction force

components caused by the user’s trunk motion during the gait. These components are

present due to the natural trunk oscillations caused by the alternated supports and do

not reflect the desired navigation commands. These filters are adjusted with an online

estimation of the gait cadence. Two alternatives were evaluated as follows.

In [101], a combination of the vertical force components of each arm is used for continuous

estimation of the gait cadence. This architecture was evaluated with healthy subjects,

and provided a high rate of cancelation of trunk components. Even though subjects

with gait disorders usually present asymmetric gait patterns, it is not possible to obtain

robust cadence estimation only from a combination of the vertical force components.

Thus, cadence estimation directly from the user’s legs position was presented in [13],

using ultrasonic sensors. A high rate of cancelation of trunk components for patients

with disabilities was obtained. The main disadvantage of this approach is that the user

had to wear sensors on each leg compromising the usability of the device.

3.4 Proposal of a HRI Multimodal Interface

Taking into account the concept of dual cognitive and physical HRI, a new multimodal

interface for walker-assisted gait is proposed in Fig. 3.3. This interface involves the

integration of different modalities to promote a natural HRI during the walking.

The multimodal interface combines active ranging sensing (LRF) and human motion

capturing (IMU) to develop legs and trunk tracking. At the same time, force sensing is

also included to obtain information regarding the interaction forces between the human

and the walker. The detailed design and validation of this sensor interface and the

interaction strategies in which they are integrated will be addressed in the next chapters.

Two close control loops are proposed to naturally adapt the walker position and to

perform body weight support strategies. On the one hand, a force interaction controller

generates velocity output to the walker based on the upper-limbs interaction forces (grey
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arrow in Fig. 3.3). On the other hand, a controller keeps the walker within a desired

position (”following in front”) to the human to improve the physical interaction.

The user receives two cognitive information during the walking, such as: visual infor-

mation regarding the robot following in front of the user, and the force feedback (black

arrow in Fig. 3.3) related to the pHRI during partial body weight support. The for-

mulation and implementation regarding these control strategies will be presented in the

next chapters.

pHRI
(Force Sensors)

cHRI
Human Tracking
(LRF + IMU Sensors)

Control Fusion Strategy
(“Following in front” Controller + Force Interaction Controller)

Figure 3.3: Physical and cognitive HRI for walker-assisted gait.



Chapter 4

Development of a Cognitive HRI

Strategy for Mobile Robot

Control

4.1 Introduction

The concept of a physical and cognitive HRI for walker-assisted gait was presented in

the previous chapter (see Fig. 3.3). The HRI is implemented by means of a multimodal

interface, which intends to develop a natural human-robot interaction in the context

of human mobility assistance. That way, both cHRI and pHRI were included in this

interface according to Fig. 3.3. Specifically, this chapter describes the cHRI block,

which combines two sensor modalities: active ranging sensing (LRF) and human motion

capturing (IMU) to perform the human tracking. This sensor combination presents

important advantages to monitor the human gait from a mobile robot point of view,

such as mentioned in the previous last chapter.

Moreover, the cHRI block links the human tracking information with the control strat-

egy, which could enable the robot to follow in front of the user without any contact

during locomotion (as proposed in the previous chapter). That way, the cHRI block

functionality can be represented as the carrier robot configuration (see Fig. 3.1). Con-

sequently, this strategy will be evaluated in a mobile robot in order to achieve a natural

33
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“following in front of” the user. The next chapter will address some issues regarding

physical contact during the walker-assisted locomotion.

Control strategies for mobile robots following behind a user is a common approach in

many works found on the literature [71, 89]. Alternatively, there are other approaches

with the “side by side” behavior [102, 103]. Recently, an alternative behavior was

introduced in [54, 73], where the mobile robot follows the user while positioned in front

of him/her. This approach was previously presented in Fig. 3.1 as a example of a

cognitive HRI model. As previously mentioned, accompanying in front of a human is

useful in many applications: if the robot carries tools, materials or merchandise to be

dispensed, it is more natural and comfortable for the person to access the items if the

robot is placed in front of him/her [54].

Specifically in [73], the authors developed one experiment with subjects walking or

running along a straight line, and a mobile robot tracking and following the subject

from behind. This experiment has indicated that a robot moving behind the human

causes the human to always pay attention to its motion. Therefore, the user is more

comfortable when the robot accompanies staying in his/her field-of-view.

Moreover, there are fundamental differences in motion between conventional wheeled

mobile robots and humans. A possible solution is to use the control system to absorb

this kinematic difference between human and the mobile robot locomotion. In [104, 105],

a virtual spring model is used. This method is derived from the assumption that the

human target and the mobile robot are connected by a virtual spring. The input velocity

to a mobile robot is generated on the basis of an elastic force of a virtual spring, and

this proposal absorbs the gap between the human and the mobile robot motion.

Another solution is the presumption based on the detailed analysis that human walking

is included into the control. In this work, two stages of control are used: the first one

performs the control parameters detection taking into account the human gait model

while the second component corresponds to an inverse kinematic controller, which will

be addressed in the next section.
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4.2 Interaction Strategy for cHRI

The human-robot interaction model is shown in Fig. 4.1a. The variables and parameters

used in the presented model are: human linear velocity (vh), human angular velocity

(ωh), human orientation (ψh), robot linear velocity (vr), robot angular velocity (ωr) and

robot orientation (ψr). The interaction parameters were defined as the angle ϕ between

vh and RH (named Human-Robot Line), the angle θ between RH and RC segments,

and d, the length of RH. Finally, the parameter a defines the distance between the

controller reference point (R) and the robot center of rotation (C).
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Figure 4.1: Model for cHRI applied in a carrier robot. (a) Kinematic model. (b)
Detailed kinematic model.

The control proposal is based on the inverse kinematics and the control variables are

the angle ϕ and the distance d. The control law of this system aims to achieve a desired

human-robot distance (d = dd) and an ϕ angle that converges asymptotically to zero.

The components that affect the control variables are depicted in Fig. 4.1b. That way,

the direct kinematics is shown in (4.1), where d̃ is the difference between the desired

and measured distances.
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 ˙̃
d

˙̃ϕ

 =

 cos(θ) −asin (θ)

− sin(θ)
d −a cos(θ)

d


u︷ ︸︸ ︷ vr

ωr

+

 −vhcos (ϕ)

ωh + vh
sinϕ
d

 (4.1)

The inverse kinematics controller, obtained from the kinematic model presented in (4.1),

is shown in (4.2) and (4.3).

vr = cos (θ)
[
−kdd̃+ vhcos (ϕ)

]
− dsin (θ)

[
−kϕϕ̃− ωh −

vh
d

sin (ϕ)
]

(4.2)

ωr = −sin (θ)

d

[
−kdd̃+ vhcos (ϕ)

]
− d

a
cos(θ)

[
−kϕϕ̃− ωh −

vh
d

sin (ϕ)
]

(4.3)

In this work, no dynamics effects are assumed. This assumption is based on the fact that

human gait consists of slow movements, especially in human–robot interaction scenarios,

as previously observed in [106]. However, if necessary, a dynamic compensator could

be integrated into the control scheme. This compensator could be obtained from an

identification process [107] and used in series with the kinematic controller [108, 109].

Human dynamics are also not considered. However, the human kinematics is here used

as an input to the control law. In this context, the commands are given directly to the

robot to follow the human.

In this kinematic approach, using the proposed control law and assuming a perfect ve-

locity tracking by the robot, the control errors d̃ and ϕ̃ converge to zero. This conclusion

becomes evident after substituting (4.2) and (4.3) into (4.1), thus obtaining (4.4).

 ˙̃
d

˙̃ϕ

 =

 −kdd̃

−kϕϕ̃

 (4.4)

The control system is exponentially asymptotically stable, as it can be seen in (4.5) and

(4.6).

d̃ (t) = d̃ (0) e−kdt (4.5)

ϕ̃ (t) = ϕ̃ (0) e−kϕt (4.6)
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The control structure here proposed is shown in Fig. 4.2, where the control errors are

d̃ and ϕ̃. The error ϕ̃ can be obtained as a function of θ, ψh and ψr (Fig. 4.1a). The

other inputs to the controller are vh, ωh, d and θ. The controller outputs are the control

actions, such as vr and ωr.

ωh

ψh φ

vh

d
ωr

θ

ψr

vr

Kinematics 

Controller

d

~

dd

θ

ψr

Human

Robot

+

-
+

-

+

Control errors

Figure 4.2: Block diagram of the proposed controller.

The proposed control strategy was simulated with different human locomotion patterns

(straight lines, circle-shaped and eight-shaped paths, etc.) in order to observe whether

the walker correctly follows the user. Fig. 4.3 shows one of the proposed simulations

in which a human path performing an eight-shape curve (input) and the walker path

following the human in front (controller output) are shown.

This simulation shows the stability of the controller even with sharp curves performed

by the human. It can be observed how the θ angle is close 30◦ making a turn, and ϕ is

kept less than 1◦ (Fig. 4.3). Therefore, the proposed controller is expected to keep the

robot continuously following the human while maintaining itself positioned in front of

the user.

It is possible to state that a good real-time implementation of the method proposed

in this section relies on robust and precise measurement or estimation of the variables

used in the control scheme (see equations 4.2 and 4.3). Consequently, control inputs

estimation has a paramount importance in this approach. The next sections describe

and validate a method to obtain the control parameters.
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Figure 4.3: Simulation of the proposed control strategy.

4.3 Estimation of Control Inputs

The estimation of the control inputs (see Fig. 4.2) is described in this section, which is

organized as follows. Firstly, the approach description based on the sensor combination

of both LRF and IMU sensor is shown. Secondly, the robot and sensor system setup are

also shown. Finally, the algorithm to estimate such parameters based on actual signals

from the sensor setup is introduced.

In this approach, human walking information and spatio-temporal gait parameters are

included into the strategy for the estimation of the interaction parameters. Indeed,

control inputs (set-points) are updated at each gait cycle. At the end of each gait cycle,

controller outputs are calculated and sent to the robot. At the same time, the new

parameter detection process starts with the next gait cycle. This parameters detection

process will be explained in the following section.

The gait cycle is divided into two phases: stance and swing. Both the beginning and the

end of stance involve a period of bilateral foot contact with the floor (double support).

Alternatively, during the swing phase, the foot is in the air and the leg is swinging
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through preparation for the next foot strike [26] (Fig. 4.4). In this approach, legs

position and orientation are obtained from the LRF, which is located on the robot. This

information enables the estimation of parameters related to legs’ kinematics and human

position from the robot.

Heel Strike Toe Off Heel Strike

Stance Phase Swing Phase

Pelvic Rotation

Foot Flat Heel Off

0% 50% 100%

Figure 4.4: Gait phases and pelvic rotation (transverse plane).

Moreover, the hip represents the junction between the passenger and the motor units.

It provides three-dimensional motion with specific muscle control for each direction of

activity. During the stance, the primary role of the hip muscles is stabilization of the

superimposed trunk. In the swing, limb control is the objective. During each stride, the

pelvis moves asynchronously in all three directions. The site of action is the supporting

of the hip joint. Consequently, the greatest amount of motion occurs at the pelvis.

All motions follow small arcs, representing a continuum of postural change [110]. The

transverse plane of pelvic rotation is also shown in Fig. 4.4 (segmented-line) [111]. Con-

sequently, the pelvis allows to capture important gait kinematics information regarding

the oscillatory components that are included into the human gait. These oscillations

represent the main sources to detect the control parameters in this approach. That

way, human orientation and human angular velocity estimation are obtained by an IMU

sensor located on the human pelvis.

An example of the pelvis motion during a normal gait cycle on the transversal plane is

depicted in Fig. 4.5 (dashed line). The method to obtain the parameters of the proposed

model is as follows:

1. Human linear velocity (vh) is the rate of change of the position in each stride.

Therefore, during the human walking, it is necessary to detect the beginning and
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Figure 4.5: External and internal gait measurements when the robot is following the
human in front.

the end of the gait cycle.

2. Human angular velocity (ωh) is the average value of the angular velocity during

each cycle gait. This velocity is measured in this approach from the rate change

of the pelvic rotation.

3. Human orientation (ψh) is the average value of the pelvic rotation during each

cycle gait.

4. Robot orientation (ψr) is measured by the robot odometry sensors. However, an

onboard IMU sensor can be used in order to get a more accurate measurement.

5. θ represents the human orientation in relation to the robot. In order to get an

accurate measurement despite the human is walking, θ should be measured when

both legs have equal distance from the robot (d, obtained with the LRF sensor),

and at the same time, the pelvic rotation is close to zero (Fig 4.5).

6. ϕ represents the difference in orientation between vh orientation vector and the

human-robot segment RH (Fig. 4.1a). ϕ is also equal to θ − ψr + ψh (Fig. 4.2).

This angle is only defined if the magnitude of the vh is greater than zero.

4.3.1 Robot and sensor system setup

A mobile robot Pioneer 3-AT [112] was used for the practical validation of the interaction

scheme presented in the previous sections. The robot has an onboard computer with
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Figure 4.6: Robot and sensor integration setup.

a Wi-Fi link, which receives the robot state as well as the control information, such as

angular and linear velocities, as shown in Fig. 4.6.

The maximum linear velocity is set to 0.7 m/s and the maximum angular velocity is set

to 140◦/s. It can also be seen in Fig. 4.6 a SICK LMS-200 LRF [113], which is mounted

at the leg’s height level, with an angular resolution of 1◦.

The IMU sensor used to measure the human pelvic motion was developed in a previous

research [114, 115], which is a wearable ZigBee IMU called ZIMUED. This sensor node

is capable of sending data such as 3D accelerations, 3D angular velocities, 3D magnetic

information and orientation information (roll, pith and yaw) through ZigBee to the

ZIMUED Coordinator. This sensor is attached to the human pelvis as shown in Fig.

4.6.

The robot and sensor system integration setup has two possible configurations. The first

one is the evaluation of the human-interaction parameters, where a remote computer

receives the LRF data and robot orientation through WI-FI link. In this mode, the

controller is not executed, but it is useful to analyze the performance of the parameters

detection algorithm. The second mode is the control mode, in which the onboard com-

puter receives the sensor information to execute the controller. A ZIMUED coordinator

is linked by ZigBee connection with an IMU sensor on the human. In the same way, the

coordinator sends the human IMU data to a USB connection with the computer for both

configurations. LRF and robot states are sampled every 100 ms and the ZIMUED sensor

at every 20 ms. At the same time, the robot is able to receive the control commands

such as angular and linear velocities to be performed.
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In the control mode, the main program receives IMU data every 20 ms. This packet de-

fines the main clock of the detection algorithm. The performance of the communication

was evaluated in [114].

Considering the sample and transmission conditions used in this setup, the wireless

communication does not present problems regarding lost data packages. However, if

the controller is executing and suddenly the ZigBee communication link is broken, the

detection algorithm is blocked, and an internal timer is started. If no packets are received

within 100 ms, the robot is automatically stopped, guaranteeing a safe operation.

The leg detection approach presented in this work combines techniques presented in

[65, 116], which is split into four basic tasks: LRF data pre-processing, transitions

detections, pattern’s extraction and estimation of legs’ coordinates. In the pre-processing

phase, the delimitation of the HIZ (Human Interaction Zone) is performed (Fig. 4.6),

and then laser scanning data are used to identify transitions.

The legs’ positions are calculated in polar coordinates (Fig. 4.6). The general process

is based on the differences between two transition events that define a leg pattern (x-

marks on Fig. 4.6). After that, both distance and angle measurements are calculated in

relation to the middle point of each leg. In Fig 4.6, (d1, a1) and (d2, a2) represent the

polar coordinates of left and right legs, respectively.

The angle range of the HIZ is restricted from -60◦ to 60◦, and the scanning distance

from the LRF is limited up to 2 meters. On this range, the human can walk freely but

the legs cannot present any occlusion. When one leg cannot be detected as a cause of

screening by the other leg, the algorithm calculates the human distance with the only one

leg detected. Finally, in the case the human leaves the HIZ, the robot is automatically

stopped.

4.3.2 Estimation of Interaction Parameters

The parameter estimation here proposed is based on the leg detection from the LRF

and pelvic rotations (see Fig. 4.5) obtained from the IMU sensor (Fig. 4.6). This signal

is represented by the yaw orientation. The velocity of this orientation is periodical due

to the periodicity of the human gait, making this signal suitable to synchronize the

parameter estimation every gait cycle. In Fig. 4.7, the signals of the pelvic motion and
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laser detection of the Right and Left Legs (RL and LL) distances are shown. These

measurements were obtained through experiments with a person walking towards the

LRF sensor.
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Figure 4.7: Detection of zero crossing points over pelvic angular velocity.

In Fig. 4.7a the pelvic angular velocity obtained from the Z axis gyroscope signal is

shown. The zero crossing points are marked with a circle and square at every gait

cycle. Fig. 4.7b shows the square mark representing the maximum pelvic orientation

(they happen after the right heel contacts the ground). The circle mark represents

the minimum pelvic orientation (it happens after the left heel contact). At the same

time, these events are presented in the RL and LL distances and orientation trajectories

respectively (Fig 4.7c and 4.7d). The parameter detection methodology is performed as

follows:

1. Human linear velocity (vh). This parameter is updated at each step. The interval

between the last two zero crossing points represents the step time. The step length

is the distance performed in one step. It is obtained from the maximum distance

between right and left legs during the step time. The magnitude of vh is the step
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length divided by the step time. Due to the fact that the robot linear velocity is

limited to 0.7 m/s, the user is instructed not to exceed this limit.

2. Human angular velocity (ωh). This parameter is calculated at each stride. It is

the average of all values of angular velocity (from Z-Gyroscope) during one stride.

Therefore, if the human is walking straight, the oscillatory form of the gait ωh will

be close to zero (see Fig. 4.6). Although the robot angular velocity is limited to

140 ◦/s, this does not cause any problem as the human does not achieve such high

angular speed during normal interaction.

3. Human orientation (ψh). This parameter is calculated at each stride by averaging

all values of the pelvic orientation (from pelvic yaw) during one stride. The range

of this angle is between -180◦ to 180◦.

4. Robot orientation (ψr). The orientation is measured by the robot odometry at

each step. The range of this angle is between -180◦ to 180◦. Despite the odometry

is the most widely used method to obtain the robot position, there are well known

errors from this measurement method [117]. A more accurate measurement could

be obtained by using an IMU mounted on the robot. The use of an IMU is espe-

cially important during experiments that last several minutes, as the cumulative

odometry errors are more significant.

5. θ angle and human-robot distance (d). θ is the average between right and left

legs orientation from the LRF legs detection. The range of this angle is restricted

between -60◦ to 60◦. This is calculated when both legs have the same distance

(crossing point); thus, the human-robot distance is obtained. This distance is

limited up to 2 m.

6. ϕ Angle. This angle is calculated as θ − ψr + ψh at each stride.

4.4 Experimental Study

Three different preliminary experiments were developed in order to verify the accuracy

in the detection of the human-robot interaction parameters with the proposed algorithm.

In the first and second experiments, no motion was performed by the robot. The subject

was asked to walk on a straight line following different paths marked on the floor to define
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specific angular parameters (θ ,ϕ and ωh). The parameter vh was defined during each

test according to the human gait and compared with the estimated velocity.

In the third experiment, the robot is configured with specific linear (vr) and angular (ωr)

velocities, and the human follows the robot keeping a constant distance. Human linear

and angular velocities are estimated in a more dynamic scenario and are compared to

the reference velocities performed by the robot.

The layout of the paths for the first experiment is shown in Fig. 4.8a. These paths,

marked on the floor (black dashed lines), have different predefined θ angles with respect

to the LRF reference: -20◦, -15◦, -10◦, -5◦, 0◦, 5◦, 10◦, 15◦ and 20◦. A volunteer was

asked to walk on a straight line in the direction of the robot, performing three repetitions

of each one of the proposed paths. The assumption was that both θ measured from LRF

and ψh measured from the IMU should have the same value to the predefined angles

during every path, as it can be observed in Fig. 4.8b. In this experiment ϕ angle is

always equal to zero.

-20° -15° -10° -5° 0° 5° 10° 15° 20°

LRF

             

Robot

ψh 

θ

vh 

φ=0 

Human

(b)(a)

d

Figure 4.8: First experiment for validation of the HRI parameters detection. (a)
Proposed paths. (b) Interaction parameters.

The layout of the paths proposed on the second experiment is shown in Fig. 4.9a. These

paths marked on the floor (black dashed lines) are performed to evaluate the ϕ angle

estimation based on the direct measurement of θ by the LRF. Thereby, despite the fact

that the start points were the same of the first experiment, all paths are now parallel

to each other. The volunteer was asked to perform three repetitions of the proposed

paths. Then, every path is performed by the volunteer with the same linear velocity

(vh) orientation, as it can be observed in Fig. 4.9b. Therefore, the assumption in this

experiment is that both θ and ϕ have the same magnitude and opposite signs. Each

path was labeled (T1, T2, T3, T4, 0◦, T5, T6, T7 and T8) as shown in Fig. 4.9b.
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Figure 4.9: Second experiment for validation of the HRI parameters detection. (a)
Proposed paths. (b) Interaction parameters.

Additionally, in the first and second experiments, each test was performed with three

predefined linear human velocities (vh): 0.25 m/s, 0.5 m/s and 0.75 m/s to assess the

effect of different gait speeds on the estimation process. The selection of these velocities

is based on past experience in human-robot interaction scenarios, such as carrying loads

or in walker-assisted gait [106]. Thus, every path was marked with distance intervals

(0.25 m, 0.5 m and 0.75 m). In order to achieve the desired velocities, steps were

performed following a sound indication produced at every second.

In the first and second experiments the human angular velocity is not evaluated. There-

fore, to verify the estimation process of this parameter, a third experiment was performed

with a circle-shaped path (Fig. 4.10). Thus, the robot was programmed to perform

constant linear and angular velocities. The human was asked to maintain a constant

distance while following the robot. To simplify this task, human hands were kept in

contact with the robot as shown in Fig 4.10a. The assumption in this experiment is that

human angular and linear velocities will be approximately equal to the robot’s velocities

(Fig. 4.10b). Three circle-shaped trajectories with different constant linear and angular

velocities were programmed: (i) 0.15 m/s and -7◦/s; (ii) 0.25 m/s and -11◦/s; and (iii)

0.30 m/s and -14◦/s.

(a) (b)

           v
r

              
vh

ωr

Robotωh

dHuman

Figure 4.10: Third experiment for validation of the HRI parameters detection. (a)
Paths layout and human location to perform the circle path. (b) Interaction parameters.
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The results of the three experiments show the precision and variability of the human-

interaction parameters estimation. The first section presents the results of the experi-

mental validation of the proposed methodology for the estimation of interaction param-

eters.

Once the procedure for the estimation of the interaction parameters is validated, the

results of the experiments with the proposed controller are presented in the next section,

showing the human-interaction parameter detection and the controller being executed,

both in real-time, by the mobile robot.

4.4.1 Detection and Estimation of Human-Robot Interaction Param-

eters

In the first experiment, θ and ψh estimation remain near the expected angle in every

test. Fig. 4.11 shows a part of the measurements and estimated parameters performed

in three predefined velocities (v1 = 0.75m/s, v2 = 0.50 m/s and v3 = 0.25m/s) in the

-5◦ path. IMU and LRF data (continuous signals) are presented along with the human

linear velocities and angular parameters (discrete values) obtained in two foot strikes.

The angular velocities obtained from the gyroscope in the z-coordinate are shown in Fig.

4.11a. As expected, there is an increase in pelvic rotation for greater linear velocities.

The average of the angular velocity remains close to zero because the human is walking

in a straight line. Pelvic yaw and pitch angles are shown in Fig. 4.11b, where ψh is

obtained from the yaw angle. It is also observed an increase in the oscillation amplitude

with the increase of vh.

The paths of the human legs obtained in these intervals are shown in Fig. 4.11c. As

expected, stride length increases when vh increases. As the robot is not moving, the

module of the slope of these curves is the actual vh. The negative values of the slope

indicate the decrease in the distance as the subject is walking towards the LRF. Although

feet position (indication of the step length) were marked on the floor, the resolution of

the step length measurements is defined by the shoe size, which is reflected on the error

of the vh estimation as shown in Fig. 4.11e.

The legs orientation obtained from the LRF detection is shown in Fig. 4.11d. Finally,

the estimated angular parameters are shown in Fig. 4.11f. Note that θ and ψh angles
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Figure 4.11: Measurements and estimated parameters performed in the first exper-
iment (test of -5◦). (a) Pelvic angular velocities from z-axis gyroscope. (b) Pelvic
orientation from IMU. (c) Legs’ distance curves from LRF detection. (d) Legs’ ori-
entation curves from LRF detection. (e) Estimated vh. (f) Estimated θ, ϕ and ψr

angles.

were close to the expected -5◦. Also, the ϕ angle is close to zero as proposed in this

experiment.

From the first experiment, all estimated values of θ and ψh for different vh were grouped

and compared with the path angle (reference value). In the estimations of θ (Fig. 4.12a),

the RMSE was 0.6◦ and the bias was -0.6◦. The values obtained for the errors seem to

remain constant in all experiments. This could be caused by a misalignment of the LFR

sensor during the experimental setup. Regarding the estimations of ψh (Fig. 4.12b),

the RMSE was 0.2◦ and the bias was -0.2◦. Despite of the continuous oscillation of the

pelvis during walking, estimation was precise and unbiased, showing also repeatability

with changes of vh.

Considering the second experiment, Fig. 4.13 shows the angular parameters during



Chapter 4. Development of a Cognitive HRI Strategy for Mobile Robot Control 49

20 10 0 10 20
25

20

15

10

5

0

5

10

15

20

25

RMSE 0.6
Bias -0.6 

Actual θ [°] 

Es
tim

at
ed

 θ
 [°

] 

(a) Estimated θ in first experiment  
 

20 10 0 10 20
25

20

15

10

5

0

5

10

15

20

25

RMSE 0.2
Bias -0.2 

Actual Ψ  [°] h

Es
tim

at
ed

 Ψ
  [

°]
 

h

(b) Estimated Ψ  in first experiment h  

Figure 4.12: Estimated values of θ and ψh versus reference angles from the first
experiment.

different tests in a single stride. It is possible to see that ψh remains close to zero, and

θ and ϕ remain close to a same magnitude with opposite signs, as expected.
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Figure 4.13: Estimated values of θ, ϕ and ψh from the second experiment.

From the first and second experiments, vh average errors (RMSE) of all tests were

grouped in Fig. 4.14a. The estimation of the error for 0.25 m/s, 0.50 m/s and 0.75

m/s remains under 0.15 m/s. Although this is high in comparison with the desired /

performed speed, it is important to mention that errors can be caused by a misplacement

of the feet in two consecutive steps. To illustrate this, one could imagine the situation in
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which the human steps the line with the toe on a step and with the heel on the consecutive

one. Considering that the foot size presents magnitudes in the same order as the step

lengths, errors with the presented magnitude are expected in these experiments.

Additionally, the errors of the angular parameters (Fig. 4.14b) remain close to 3◦. The

error of θ is considerably smaller (around 1◦) due to the direct measurement of this

parameter using the LRF, which presents higher resolution.
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Figure 4.14: Average errors (RMSE value) in estimation of vh for 0.25 m/s, 0.50 m/s
and 0.75 m/s. (a) Linear velocity estimated errors. (b) θ, ψh and ϕ, and errors with

the different velocities.

In the third experiment, the robot follows constant angular and linear velocities describ-

ing a circle-shaped path. Fig 4.15 shows a part of the measurements and the estimated

parameters for the robot trajectory performed for linear velocity of 0.3 m/s and angular

velocity of -14◦/s.

The angular velocities obtained from the gyroscope in the z-coordinate are shown in Fig.

4.15a. Due to the performed circle path, the estimated ωh remains close to -14◦/s as

expected (Fig. 4.15f). This measurement can also be observed in the tendency of the

pelvic orientation values shown in Fig. 4.15b.

The position and orientation of the human legs obtained in this interval are shown in

Fig. 4.15c and 4.15d, respectively. Due to the fact that the LRF and the legs are moving

at the same time, it can be observed that these signals present a constant mean value.

The vh estimation is shown in Fig. 4.15e and remains close to the expected 0.3 m/s.

During the tests, the human was following the robot. This can be observed through the
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Figure 4.15: Measurements and estimated parameters with vh = 0.3 m/s and ωh

= -14◦/s (third experiment). (a) Pelvic angular velocity from z-axis gyroscope. (b)
Pelvic orientation from the IMU. (c) Legs distance curves from LRF detection. (d)
Legs orientation curves from LRF detection. (e) Estimated vh. (f) Estimated ωh. (g)

Estimated ψh and ψr. (h) Estimated θ and ϕ angles.

pattern of the ψh and ψr angles in Fig. 4.15g. As a result of that, θ and ϕ are shown in

Fig. 4.15h.

Table 4.1 shows the summary of the actual and estimated linear and angular velocities

in the third experiment. The linear velocity error corresponds to the previous analysis,

and the angular velocity error remains close 1◦/s, which is acceptable in this kind of

interaction strategy.
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Table 4.1: Error in estimation of linear and angular velocities for the third experiment.

Actual Actual Estimated Estimated Error Error
vh [m/s] ωh [◦/s] vh [m/s] ωh [◦/s] vh ωh

0.15 -7 0.149 -6.6 1% 5%

0.25 -11 0.253 -10.4 -1% 5%

0.3 -14 0.311 -13.2 -4% 6%

4.4.2 Controller Evaluation

After the validation of the parameter estimation methodology, a final experiment with

the robot following in front of the user was conducted. In this experiment, a volunteer

performed the eight-shaped path shown in Fig. 4.16. During the execution of turns

the robot follows the humans on the external side when he/she is making a curve (Fig.

4.3a). The human path and the expected robot’s path (solid line) can be observed in

Fig. 16. It is also shown in Fig. 4.16 the start and the end marks of the human path; the

human walks in a straight line before entering the eight-shaped curve (lemniscape). It

is noteworthy that the eight-shaped curve is analyzed in three phases: first, a semicircle

path (human turning left); second, a circle path (human turning right); and third, a last

semicircle path (human turning left). This way, it is possible to analyze the performance

of the controller in straight and in curve-shaped paths.

StartEnd

Figure 4.16: Human path (dashed line) performing an eight-shaped curve (lemnis-
cape).

Fig. 4.17 shows the IMU and LRF sensor data obtained during the proposed experiment.

Although there are periodic (and tridimensional) oscillations of the pelvis during the gait

and considering that the locomotion was performed in an eight-shaped path, the robot
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kept a continuous and stable orientation while following, as shown by ψr (gray line) in

Fig 4.17a.
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Figure 4.17: Sensors data of robot following in front of the user performing an eight-
shaped curve. (a) Human and robot orientation from IMU and robot odometry respec-
tively. (b) Pelvic angular velocity from gyroscope (raw data and filtered signal). (c)
Leg orientation measured with the LRF sensor. (d) Leg distance measured with the

LRF sensor.

Fig. 4.16b shows the raw signal obtained from the gyroscope placed on the human pelvis

(gray line) and the filtered signal (black line). A second order Butterworth low-pass filter

(cutoff frequency of 1 Hz) was used to reject high frequency components that are not

associated with the gait cadence. As it can be seen, no significant delay was observed

in this application.

The legs detection was adequate during the whole experiment as depicted in Figures

4.17c (angle detection) and 4.17d (distance detection). The values of angular positions

of the legs, measured from the robot, were in the range between -40◦ and 40◦ (Fig.
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4.17c). These bounds belong to the range of detection previously defined [-60◦, 60◦].

In this experiment, the maximum interaction distance was set to 2 m and the desired

distance dd was set to 0.9 m. Accordingly, the legs distance measurements were between

0.4 m to 1.2 m during the whole the experiment (Fig. 4.17d).

Fig. 4.18 shows snapshots of different instants of the experiment illustrated in Fig. 4.16,

which lasted about 80 s. From the beginning and up to the fifteenth second, the human

walked in a straight line (Fig 4.18a). After that, the human began to turn left (ψh in

Fig 4.17a) entering the eight-shaped path. The first semicircle is performed up to about

the 30th s (Fig. 4.18b). The human orientation increased positively in this interval

(Fig 4.17a), indicating that he was turning left. The orientation of the legs (LRF data)

decreased to 0◦ (Fig. 4.17c) before finishing the first semicircle as the human starts

planning the next circle (Fig. 4.18c).

(a) (b) (c)

(d) (e) (f)

Figure 4.18: Snapshots of the experiment performing an eight-shaped curve by the
user, where the robot is following in front the user.

This circle is completed before the 60th second (Fig 4.18e). In this interval, the human

orientation decreases constantly, as expected (see Fig. 4.17a), indicating that he is

turning right. After that, the angular positions of the leg become 0◦ again (Fig. 4.17c)

in order to perform the last semicircle (Fig. 4.18e).

Finally, the human is back at the beginning of the eight-shaped curve (Fig. 4.18f). ψh

and ψr angles are close to 0◦ again, as expected (Fig 4.17a).

As aforementioned, all control parameters are detected every gait cycle. Some of them

are updated every step while others are updated at every stride. However, the controller
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variable update is executed at every step. In the case that human does not perform an-

other step, for example, when the human suddenly stops, the parameters are calculated

at every second. Finally, Fig. 4.19 shows all control data recorded during the proposed

experiment. The parameters estimation algorithm detects approximately 100 steps from

the human in the execution of the proposed path.
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Figure 4.19: Control data of robot following in front experiment performing an eight-
shaped curve. (a) Angular parameters. (b) Distance parameters. (c) Linear velocities:
control action vr(C) and measured vr(R) and vh. (d) Angular velocities: control action

ωr(C), and measured ωr(R) and ωh, (e) Trajectory performed.

In Fig 4.19a, from the beginning and up to almost the step number 20, the human was

walking in a straight line, as ψh, ψr and θ remains close to 0◦ (Fig. 4.19a). This way,

ϕ (control error) remains close to 0◦, as well. However, d̃ remains near -0.3 m (Fig.

4.19b). As a result of this, the control action vr(C) and the robot’s actual speed vr(R)

follow vh with a maximum value of approximately 0.3 m/s (Fig. 4.19c). Furthermore,

the control action ωr(C) and the measured velocity ωr(R) remain close to 0◦/s (Fig.

4.19d), as expected.
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After the step number 20, the eight-shaped curve starts. From Fig. 4.19a ψr follows ψh

continuously, θ is positive when the human is turning left and negative when the human

is turning right, and remains close to 0◦, as expected.

From Fig. 4.19b, d̃ was negative in most of the experiment. This indicates that the

human walks forward and the controller tries to reach the desired distance (0.9 m).

From Fig. 4.19c, vh was always lower than 0.5 m/s, however the control action, vr(C),

reaches the robot’s maximum forward speed (0.7 m/s) and also sometimes the backward

speed limit (-0.7 m/s). The controller tries to bring the control errors to 0. vr(R) is

delayed with respect to vr(C) due to robot dynamics, but this delay does not significantly

affect the performance of the controller response with these experiment conditions. From

Fig. 4.19d, ωr(C) and ωr(R) have adequate tracking of ωh, but also there is an expected

delay between ωr(C) and ωr(R), which is smaller than the delay between vr(C) and

vr(R).

Finally, the trajectory performed during this test is shown in Fig. 4.19e. The black

dashed line is the human path measured from the LRF, and the gray line represents the

mobile robot path measured by the robot odometry. The triangles marks represent the

starting and final points of every path.

4.5 Chapter Conclusions

This chapter presented a new human-robot interaction strategy based on the human gait

by data fusion from a wearable IMU and an onboard LRF. Also, a new mobile-robot

human controller for tracking in front of the human with an experimental validation of

the controller performance was presented.

In the experimental study, despite of the continuous oscillation during the walking, the

parameters estimation was precise and unbiased, showing also repeatability when human

linear velocity changes. In the same way, the estimation errors were lower than 10 %

when the robot performed a curve-shaped path.

This research shows that the proposed control is effective in assisting a mobile robot

to follow a human. A satisfactory result was obtained in terms of stable performance,

through the tracking algorithms here proposed. The controller was evaluated with an
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eight-shaped curve (lemniscape), showing stability of the controller even with sharp

changes in the human path. The controller keeps the robot continuously following in

front of the human gait in all experiments. It is also shown the good performance of the

controller regarding the robot orientation when it is following the human turning during

the experiments.

One of the advantages of the human-interaction here proposed is the computational

efficiency due to direct measurement of the human kinematics with the IMU wearable

sensor on the pelvis and the legs detection from the LRF. The detection and human

tracking from the mobile robot is completed in real time and also in unstructured en-

vironments. The reliability of this approach is guaranteed with the integration of the

analysis of human walking into the control parameters detection.

The next chapter will address the integration of this control strategy in a robotic walker.

Some remarks regarding the human-robot physical link will demand new algorithms and

validations to develop a natural walker-assisted gait based on cHRI.



Chapter 5

Cognitive HRI for Human

Mobility Assistance

5.1 Introduction

As aforementioned, in previous approaches of robotics walkers, the user directly com-

mands the robot motion during walking through a HMI. In this context, this chapter

present the implementation and validations of the concept of Cognitive HRI for human

mobility assistance. In this approach, the user does not guide directly the walker dur-

ing walking. In contrast, the walker follows close enough the user in order to provide

partial body-weight support. This concept intends to achieve natural human-walker

cooperation during the assisted-gait.

This chapter addresses the integration of the control strategy proposed in this thesis

on a robotic walker. That way, some remarks regarding the human-robot physical link

demand a new human-walker parameters detection. Consequently, new validations has

to be done before performing the control implementation.

This chapter is organized as follows. First, the control strategy is presented in the

context of human-walker interaction, and a new robotic walker platform is presented to

fulfill the sensor and interaction requirements. Second, some experimental trials show

the need of developing a new parameter detection algorithm, and a new strategy is

formulated and evaluated. Finally, an experimental study is performed to validate both

the control parameters detection and the control implementation.

58
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5.2 Interaction Strategy Applied in Smart Walker

The human model interaction presented in Fig. 4.1 is here implemented in a smart

walker as it can be seen in the Fig. 5.1. It is noteworthy that variables with regards to

the robot now are regarding to the walker. The variables and parameters used in the

presented model are: human linear velocity (vh), human angular velocity (ωh), human

orientation (ψh), walker linear velocity (vw), walker angular velocity (ωw) and walker

orientation (ψw). The interaction parameters were defined as the angle ϕ between vh

and WH (named Human-Walker Line), the angle θ between WH and WC segments,

and d, the length of WH. Finally, the parameter a defines the distance between the

controller reference point (W ) and the walker center of rotation (C).

ωw

ωh

ψh 

ψw θd

φ 

W

C

___
WH

___
WC

vh

vw

H

Figure 5.1: Proposed model for the Human-Walker interaction.

The controller equations (4.2) and (4.3) are regarding the control strategy that was

previously implemented in the previous chapter. In this chapter, the same strategy is

implemented in a robotic walker. The next section will describe the robot and sensor

setup system that corresponds to a Multimodal-Interaction Platform for human mobility

assistance.

5.3 Multimodal-Interaction Platform

This section discusses the hardware and software components of the robotic platform

named as UFES′s Smart Walker (Fig. 5.2). The developed robotic platform consists

of a pair of differential rear wheels driven by DC motors and a front caster wheel.
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Figure 5.2: UFES Smart Walker.

An embedded computer based on the PC/104-Plus standard performs control and pro-

cessing tasks. It is based on a 1.67 GHz Atom N450, 2 GB of flash memory (hard disk)

and 2 GB of RAM. The application is integrated into a real-time architecture based on

Matlab Real-Time xPC Target Toolbox. A laptop computer is used for programming

the real-time system and to save the data from the experiments. It is connected to the

PC/104-Plus by UDP protocol. If data recording is not necessary, the robotic system is

able to operate without the mentioned laptop computer.

The device is designed to provide assistance during the gait based on a multimodal-

interaction platform for the acquisition and the real-time interpretation of human gait

parameters.
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This platform has implemented the modalities previously used in a carrier robot appli-

cation (see Fig. 4.6). In this approach, legs detection position from the walker, human

hip and walker orientation are combined to get control parameters described in Fig 5.1.

The sensor configuration is explained as follows.

5.3.1 Leg Detection Module

One LRF sensor Hokuyo URG-04LX [118] is mounted at the legs height, which is used to

detect the legs position through the Legs Detection Module (Fig. 5.2) implemented on a

processing board based on the dsPIC33F microcontroller. It is linked to the embedded

computer by serial interface RS232 and provides the position of each leg every 100 ms.

The leg detection module is used to measure the spatiotemporal parameters of human

gait, including θ angle, d, and vh. The LRF sensor (Hokuyo URG-04LX) is installed on

the center column of the walker at a height of 30 cm from the floor. This location allows

detecting the user’s lower limbs without interference from neither the shoe tip nor the

knee.

The leg detection combines techniques presented in [65, 116] as was presented in the

previous chapter (see Fig. 4.6). The legs’ positions are calculated in polar coordinates

as it can be seen in Fig. 5.3. The general process is based on the differences between

two transitions events that define a leg pattern (see x-marks in Fig. 5.3). After that,

both distance and angle measurements are calculated in relation to the middle point of

each leg. In Fig. 5.3, (d1, a1) and (d2, a2) represent the polar coordinates of the left

and right legs, respectively. Thus, θ and d control parameters are calculated from the

legs’ position.

5.3.2 Human Hip and Walker Orientation

Two IMU sensors, developed in previous research [114, 115]. were used. One of these

sensors is installed in the walker structure and the other is placed on the user’s pelvis

(Fig. 5.4). They are linked using ZigBee protocol and communicates via serial interface

with the embedded computer. Basically, the IMU information is used to get walker

orientation, human orientation (pelvis orientation) and human angular velocity. All

data are sampled every 20 ms.
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Figure 5.3: Description of the legs’ position detection.
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Figure 5.4: Integration of human IMU and walker IMU sensors.

5.3.3 Sensor Readings During Walker-Assisted Gait

As aforementioned, the UFES′s Smart Walker is used to test the cHRI strategy pro-

posed in this thesis. Several preliminary tests were performed in order to validate the

control parameters detection presented in the previous chapter. These evaluations were

performed without traction. It means that the user guides the walker as a conven-

tional passive rollator walker. However, the sensor interfaces are enabled to measure the

human-walker interaction parameters.

The control parameter detection approach previously defined is based on the zero cross-

points detection over the pelvic angular velocity as shown in Fig. 4.7. This temporal
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information is used to detect when occurs a gait cycle in order to estimate the control

parameters, which yield control actions on the robot to follow the user.

As a representative case, Fig. 5.5 shows an experiment when the user performs a specific

path, which is composed of three segments, as follows: a left-turn (-90◦, Fig. 5.5a), a

short straight path (Fig. 5.5b) and a right-turn (90◦, Fig. 5.5c).

(b)(a) (c)

Figure 5.5: User path used to evaluate the sensor readings during walker-assisted
gait.

The sensor readings regarding the user path guiding the walker (Fig. 5.5) are depicted in

Fig. 5.6. Fig. 5.6a and 5.6b show the legs’ position during the experiment. These signals

correspond to the experiments presented in the previous chapter. Fig. 5.6 shows the

walker orientation that represents upper-limbs orientation guiding the walker without

traction, and the human orientation represents the pelvic orientation. In Fig. 5.6d,

both the human and walker angular velocities are showed. It is noteworthy that human

angular velocity has not zero cross-points when the user is making a curve. These

zero cross-points are the main source to detect the control parameters in the carrier

robot approach (Fig. 4.7). In contrast, during the walker-assisted gait, the walker

angular velocity affects the human angular velocity due to a human-walker physical link.

Consequently, it is necessary to propose a new strategy to estimate the human-walker

control parameters. This strategy will be addressed in the next section.

5.4 Human-Walker Parameters Detection

The new strategy for parameter detection is based on online gait cadence estimation,

which is used to continuously estimate the human-walker interaction parameters. The

method to obtain the parameters of the proposed model is presented in Fig. 5.7 and

described as follows:
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Figure 5.6: sensor readings during walker-assisted gait without a control strategy.
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1. θ and d are measured directly using the LRF sensor after the legs detection process

is performed. Legs Difference Distance (LDD) is defined as the difference between

the left and right legs distance, which is used for the computation of the vh. Such

detection will be addresses in the next section.

2. The human linear velocity (vh) is obtained through the product of gait cadence

(GC) and the gait step amplitude (LDD amplitude estimation) that are obtained

after the leg detection process. Such estimation will be addresses in the next

section.

3. The human angular velocity (ωh) and orientation (ψh) are obtained from one IMU

located on human pelvis. The gyroscope integrated on the IMU returns the ωh

measurement from the gyroscope and also returns the yaw angle after the IMU

orientation algorithm is performed. ψh is also filtered to eliminate the cadence

component as a cause of the pelvic rotation during the gait (see Fig. 4.4).

4. The walker orientation (ψw) is measured by an onboard IMU, similarly to the

previously presented technique.

5. ϕ represents the orientation difference between vh and WH segment. In Fig. 5.1,

ϕ is equal to θ − ψw + ψh, and this angle only is defined if the magnitude of the

vh is greater than zero.

5.4.1 Calibration of LRF Sensor

Legs Difference Distance (LDD) signal is the reference input of this parameters detection

method as it can be seen in Fig. 5.7. LDD is defined as the difference between the

distances of the left and right legs. It allows the estimation of lower-limbs kinematics

parameters and performs the filtering of the oscillatory components contained into the

user movement intention, as it will be depicted in next sections.

Due to the fact that the LDD signal measured is affected by LRF location, which is

placed in a higher plane than the ground, after analyzing the experiments with different

users without any dysfunctions associated with gait, a constant ratio K related to LRF

measured and step length was obtained (Fig. 5.8). This constant is used to obtain the

actual length step.
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(a) (b) (c)
50 cm 50 cm 50 cm

Height = 190 cm Height = 178 cm Height = 165 cm
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Figure 5.8: Relationship between actual step length and LRF measurement. (a)
Person with tall height. (b) Person with medium height. (c) Person with short height.

Six users without any gait dysfunctions were chosen for the estimation of an adequate

valor for the K constant. Users heights were between 1.65 and 1.90 meters as it can be

seen in Table 5.1. Each user performed twice a straight path with the walker; the first

one with a half-step-per-second cadence and the second one with a one-step-per-second

cadence. A metronome set the pace of the gait, furthermore, steps of 0.5 m were marked

with tape on the ground, to help the user to keep a constant step length.

Table 5.1: Average step length measured during the experiments and average K
calculated from each user.

User Height Cadence Step L. K
[m] [step/s] LRF [m]

1 1.90 1 0.29 1.71

0.5 0.33 1.51

2 1.80 1 0.31 1.61

0.5 0.30 1.65

3 1.78 1 0.31 1.63

0.5 0.31 1.62

4 1.72 1 0.32 1.58

0.5 0.31 1.61

5 1.68 1 0.29 1.71

0.5 0.32 1.54

6 1.65 1 0.30 1.64

0.5 0.31 1.60

All the experiments were recorded in order to measure the K ratio. The average values

of the step length measured and the K ratio from each user are presented in Table 5.1.

Finally, the average step length of the all users is 0.31 m and the average of the all K

values is 1.62. Among the users, 0.29 m and 0.33 were the minimum and maximum

values obtained. Adopting a constant K ratio, the error for these users is close to 0.02

m that corresponds to 4%.
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5.4.2 Adaptive Estimation of Gait Components

The parameters regarding the human gait can be modeled with a Fourier representation

due to its periodic nature. This section presents the Fourier Linear Combiner (FLC) and

Weighted-Frequency FLC (WFLC) formulations [119]. These tools are here applied to

the human gait, in order to estimate gait-related components and perform the filtering

of the control parameters, as follows.

FLC estimates both the amplitude and phase of quasi-periodic signals with a known

frequency. It operates by adaptively estimating the Fourier coefficients of the model

according to the Least Mean Square (LMS) algorithm [119]. The model is based on the

M harmonics of the dynamic Fourier model presented in (5.1).

sr =
M∑
r=1

[wrsen (rω0k) + wr+Mcos (rω0k)] (5.1)

FLC algorithm has two inputs as can be seen in Fig. 5.9. The first input is the reference

signal (xk) (5.2) composed of a set of harmonics of the sine and cosine signals with

frequency f0 = ω0/2π.
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Figure 5.9: Diagram to illustrate the FLC Algorithm.
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xrk =


sen (rω0k) , 1 ≤ r ≤M

cos ((r −M)ω0k) , M + 1 ≤ r ≤ 2M

(5.2)

The second input of FLC algorithm is (εk) (5.3), which is the result of the subtraction

of the input signal (yk) and the estimate oscillatory component (ŝk). (yk) is composed

of one oscillatory periodic component that is estimated by the FLC algorithm, plus one

stationary input component without oscillatory component (vk).

εk = yk −WT
kXk (5.3)

The adaptation of the Fourier series coefficients Wk is performed dynamically based on

the Least Mean Square (LMS) recursion, which is a method based on a special estimate of

the gradient [119] that ensure inherent zero phase. The harmonic orthogonal sinusoidal

components of xk along with the adaptive weight vector (Wk) (5.4) represent the linear

combination.

Wk+1 = Wk + 2µεkXk, (5.4)

The FLC has two parameters to be tuned. M is the number of harmonics of the model,

and µ is the amplitude adaptation gain. In the approach presented in this work, FLC

is used in different situations to estimate parameters based on the gait cadence, which

is used as the frequency reference of the presented model. The first application is the

adaptive filtering of the hip oscillations to obtain a more stable orientation signal. Fur-

thermore, a FLC-based approach is used for the real-time estimation of human velocity.

These FLC applications will be addressed in the next sections.

5.4.3 Gait Cadence Estimation

The GC (Gait Cadence) signal is used as the frequency input signal to obtain the filtering

and the estimation of the gait components. This way, this proposal modifies the FLC

block (described in the last section) to be useful for GC estimation. It requires a method

to adapt the reference frequency to the primary input frequency. This can be done by
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replacing the fixed frequency (ω0) of the FLC with an adaptive frequency (ω0k), which

learns the input frequency via an LMS algorithm in the same way that the FLC weights

learn the input amplitudes [120]. This approach is known as WFLC (Weighted-frequency

Fourier Linear Combiner). Thus, the WFLC recursion minimizes the error εk between

the input sk and a harmonic model (5.5).

εk = sk −
M∑
r=1

[wrksen (rω0kk) + wrk+Mcos (rω0kk)] (5.5)

In this study, it is assumed that the evolution of the difference between the left and

right legs distance (LDD) can be modeled as a sinusoidal signal of frequency ω0k plus M

harmonics. The WFLC algorithm can be represented as follows: In (5.6), xrk represents

a sinusoidal signal with M harmonics with fundamental frequency ω0t .

xrk =


sen

(
r
∑k

t=1 ω0t

)
, 1 ≤ r ≤M

cos
(
r
∑k

t=1 ω0t

)
, M + 1 ≤ r ≤ 2M

(5.6)

The error, which serves to adaptively fit xrk to the input signal, is described in (5.7).

εk = sk −WT
kXk − µb (5.7)

Frequency and amplitude are updated based on the LMS algorithm expressed in (5.8)

and (5.9) [119].

ω0k+1
= ω0k + 2µ0εk

M∑
r=1

r (wrkxM+rk − wM+rkxrk) (5.8)

Wk+1 = Wk + 2µ1εkXk (5.9)

Finally, WFLC has five parameters to be set: M , the number of harmonics of the

model, ω0,0, the instantaneous frequency at initialization, µ0, the frequency update

weight, µ1, the amplitude update weight, and µb, and the bias weight that compensates

low frequency drifts.



Chapter 5. Cognitive HRI for Human Mobility Assistance 70

Despite that the WFLC algorithm estimates amplitude, as it adaptively adjusts fre-

quency and amplitude, the correct selection of µ0 and µ1 parameters can be a complex

task. The WFLC algorithm can be turned to robustly estimate the frequency of the

input signal and feeding this information to the FLC algorithm that can robustly esti-

mate the amplitude [120], such as proposed in the parameters estimation that will be

addressed in the next section.

In the case when there is not input signal, WFLC algorithm could yield a response with

frequency different from zero and amplitude equal to zero [121]. In order to improve

these filtering strategies, it is necessary to evaluate the magnitude of the amplitude

coefficients ||Wk|| to estimate GC components when there is an actual input signal.

||Wk|| is considered as an output of the WFLC algorithm as it can be seen in Fig. 5.10.

+
_ High-Pass Filter

Second order Butterworth 0.2 Hz WFLC

Left Leg Distance

Right Leg Distance

Gait

Cadence

Amplitude 

coefficients

LDD Gait Cadence

Estimation

Figure 5.10: Block diagram to obtain the gait cadence estimation.

Furthermore, it is important to perform a previous stage of band-pass filtering (com-

patible with gait cadence frequencies) allowing a robust adaption to the values of gait

cadence and the correct performance of the WFLC [101]. Experimentally, the LDD sig-

nal has the cadence as the main frequency component, with a High-Pass Filter rejecting

static values (DC component) when the user is not walking, due to these events affect

the estimation performance. The final algorithm proposed to estimate the GC is shown

in Fig. 5.10. The adjustment of the five parameters of this algorithm was obtained

experimentally from healthy subjects experimentation (M = 1, ω0,0 = 1, µ0 = 2x10−6,

µ1 = 1.5x10−3, µb = 0).

5.4.4 Control Parameters Estimation

As previously mentioned, there are two applications that combine FLC and WFLC

methods in order to estimate control parameters in this approach. First, in Fig. 5.11,
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an online adaptive scheme to estimate and cancel the cadence component on ψh is

shown, which is based on a WFLC block to detect the GC (see Fig. 5.10). The FLC

block estimates and subtracts the cadence component on the ψh signal. In Fig. 5.11,

a gait detector block can also be observed, which gets amplitude coefficients from the

WFLC algorithm in order to only perform the filtering when the human is walking.

However, the FLC algorithm is always running to avoid transient and adaptation times.

To tune the FLC algorithms, the value of the parameters was obtained experimentally

for healthy subjects, and µ = 0.002 was the amplitude adaptation gain obtained to filter

the orientation. Hip orientation only presents one harmonic (M = 1).

Ψh_Ajusted
Ψh

Gait Cadence

(From WFLC)

FLC

_+Gait Amplitude 

Estimation

Gait Detector

Amplitude 

Coefficients

(From WFLC)

Ψh

Figure 5.11: Filtering architecture to cancel the cadence component.

The typical orientation values, estimated for ψh and ψw when the user is guiding the

walker in a defined path, respectively from Human (gray) and Walker (black segmented)

IMU, are presented in Fig. 5.12. These signals were obtained experimentally without

applying any control strategy to the walker’s motors. There are three walking segments,

and two turn left 90◦. As it is shown, the pelvic rotation due to trunk oscillations

is contained into the human orientation. The black line (see Fig. 5.12) represents the

human orientation adjusted after the process of cadence filtering (see Fig. 5.11) is shown.
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Figure 5.12: Orientation signals obtained from IMU sensors and human filtered ori-
entation during walker-assisted gait.
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Human linear velocity can be defined as the product between the GC and the step length

[26] and, based on this, the amplitude of the LDD signal is estimated as it can be seen

in Fig. 5.13. The adjustment of the two parameters of the FLC algorithm was obtained

experimentally from healthy subjects (M = 1, µ = 0.0018) to estimated the step length

from the LDD signal.

Gait Amplitude 

EstimationLDD

Gait

Cadence

(From WFLC)

FLC

Human

Linear

Velocity

Figure 5.13: Block diagram to estimate the human velocity.

As a representative case, Fig. 5.14 shows results of an experiment done with two different

velocities. In this case, the human’s speed changes during the movement. Speed is

changed 500 mm/s back to 250 mm/s.
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Figure 5.14: Experiment with speed variation from 500 to 250 mm/s. (a) Legs’ posi-
tion detection from the LRF. (b) LDD. (c) GC estimation. (d) Step length estimation.

(e) Human linear velocity.
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Fig. 5.14a shows the distances read by the laser scanner (right and left leg in black

and gray, respectively). In Fig. 5.14b, the LDD signal is shown, which represents the

input for WFLC and FLC algorithms. Fig. 5.14c presents the user’s GC. Finally, Fig.

5.14d shows the gait amplitude or step length, and Fig. 5.14e shows the obtained linear

velocity.

The estimation algorithm shows a tendency to keep constant the distance between the

walker and the legs to be used by the control strategy. As a matter of fact, the LDD

signal oscillates around 0 mm. This indicates that LDD is suitable as an input of the

WFLC and FLC algorithms.

Cadence estimation has adaptive behavior when the user reduces the walking speed, i.e.,

around one step per second in the first section, which is followed by a section with one

step every 2 s. Amplitude is effectively kept close to 300 mm, as expected by the LRF

tracking height. Finally, the human linear velocity is around 500 mm/s initially and

250 mm/s in the last part, always with the use of the correction term (K) previously

presented.

The transitions are observable in all graphs, with the amplitude kept constant. The

period of the sinusoidal function describing the legs’ distance doubles or halves when

switching speed. Such as designed in this HMI strategy, GC and human linear velocity

change and reach stable values in approximately 3 s.

5.5 Experimental Study

After processing the LRF sensor calibration, it was observed that the LDD signal does

not present considerable changes among different healthy (typical) subjects. This signal

is the main source to estimate and filter the proposed interaction parameters. Due to

this fact, the experimental session was focused on the evaluation of the response of the

sensor fusion algorithm, when a user presents changes in both cadence (GC) and step

length (SL). This study refers to lower-limbs kinematics parameters for the set of GC,

SL and vh.
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Two different experiments were developed to evaluate the human-interaction parameters

without applying any control strategy to the walker’s motors. The user can freely drive

the walker. Finally, a third experiment was performed with the proposed controller.

In the first experiment, the subject was asked to walk guiding the walker on a straight

line marked on the floor. The user was instructed to perform this path with different

cadence and step length. A metronome set the pace of the gait. Furthermore, steps of

300 mm and 600 mm were marked with tape on the ground, to help the user to keep a

constant step length. The start (S) and end (E) positions are shown in Fig. 5.15a and

5.15b, respectively. In these figures, the center point is also marked (C) as a reference

point.

S

E

S

E(a) (b)

C C

Figure 5.15: User path guiding the walker (dashed line) to evaluate the parameters
estimation. (a) Start position performing a straight path. (b) End position performing

a straight path.

The first experiment contains two parts. In the first part, the user was asked to walk

guiding the walker between the point S and E three times with some instructions as

follows:

1. Step Length (SL) = 300 mm and Gait Cadence (GC) = 0.6 Steps/s, then velocity

= 180 mm/s.

2. SL = 300 mm and GC = 1 Steps/s, then velocity = 300 mm/s.

3. SL = 600 mm and GC = 0.6 Steps/s, then velocity = 360 mm/s.

The selection of these velocities is based on previous experience in human-walker inter-

action scenarios [106]. Moreover, the second part evaluates the estimation error when
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changes in the gait kinematics are done. Then, the user is instructed to perform a

straight path changing one parameter: SL or GC during each experiment, which is done

in the middle of the path. Therefore the user’s instructions are changed after crossing

the C point, as follows:

1. GC = 0.6 Steps/s constant, SL changing from 300 to 600 mm.

2. GC = 1 Steps/s constant, SL changing from 300 to 600 mm.

3. SL = 600 mm constant, GC changing from 0.6 to 1 Step/s.

4. SL = 600 mm constant, GC changing from 1 back to 0.6 Step/s.

In the second experiment, the user walked with the device with no traction and per-

formed the circle path marked with dashed line. This test was performed to evaluate

the proposed technique to estimate the following angular parameters: ψw, ψh, θ, and ϕ.

Finally, the third experiment path is an S-shaped path performed twice: once with no

traction/controller and once with the proposed control strategy. This was performed to

evaluate all interaction parameters when the walker is driven by the user’s upper-limbs

(no control) and when the walker is following the user without physical interaction by

means of the proposed controller, using the parameter estimation methodology proposed

in this chapter.

5.6 Results and Discussion

The results of the three experiments show the detection of the human-walker interaction

parameters. In addition to that, a comparison of these parameters related to the human

guiding the walker without applying any control strategy to the walker’s motors and the

walker following the human was performed.

5.6.1 Experiment Performing a Straight Path

As a representative case of the obtained results in the first experiment, Fig. 5.16 shows

results of a test done with SL = 300 mm and GC = 0.6 Steps/s. In Fig. 5.16a, right
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and left leg distances are shown in black and grey lines, respectively. Such distances are

used to obtain the parameter d. Finally, Fig. 5.16b shows the right and left leg angles

(black and grey), which are used to obtain the parameter θ.
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Figure 5.16: User performing a straight path with SL = 300 mm and GC = 0.6
Steps/s. (a) Legs distance measured and the parameter d obtained. (b) Legs angle
measured and θ obtained. (c) LDD signal along with maximum and zero-cross points.
(d) Actual and estimated cadence. (e) Actual and estimated step length. (f) Actual

and estimated human velocity.

d and θ are kept constant during the test. Such information represents a comfortable

user’s position to guide the walker. This information is used for the walker’s control

strategy to adjust the control set-points and provide a desired position using the smart

walker.

LDD signal is represented in Fig. 5.16c, which is the reference signal to estimate the

lower-limbs kinematics. In order to compare the estimated parameters with actual

values, the LDD signal is offline processed to obtain the zero-cross (x) and the maximum

(+) points, which are shown in Fig. 5.16c. With this information, the actual values for

cadence, step length and velocity per semi-cycle are calculated. The comparisons of

actual and estimated values for such parameters are shown in Figure Fig. 5.16d, 5.16e

and 5.16f.

An overall analysis of all the data obtained by the first part regarded to the first ex-

periment is shown in Fig. 5.17, which is a chart with root-mean-square errors (RMSE).

Typically, the error in cadence remains under 0.05 Steps/s in all tests. Furthermore, the
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error obtained from each experiment remained close to 5% as shown in Fig. 5.17a. In

Fig. 5.17b, the error in step length estimation remains under 25 mm in all tests. Finally,

the human velocity error remains close to 20 mm/s that corresponds to approximately

5% in each experiment (Fig. 5.17c).
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Figure 5.17: Average errors (RMSE value) of lower-limbs kinematics parameters in
experiments with constant step length and cadence. (a) Cadence estimation. (b) Step

length. (c) Human velocity estimation.

Table 5.2 shows the summary of average errors in experiments with a change in the

parameters by the user. The highest error in velocity was lower than 10% (comparing

with the final cadence goal in each experiment), which is adequate to be used in control

applications in human-robot interaction [106].

Table 5.2: Average errors (RMSE value) of lower-limbs kinematics parameters in
experiments with a change in the parameters performed by the user.

300/600 mm 600 mm

0.6 S/s 1 S/s 0.6/1 S/s 1/0.6 S/s

Cadence [S/s] 0.021 0.020 0.057 0.028

Step L. [mm] 39.8 52.0 16.9 25.3

H. Vel. [mm/s] 15.3 (4.2%) 16.6 (2.7%) 28.8 (4.8%) 26.0 (7.2%)

5.6.2 Angular Parameter Evaluation

In the second experiment, the user executed a circle-shaped path while guiding the

walker, turning left and right, as shown in Fig. 5.18a and 5.18b, respectively.

As a generic representation of the experiment, Fig. 5.19 shows the parameter evolution

of one test. Fig. 5.19a and 5.19b shows the human orientation ψh (gray), the filtered

human orientation ψhA (black), and the walker orientation ψw (black segmented). Fig.

5.19c and 5.19d represents the human angular velocity raw and filtered with a low-pass
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(a) (b)

Figure 5.18: Circle-shaped paths performed in the second experiment. (a) Turning
left. (b) Turning right.

filter, respectively, in gray and black. Fig. 5.19e and 5.19f show the θ and ϕ angles,

respectively, in black and gray.

0 5
50

100

150

[°
]

 

 

0 5
−40
−20

0
20
40
60
80

[°
/s

]

 

 

0 5
−20

−10

0

[s]

[°
]

(a)  left turn

(c) left turn

(e) left turn 

 

 

0 5

−40

−20

0

20

 

 

0 5
−50

0

50

 

 

0 5
−5

0

5

10

15

[s]

(b) right turn

(d) right turn

(f) right turn

 

 

ωh
ωhA

θ
φ

Human angular velocity

Human and walker orientations

Interaction parameters 

ψh
ψhA

ψw

Figure 5.19: Measurements and estimated parameters in the second experiment. (a)
Human and walker orientations while turning left. (b) Human and walker orientations
while turning right. (c) Human angular velocity while turning left. (d) Human an-
gular velocity while turning right. (e) Interaction parameters while turning left. (f)

Interaction parameters while turning right.

In Fig. 5.19a and 5.19b, the result obtained in adaptive filtering of the cadence in the

ψh signal can be observed. The angle variation of the human follows the variation of

the walker because of the intrinsic nature of the human movement, in which turning

intention is expressed first on the upper-body and, then, passed to the lower body; the

walker orientation is due to the direction imposed by the upper-limbs guiding.

In Fig. 5.19c and 5.19d, the filtered human angular velocity (black signal) is positive

when turning to the left and negative when turning to the right, which can be used
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as control parameter. This raw signal (gray signal) contains harmonics not only of the

cadence gait but also of the turn intention; hence, a low-pass filter is applied in order to

get components related to the turn intention.

In Fig. 5.19e and 5.19f, it can be observed that the values of θ (see Fig. 5.1), i.e., the

human angular position relative to the walker, are kept between ±15◦, while the user

performed turns to the left and to the right. This means that the user does not exit the

safe area between the wheels. Moreover, ϕ, which is one of the control parameters, is

negative or positive, when respectively turning left or right, and does not exceed ±5◦ in

these experiments.

5.6.3 Walker Control System Evaluation

The third experiment is presented in Fig. 5.20a–c. An S-shape path is performed without

walker traction, with the human guiding the walker, as in previous experiments. Fig.

5.21 represents the evolution of parameters. From the upper to lower sections in Fig.

5.21a, it is possible to distinguish the left leg, right leg, and d in gray, black, and thin

black lines, respectively, on the first graph. In Fig. 5.21b, it is possible to distinguish

the human linear velocity. Fig. 5.21c presents the human and walker orientations ψh,

ψw. Fig. 5.21d shows the interaction parameters θ and ϕ, in black and gray lines,

respectively.

(a) (b)

(d) (e) (f)

(c)

Figure 5.20: Walker control evaluation performing an s-shaped path. (a)–(c) Per-
forming an s-shaped path without traction and the user guiding the walker. (d)–(f)

User performing an s-shaped path and the walker following in front.

The human-robot distance and human linear velocity were kept reasonably close to a

constant value of 500 mm and 500 mm/s, respectively. Moreover, it is possible to notice

that they evolve very similarly, such as in the previous example. In Fig. 5.21c, the



Chapter 5. Cognitive HRI for Human Mobility Assistance 80

0 10 20 30

400

600

[m
m

]

(a) Legs detection

 

 

0 10 20 30
200
400
600

[m
m

/s
] (b) Human linear velocity

0 10 20 30

−100

0

100

[°
]

(c) Human and walker orientations

 

 

0 10 20 30
−40
−20

0
20
40

[s]

[°
]

(d) Interaction parameters

 

 

Left leg
Right leg
d

ΨhA

Ψw

ϕ
θ

Figure 5.21: Measurements and estimated parameters performed in an s-shaped path
without traction, with the human guiding the walker. (a) Legs’ position detection. (b)
Human linear velocity estimation. (c) Human and walker orientations. (d) Interaction

parameters.

human orientation follows the walker orientation by the fact that the user is guiding the

walker with the arms. In this case, the intention of turning is transmitted directly to

the device as a motor command. Finally, θ and ϕ are small values remaining limited

between ±5◦ and ±25◦, respectively.

In Fig. 5.20d–f the same path is performed. Nevertheless, the control strategy here

proposed is now active. In order to demonstrate the effectiveness of the proposed control,

the user has no physical interaction with the device during the test, as shown in Fig.

5.20d–f.

Fig. 5.22 shows the evolution of the most significant interaction parameters. It can be

observed that the human-robot distance evolves in a very similar way with and without

control, meaning that the proposed controller provides natural interaction due to the

control law (d tends to the desired distance). The desired distance was set at 500 mm,

which is based on the experiment with the user guiding the walker. The human velocity

was kept reasonably close to a constant value, in this case 400 mm/s.

The main difference can be observed in the orientation. When the control strategy

is used, the walker orientation follows the human orientation. This is due to the fact

that the robot is “following in front” of the human, which is yielded by the absence of
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Figure 5.22: Measurements and estimated parameters performed in an s-shaped path
by the user and the walker following in front. (a) Legs’ position detection. (b) Hu-
man linear velocity estimation. (c) Human and walker orientations. (d) Interaction

parameters.

physical contact. In addition, this orientation sequence between the user and the walker

is regarding the human gait performing a turn, which is transmitted in a sequence chain,

firstly from the upper-limbs, secondly to the trunk, and finally to the lower-limbs.

Moreover, it can be observed that ϕ is close 0◦ after every orientation change event due

to the control law (ϕ tends to zero). As in the previous case, θ and ϕ are limited to

small values, such as ±5◦ and ±25◦, respectively, showing that the controller provides

natural interaction.

5.7 Chapter Conclusions

This chapter has presented a new multimodal proposal for a human-walker interaction

strategy based on the sensor integration of a wearable IMU and an onboard IMU and

an LRF. In addition, a new human–walker controller for “following in front” of the user,

with an experimental validation of the controller, has been presented.

In the experimental study, despite the continuous oscillation during the walking, the

parameter estimation was consistent, showing also repeatability with human linear ve-

locities’ changes. In the same way, lower-limbs kinematics estimation errors were lower

than 10%.
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This chapter has also shown that the parameter estimation proposed and the control

strategy can be effective in guiding a walker to follow a human. The controller keeps

the walker continuously following in front of the human during the gait, and it can

be observed that the robot orientation follows the human orientation during the real

experiments.

One of the advantages of the human-walker interaction proposed in this thesis is the

computational efficiency. The sensor processing algorithms and human tracking from

the walker are executed in real time, also showing stable performance. The reliability

of this approach is guaranteed with the integration of the analysis of human walking

into the control parameters, which includes practical experimentation of the proposed

interaction controller, showing the performance of the control system and the parameter

detection strategy.

The next chapter will integrate a force interaction subsystem to improve the proposed

multimodal interfaces. As observed in the experiments without the use of the proposed

controller, it is interesting to integrate upper body interaction to the strategy, in order

to obtain a more predictive behavior.



Chapter 6

Multimodal Interface for Human

Mobility Assistance

6.1 Introduction

The previous two chapters presented the implementation of the cHRI strategy for mo-

bility assistance in the context of both mobile robots and smart walkers. In order to

complete the physical and cognitive HRI for walker-assisted gait defined in Fig. 3.3, this

chapter introduces the physical HRI block. Afterwards, the cHRi and pHRi presented

in this thesis are integrated into a Multimodal Interface for Human Mobility Assistance.

Additionally, some concepts regarding control strategies based on interaction forces dur-

ing the walker-assisted gait are described and implemented.

This chapter is organized as follows. First, upper-limb reaction forces are implemented

as a pHRi. That way, 3D forces sensors are integrated into the UFES′s Smart Walker

(presented in the previous chapter) by means of forearm supporting platforms. Such

modality yields important information for motion control of robotic walkers. However,

the review presented in the third chapter showed some issues related to the extraction

of the upper-limbs guiding intentions, which are addressed in this chapter.

Secondly, a Multimodal Interface for Human Mobility Assistance is presented. This

interface integrates the modalities utilized in this thesis, such as: LRF, IMU and 3D

forces sensors. Consequently, new human-walker interaction parameters are presented in

83
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order to monitor several body parts during the walker-assisted gait. This interface can

be useful as a tool for understanding the human motion intentions. In addition, such

parameters can be used as control set-points to evaluate several control strategies for

specific gait disorders in order to improve the body weight support during the walker-

assisted gait. This information also enables natural channels of communication between

the walker and the human.

Finally, some strategies for forces interaction control and a final control strategy are

presented. Such control strategy combines concepts of pHRI and cHRI, which are based

on both forearm reaction forces and gait kinematics from the legs scanning localization.

6.2 Integration of an Upper-limb Interaction Forces Sys-

tem in the Walker Platform

During normal gait, the HAT (Head, Arms and Trunk) is considered to travel as a unit;

it moves with the body’s center of gravity and also transmits the walking direction to

the lower limbs [110]. As a consequence of this, a direct sensing of the HAT orientation

is suitable to get the user’s walking direction to guide the robotic walker. The HAT

orientation can be measured from the interaction between upper-limbs and walker, which

produces forces related to the user’s partial body weight support.

This section integrates the sensor subsystem regarding the upper-limb reaction forces in

the UFES′s Smart Walker. Therefore, a new multimodal sensor configuration to acquire

and estimate the human-walker interaction parameters is presented such as shown in Fig.

6.1.

Summarizing, this interface is based on a set of sensors: 1) a LRF (Laser Range Finder)

sensor is used to detect the legs’ distance/position in relation to the walker, 2) a wearable

IMU (Inertial Measurement Unit) was adopted to capture the hip orientation, 3) Two

3D force sensors measure the upper-limb interaction forces between the human and the

walker. This information represents the guiding forces supplied from the passenger unit

(Fig. 6.4c)) [13]. The sensor acquisition is performed by an embedded computer onboard

the walker. It is based on the PC/104-plus standard and performs the sensor processing

according to the sensor fusion strategy.
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Figure 6.1: Sensor modalities developed to characterize the walker-assisted gait.

As aforementioned, the new improvement that has been integrated in this chapter is

the system designed to measure the upper-limb interaction forces, such as shown in Fig.

6.2. The forearm supporting platforms were designed to provide a support area from

the elbow up to the hands that is more comfortable than using handlebars. They also

stabilize the trunk and upper-limbs during the walker-assisted gait, providing better

body-weight support and improving the interaction with the device. The measurement

system is composed of two 3D force sensors MTA400 (Futek, US) and six amplifier mod-

ules CSG110 (Futek, US). These sensors are integrated under each forearm-supporting
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platform, which allows measuring six independent components of interaction forces dur-

ing the assistive-gait. According to the axis configuration (Fig. 6.2), x-axis, y-axis and

z-axis represent lateral direction, forward direction and vertical component (user’s body

weight supported), respectively.

Fz
Fy

Fx

PC/104-plus 

Matlab Real 

Amplifier 

Modules Left 3D 

Force Sensor

Right 3D 

Force Sensor

Figure 6.2: Upper-limb interaction forces acquisition system.

In order to understand the force signals during walker assistive-gait, a user was asked to

walk freely with the walker. The user was instructed to perform a specific path, such as:

(1) performing a straight path, and (2) performing a curve (90◦). The signals obtained

from the 3D force sensor are depicted in Fig. 6.3.

Figure 6.3: Raw forces signals obtained from the right 3d force sensor during walker-
assisted gait.

Despite of the noise included into force signals, it is possible to infer four walking gestures.

In (1), at the beginning of the experiment, all forces signals do not present any activity

(equal to zero). When the user supports his forearms on the walker’s platform, z-axis

force becomes more negative, indicating that the partial user’s body weight is partially
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supported by the walker. In (2), the user is walking in a straight path, y-axis force

shows the user intention to go forward, z-axis force depicts that the user is unloading

a partial body weight and also the trunk motion component is added. In (3), the

user is performing a curve, and y-axis signal shows a positive pick that represents a

turn intention (Left turn, see Fig. 6.3). At the same time, the body weight support

is incremented as it is depicted in the z-axis signal. Finally, in (4) the user stops to

walk and the signals return to zero, as the user leaves the device. It is important to

mention that x-axis is not considered representative as far as locomotion commands are

concerned. Previous works show that this laterality component is strongly correlated

to the lateral displacements of the body’s Centre of Gravity [100]. Therefore, this work

does not consider the x-axis as a source of human-walker interaction parameters.

In Fig. 6.3, it is possible to observe the presence of higher frequency vibrations into

the force components. Such components are caused by the ground-wheel interaction.

Additionally, other periodical components related to the trunk oscillations during gait

are also found in the force signals. Therefore, a filtering strategy is implemented to

obtain the force components that represent the user’s guiding intentions, which will be

addressed in the next section.

6.3 Multimodal Interaction Strategy

Due to the fact that human locomotion is not only characterized by legs movement, but

instead, it involves coordinated movements in several body parts, it would be desirable

to monitor other segments during human motion. This would result in a more pre-

dictive and natural human-walker interaction, aiming at a better multimodal interface.

Consequently, this section presents a new multimodal interaction strategy based on the

concepts of cHRI and pHRI presented in this thesis.

Fig 6.4a shows the parameters that can be useful for cHRI, such as presented in the

previous chapter (Fig. 5.1): human position from walker point of view (d, θ and ϕ),

human velocity (vh) and human orientation (ψh). In that case, the user does not have

physical contact with the forearms support platforms, so the upper-limb forces (Fl , Fr)

signals are close to 0 Kgf. However, the cHRI strategy will aim to achieve a comfortable

position to promote the body weight support during the walking.
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Figure 6.4: Model of Human-Walker interaction. (a) Model of human-Walker inter-
action. (b) Human-Walker desired position during the walking (dd) and representation

of interaction forces ( Fl and Fr ). (c) Passenger and locomotor units.

Moreover, when the user has a comfortable position using the walker (see Fig 6.4b), the

cHRI strategy is operating to keep this walker’s position from the user. Consequently,

the control errors defined in the cHRI strategy return values close to zero. However, the

upper-limbs guiding forces return measurements related to both body weight support

and the guiding intentions forces. Such information can be used as a control input to

enhance the human-walker interaction.

These parameters were classified into three categories to enable different control features

and to develop a more natural human-walker interaction.

1. Human relative position to the walker: this information is useful to keep the

human within a desired position and orientation from the walker’s point of view

(d,θ,ϕ), which aims at providing a comfortable user’s position to improve the

human-walker interaction during the walking. Such parameters may be also ap-

plied to obtain better human weight support.

2. Lower-limbs kinematics: Among the several parameters, the step length, gait

cadence and human velocity (vh) (obtained from the product between the step

length and the gait cadence) are useful to develop control strategies where the

walker velocity may adapt to the human velocity. Kinematic changes on the gait

patterns are common with age. However, most of the studies found in the literature

do not take into account the gait kinematics as a control parameter.

3. Human movement intention: the passenger unit moves with the body’s center of

gravity and also transmits the walking direction through the pelvis to the lower
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limbs [110] (Fig. 6.4c). As a consequence, a direct sensing of the passenger (from

the interaction between the upper-limbs and the walker: Fl and Fr) and hip ori-

entation (ψh) are suitable to get the user’s walking direction to guide the robotic

walker.

In summary, the integration of both human relative position to the walker parameters

and lower-limbs kinematics parameters as inputs of the walker’s control strategy could

achieve the human-walker desired position during the walking (Fig. 6.4b). Within this

approach, d is equal to dd (desired distance), θ is equal to 0o, the walker velocity (vw)

is equal to vh and walker orientation (ψw) is equal to ψh, so ϕ is close to 0o. Thus, the

physical interaction is generated and human movement intention parameters can be

used in the walker control strategy to promote an adequate support to turn.

6.3.1 Multimodal Interface for the Estimation of Human-Walker In-

teraction Parameters

The selection of the specific architecture for the multimodal interface for online estima-

tion of human interaction parameters was based on a detailed analysis of the information

that can be extracted from each sensor modality available, paying special attention to

the benefits and drawbacks for each choice. In more detail, the implementation of the

interface was as illustrated in Figure 6.5, which presents the method used to integrate

the sensor modalities here proposed (inputs) and the parameters estimation (outputs).

As presented in the previous chapter, the human gait may be modelled as a Fourier

representation due to its periodic nature. According to this, authors decided to use FLC

(Fourier Linear Combiner) and WFLC (Weighted-Frequency Fourier Linear Combiner)

formulations to design and implement the sensor fusion strategy [119]. The detailed

formulations of FLC and WFLC were also presented in the previous chapter. In this

chapter, the filtering strategy used for obtaining the human orientation was adapted to

extract the components related to upper-limbs guiding intentions. The implementation

of this sensory architecture allows the estimation of the following parameters that could

be used for the control of the smart walker:

1. Human relative position to the walker: From the direct measurement of the legs

detection system, d and θ parameters are defined. Additionally, the ϕ parameter
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Figure 6.5: Diagram that illustrates the multimodal interface for online estimation
of human interaction parameters in walker-assisted gait.

is obtained combining both the leg detection system and the IMU sensors. They

represent the human relative position from the walker. This information is useful

in control strategies to keep the human with a desired position using the walker.

2. Lower-limbs kinematics: Human velocity is obtained by the product between the

Gait Cadence (GC) with the step-length amplitude estimation as shown in Figure

6.5. The FLC algorithm was implemented in order to get a robust estimation

of the step length amplitude (section 5.4.2). The WFLC algorithm used to the

estimation of GC was introduced in section 5.4.3.

3. Human movement intention: it is estimated based on hip orientation and upper-

limb guiding forces. The filtering strategy for the estimation of these variables

is based on an independent on-line adaptive schemes to estimate and cancel the

cadence component on the hip orientation and the upper-limb guiding forces, as

it can be seen in Figure 6.5. These signals are:

(a) Hip orientation, obtained from the yaw angle returned from the IMU located

on the human pelvis.

(b) Right and left arm y-axis forces, representing the forward directions from

arms.
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(c) Right and left arm z-axis forces: user’s body weight supported on the force

sensors.

The FLC block estimates and subtracts the cadence component on each input sig-

nal, which receives the gait cadence (frequency input) obtained from the WFLC

block. In Fig 6.5, it can be observed a gait detector block, which gets amplitude

coefficients from the WFLC algorithm in order to perform the filtering when the

human is walking. However, the FLC algorithm is always running to minimize the

transients and adaptation delays. To tune the FLC algorithms, the value of the

parameters was obtained experimentally for healthy subjects, and (µ = 0.002) was

the amplitude adaptation gain obtained to filter the forces and orientation. How-

ever, forces signals presented two harmonics (M=2) and the hip orientation only

one harmonic (M=1). The performance of the filtering architecture is addressed

in the next section.

As commented in related works [13, 100, 101], the upper-limb reaction forces

present frequency components introduced by ground-wheel interaction. This way,

at the beginning of the force filtering schemes, a low-pass filter was implemented

(see Figure 6.5).

6.3.2 Evaluation of Human Movement Intention Parameters

The parameters’ validation of both human relative position to the walker and lower-

limbs kinematics was presented in section 5.5. Consequently, this section presents

an experimental validation regarding the user movement intention parameters. Two

different experiments were developed in order to verify the accuracy in the estimation

of such parameters. A volunteer without any dysfunctions associated with gait was

chosen to perform the experiments. This user performed changes in the cadence and

the step length to estimate adaptive filtering of the hip orientation and the upper-limbs

guiding intention. Moreover, continuous turns in the user path were performed in order

to simulate real human locomotion scenarios. The performance of such algorithms would

not change among different subjects, such as done in [101].
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6.3.2.1 Experimental study

In the first experiment, the subject was asked to walk guiding the walker on a straight line

marked on the floor. The user was instructed to perform this trajectory with different

cadence and step length. A metronome set the pace of the gait. Furthermore, steps of

300 mm and 600 mm were marked with tape on the ground in order to help the user to

keep a constant step length. The start (S) and end (E) positions are shown in Figure

6.6a.

S

C
S

E (a) (b)

Figure 6.6: User path guiding the walker (dashed line) to evaluate the parameters
estimation. (a) Performing a straight path. (b) Performing an eight-shaped curve

(lemniscate).

The user was asked to walk guiding the walker between the point S and E three times

with some instructions as follows:

1. Step Length (SL) = 300 mm and Gait Cadence (GC) = 0.6 Steps/s (velocity =

180 mm/s).

2. SL = 300 mm and GC = 1 Steps/s (velocity = 300 mm/s).

3. SL = 600 mm and GC = 0.6 Steps/s (velocity = 360 mm/s).

In the second experiment, the user is asked to perform an eight-shaped path (lemnis-

cate) as shown in Fig. 6.6b. This experiment is performed to evaluate and understand

parameters such as: the guiding intentions from the upper-limb reaction forces and the

human hip orientation.
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6.3.2.2 Results and Discussion

As a representative case of the obtained results in the first experiment, Fig. 6.7 shows

the parameters evaluated during a test (SL = 300 mm and GC = 0.6 Steps/s) performing

a straight-line path. Such parameters are the hip orientation and the upper-limb guiding

forces. Raw forces (R), force signals after low-pass filtering (LP) and filtered signals (F)

are illustrated in Fig. 6.7a, 6.7b, 6.7c and 6.7d, which correspond to right y-axis, left

y-axis, right z-axis and left z-axis forces, respectively. Frequency analysis was performed

offline using FFT algorithm. Despite the low forces applied on the y-axis (Fig. 6.7a and

6.7b), when a straight-line path is executed, the rejection of the cadence components

on the force signals is performed. Particularly, in this experiment two harmonics were

rejected as shown in Fig. 6.7f and 6.7g. However, the filtering effect is more evident on

the z-axis as it can be seen in Fig. 6.7h and 6.7i, which is a cause of high forces yield

by the partial body weight unloading.
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Figure 6.7: Temporal data and frequency spectrum of hip orientation and upper-limb
guiding forces performing a straight path (raw signal (R), signal after low pass filter
(LP), filtered signal (F) and walker signal (W)). (a),(f) Right arm y-axis force. (b),(g)
Left arm y-axis force. (c),(h) Right arm z-axis force. (d),(i) Left arm z-axis force.

(e),(j) Orientation angles.

Orientation angles are shown in Fig. 6.7e. The hip angle obtained from IMU (R),

filtered hip orientation (F) and cadence rejection on this signal are observed in Fig. 6.7j.

Finally, the filtered hip orientation and the walker orientation (W) are highly related to

each other, as expected.
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Comparing the actual and filtered values in the frequency domains, a high accuracy is

obtained by the fact that the low frequency components (guiding intentions) were kept

despite the high rejection of the cadence components. A filter quality indicator (FQI)

was defined in order to measure the cadence rejection components (6.1). This indicator

compares both spectrum data, raw and filtered, and was evaluated into interval of the

cadence values detected during each experiment.

FQI = 1−
∑f1,2

k=f1,1

∣∣YFiltered(k)∣∣+
∑f2,2

k=f2,1

∣∣YFiltered(k)∣∣∑f1,2
k=f1,1

∣∣YActual(k)∣∣+
∑f2,2

k=f2,1

∣∣YActual(k)∣∣ (6.1)

f1,1 and f1,2 are the minimum and maximum values that were estimated for the first

harmonic of gait cadence. f2,1 and f2,2 define the second interval according to the second

estimated harmonic. Table 6.1 shows the results after applied the FQI into the signals

of hip orientation and upper-limb guiding forces. These signals were obtained from the

experiments when the user was asked to walk with constant cadence and step length as

follows. There were not significant differences among hip orientation and guiding forces

signals. In the same way, the experimental conditions do not affect the adaptive filtering

scheme. The mean rate of cadence components rejection was 71 % over the experiments

presented in Table 6.1.

Table 6.1: Filter quality indicator of hip orientation and upper-limb guiding forces in
experiments with constant step length and cadence performed by the user.

FQI 300 mm 0.6 Steps/s 300 mm 1 Steps/s 600 mm 0.6 Steps/s

Right z-axis 0.730 0.643 0.651

Left z-axis 0.710 0.752 0.664

Right y-axis 0.745 0.745 0.687

Left y-axis 0.727 0.688 0.669

hip orientation 0.746 0.789 0.667

The second experiment was developed to understand the guiding intention components

extracted from the upper-limbs reaction forces and the hip orientation. These signals

are intended to interface human intention with trajectory control of the smart walker.

Fig. 6.8 shows the legs’ location detection performing the eight-shaped curve proposed

in the third experiment (Fig. 6.6b). Despite continuous curves in the human trajectory,

the legs positions detection relative to the walker were stable; even these measurements

present the same fashion performing a straight path. Therefore, this information does

not present any relevant characteristics related to be performing a curved trajectory.
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However, it confirmed that these signals are useful to estimate the lower-limbs and gait

kinematics parameters.
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Figure 6.8: Human relative position to the walker performing an eight-shaped curve.
(a) Measured Legs’ distance and d parameter obtained. (b) Measured Legs’ angles and

θ parameter obtained.

A Spectrogram study was performed to compare the raw and filtered signals as can be

seen in Fig. 6.9. As a representative case, left arm reaction force is only depicted in Fig.

6.9a, 6.9b, 6.9d and 6.9e. In Fig. 6.9c and 6.9f, the spectrogram results applied to hip

orientation signals are shown. The solid blue lines represent the frequency components

estimated to be canceled by means the proposed adaptive filtering scheme, see Fig. 6.5.

In general, with this filtering strategy, the low frequency components that correspond

to the human guiding intentions are not affected. Furthermore, it is possible to observe

that the cadence related components are rejected despite the complex trajectory (eight-

shaped) performed by the user.

Some still images of the second experiment are shown in Fig. 6.10, and Fig. 6.11 shows

temporal data of upper-limb guiding forces and hip orientation performing an eight-

shaped curve (lemniscate). It is noteworthy that the eight-shaped path is analyzed in

three phases that define specific guiding intentions: (1) a first semicircle path (user

turning right) Fig. 6.10a; (2) a circle path (user turning left) Fig. 6.10b; and (3) a last

semicircle path (user turning right) Fig. 6.10c.

In the first phase, after the sensor fusion strategy exceeds the transient (almost 5 sec-

onds), the right arm forces on the y-axis and z-axis are close to 2 Kgf and -5 Kgf,

respectively. As a result, the arm left forces on the y-axis and z-axis are close to -3 Kgf

and -13 Kgf, respectively. These values depend on both each user and asymmetrical

support that can be normally found in the interaction frameworks. However, the forces
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Figure 6.9: Power spectral density regarding the signals obtained from both the left
arm reaction forces and the hip orientation performing an eight-shaped curve. The
solid blue lines represent the harmonics estimated (WFLC) to be canceled by means
of the filter adaptive schemes (FLC). (a) Raw z-axis force. (b) Raw y-axis force. (c)
Raw hip orientation. (d) Filtered z-axis force. (e) Filtered y-axis force. (f) Filtered hip

orientation.

(a) (b) (c)

Figure 6.10: Still images of the second experiment performing an eight-shaped curve
(lemniscate). (a) First semicircle. (b) Circle path. (c) Last semicircle path.

magnitudes and directions are maintained during right turning gesture, which can be

also ensured in the third phase. Moreover, the hip orientation decreased and followed

the walker orientation while the user was turning right. It is important to mention that

the walker turns before the human hip because the walker is guided by the upper limbs.

During left turning, the hip orientation increases and follows the walker orientation.

Furthermore, the right arm forces on the y-axis and z-axis are close to -3 Kgf and -11

Kgf, respectively. At the same time, the left arm forces on the y-axis and z-axis are

close to 2 Kgf and -28 Kgf, respectively. These values were maintained while the user

was performing the second phase.

Finally, it is important to mention the sequential response of the parameters signals

between the first and second phases: first, a falling edge and a rising edge were generated

by the right y-axis force and left y-axis force, respectively. Second, the hip orientation

slope was equal to zero, and the force signals reached the typical values of the second
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Figure 6.11: Temporal data of hip orientation and upper-limb guiding forces per-
forming an eight-shaped curve (raw signal (R), signal after low pass filter (LP), filtered
signal (F) and walker signal (W)). (a) Right arm y-axis force (b) Left arm y-axis force.

(c) Right arm z-axis force. (d) Left arm z-axis force. (e) Orientation angles.

phase. Finally, the hip orientation slope begins to increase up to the typical value in this

phase. This sequence is also possible to detect between the second and third phases.

This information allows analyzing the motion chain when the user is turning from the

passenger to locomotor units. The combination of these signals could enhance the control

strategies to support the user during the turn. Thus, the forces signals are useful to

produce fast commands to guide the wheels during the turn. It was observed by the

falling and rising edges that the user performs up to get the target orientation. Moreover,

the hip orientation does not present an important activity during the turn (slope close

to zero). However, it allows understanding that the user is performing the turn with the

upper-limbs. At the same time, the hip is in a quasi-static position and the legs are in

double-support stage. Finally, when the user gets the orientation target, the motion is

transmitted from the upper-limbs to the lower-limbs by the hip. In this case, the walker

provides a static support to maintain the body equilibrium.
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6.4 Strategies for Forces Interaction Control in Robotic

Walkers

Basically, the forces interaction controllers translate forces and/or torques signals into

walker’s velocities. A review of the literature concerning such control strategies showed

that two approaches were tested with users with mobility dysfunctions [13, 98, 122, 123],

which are explained as follows.

The first method is the admittance control, which consists of virtual mass and damper

parameters to provide natural and intuitive interaction between user and device. The

mass-damper model acts as a low pass filter so that the high frequency noise due to shock,

gait cadence and vibration from the system can be reduced. The damping parameter

returns the output to equilibrium as quickly as possible without oscillating [122].

Indeed, the admittance control approach allows the walker’s dynamics to be set like

a linear or nonlinear system, subject to limitations of actuator power, servo control

bandwidth, and computation limitations. Models with fast dynamics require higher

bandwidth and fast sampling time for the control system. Complex models obviously

require more computation power, however, these do not appear to be significant issues

for devices with slow motions [123].

Finally, the second method is divided in two parts: first, the extraction of forces compo-

nents related to user’s intention motion, which are the input of a fuzzy controller (second

part). Due to the fact that extracted components represent clearly a proportional sig-

nals regarding the upper-limb guiding intentions, a basic controller based on fuzzy rules

can be implemented. Consequently, the motor intention generates velocity set-points as

a function of the user’s motor intention. Such method does not take into account the

walker’s dynamics, but it offers smooth and responsive motor commands as is shown in

[98] [13].

The multimodal interface proposed in this thesis returns the guiding intention forces in a

proper way as it was validated in the previous section. The next section presents a control

strategy that includes a forces interaction controller based on the second method, which

generates velocity set-points as a function of the user’s motor intention. In fact, the

modality that extracts the upper-limb guiding intentions along with a fuzzy controller

represents the pHRI block defined in Fig. 3.3.
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6.5 Example of a Controller based on pHRI + cHRI

This section describes a control strategy based on physical and cognitive HRI, which

is shown in Fig. 6.12. This strategy is divided in two different controllers, on the

one hand, a pHRI controller based on fuzzy logic in which the inputs are the guiding

intention components extracted from the upper-limbs reaction forces (Fl and Fr), and

the output is the walker’s angular velocity (ωw). It is noteworthy that the forces signals

are useful to produce fast commands to guide the wheels during the turn, and the hip

orientation does not present an important activity during the turn as was presented in

Fig 6.11. Consequently, the IMU located on the human hip is not used in this approach,

so this control strategy does not require to attach any sensor on the user body.

On the other hand, a cHRI controller based on inverse kinematics was added as can be

seen in Fig 6.12, the control error is d̃, the input controlled is vh, and the walker’s linear

velocity vw is the action control. That control proposal integrates the concept of robot

following in front of the user, which was presented in the previous chapter. Indeed, the

kinematics controller here implemented is a reduced structure of the controller proposed

in Fig. 4.2.

Fl

vh

d

ωw

vwcHRI
Controllerd ~

dd

Human

Robot

-+

pHRI
ControllerFr

Walker

Figure 6.12: Block diagram of the proposed controller based on cHRI and pHRI.

6.5.1 Control Implementation

Fig. 6.13a shows the strategy to control walker linear velocity (vw). The variable to be

controlled is the human-walker distance d. The control objective is to achieve a desired

human-walker distance d = dd. This also reaches to improve the human-walker physical

interaction.
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Walker

Humanωw

Fly

Fry

               

vw

Human

Walker

dd

d

              

   vh

(a) (b)

Frz

Flz

Figure 6.13: Control implementation based on cHRI and pHRI. (a) human-walker
model to obtain vw. (b) human-walker model to obtain ωw.

The expression
˙̃
d = −vh + vw shows the basic direct kinematics of the walker, where

d̃ = d−dd (Fig. 6.13a) is the difference between the desired and the measured distance.

Therefore, the inverse kinematics controller is vw = vh − kd̃, where k is a positive gain

to be adjusted. Such controller equation corresponds to a specific case of the controller

presented previously in (4.2) with θ = 0 and ϕ = 0.

As aforementioned, the upper-limbs reaction forces are suitable inputs to guide the

orientation of the robotic walker. y and z force components from right and left sensors

are filtered individually using the filtering architecture previously presented (Fig. 6.5).

From Fig. 6.13b, Fly and Fry present proportional values to the movement intention.

These components were divided by the z-components ( Flz and Frz) in order to obtain

force signals (Fl and Fr) that are also proportional to the amount of the body weight

applied on each armrest. This feature is important in cases of asymmetrical support

caused by a unilateral affection on the gait. These filtered forces are used in this approach

to drive the walker angular velocity (ωw) through a classifier and controller based on

fuzzy logic (Fig. 6.14).

The control strategy based on force interactions is presented in Fig. 6.14. Then, signals

are conditioned to input the fuzzy logic classifier. The conditioning process consists of

applying a gain, to adjust to the correct range of inputs; a saturation function, to avoid

values over the input limits of the fuzzy classifier; and a dead-zone, to prevent motor

commands in cases of signals very close to zero and, thus, not high enough to move the

device.
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Figure 6.14: Angular velocity controller base on user interactions forces.

The main element of the control scheme (Fig. 6.14) is the fuzzy logic block. It is built

upon the information obtained experimentally from the tests performed with healthy

subjects. It combines information of right and left sensors to generate angular velocity

commands. The filtered and conditioned force signal inputs can vary from −1 to +1

and are grouped into five classes as can be seen in Fig. 6.15a:
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Figure 6.15: Membership functions related to the fuzzy controller. (a) Membership
functions of fuzzy inputs. (b) Membership functions of fuzzy output.

• NegativeHigh(NH), Z-shaped function with a = −0.8 and b = −0.3148, Equation

(6.2).
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zmf(x) =



1, x ≤ a

1− 2 · (x−ab−a )2, a ≤ x ≤ a+b
2

2 · (b− x
b−a)2, a+b2 ≤ x ≤ b

0, x ≥ b

(6.2)

• NegativeLow(NL), Gaussian symmetrical function with σ = −0.1173 and c =

−0.4, Equation (6.3).

gaussmf(x) = e
−(x−c)2

2σ2 (6.3)

• Zero(Z), Gaussian symmetrical function with σ = 0.2045 and c = 0.

• PositiveLow(PL), Gaussian symmetrical function with σ = 0.1173 and c = 0.4.

• PositiveHigh(PH), S-shaped function with a = 0.8 and b = 0.3148, Equation (6.4).

smf(x) =
1

1 + e−a(x−b)
(6.4)

Seven functions were defined to the outputs as can be seen in Fig. 6.15b:

• NegativeHigh(NH), Z-shaped function with a = −0.8 and b = 0.2.

• NegativeMedium(NM ), Gaussian symmetrical function with σ = 0.2 and c = −0.4.

• NegativeLow(NL), Gaussian symmetrical function with σ = 0.2 and c = −0.2.

• Zero(Z) , Gaussian symmetrical function with σ = 0.2 and c = 0.

• PositiveLow(PL), Gaussian symmetrical function with σ = 0.2 and c = 0.2.

• PositiveMedium(PM ), Gaussian symmetrical function with σ = 0.2 and c = 0.4.

• PositiveHigh(PH), S-shaped function with a = 0.8 and b = 0.2.

A set of twenty-five rules were implemented in the fuzzy logic architecture as presented

in Table 6.2.

After the fuzzy logic block, the signals are passed through the output conditioning block

that performs two functions: (i) low pass filtering to avoid eventual abrupt changes in

control signals and, thus, ensuring comfortable navigation to the user; and (ii) signal

adjustments to obtain the walker’s angular velocity range.
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Table 6.2: Fuzzy logic rules regarding the angular velocity controller.

Fl/Fr NegHigh NegLow Zero PosLow PosHigh
NegHigh ωw = Z ωw = Z ωw = NL ωw = NM ωw = NH

NegLow ωw = Z ωw = Z ωw = NL ωw = NL ωw = NM

Zero ωw = PL ωw = PL ωw = Z ωw = NL ωw = NL

PosLow ωw = PM ωw = PL ωw = PL ωw = Z ωw = Z

PosHigh ωw = PH ωw = PM ωw = PL ωw = Z ωw = Z

6.5.2 Controller Evaluation

An experiment was conducted with the proposed control strategy in order to evaluate its

effectiveness. The user was asked to performed u-shaped path using the robotic walker

with normal speed. Fig. 6.16 shows snapshots of instants of such experiment. It is

noteworthy that the u-shaped path is analyzed in four phases: first, a first straight path

(Fig. 6.16a); second, a first curve turning to the left (Fig. 6.16b); third, a second curve

turning to the left (Fig. 6.16c); Finally, a last straight path (Fig. 6.16d).

(a) (b)

(d)(c)

Figure 6.16: Snapshot performing an u-shaped path by the user with the proposed
control strategy.

Fig. 6.17 shows the control data recorded from the experiment during 50 seconds. In

Fig. 6.17a, it is possible to observe lower values for the y-axis components when the

subject is walking on a straight path (from 0 to 18th s and from 30th to 50th s). These

intervals did not yield control actions on ωw (Fig. 6.17b).

In Fig. 6.17a, the two left curves can be observed after the 18th and 25th seconds. A

positive peak on Fly and a negative peak on Fry characterize such turning events. In the

same manner, a control action to turn to the left is yield, which can be observed in ωw
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Figure 6.17: Control data of a experiment conducted in an u-shaped path with the
proposed control strategy. (a) Fly and Fry. (b) Angular velocities: control action
ωw(C) and measured ωw(R). (c) Distances parameters. (d) Linear velocities: control

action vw(C), measured vw(R) and vh.

(Fig. 6.17b). Finally, there is no significant delay between the control action, ωw(C),

and the measured angular velocity, ωw(R).

To perform this experiment a desired distance dd equal to 0.5 m was selected, which

was kept almost constant during all experiment (Fig. 6.17c) even when curves were

performed: d̃ was always lower than 0.1 m.

In Fig. 6.17d, the control action (vw) follows the human linear velocity (vh), as expected.

Finally, there is not a significant delay between the control action, vw(C), and the

measured linear velocity, vw(R).

6.6 Chapter Conclusions

This chapter presented the design and proof of concept of a multimodal interface that

provides an online estimation of the human-walker interaction. The estimated parame-

ters are used to drive a Smart Walker. Such multimodal sensor platform monitors the

whole interaction through LRF, inertial sensor information, and 3D force sensors in or-

der to attain a natural and reliable interface for the walker. The information provided by
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these different sensor technologies are fused according to a strategy aimed at providing a

broad characterization of the walker-assisted gait phenomenon: legs location detection,

human hip and walker orientation, and upper-limb interaction forces.

The parameters proposed show that it is possible to estimate the human velocity from

the walker only using a LRF sensor, which was validated in the previous chapter. Addi-

tionally, combining signals obtained from the upper-limb guiding forces and the human

hip orientation angle, it is also possible to monitor completely the motion chain when

the user is turning from the passenger to locomotor units.

The parameters estimation was precise, showing also repeatability with continuous turns

in the user path. In the same way, the mean rate of cadence rejection in the hip

orientation and upper-limb guiding forces was 71 %.

The proposed filtering strategies and parameter estimation aims at developing more

adaptable control strategies and safer robotic walker controllers. Such controllers will

enable the development of functional compensation strategies in clinical environment.

Furthermore, it constitutes a suitable framework to continuously monitor gait param-

eters for follow up of certain pathologies and assess the evolution of the rehabilitation

processes.

This chapter also presented an example of a control strategy based on both pHRI and

cHRI. Such controller utilizes force sensors and LRF (Laser Range Finder) to control

a robotic walker without attaching any sensor on the user body. This approach com-

bines user information about forearm reaction forces and gait kinematics from the legs

scanning localization.

Remarkably, one of the main advantages of the proposed method is its computational

efficiency. The estimated parameters do not present a considerable increase in the exe-

cution time. For this reason, this multimodal interface is suitable for real time control

applications.



Chapter 7

Conclusions and Future Works

As previously presented, there is a significant need to improve the ability of patients

with gait impairments to promote safe and efficient ambulation. This thesis introduces

some concepts that could be useful for the design of assistive and rehabilitation devices.

Specifically, this thesis defines the concepts of physical and cognitive Human-Robot

Interaction (HRI) for walker-assisted gait, with the aim of developing a more natural

human-robot interaction.

Two new control strategies for HRI were proposed and validated. On the one hand,

a control strategy for cognitive HRI during walking was presented using Laser Range

Finder (LRF) and Inertial Measurement Units (IMU) sensors. A satisfactory result was

obtained in terms of stable performance in the simulation environment. Such controller

was implemented and validated in two robotic platforms: a mobile robot and a robotic

walker. The controller keeps the robot continuously following in front of the human

during walking in both implementations. Moreover, in the robotic walker evaluation,

a comparison between the user guiding the walker and the walker following the user

showed a similar behavior in terms of control errors. Consequently, this controller is

suitable for natural human-robot interaction.

On the other hand, an implementation of a control strategy based on physical and

cognitive HRI was presented. Such controller utilizes force sensors and a LRF to control

a robotic walker without attaching any sensor on the user body. The controller keeps the

walker continuously following in front of the user as a cognitive feature. Additionally,

106
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the physical interaction provides a more predictive behavior when the user performs

curves, such as shown during the experimental validation.

Two methods for fusing LRF and IMU sensors to estimate the control inputs were

proposed and validated. The first one is a human-robot interaction parameters detection

synchronized with gait cycles was implemented for human tracking from a mobile robot.

The second strategy relies on adaptive estimation and filtering of gait components. In

the experimental studies, despite of the continuous body oscillation during walking, the

parameters estimation was precise and unbiased. It also showed repeatability when

speed changes and continuous turns were performed. Estimation errors were lower than

10 % in both methods.

This thesis also presented the design and proof of concept of a multimodal interface that

provides an online estimation of a human-walker interaction parameters. The estimated

parameters are used to drive a Smart Walker. Such multimodal sensor platform monitors

the whole interaction through LRF, inertial sensor information, and 3D force sensors

in order to attain a natural and reliable interface for the walker. The information

provided by these different sensor technologies are fused aiming at providing a broad

characterization of the walker-assisted gait phenomenon, which includes legs location

detection, human hip and walker orientation, and upper-limb interaction forces.

The parameters proposed in such multimodal interface show that is possible to estimate

the human velocity from the walker only using a LRF sensor. Additionally, combining

signals obtained from the upper-limb guiding forces and the human hip orientation angle,

it is also possible to monitor completely the motion chain when the user is turning from

the passenger to locomotor units.

The proposed filtering strategies and parameter estimation aim at developing more

adaptable control strategies and safer robotic walker controllers. Such controllers will

enable the development of functional compensation strategies in clinical environment.

Furthermore, they constitute a suitable framework to continuously monitor gait param-

eters for follow up of certain pathologies and assess the evolution of the rehabilitation

processes.

Remarkably, one of the main advantages of the proposed methods is its computational
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efficiency. The estimated parameters do not present a considerable increase in the exe-

cution time. For this reason, this multimodal interface is suitable for real time control

applications.

Currently, the cognitive HRI controller presented in this thesis has been implemented

in a new robotic platform, which is a Wearable Robotic Walker (named CPWalker) to

support novel therapies for Cerebral Palsy (CP) rehabilitation. This platform integrates

a smart walker along with a passive lower-limb exoskeleton as a wearable device as can

be seen in Fig. 7.1. CPWalker enables the use of a robotic platform through which the

infant can start experiencing autonomous locomotion in a rehabilitation environment.

The platform is currently under validation with a group of CP patients at Niño Jesus

Hospital in Madrid, Spain.

Figure 7.1: CPWalker Platform.

As future work, a clinical protocol is being prepared to validate the interaction strategies

and the robotic device with patients. Clinical evaluation and the adaptation of the

interaction scheme is an important future task to clinical rehabilitation. Experiments

will be conducted with people with motor disabilities to characterize the pathological

walker-assisted gait and also to evaluate the interaction schemes developed.
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Several refinements and extensions of the presented control strategies are conceivable.

One potential improvement of the existing force interaction controller is the implemen-

tation of a variable admittance controller. Such as aforementioned in the third chapter,

physical interaction can help in setting rules for cognitive evaluations of the environment

during interaction tasks. For instance, a smart walker could provide the user different

levels of force feedback according to different types of therapy, or regarding inadequate

gait patterns.

In this thesis, a comparison between hip motion information and upper-limb reaction

forces shows that the interaction forces contain information more predictable regarding

the human motor intentions. However, the integration of other sensory modalities re-

lated to human motor control, including neural signals from the central nervous system

(e.g., electroencephalography) and neural muscular activation (EMG) could enable more

predictable control strategies.

As aforementioned, smart walkers present potential benefits for mobility assistance and

gait rehabilitation, but it is also clear that the new generations of robots will work

in close interactions with human beings. New robotic walkers should address the novel

problem of social acceptability and intuitive human-robot interaction taking into account

the environment. Therefore, new technological breakthroughs are also required, such as:

(i) control strategies for adapting to dynamic and open environments populated by

human beings and (ii) the sensor and control levels should deal with incompleteness and

uncertainty. In fact, real world situations are highly complex for being fully modeled

using classical tools (e.g., kinematics and dynamics approaches). Consequently, it is

necessary to introduce probabilistic reasoning approaches in the control architecture,

which is an emerging topic of research in the human-robot interaction field.
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