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ABSTRACT 

 

Automated reading and analysis of human emotion has the potential to be a powerful tool to 

develop a wide variety of applications, such as human-computer interaction systems, but, at 

the same time, this is a very difficult issue because the human communication is very 

complex. Humans employ multiple sensory systems in emotion recognition. At the same way, 

an emotionally intelligent machine requires multiples sensors to be able to create an affective 

interaction with users. Thus, this Master thesis proposes the development of a multisensorial 

system for automatic emotion recognition. 

 

The multisensorial system is composed of three sensors, which allowed exploring different 

emotional aspects, as the eye tracking, using the IR-PCR technique, helped conducting studies 

about visual social attention; the Kinect, in conjunction with the FACS-AU system technique, 

allowed developing a tool for facial expression recognition; and the thermal camera, using the 

FT-RoI technique, was employed for detecting facial thermal variation. When performing the 

multisensorial integration of the system, it was possible to obtain a more complete and varied 

analysis of the emotional aspects, allowing evaluate focal attention, valence comprehension, 

valence expressions, facial expression, valence recognition and arousal recognition. 

 

Experiments were performed with sixteen  healthy adult volunteers and 105 healthy children 

volunteers and the results were the developed system, which was able to detect eye gaze, 

recognize facial expression and estimate the valence and arousal for emotion recognition, 

 

This system also presents the potential to analyzed emotions of people by facial features using 

contactless sensors in semi-structured environments, such as clinics, laboratories, or 

classrooms. This system also presents the potential to become an embedded tool in robots to 

endow these machines with an emotional intelligence for a more natural interaction with 

humans. 

 

Keywords: emotion recognition, eye tracking, facial expression, facial thermal variation, 

integration multisensorial. 

 



 
 

RESUMO  

 
A leitura e análise automatizada da emoção humana tem potencial para ser uma ferramenta 

poderosa para desenvolver uma ampla variedade de aplicações, como sistemas de interação 

homem-computador, mas, ao mesmo tempo, é uma questão muito difícil porque a 

comunicação humana é muito complexa. Os seres humanos empregam múltiplos sistemas 

sensoriais no reconhecimento emocional. Assim, esta dissertação de mestrado propõe o 

desenvolvimento de um sistema multissensorial para reconhecimento automático de emoções.  

 

O sistema multisensorial é composto por três sensores, que permitiram a exploração de 

diferentes aspectos emocionais, o seguimento do olhar, utilizando a técnica IR-PCR, ajudou a 

realizar estudos sobre atenção social visual; O Kinect, em conjunto com a técnica do sistema 

FACS-AU, permitiu o desenvolvimento de uma ferramenta para o reconhecimento da 

expressão facial; E a câmera térmica, usando a técnica FT-RoI, foi empregada para detectar a 

variação térmica facial. Ao realizar a integração multissensorial do sistema, foi possível obter 

uma análise mais completa e variada dos aspectos emocionais, permitindo avaliar a atenção 

focal, a compreensão da valência, a expressão da valência, a expressão facial, o 

reconhecimento de valência e o reconhecimento de excitação. 

 

Experimentos foram realizados com dezesseis voluntários adultos saudáveis e 105 crianças 

saudáveis e os resultados foram o sistema desenvolvido, capaz de detectar o foco do olhar, 

reconhecer expressões faciais e estimar a valência e a excitação para o reconhecimento 

emocional. 

  

Este sistema também apresenta o potencial para analisar as emoções das pessoas por 

características faciais usando sensores sem contato em ambientes semi-estruturados, como 

clínicas, laboratórios ou salas de aula. Este sistema também apresenta o potencial de se tornar 

uma ferramenta incorporada em robôs para dotar essas máquinas de uma inteligência 

emocional para uma interação mais natural com os seres humanos. 
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CHAPTER 1 

1. INTRODUCTION 

 

Humans employ rich emotional communication channels during social interaction by 

modulating their speech utterances, facial expressions, and body gestures. They also rely on 

emotional cues to resolve the semantics of received messages. Interestingly, humans also 

communicate emotional information when interacting with machines. They express affects 

and respond emotionally during human-machine interaction. However, machines, from the 

simplest to the most intelligent ones devised by humans, have conventionally been completely 

oblivious to emotional information. This reality is changing with the advent of affective 

computing. Affective computing advocates the idea of emotionally intelligent machines. 

Hence, these machines can recognize and simulate emotions (figure 1.1). In this context, the 

purpose of this master thesis is the study and implementation of different affective computing 

techniques to develop a multisensorial system for emotions recognition.  

 

This chapter exposes the motivation of this thesis, the proposed system and a general 

introduction of the state of art about automatic emotion recognition (historical development, 

modalities and the principal techniques). The research objectives are also presented.  

 

 

 

1 Figure 1.1 Affective computing advocates the idea of emotionally intelligent machines that 

can recognize and simulate emotions.  
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1.1.  Motivation 

To start, it is important to define some basic concepts about emotions. In Hook (2008) 

emotions are defined as: ―strong, rush and relatively unstable mental processes which are 

followed by some events. Often, emotions are directed to subject that caused it‖. 

The simplest way to divide emotions is categorize it as negative, positive or neutral (Ekman 

1968). In a set of negative emotions are situated, for example, sadness, anger and fear. The 

second set (positive emotions) contains emotions such as happiness and positive surprise. The 

last one (neutral category). However, there is another, very important emotion category, 

namely basic emotions which were defined by Ekman (2003). In his research, he discovered 

that emotion expression depends only on part from human derivation who identified six basic 

emotions: anger, sadness, happiness, surprise, fear and disgust. 

 

The ability to recognize and express these emotions has been developing in the process of 

evolution from thousands of years, therefore such ability is completely natural for human 

being. Which is present since childhood (Figure 1.2) and allows to take appropriate decisions 

and have different reactions. Moreover, ability to express emotions allows to notify 

surrounding people about our mental state. An easy-to-understand example of the processes 

that generate emotions based on the research of Ekman (2003) is present in the animated 

movie ―Inside Out‖, which is about how five emotions (personified as the characters Anger, 

Disgust, Fear, Sadness and Joy) grapple for control of the mind of an 11-year-old girl named 

Riley during the tumult of a move from Minnesota to San Francisco. 

 

 

 

 
2 Figure 1.2 The emotions are mental processes present since childhood and they are very 

important in human communication. 
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The motivation for many researchers to study the automatic analysis of human affective 

behavior is the potential wide variety of applications (Figure 1.3) such as human-computer 

interaction, health-care, computer assisted learning, anomalous event detection, and 

interactive computer games. Among various cues that express human emotion, nonverbal 

information like facial cues, plays an important role in analyzing human behavior. Human 

emotion recognition, usually combined with speech, gaze and standard interactions, like 

mouse movements and keystrokes, can be used to build adaptive environments by detecting 

the user‘s affective states (Maat and Pantic, 2007). Similarly, one can build socially aware 

systems (DeVault et al., 2014), or robots with social skills like Sony‘s AIBO and ATR‘s 

(Robovie Ishiguro, 2001). Detecting students‘ frustration can help improve e-learning 

experiences (Kapoor, 2007). Gaming experience can also be improved by adapting difficulty, 

music, characters or mission according to the player‘s emotional responses (Blom, 2014). 

Pain detection is used for monitoring patient progress in clinical settings (Irani, 2015). 

Detection of truthfulness or potential deception can be used during police interrogations or job 

interviews (Ryan, 2009). Monitoring drowsiness or attentive state and emotional status of the 

driver is critical for the safety and comfort of driving (Vural 2007). Depression recognition 

from facial expressions is a very important application in the analysis of psychological 

distress (Scherer 2013). Finally, in recent years successful commercial applications like 

Emotient, Affectiva, RealEyes and Kairos perform largescale internet-based assessments of 

viewer reactions to ads and related material for predicting buying behavior. 

 

 
3 Figure 1.3 Different applications for automatic emotion recognition: A) The integration of 

emotion recognition with robotic rehabilitation, B) Monitoring drowsiness or attentive state 

and emotional status of the driver, C) emotion recognition with computer serious games into a 

rehabilitation scenario, D) robots with social skills. 
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Robotic for rehabilitation and therapy has established a new paradigm for higher efficiency 

and physical performance compared to the frequently tedious conventional rehabilitation 

process based on the repetition principle stated in Burke et al. (2009). The integration of a 

robot with computer serious games into a rehabilitation or therapy scenario has outlined a 

promising approach by offering sessions in a more stimulating physical and psychological re-

education environment. Furthermore, rehabilitation robotic provides a repository for data 

analysis, diagnosis, therapy customization and maintenance of patient records. The 

involvement of the user is probably one of the most important mechanisms through which 

therapy produces clinical benefits. At the same time the engagement of the user with 

therapeutic exercises is an important topic in the rehabilitation robotics research field. 

Sophisticated software and robots are currently being implemented in pedagogical therapies 

aiming at the behavioral improvement of children with Autism Spectrum Disorder (ASD). 

(Figure 1.4). Applications for intervening in emotional and social recognition skills are 

presented by Thomeer et al. (2015) and Scassellati et al. (2012). In the literature, there are 

examples of robots with playful friendly form, used as a pedagogical tool for the social 

development of children with autism (Michaud e Clavet, 2001; Robins et al., 2005; Goulart et 

al., 2015). These robots are meant to get the child's attention and to stimulate him/her to 

interact with the environment. In addition, they provide situations of significant and 

sophisticated interaction through speech, sounds, visual indications and movements (Michaud 

e Clavet, 2001). Facilitating contact and visual focus, the robot can be a platform for shared 

interaction, allowing other people (other children with or without autism and adults) to 

interact instantly. Thus, robots can facilitate the interaction of children with ASD with other 

humans (Robins et al., 2005; Werry et al., 2001). 

 

 
4 Figure 1.4 Computer applications and robots used as a pedagogical tool for the social 

development of children with autism. 

Studies aimed at improving and understanding the behavior and emotions of individuals with 

ASD are increasing due to the improvement in the technological area, the development of 

increasingly robust computers and robots, and better sensors. Thus  main motivation in the 

development of this research is to contribute with the understanding of emotions in the 

therapy of children with and without autism. 
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1.2.  Context of the problem 

Between the years 2013 and 2015 at the Intelligent Automation Laboratory of the Federal 

University of Espírito Santo (UFES-LAI) the robot MARIA (acronym for Mobile 

Autonomous Robot for Interaction with Autistics) was built. MARIA is a mobile robot with a 

special costume and a monitor to display multimedia contents, designed to stimulate cognitive 

and social interaction skills in children with ASD, promoting eye gaze, touch, and imitation, 

besides interaction with people. Figure 1.5A shows an image of the first versión of the robot 

MARIA, which was developed by Goulard (2015) and Valadão (2016). Although the usability 

of this robot was demostrated, it has some limitations, such as the fact of the robot be only 

remotely controlled, and not having a emotion recognition system onboard. This pilot studies 

with MARIA showed the need to create a new version of this robot named New-MARIA 

(Figure 1.5B), in order to include new devices to catch the children‘s attention, it enhance the 

probability of interaction with children with ASD, both in terms of quantity and quality.  

 

 

5 Figure 1.5 MARIA is a robot to stimulate cognitive and social interaction skills in children 

with ASD, A) MARIA (2013-2015), B) New-MARIA (2015-2018) 

New-MARIA, is still in development, but uses a system of cameras and sensors capable of 

capturing images of children with ASD, to identify classes of emotions and focus on an object 

or an image. It also has an animated face for interaction with such children. Those new 

features were designed in order to facilitate the stimulation of social skills and study of 

emotions and focus of attention. 

 

In the New-MARIA project, five sub-systems were proposed, which allow autonomous 

navigation, robot control, multimedia interaction, social interaction, therapeutic-Robot-Child 

approach and automatic emotion recognition. Figure 1.6 shows the block diagram of the sub-

system  of New-MARIA. 
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6 Figure 1.6 New-MARIA 2 blocks diagram 

The system requirements that allow the use of this in a robot for therapy of children with 

autism are presented in  Goulart (2015) which can be summarized in Table 1.1 divided in 10 

items (6 functional and 4 technical): 

 

1. Detecting of focal attention and point of interest. 

2. Allowing the valence comprehension. 

3. Allowing the expressions comprehension. 

4. Recogniting automaticly facial expression. 

5. Recogniting automaticly valence. 

6. Integrating multisensorial emotional evaluation. 

7. Contactless and non-invasive system. 

8. Portable system and easily embedded in a mobile robot. 

9. Robust system for light, noise, temperature and humidity in semi-controlled 

environments 

10. Easy system set up calibration and configuration. 

  

1 Table 1.1: Functional and technical requirements of the project. 

 Functional requirements Technical requirements 
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1.3.  State of the art 

 

1.3.1 Historical evolution of emotion recognition 

The scientific study of the emotions began with Charles Darwin‘s The Expression of Emotions 

in Man and Animals book, first published in London in 1872 (Darwin 1872).  Darwin 

gathered evidence that some emotions have an universal facial expression, cited examples and 

published pictures suggesting that emotions are evident in other animals, and proposed 

principles explaining why particular expressions occur for particular emotions which, he 

maintained, applied to the expressions of all animals. Most of such systems attempted to 

recognize a small set of prototypic emotional expressions, i.e. joy, surprise, anger, sadness, 

fear, and disgust. Following the work of Darwin (1872) more recently Ekman (1976, 1993) 

and Izard et al. (1983) proposed that basic emotions have corresponding prototypic facial 

expressions.  

 

 Recognizing user‘s emotional state is then one of the main requirements for computers to 

successfully interact with humans. Most of the works in the affective computing field do not 

combine different modalities into a single system for the analysis of human emotional 

behavior, different channels of information (mainly facial expressions and speech) are 

considered independently to each other. In the area of unimodal emotion recognition, there 

have been many studies using different, but single, modalities. Facial expressions in Pantic 

(2000), vocal features in Scherer (1996), body movements in Camurri (2003) and McNeill 

(1992). Unimodal sensors have been used as inputs during these attempts, while multimodal 

emotion recognition is currently gaining ground (Pantic, 2003). Nevertheless, most of the 

works consider the integration of information from facial expressions and speech and there 

are only a few attempts to combine information from body movement and gestures in a 

multimodal framework. Gunes and Piccardi (2006), for example, fused, at different levels, 

facial expressions and body gestures information for bimodal emotion recognition. In this 

study we explore the state of the art about the various modalities used in emotion 

classification and the most important techniques used for emotions recognition.  

 

First scientific study of the emotion published 

 Darwin (1872): study about emotions in―The Expression of the Emotions in Man and 

Animals‖  

Emotions have a universal facial expression 

 Ekman and Friesen (1976-1993): study about facial emotions and FACS in ―Pictures 

of Facial Affect‖ and ―Facial expression and emotion‖ 

 Lang (1980-1990): study about SAM  in ―Emotion, attention, and the startle reflex‖ 

  Studies about modalities for emotions recognition 

 McNeill (1992): study about body gestures  in ―Hand and mind: What gestures reveal 

about thought ― 

 Scherer (1996): study about Speech, in ―Adding the Affective Dimension: A new look 

in speech analysis and synthesis‖ 
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 Rimm‐Kaufman and Kagan (1996): study about thermal emotions, in ―The 

psychological significance of changes in skin temperature‖  

 Genno et al. (1997): study about thermal emotions, in ―Using facial skin temperature 

to objectively evaluate sensations‖  

Automatic unimodal systems for emotions recognition 

 Pantic and Rothkrantz (2000): automatic facial emotions recognition, in ―Automatic 

analysis of facial expressions‖   

 Schuller and Rigoll (2002): automatic speech, in ―Recognising interest in 

conversational speech‐comparing bag of frames and supra‐segmental features‖  

 Camurri et al (2003): automatic Body Gestures, in ―Recognizing Emotion from 

Movement: Comparison of Spectator Recognition and Automated Techniques‖  

Multimodal systems for emotions recognition 

 Pantic and Rothkrantz (2003): multimodal emotions, in ―Towards an Affect-sensitive 

Multimodal Human-Computer Interaction‖  

 Nakasone et al. (2005): EMG, skin conductance, in ―Emotion recognition from 

electromyography and skin conductance‖ 

 Gunes et al. (2006): automated Multimodal emotions, in ―Emotion recognition from 

expressive face and body gestures‖  

Quality adaptative multimodal and robust systems 

 Gupta et al. (2016): quality adaptative multimodal and robust, in ―A quality adaptive 

multimodal affect recognition system for user‐centric multimedia indexing‖  

  

 

 
7 Figure 1.7 Timeline for the evolution of emotion recognition. 

 

 

 

1872 

•Darwin  (human and animals emotions)  

•The Expression of the Emotions in Man and Animals    

1976-93  

•Ekman (Facial emotions, FACS) Pictures of facial affect ;Facial expression and emotion 

•Lang (study about SAM Scales) Emotion, attention, and the startle reflex 

1990-99  

•McNeill (Body Gestures) Hand and mind: What gestures reveal about thought 

•Scherer (Speech)  Adding the affective dimension: A new look in speech analysis 

•Rimm‐Kaufman  (thermal) The psychological significance of changes in skin temperatura  

2000-04 

•Pantic  (Automatic Facial emotions)Automatic analysis of facial expressions 

•Schuller (Automatic speech) Recognising interest in conversational speech‐comparing features 

•Camurri  (automatic  Body Gestures) Recognizing Emotion from Movement  

2005-14 

•Pantic. (Multimodal) Towards an Affect-sensitive Multimodal Human-Computer Interaction 

•Nakasone  (EMG, Skin conductance ), Gunes  (Automated Multimodal face and body) 

2015-17 

•Gupta (Multimodal quality adaptative) 

•A quality adaptive multimodal affect recognition system for user‐centric multimedia indexing  
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1.3.2 Modalities of emotion recognition  

Various modalities of emotional channels can be used for the automatic recognition of human 

emotions and each one provides different measurable information that the machine needs to 

retrieve and interpret to estimate human emotion. 

 

Visual modality 

The visual modality is rich in relevant informational content and includes the facial 

expression, eye gaze, pupil diameter, blinking behavior, and body expression. The most 

studied nonverbal emotion recognition method is facial expression analysis (Gelder, 2009). 

Perhaps, that is because facial expressions are the most intuitive indicators of affect.  

 

An automatic facial analysis system from images or video usually consists of four main parts. 

First, face detection in the image or face tracking across video frames. Second, feature 

extraction by many methods requiring a face registration to be performed. During registration, 

fiducial points (e.g., the corners of the mouth or the eyes) are detected, allowing features 

extraction from the face with techniques depending on the data modality (Nair, 2009). The 

approaches are divided into geometric or appearance based, global or local, and static or 

dynamic. Other approaches use a combination of these categories. Finally, machine learning 

techniques are used to discriminate between facial expressions. These techniques can predict a 

categorical expression or represent the expression in a continuous output space, and can either 

model or do not model temporal information about the dynamics of facial expressions (Alyuz, 

2012). 

 

In addition to facial-expression analysis, eye-based features such as pupil diameter, gaze 

distance, and gaze coordinates, and blinking behavior have been used in multimodal systems. 

In fact, Panning et al. (2012) found that in their multimodal system, the speech paralinguistic 

features and eye-blinking frequency were the most contributing modalities to the 

classification process. 

 

On the other hand,  body expression for emotion recognition has been debated in the 

literature, McNeill (1992) maintains that two-handed gestures are closely associated with the 

spoken verbs. Hence, they arguably do not present new affective information; they simply 

accompany the speech modality. Consequently, some researchers Pantic et al. (2003) argue 

that gestures may play a secondary role in the human recognition of emotions. This suggests 

that they might be less reliable than other modalities in delivering affective cues that can be 

automatically analyzed.  

 

Affect recognition using body expression involves tracking the motion of body features in 

space. Works rely on the use of three-dimensional (3D) measurement systems that require 

markers to be attached to the subject‘s body (Kleinsmith et al., 2007). However, some 

markerless solutions involve video cameras, such as Sanghvi et al. (2011), and wearable 

sensors, as in Kleinsmith  et al. (2011). Once the motion is captured, a variety of features are 

extracted from body movement. In particular, the following features have been reliably used: 
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body or body part velocity (Gong et al. 2010), body or body part acceleration (Bernhardt et 

al., 2007), amount of movement (Savva et al., 2012), joint positions, nature of movement 

(e.g., contraction, expansion, and upward movement), body parts orientation (e.g., head and 

shoulder) (Kleinsmith et al., 2007; Savva et al., 2012), and angle or distance between body 

parts (e.g., distance from hand to shoulder and angle between shoulder to shoulder vectors) 

(Bernhardt et al., 2007). 

 

Audio modality  

Speech carries two interrelated informational channels: linguistic information that express the 

semantics of the message and implicit paralinguistic information conveyed through prosody. 

Both of these channels carry affective information.  

 

 Linguistic speech channel build an understanding of the spoken message and provides a 

straightforward way of assessing affect. Typically, an automatic speech recognition algorithm 

is used to convert speech into a textual message. Then, a sentiment analysis method interprets 

the polarity or emotional content of the message. However, this approach for affect 

recognition has its pitfalls because it is not universal, and a natural language speech processor 

has to be developed for each dialect (Ambady and R. Rosenthal, 1992). 

 

Paralinguistic speech-prosody channel sometimes, it is not about what we say, but how we 

say it. Therefore, speech-prosody analyzers ignore the meaning of messages and focus on 

acoustic cues that reflect emotions. Before the extraction of tonal features from speech, 

preprocessing is often necessary to enhance, denoise, and dereverberate the source signal 

(Weninger et al., 2015). Then, using windowing functions, low level descriptors (LLDs) 

features  can be extracted, such as: pitch (fundamental frequency F0), energy (e.g., maximum, 

minimum, and root mean square), linear prediction cepstral (LPC) coefficients, perceptual 

linear prediction coefficients, cepstral coefficients (e.g., mel-frequency cepstral coefficients, 

MFCCs), formants (e.g., amplitude, position, and width), and spectrum (mel-frequency and 

FFT bands) (Eyben et al., 2009). 

 

Physiological modality 

Physiological signals can be used for emotion recognition through the detection of biological 

patterns that are reflective of emotional expressions. These signals are collected through 

contact sensors that are affixed to the body (Dalgleish et al., 2009), and using brain imaging 

like in Poh et al. (2011) and Mc Duff et al. (2014). 

  

There are a multitude of physiological signals that can be analyzed for affect detection. 

Typical physiological signals used for the assessment of emotions are electroencephalograph 

(EEG), electrocardiography (ECG), electromyography (EMG), skin conductance, respiration 

rate, and skin temperature. In Al Osman and El Saddik (2016) ECG records the electrical 

activity of the heart and from the ECG signal, the heart rate (HR) and heart rate variability 

(HRV) can be extracted. HRV is used in numerous studies that assess mental stress (Al 

Osman, 2016; Healey and Picard, 2005; and Jovanov et al., 2003). EMG measures muscle 
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activity and is known to reflect negatively valenced emotions (Nakasone, 2005). EEG is the 

electrical activity of the brain measured through electrodes connected to the scalp and 

forehead. EEG features are often used to classify emotional dimensions of arousal, valence, 

and dominance as proposed in (Gupta and Falk, 2016). Skin conductance measures the 

resistance of the skin by passing a negligible current through the body. The resulting signal is 

reflective of arousal (Nakasone, 2005) as it corresponds to the activity of the sweat glands and 

the autonomous nervous system (ANS). Finally, respiration rate tends to reflect arousal 

(Homma and Masaoka, 2008), while skin temperature carries valence cues (Rimm‐Kaufman  

and Kagan, 1996). 

 

Table 1.2 shows a summary of the modalities for emotions recognition and their main 

characteristics. The modalities with better performance for the technical of the system 

requirements are facial expresion recognition, eye gaze traking and thermal variation 

detection. 

 

2 Table 1.2   Modalities for emotions recognition. 

Modalities Channels measured Feature 
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Facial 

expression 

Visual FACS, AU, FAP  Yes Yes Yes Yes 

Eye gaze Visual Eye gaze Yes  Yes Yes Yes 

Body expression Visual Body gestures Yes/Not difficult Difficult Difficult 

Linguistic speech 

channel 

Audio Speech recognition Yes Yes Difficult Difficult 

Paralinguistic 

speech-prosody 

channel 

Audio Speech-prosody 

recognition  

Yes Yes Yes Yes 

Physiological 

signals (EEG, 

EMG, ECG) 

Physiological Electrocardiography 

Electromyography 

Electroencephalograph

Respiration rate 

Not Difficult Not  Difficult 

Skin 

conductance 

Physiological Skin resistance Not Yes Yes Difficult 

Thermal 

variation 

Physiological Skin  temperature Yes  Yes  Yes Yes 
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After selecting the three modalities that best adapt the requirements (Facial expression. 

Thermal variation), the techniques to implement each modality are presented below. 

 

1.3.3 Techniques for emotion recognition 

 

Facial expression recognition 

Techniques to facial expression recognition may be categorized into two main classes. 

Descriptive coding schemes parametrize Facial Expresions (FE) in terms of surface properties 

which focus on what the face can do. Judgmental coding schemes describe FEs in terms of the 

latent emotions or affecttivity that are believed to generate them.  

 

Descriptive coding schemes focus on what the face can do. The most well-known example of 

such systems are Facial Action Coding System (FACS) that describes all possible perceivable 

facial muscle movements in terms of predefined action units (AUs). All AUs are numerically 

coded and facial expressions correspond to one or more AUs. Although FACS is primarily 

employed to detect emotions, it can be used to describe facial muscle activation regardless of 

the underlying cause. Face Animation Parameters (FAP), it is a standard to enable the 

animation of face models defined by the Moving Pictures Experts Group (MPEG) in the 

MPEG-4 that describes facial feature points (FPs) that are controlled by FAPs. The value of 

the FAP corresponds to the magnitude of deformation of the facial model in comparison to the 

neutral state. Though the standard was not originally intended for automated emotion 

detection, it has been employed for that goal in Lin et al. (2012). These coding systems 

inspired researchers to develop automated image or video-processing methods that track the 

movement of facial features to resolve the affective state (Cohen et al., 2003). FAP is now 

part of the MPEG-4 standard and is used for synthesizing FE for animating virtual faces. It is 

rarely used to parametrize FEs for recognition purposes (Aleksic and Katsaggelos, 2006). Its 

coding scheme is based on the position of key feature control points in a mesh model of the 

face. Maximally Discriminative Facial Movement Coding System (MAX) (Izard, 1983), 

another descriptive system, is less granular and less comprehensive. Brow raise in MAX, for 

instance, corresponds to two separate actions in FACS. It is a truly sign-based approach as it 

makes no inferences about underlying emotions. 

 

Judgmental coding schemes, on the other hand, describe FEs in terms of the latent emotions 

or affects that are believed to generate them. Because a single emotion or affect may result in 

multiple expressions, there is no 1:1 correspondence between what the face does and its 

emotion label. A hybrid approach is used to define emotion labels in terms of specific signs 

rather than latent emotions or affects. Examples are EMFACS (Emotion FACS) developed by 

Ekman and Friesen (1983), which scores facial actions relevant for particular emotion 

displays, and AFFEX system which is used for identifying affect expressions by holistic 

judgment (Izard 1983). In each system, expressions related to each emotion are defined 

descriptively. As an example, enjoyment may be defined by an expression displaying an 

oblique lip-corner pull co-occurring with cheek raise. 
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Eye track movements 

While a large number of different techniques to track eye movements have been investigated 

in the past, three eye tracking techniques have emerged as the predominant ones and are 

widely used in research and commercial applications today. These techniques are: (1) 

videooculography (VOG), video-based tracking using head-mounted or remote visible light 

video cameras; (2) video-based infrared (IR) pupil-corneal reflection (PCR); and (3) 

Electrooculography (EOG). While particularly the first two video-based techniques have a lot 

of properties in common, all techniques have application areas where they are more useful. 

 

VOG presented in Hansen and Majaranta (2012) and Goldberg and Wichansky (2003) is a 

video-based eye tracking system that relies on off-the-shelf components and video cameras 

and it can, therefore, be used for developing ‗‗eye aware‘‘ or attentive user interfaces that do 

not strictly require accurate gaze point tracking (Hansen and Pece, 2005). In contrast, due to 

the additional information gained from the IR-pupil corneal reflection, IR-PCR presented in 

Duchowski (2003); and Bengoechea et al. (2012), provides highly accurate gaze point 

measurements of up to 0.5° of visual angle and such technique has, therefore, emerged as the 

preferred one for scientific domains, such as usability studies or gaze-based interaction, and 

commercial applications, such as in marketing research. Finally, EOG presented by Hori et al. 

2006 and Borghetti et al. (2007) has been used for decades for ophthalmological studies as it 

allows measuring relative movements of the eyes with high temporal accuracy. 

 

Thermal variation detection  

Facial Thermal Feature Points (FTFP) is used to detect transitions of emotional states by 

synthesizing the facial expressions in Sugimoto (2000). The facial termal changes caused by 

muscular movement were analyzed. The system used a neutral expression face and a test face. 

The two faces were geometrically reformed and were compared in order to develop a thermal 

differential model. Results of this work suggest that it is possible to detect facial temperature 

changes caused by both the transition of emotional states and physiological changes. 

The results further suggested that detected facial temperature changes could help in 

understanding the transition of emotional states. A combination of visual images, thermal 

features, and audio signals were employed for recognizing affective states (Yoshitomi et al., 

2000). The study examined possibilities of classifying neutral, happy, sad, angry, and 

surprised faces through integration of visual, thermal, and audio signals. In another attempt, 

using bio-physiological signals for achieving Automated Facial Expression Classification 

(AFEC) and Automated Affect Interpretation (AAI) functionality Khan et al. (2004); Khan et 

al. (2005) used transient facial thermal features from 21 participant faces for AFEC and AAI. 

Thermal images with normal and pretended expressions of happiness, sadness, disgust, and 

fear were captured. Facial points that undergo significant thermal changes with a change in 

expression termed Facial Thermal Feature Points (FTFPs) were identified. 
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Facial Thermal - Region of Interest (FT-RoI), researches applying this technique to 

psychological processes, showed that an activity that involves a mental effort can lower the 

facial temperature: for our body mental activity resembles the stress response, which produces 

a process of vasoconstriction in the nose. The interesting thing about this study is that the 

decrease in temperature is not due to a physiological factor, such as, for example, physical 

activity, but psychological, a stressful task, showing a specific thermographic pattern. This is 

the key to applying this technique to other psychological processes that contain similar, 

comparable responses of the nervous system, such as emotions. 

When it comes to studying complex emotions, concepts such as arousal (amount of activation 

that produces a stimulus) or valence (the positive or negative sense of emotion) are basic 

concepts (Lang, 1995; and Lang, 2005). the idea has been to use thermography as a somatic 

marker of emotional response, working with the hypothesis that facial thermograms can be 

used as reliable indicators of emotional parameters. To this end, three different studies are 

described by Salazar-López et al. (2015). In all of them the participants visualized several sets 

of images of different types on a computer, while the thermal camera detected the temperature 

of their face. For data processing, the face was divided into regions of interest (RoI), such as 

the forehead, tip of the nose, cheeks or orbital area, and the RoI before, during and after the 

presentation of stimuli. 
 

Table 1.3   shows a comparison between the techniques studied and from which it was 

concluded that the techniques IR-PCR, FACS-AU, FT-RoI are those that meet the functional 

and technical requirements to develop the system for emotion recognition. Commercially are 

many devices, this work proposed the EyeTribe device to implement the IR-PCR technique, 

Kinect 2.0 for developed the FACS-AU and Therm-App camera for the FT-RoI technique 

implementation. 

 
3 Table 1.3   Techniques for emotions recognition. 

Modalities Techniques Methods Functional 

requirements 

achieved 

Technical 

requirements 

achieved 

Eye tracking  (VOG) video based tracking using head-

mounted or remote color video  

1,2,3 7,10 

(IR-PCR) video-based infrared pupil-corneal 

reflection 
1,2,3 7,8,9,10 

EOG Electrooculography 1 8 

Facial 

expression 

FAP Face Animation Paramters 4 7,8,10 

MAX Maximally Discriminative Facial 

Movement Coding System 

4,5 7,8,9,10 

FACS-AU Facial Action Coding System- 

Action Units 

4,5 7,8,9,10 

EMFACS Emotion FACS 4,5,6 7,8,9 

AFFEX affect expressions by holistic 

judgment 

4,5 7,8,9 

Facial thermal  

variation 

FTFP Facial Thermal Feature Points 4,5 7,8,9 

FT-RoI Facial Thermal - Region of 

Interest  

5 7,8,9,10 
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1.3.4 Multimodal data base  

 

One of the challenges in developing multimodal emotion recognition methods is the need to 

collect multisensorial data from many different subjects. Also, it is difficult to compare the 

obtained results with other studies given that the experimental setup is different. Therefore, it 

is essential to use data bases to produce repeatable and easy-to-compare results, but currently 

very few multimodal affect databases are publicly available. 

The data bases used in emotion recognition are classified into three types: posed, induced, and 

natural-emotional. For the posed data bases, the subjects are asked to act out a specific 

emotion while the result is captured. Typically, facial, body expression and speech 

information are captured in such databases. However, posed databases has some limitations, 

as they cannot incorporate biosignals; it cannot be guaranteed that posed emotions trigger the 

same physiological response as spontaneous ones, according to Jerritta et al. (2011). For 

induced databases, the subjects are exposed to a stimulus (watching a video or picture, 

listening an audio or receiving a physical stimulus) in a controlled setting, such as laboratory. 

The stimulus is designed to evoke certain emotions. In some cases, following the stimulus, the 

subjects are explicitly asked to act out an emotional expression. The eNTERFACE‘05 

presented by Martin et al. (2006) is an example of such data base. For the natural data bases, 

the subjects are exposed to a real-life stimulus such as interaction with human or machine and 

data collection mostly occurs in a noncontrolled environment. Table 1.4 shows some details 

of emotional data bases. 
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4 Table 1.4 Summary of the characteristics of publicly accessible emotional databases. 

Reference # de 

subjects 

DB type Modalities   Description Labeling 

UT-Dallas 

O‘Toole  2005 

284 Induced   Visual 5 emotions, 10 minutes 

emotion inducing 

videos 

Feel trace  

AAI Roisman 

(2004) 

60 Natural Visual and audio 6 emotions, Interviewed 

and asked to describe 

the childhood 

experience 

Observers 

judgment 

VAM (2008) 19 Natural Visual and audio Valence, activation , 

Dominance, 

dimensional labeling 

SAM (valence, 

arousal) 

Observers 

judgment 

NIST 

Equinox(2005) 

600 Posed  Thermal Infrared 3 emotions (smile, 

frowning and surprise) 

N/A 

IRIS (2006) 30 Posed  Thermal 3 emotions (surprise, 

laughing and anger) 

N/A 

GEMEP, 

Bänziger (2012)  

10 Posed Visual and audio 17 emotions  N/A 

AFEW, Dhall 

(2012) [109] 

N/A(1426 

video 

clips) 

Natural Visual and audio Six basic emotions + 

neutral 

Expressive 

keywords from 

movie subtitles 

+ observers‘ 

verification 

HUMAINE 

(2007) [115]  

Multiple 

databases 

Induced 

and 

natural 

Visual, audio, and 

physiological 

(ECG, skin 

conductance and 

temperature, and 

respiration) 

Varies across databases Observers‘ 

judgment + 

selfassessment 

MAHNOB-HCI 

(2012)  

27 Induced Visual (face + eye 

gaze), audio, and 

physiological 

(EEG, ECG, skin 

conductance and 

temperature, and 

respiration) 

Dimensional and 

categorical labeling 

Selfassessment 

(SAM for 

arousal and 

valence) 

PhySyQX 

(2015) [120]  

21 Natural Audio and 

physiological (EEG 

and near-infrared 

spectroscopy, 

NIRS) 

Dimensional labeling SAM (valence, 

arousal, 

dominance) plus 

nine other 

quality metrics 

(e.g., 

naturalness, 

acceptance) 
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1.4. Objetives 

 

GENERAL 

The general goal of this work is to implement an emotion recognition system based on facial 

features using several sensors, in order to improve the accuracy of the system. 

 

SPECIFICS 

 Develop a platform that allows to acquire eye movements and facial thermal and color 

images.  

 Implement methods to detect eye gaze points through an eye tracker device.  

 Implement methods for facial expression recognition using color camera.  

 Develop algorithms for processing images from the thermal camera for emotion detection.  

 Implement methods for emotion analysis based on multisensory integration.   

 Evaluate the proposed system using statistical index.  

 

1.5. Organization of the document  

 

This master thesis is divided in eight chapters: Chapter 1 exposes the motivation of this work 

and the state of the art in emotion recognition application, challenges, opportunities and trends 

of automatic emotion analysis. The objectives of research are also presented. Chapter 2 

contains the methodology and materials including the description of the developed platform 

and the environment for experimental test. Chapter 3 exposes the overview of eye tracking for 

visual social attention and the methods implemented to detect the eye gaze point through the 

eye tracker device. Chapter 4 contains the overview about facial analysis for emotion 

recognition and the methods developed for facial expression recognition using Kinect. 

Chapter 5 exposes the overview of thermal analysis for emotion variation and the algorithms 

implemented for processing images from the thermal camera for emotion detection. Chapter 6 

provides the overview of the multisensorial emotion recognition and the integration 

techniques implemented in this work. Chapter 7 provides the experimental protocol to test the 

multimodal system and evaluate the proposed system using statistical index. In addition, the 

results and discussion are also presented. Finally, Chapter 8 presents the conclusions and 

future works.  
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CHAPTER 2 

 

2. METHODOLOGY 
 

 

The methodology proposed in this work is an experimental study of the emotions. To develop 

this study, the following was required: construct a multisensorial platform for data and image 

collection, implement methods to process the information collected through sensors, design 

protocols and procedures for experimental testing, create a database with the acquired 

information (data, image, signals), define target population of test and specify the 

characteristics of the experimental environment. Figure 2.1 shows a diagram of the 

experimental platform implemented. 

 

 
8 Figure 2.1 Experimental platform implemented 
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2.1.  Experimental Platform 

 

The experimental platform implemented in this work is composed of one Microsoft 

Kinect 2.0 device, which provides high quality color and depth images to be used to obtain 

facial points FACS-AU; one Opgal App-therm thermal camera, to be used to determine the 

RoI (Region of Interest) in the thermal image, so that the features of the face can be extracted; 

one eye tracker device for gaze tracking; two minicomputer for image and data processing; 

one tablet for thermal image processing and a Desktop computer, for offline processing and 

reporting of results. For platform operation different software programs are used.  

2.1.1. Hardware 

The main equipments used in this work are: the eye tracker (Eye Tribe), the 3D and color 

camera (Kinect), and the thermal camera (Therm-App). 

The Eye Tribe Tracker is an eye tracking system that can calculate the location where a 

person is looking by means of information extracted from person‘s face and eyes. The eye 

gaze coordinates are calculated with respect to a screen the person is looking at, and are 

represented by a pair of (x, y) coordinates given on the screen coordinate system. The user 

needs to be located within the tracker‘s trackbox. The trackbox is defined as the volume in 

space where the user can theoretically be tracked by the system. When the system is 

calibrated, the eye tracking software calculates the user's eye gaze coordinates with an 

average accuracy of around 0.5 to 1º of visual angle. Assuming the user sits approximately 60 

cm away from the screen/tracker, this accuracy corresponds to an on-screen average error of 

0.5 to 1 cm. The main components of the Eye Tribe Tracker are a camera and a high-

resolution infrared LED. Table 2.1 shows the EyeTribe features (Theeyetribe, 2013).  

5 Table 2.1 Eye tracker EyeTribe features (Source: Theeyetribe, 2013). 

Sampling rate 30 Hz and 60 Hz mode 

Accuracy 0.5° (average) 

Spatial resolution 0.1° (RMS) 

Latency < 20 ms at 60 Hz 

Calibration 5, 9, 12 points 

Operating range 45 cm – 75 cm 

Tracking area 40 cm × 30 cm at 65 cm distance 

Screen sizes Up to 24 inches 

API/SDK C++, C# and Java included 

Data output Binocular gaze data 

Dimensions (W/H/D) 20 × 1.9 × 1.9 cm (7.9 × 0.75 × 0.75 inches) 

Weight 70 g 

Connection USB 3.0 Superspeed 
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Kinect is a line of motion sensing input devices by Microsoft for Xbox 360 and Xbox One 

video game consoles and Windows PCs. Based around a webcam-style add-on peripheral, it 

enables users to control and interact with their console/computer without the need for a game 

controller, through a natural user interface using gestures and spoken commands. Table 2.2 

shows the Kinect features (Kinect for Windows, 2014). 

 

6 Table 2.2 Kinect device features (Source: Kinect for Windows, 2014). 

Feature Benefits 

Improved body tracking The enhanced fidelity of the depth camera, combined with 

improvements in the software, have led to a number of body 

tracking developments. The latest sensor tracks as many as six 

complete skeletons, and 25 joints per person. The tracked 

positions are more anatomically correct and stable and the range 

of tracking is broader. 

Depth sensing 

512 x 424  

30 Hz  

FOV: 70 x 60  

One mode: .5–4.5 meters 

With higher depth fidelity and a significantly improved noise 

floor, the sensor gives improved 3D visualization, improved 

ability to see smaller objects and all objects more clearly, and 

improves the stability of body tracking. 

1080p color camera  

30 Hz (15 Hz in low 

light) 

The color camera captures full, 1080p video that can be displayed 

in the same resolution as the viewing screen, allowing for a broad 

range of powerful scenarios. In addition to improving video 

communications and video analytics applications, this provides a 

stable input on which to build high quality, interactive 

applications. 

New active infrared (IR) 

capabilities  

512 x 424  

30 Hz 

In addition to allowing the sensor to see in the dark, the new IR 

capabilities produce a lighting-independent view—and use IR 

and color at the same time. 

Kinect for Xbox One 

sensor dimensions  

(length x width x height) 

9.8" x 2.6" x 2.63" (+/- 1/8") 

24.9 cm x 6.6 cm x 6.7 cm 

Length: The Kinect cable is approximately 9.5 feet (2.9 m) long 

Weight: approximately 3.1 lbs (1.4 kg) 

A multi-array microfone Four microphones to capture sound, record audio, as well as find 

the location of the sound source and the direction of the audio 

wave. 

 

Therm-App is an innovative thermal imaging device which offers two image processing 

modes: superb high-resolution day/night imaging, and basic thermography. Small enough, and 

combined with a set of interchangeable lenses, Therm-App provides top quality thermal 

capabilities and the advantages of an open-source platform. 

Therm-App extends human vision by turning an Android device into a thermal camera. This 

lightweight, modular, high resolution device attaches onto Android devices allowing to 
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display, record, and share thermal images for Night Vision and Thermography applications. 

Table 2.3 shows the Thermal camera features. 

 

7 Table 2.3 Therm-App features (Source: Therm-App, 2014). 

Minimal Requirements Android 4.1 and above, supporting USB OTG 

Imager 384 x 288 microbolometer 

LWIR 7.5 -14um 

Optics 6.8mm lens (55° x 41°) 

13mm lens (29°x 22°) 

19mm lens (19°x14°) 

35mm lens (11° x 8°) 
Focus Manual, 0.2m to infinity 

Frame Rate 8.7Hz 

Weight 138 grams / 4.86 onces 

Size 55 x 65 x 40mm (2.16 x 2.55 x 1.57in) 

Operating Temperature -10°C to +50°C (14°F to +122°F) 

Storage Temperature -20°C to +50°C (-4°F to +122°F) 

Power Supply No battery, 5V over USB OTG cable, power consumption < 

0.5W 

Certifications CE, FCC, RoHS 

Encapsulation IP54 

Mount/Handle Ergonomic handle, using 1/4"-20 standard tripod mount 

Device Attachment Clip-on for smartphone (5 -10cm span) 

Resolution 384 x 288 pixels (>110,000 pixels ) 

Accuracy +/- 3°C or 3% (@25°C) 

Sensitivity NETD <0.07°C 

Temperature Range Calibration 5 – 90 °C 
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2.1.2. Software 

The software implementation of the system requires two operating systems and four 

programming languages, in addition to various software applications. Figure 2.2 shows a 

block diagram. 

 

 

9 Figure 2.2 Software diagram  

 

 

 The operating system Windows 8.1 and Android Kitkat 4.4 are used. Windows 8.1 is a 

computer operating system released by Microsoft. Android is a mobile operating system 

developed by Google, based on the Linux kernel and designed primarily for touchscreen 

mobile devices such as smartphones and tablets. 

The programming languages used in this work are: Processing 3.2.4, Matlab 2013b, C# 6.0 

and Python 3.6.0. Processing is a flexible software sketchbook and a language for learning 

how to code within the context of the visual arts.  

Matlab, (Matrix Laboratory) is a multi-paradigm numerical computing environment and 

fourth-generation programming language. A proprietary programming language developed by 

MathWorks, Matlab allows matrix manipulations, plotting of functions and data, 

implementation of algorithms, creation of user interfaces, and interfacing with programs 

written in other languages, including C, C++, C#, Java, Fortran and Python.  

C# is a multi-paradigm programming language encompassing strong typing, imperative, 

declarative, functional, generic, object-oriented (class-based), and component-oriented 

programming disciplines. It was developed by Microsoft within its .NET initiative and later 

approved as a standard by Ecma (ECMA-334) and ISO (ISO/IEC 23270:2006). C# is one of 

the programming languages designed for the Common Language Infrastructure. C# is a 

general-purpose, object-oriented programming language.  

Python is an easy to learn, powerful programming language. It has efficient high-level data 

structures and a simple but effective approach to object-oriented programming. Python‘s 
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elegant syntax and dynamic typing, together with its interpreted nature, make it an ideal 

language for scripting and rapid application development in many areas on most platforms. 

The Python interpreter and the extensive standard library are freely available in source or 

binary form for all major platforms from the Python Web site, and may be freely distributed. 

The same site also contains distributions of and pointers to many free third party Python 

modules, programs and tools, and additional documentation. The Python interpreter is easily 

extended with new functions and data types implemented in C or C++ (or other languages 

callable from C). Python is also suitable as an extension language. 

The software for eye tracker is the EyeTribe Software Development Kit (SDK) and Python 

EyeTribe Server version 0.0.3. The EyeTribe SDK is composed of EyeTribe Server and 

EyeTribe UI. The EyeTribe UI provides a direct feedback of the current tracking state and 

allows to change the default settings. The main window is depicted in Figure 2.3.  

Python EyeTribe Server is an EyeTribe Toolbox for Matlab. It consist on a set of functions 

that can be used to communicate with eye trackers manufactured by the EyeTribe. The 

communication process is not direct, but goes via a sub-server that receives input from Matlab 

(when the functions from this toolbox are called), and then sends commands to the actual 

EyeTribe server. Its setup is rather odd, but it is the solution to come up with to get around the 

problem of Matlab not having suitable multithreading functionality. This functionality is 

required for running a heartbeat Thread (which keeps the connection with the EyeTribe alive), 

and another Thread to monitor samples (and write these to a log file). Similar results might be 

obtained by using callback functions within Matlab's TCP/IP framework, but that approach 

causes timing errors. 

 

10 Figure 2.3 EyeTribe UI Interface 
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Kinect for Windows SDK 2.0.1 allows building desktop applications for Windows. Kinect 

SDK 2.0 improved body, hand and joint orientation.With the ability to track as many as six 

people and 25 skeletal joints per person including new joints for hand tips, thumbs, and 

shoulder center and improved understanding of the soft connective tissue and body 

positioning, it is able to get more anatomically correct positions for crisp interactions, more 

accurate avateering, and avatars that are more lifelike. Advanced facial tracking and 

resolution 20 times greater, enabling the application to create a mesh of more than 1,000 

points for a more accurate representation of a person‘s face. Build avatars that appear more 

lifelike. 

 

11 Figure 2.4 Brekel Pro Face interface for Kinect 2 

 

Brekel Pro Face v2 is a Windows application that enables 3D animators to record and stream 

3D face tracking of up to 6 people using a Kinect. 

Its  principal characteristics are multi-person face tracking (1-6 people simultaneously), tracks 

head position/rotation, tracks 20 different face shapes (including left/right asymmetry), works 

in realtime, no offline processing required, no calibration required, supports FBX formats v6, 

v7, ASCII and binary, record audio in sync from Kinect‘s microphone or any other audio 

source, adjustable scale/offset per animation unit, build face mesh resembling actor, visualizes 

Color, InfraRed, Depth, 3D PointCloud and Face Mesh, ability to resample output data from 

30fps to custom frame rates and optionally stream directly to the Unity3D game engine. 

For the thermal camera are used the software Android Therm-App and Redis BSD 3.2.7. 

Android Therm-App is an application to use the therm-app camera in Android devices. Redis 
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is an open source used as a database. It supports data structures such as strings, hashes, lists, 

sets, sorted sets with range queries, bitmaps, hyperloglogs and geospatial indexes with radius 

queries. Redis has built-in replication, Lua scripting, LRU eviction, transactions and different 

levels of on-disk persistence, and provides high availability via Redis Sentinel and automatic 

partitioning with Redis Cluster.  

 
12 Figure 2.5 Therm-App Android interface. 

 

For communication and remote access a Wi-Fi network and a virtual remote access VNC 

application are used. Ultra VNC 1.2.1.2 is an easy to use and free remote computer access 

softwares, that can display the screen of another computer on other screen. VNC use the 

Remote Frame Buffer protocol (RFB) that allows a desktop to be viewed and controlled 

remotely over the Internet. A VNC server must be run on the computer sharing the desktop, 

and a VNC client must be run on the computer that will access the shared desktop. 

UltraVNC Server and Viewer are an easy to use, free software that can display the screen 

of one computer (Server) on the screen of another (Viewer). The program allows the viewer 

to use their mouse and keyboard to control the Server Computer remotely. Figure 2.6 shows 

the UltraVNC interface. 

 

13 Figure 2.6 UltraVNC interface for client-server remote control 
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2.2.  Environment for experimental test  
 

To set up for the experimental tests,  the platform shown in Figure 2.7 is used. Since image 

and videos are used to induce the subjects‘ emotion, it is chosen a quiet room as the 

experimental environment to ensure that the effect of the screened videos is not compromised. 

The facial emotions  recording system includes a color camera system (Kinect), thermal 

camera, eye tracker, illumination system, thermometer and humidity sensor. 

 

 

14 Figure 2.7 Environment for experimental test. 

 

Although thermal emissivity from the facial surface is relatively stable under illumination 

variations, it is sensitive to the temperature of the environment. Therefore, it is recorded the 

temperature of the room during the experiments. Room temperature between 20° and 23°, and 

the humidity ranges between  30% and 40%.  

 

 

 

15 Figure 2.8 Real environment for experimental tests. 
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2.3. Procedures 
 

This research approaches three procedures in order to assess the visual attention, facial 

expressions detection and emotion recognition. This work has the approval of the Ethics 

Committee of UFES, number 1.121.638. 

Procedure 1 – this procedure has the participation of sixteen healthy adult volunteers, with 

mean age of 28 years old (±5.32). This procedure evaluate social visual attention (focal 

attention and point of interest of volunteer and valence comprehension). 

Procedure 2 – This procedure has the participation of eleven healthy adult volunteers, with 

mean age of 28.27 years old (±5.33). This procedure evaluate expression recognition 

(recognition of facial expressions, focal attention and emotional variation). 

Procedure 3 – This procedure has the participation of 105 healthy children volunteers, with 

age ranged between 6 to 11 years old. This procedure evaluate multisensorial emotion 

recognition (Focal attention and point of interest of volunteer, facial expression recognition, 

valence recognition and emotional state). 

The experimental procedures use the platform presented in Section 2.1, and environment for 

experimental test presented in Section 2.2. In Chapter 7, a complete description of the 

procedures are presented. 

 

2.4. Database  
 

This research proposes a database focused on aspects of posed (MARIA Database 1) and 

induced (MARIA Database 2) emotion recognition and inference. First, we describe in details 

the design, collection, and annotation of the database. The number of subjects is 16 adults and 

105 children, the modalities of recognition are visual (face + eye gaze) and physiological 

(thermal). The description of emotion target are six basic emotions, valence and activation, 

emotion positive or negative. The data labeling is, Observers‘ verification, SAM (valence, 

arousal) and Observers judgment. Table 2.4 shows details of emotional database implemented 

in this work. 

8 Table 2.4 characteristics of emotional data bases implemented in this work. 

Reference # de 

subjects 

DB type Modalities   Description 

Maria Database 

1 

16 adults 

105 

Children 

Posed  Visual (face + eye 

gaze), Thermal  

6 basic emotions 

Maria Database 

2 

16 adults 

105 

Children 

Induced Visual (face + eye 

gaze), Thermal  

6 basic emotions, 

valence and activation 
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CHAPTER 3 

 

 

3. EYE GAZE POINT DETECTION THROUGH THE EYE TRACKER DEVICE. 

 

Eye tracking is a technology that consists of calculating the eye gaze point of a user as 

he/she looks around. A device equipped with an eye tracker (ET) enables users to use their 

eye gaze as an input modality that can be combined with other input devices like mouse, 

keyboard, touch and gesture, referred as active applications in games, operative system 

navigation, e-books, market research studies, and usability testing. These eye tracker 

applications can be used for new assistive technologies in medical and psychological research, 

and in this research there is an interest of studying the use of eye tracker for visual social 

attention applications.  

 

This chapter exposes the development of a toolbox for Matlab with four modules which allow 

the use of eye tracking systems for therapy (physical, psychological and medical), control of 

intelligent environment and studies about visual social attention. The interface developed 

allows the volunteers to connect applications from Matlab to the eye tracker device, thus 

allowing them to control the sampling time, to set-up and configure the system, besides that, 

to manage the eye tracker data. Furthermore, they can generate analysis and graphic reports, 

and control the graphic interface. This chapter also presents the different kinds of analyses 

during several types of eye tracker tests (off-set error, velocity of tracking, latency, concentric 

windows, graphics report and graphic user interface). 

 
 

 
16 FFigure 3.1 General system of the eye tracker.  
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3.1.  Background: Human-Computer interaction using eye tracking strategies  

 

The most publicized strategy of applying eye tracking to existing interfaces is to use the eye 

to perform pointing and selection tasks. Glenstrup and Engell-Nielsen (1995) have argued on 

numerous evidences that there is a relationship between the interests of individuals and what 

they are looking. Another source of evidence is the model built by Card Moran and Newell 

(1980), which provides the time T spent for the execution of pointing tasks with the use of 

traditional devices such as the mouse. Equation (3.1) shows a simplified version of the model: 

 

                      (3.1) 

In such simplified model, the motor subtask (i.e., what effectively moves the device into the 

correct position), takes time TP, preceded by a cognitive task that takes TM time, and a visual 

task (i.e., visual target search in question) that takes time TV. TR is the system response time. 

Today, despite evidence that this model is not accurate (Hornof and Kieras, 1999), it still 

provides a reasonable estimate and justify the efforts to apply tracing to look at the execution 

of pointing tasks. 

However, the direct mapping look (more specifically of fixations) to a system selection 

command creates the problem identified by Jacob (1990), called "Midas Touch", in which a 

selection can be activated at any position of the observed screen by the user, whether he/she 

intended to do it or not. This makes necessary a post-filtering for the acquired eye tracker 

data, representing a challenge in designing interaction technique to avoid the Midas Touch 

problem and, implementing mechanisms to make the computer understands when the user 

wants to perform a selection command. The first approach to solve this problem is the 

implementation of a lag time, in which the selection of an object is performed only after a 

time interval. 

Several applications using eye tracking can be found in literature. Kocejko, Bujnowski, and 

Wtorek (2008) presented an Eye Mouse, which is a system to people with motor disabilities 

where the mouse position is controlled by eye gaze. Lupu et al. (2011) presented a system 

called Asistsys, which is based on eye tracking, making it possible to the people with motor 

disability to express their wishes and needs only by visualizing options on a monitor. 

Studies about the impact of a system based on eye tracking in the quality of life of people 

with amyotrophic lateral sclerosis, a neurodegenerative disease, are presented in (Calvo et al., 

2008). In fact, the eye tracking technique has quite potential of application in interfaces to 

people with this disease, because they maintain their cognitive ability and, in the most cases, 

the ability to control the eye gaze. According to Calvo (2008), people who took part in its 

studies and tested the system noted an improvement in the quality of life, because they were 

able to communicate independently, and the communication was easier, briefer and less 

painful. 

Figure 3.2 shows a block diagram of the InfraRed Pupil-Corneal Reflection (IR-PCR), eye 

tracking system, that is considered in this work. The Eye Tribe Tracker is an eye tracking 

device that can calculate the location where a person is looking by means of information 
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extracted from person‘s eye and head. The eye gaze coordinates are calculated with respect to 

a screen where the person is looking at, and are represented by a pair of (x, y) coordinates 

given on the screen coordinate system. In order to track the user‘s eye movements and 

calculate the on-screen gaze coordinates, the eye tracker must be placed below the screen and 

pointing to the user. 

The user needs to be located within the tracker‘s trackbox. The trackbox is defined as the 

volume in space where the user can theoretically be tracked by the system. The size of the 

trackbox depends on the frame rate, with a higher frame rate offering a smaller trackbox. 

When the system is calibrated, the eye tracking software calculates the user's eye gaze 

coordinates with an average accuracy of around 0.5 to 1º of the visual angle. Assuming the 

user sits approximately 60 cm away from the screen/tracker, this accuracy corresponds to an 

on-screen average error of 0.5 to 1 cm. 

A                                                                              B 

 

17 Figure 3.2 A) Eye tracking process; B) Diagram block of the IR-PCR eye tracker system. 

 

3.2. Implementation of the eye tracker interface  

 

Figure 3.3 shows the block diagram of the interface developed in Matlab to facilitate the use 

of different eye tracker systems in assistive technologies. In this interface four modules are 

implemented, which allow: acquiring and managing data from the eye tracker (ET); 

calibrating and preparing the system according to the user disability; analyzing and generating 

graphical reports; and finally, facilitating the implementation of graphical interfaces 

controlled by eye gaze using the eye tracker. 

 

18 Figure 3.3 Blocks diagram of the proposed eye tracking interface. 
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3.2.1.  Data acquisition and management module 

This module allows connecting the eye tracker server and getting data, measured and pre-

processed to eliminate noise and reduce erroneous data from the device, in order to facilitate 

data access (write and read eye tracking data from a text file). 

 

The communication process of the module for data acquisition is done by the functions 

DataAcquisition() and ConfigurationAcquisition(), via a sub-server in Python, which receives 

inputs from Matlab and then sends commands to the Eye Tribe server, because Matlab does 

not have a suitable multithreading functionality. Figure 3.4 shows the server configuration for 

the eye tracker data acquisition. 

 

19 Figure 3.4 Server communication for eye-tracker data acquisition. 

 

This research also proposes a system with a low pass filter DataFilter(), to filter the signal 

acquired from the eye tracker, which helps some users who have difficulty of staring at a 

fixed point. This filter can be adjusted to both the user‘s eye speed and eye tracker own 

latency. 

In order to access and manage the eye tracker information, Save_data_to_file() and 

Read_Data_from_File() functions to save and read data from a text file, were developed. 

 

3.2.2. Operating set up point calibration and control module  

The procedure used for eye tracking set-up, before using it to map the eye gazing onto a 

screen, is to calibrate the device for each user. Sometimes, there are off-set errors, delays in 

the velocity of tracking, troubles in selecting the right size of the window and doubts about 

the appropriate speed of command activation. In order to measure and evaluate those four 

problems, experimental tests were conducted using the eye-tracker. 

In this module, several functions were developed to perform these tests: Focal_attention() to 

calculate the focal point; Average_of_points_ Attention() to calculate the focal point for a 

data vector; Tracking_objects() to follow trajectories in the screen; 
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Analysis_trought_Espacial_Windows() and Analysis_trought_Temporal_Window() for 

analysis in specific sector of the screen or time. 

 

Test 1: Calibration (off-set correction)  

Figure 3.5a shows the experimental test to quantify the off-set error. In this figure, five points 

corresponding to the center, right, left, bottom and top side of the screen (red polygons) are 

marked. Then the volunteer is asked to look for 5 seconds for each mark in a counter-

clockwise sequence. The data are saved and the error is calculated using the equation (3.2) for 

off-set error estimation, where Ppos is the mark position, ETdata is the estimated position 

measured with the eye tracker device, and max is the maximum data number. 

 

max

max

1






 n

ETdataPpos

Error
                                 (3.2) 

 

 

Test 2: Velocity of tracking 

Figure 3.5b shows the experimental test to estimate the latency of the system. In this 

experiment, the user must follow a point that changes its position on the screen every 5 

seconds. The aim is to measure the time needed for the user to perceive and look to the 

current point that has changed its position from the previous location on the screen. The user 

is able to focus the point according to equation (3.3). In this equation, Tlatency is the delay 

time, which is calculated by subtracting the time the user takes to focus, Tfoco since the 

screen appeared; num is  the number of points to be evaluated. 

num

TscreenTfoco

Tlatency

num

n






 1                     (3.3) 

 

 

 

Test 3: Concentric window size 

Figure 3.5c shows the experimental test to evaluate different window sizes, which is more 

appropriated for the function we want to do. In this test, a window with three concentric 

polygons (150, 100 and 50 pixels size) is displayed for 5 seconds, then the window moves on 

the screen in 5 different positions. The measured data is evaluated to know what percentage is 

within each window and know which size would be more appropriate for the user. 

 

Test 4: Command rate  

Figure 3.5d shows the experimental test to quantify the average command speed. The system 

has a graphical application with 9 commands and asks each user to select the commands in 

ascend order from one to nine. The number of commands per unit of time measures the user 
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ability to transmit commands and, with this information, it is also possible to calculate the 

number of errors in those commands. 

 

a) Test 1 to estimate the off-set error.  b) Test 2 to estimate the velocity of eye 

tracking. 

  
c) Test 3 to estimate the concentric 

windows size. 

d) Test 4 to estimate the Command rate. 

  
20 Figure 3.5 Experimental tests to optimize operating set-up point.  

 

3.2.3. Analysis and graphic reports module  

The module for analysis and graphic reports is developed to analyze and display different 

types of graphics using functions, such as: Time_ET_Graphics()  to plot data of eye tracking 

and variation in time; Frequency_ET_Graphics()  to plot the frequency data of eye tracking; 

Tracking_in_Image_Video() to track in an image or a video; Superposition _ET _ images() to 

plot superposition with other graphic, image or video; and Histogram_Graphics() and 

Analysis_Topographic() to represent data in histograms or topographic images. Figure 3.6 

shows examples of this module. 
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21 Figure 3.6 Analysis and graphic report. A- Topographic image of eye tracker data, B- Time 

eye tracking data graphic and C- spatial eye tracking data graphic. 

 

3.2.4. Graphic User Interface (GUI) 

The graphic interface developed in this research is a 3 x 3 graphic matrix for a total of 9 

commands, a push button to execute the application, another push button for graphic options 

and a title with information of eye position and activation commands. Figure 3.7 shows the 

configurable basic user interface. 

 

 

22 Figure 3.7 Graphic User Interface. 
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3.3. Analysis and results for the ET ToolBox developed   
 

In this research, an experimental procedure for development of an eye tracking interface 

(Matlab Toolbox for eye tracking) for assistive applications was developed in order to assess 

the applicability of an eye tracker device as a tool for visual social attention applications. It 

was implemented four modules for processing eye tracker data. Figure 3.8 shows the class 

diagram of the system with the functions and variables for the four modules developed.  

 

23 Figure 3.8 Class diagram of the developed eye tracking interface. 

This procedure had the participation of sixteen healthy adult volunteers (twelve men and 

four women), with mean age of 28 years old (±5.32). Each volunteer was invited to sit 

comfortably in a chair positioned in front of the screen of a computer (19 inches) and an eye-

tracking device, with eyes at 70 cm from screen and at 60 cm from the eye-tracker. Figure 3.9 

shows the setup used for the experimental tests. A self-calibration of the eye tracker device 

was necessary to gather a good data acquisition, which consisted of tracking visually mobile 

points on the screen and, subsequently, fixed points of known coordinates. The participant 

viewed a set of fixed and mobile points and windows in a computer screen of 19 inches and 

1024 x 768 pixels resolution. 
 

 

24 Figure 3.9 Set up for the experimental tests. 
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•Mouse_Control_ 
with_ET ( ) 

•Visual_Commands 
_Recognition () 

•Create_command() 

•Command_state() 

• --------------------------
-VARIABLES: 

•Number_ of_ 
Commands 

•Command_Actions 

•Command_state 
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 Data acquisition and management module results: low pass filter designed to eliminate noise 

(Butterworth filter) for a maximum velocity of 220ms and with cut frequency of 5Hz. Figure 

3.10 shows the output signal (red) for the eye tracker and the blue line for the filtered signal. 

It is possible to see that the filtering process reduces errors in handling mouse with the eye 

tracker. 

 

25 Figure 3.10: Original and filtered signal of the eye tracker, output signal (red) and filtered 

signal (blue). 

Set-up for Point Calibration: Table 3.1 shows the average errors for the off-set calibration in 

pixels, centimeters and degrees. 

  

9 Table 3.1: Errors for off-set test. 

Screen axis Error   Standard 

deviation 

X(Pixels) 14.74 34 

Y(Pixels) 1.94 40 

X(cm) 3.4 7.8 

Y(cm) 1.9 8.9 

X(°) 0.3 0.6 

Y(°) 0.1 0.7 

 

For the velocity test, the average latency for the system device was of 40 ms and the eye 

response delay was 192 ms. Table 3.2 shows the results. 

10 Table 3.2: Velocity of tracking test. 

Type of 

delay 

Delay (ms) Standard 

deviation 

System 

Latency (ms) 

40 33 

Eye response 

delay (ms) 

192 45 
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In Tables 3.1 and 3.2 the standard deviation is too high because according to the 

documentation of the eye tracker device (The Eye Tribe, 2014), the latency of the device is 

above 16ms and eye response for healthy people is above 200ms. 

Table 3.3 shows the test with concentric window size. The result for average data within 

the window, for windows of 150 pixels was of 95%, for 100 pixels, 85%, and for 50 pixels, 

67%. 

11 Table 3.3: concentric window size test. 

Window Size 

(pixels) 

Data within the window 

(%) 

Standard 

deviation 

150  95 6.3 

100 85 7.2 

50 67 8.7 

 

Table 3.4 shows the results of the test to estimate the command rate of the system and number 

of errors for three different command time lengths: 0.5, 1 and 2 seconds. 

 

12 Table 3.4: Command rate test. 

Command 

time(seconds) 

Command 

velocity (%) 

Number of 

errors 

0.5 1.5 3 

1 0.8 1 

2 0.4 0 

Analysis and graphic reports 

Figures 3.6 and 3.10 are examples for the analysis and graphic reports module. All the results 

in this work were calculated using this module. Another kind of graphic used to analyze the 

system was the histogram. Figure 3.11 shows an example of validation for six images and 

four time windows. The histogram calculates the percentage of visual focus time for each 

image and each time range. 

 

26 Figure 3.11: Histogram for different images. 
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Figure 3.12 shows an example of superposition of eye tracker data and image or video 

files. The system allows real time tracking or off-line superposition in image and video files. 

 

27 Figure 3.12: Example of superposition A) superposition of data and image; B) superposition 

of topographic eye tracker and image. 

Graphic User Interface (GUI) 

The graphic user interface was developed using the results of the different methods to ensure 

greater reliability and user comfort with the following characteristics: maximum configurable 

command is 9, but the user can use less commands; the minimal command time of 0.5 

seconds, but by default 1 second is recommended for optimum work. The size of each 

command window is 200 x 150 pixels and the graphic screen is 1024 x 768 pixels to facilitate 

use in computers, laptops or tablets. The system reliability and the success rate is 90% for 1 

second command rate, and 99% for 2 second command rate. Figure 3.13 shows an example of 

the graphic user interface. The application allows the control of a robot using eye tracking, in 

which six commands were configured to control four directions, in addition to stop option and 

a menu.  

 

28 Figure 3.13 GUI Application: A) Robot command using eye tracking, B) Emotion 

recognition using eye tracking. 
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3.4. Discussion  

 

The modular toolbox developed in this research allows: acquiring and managing data from 

the eye tracker, calibrating and preparing the system according to the user disability; 

analyzing and generating graphical reports; and facilitating the implementation of graphical 

interfaces controlled by eye gaze using the eye tracker. These modules and their implemented 

functions are the basis for the eye tracker applications for visual social attention presented in 

Chapters 6 and 7.   

 

The data acquisition and management module allows connecting Matlab applications with the 

eye tracker using a Python sub-server. In order to correctly connect them, firstly the eye 

tracker server should be connected, then the Python sub-server and, finally, the Matlab 

application should be started. 

 

The configuration and calibration of the system allow testing and setting-up the optimum 

configuration for each user, according to the disability level, and the motor control of eye 

movements. This module is independent of the eye tracker device and can be used with other 

eye tracker systems. 

 

The analysis and graphic report module was developed to allow the study of eye tracker data. 

The graphics can show the variation in time in the focal point. The frequency analysis can 

show the average attention focus, the superposition graphics show the part of the screen where 

the user is viewing, and the histogram analysis is used to compare different regions of interest 

in the image. 

 

The graphic user interface (GUI) developed is being used to control equipments of an 

intelligent environment by people with disabilities, motor intention in robotic walkers, studies 

about valence and emotional based on facial expressions, and in recognition of emotions and 

focus of attention in children with autism spectrum disorder. 

 

In addition, the use of eye-tracking can benefit other applications, which require observation 

and evaluation of human attention objectively and non-intrusively, including games, 

operational system navigation, e-books, market research studies and intelligent environment 

control.  
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CHAPTER 4 

4. FACIAL EXPRESSION RECOGNITION USING THE KINECT 

 

Automated reading and analysis of human emotion has the potential to be a powerful tool to 

develop a wide variety of applications, such as human-computer interaction systems, but, at 

the same time, this is a very difficult issue because the human communication is very 

complex (Murugappan et Al., 2010). There are different ways of communication, verbal and 

non-verbal, such as body gestures, speech, facial expressions and hand gestures (Koesltra et 

Al., 2012). Facial expression communication is especially effective because there are some 

emotions (called basic emotions), whose expressions are the same over the entire population, 

in contrast to communication by body gestures, speech or hand gestures, whose elements are 

different among the cultures throughout the world. 

Ekman and Fiesen (1978) developed a Facial Action Coding System (FACS) that describes all 

possible perceivable facial muscle movements in terms of predefined Action Units (AU). All 

AUs are numerically coded and facial expressions correspond to one or more AU, based on 

the FACS system. In this chapter a system to map detected AU to six basic emotions is 

presented (Figure 4.1). To facilitate the design of this system, five modules are implemented, 

which allow: data acquisition, face detection, AU features extraction, expression classifier 

training and expression recognition. The use of Kinect and the methods implemented in this 

work can benefit automatic emotion recognition applications, which requires observation and 

evaluation of human expressions objectively and non-intrusively. 

 

 

29 Figure 4.1 Expressions recognition system using Kinect. 
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4.1 Background: facial expression recognition using FACS and AU system 

 

Facial expressions result from the contraction of facial muscles, making a temporary 

deformation of the neutral expression. These deformations are typically brief and last mostly 

between 250ms and 5s according to Fasel and Luettin (2003). Darwin (1965) is one of the 

early researchers to explore the evolutionary foundations of facial-expressions display. He 

argues that facial expressions are universal across humans. He contends that there are habitual 

movements associated with certain states of the mind. These habits have been favored through 

natural selection and inherited across generations. Ekman and Fiesen (1978) worked on the 

idea of facial-expression universality to conceive the facial action coding system (FACS) that 

describes all possible perceivable facial muscle movements in terms of predefined action units 

(AUs). All AUs are numerically coded and facial expressions correspond to one or more AUs. 

Although FACS is primarily employed to detect emotions, it can be used to describe facial 

muscle activation, regardless of the underlying cause. FACS presented by Ekman and Fiesen 

(1978) providing a method for objective measurement of facial expressions.  

 

Emotion recognition from facial cues based on FACS rules can be classified as: a) single-

phase, where emotions are recognized directly; and b) two-phase, where the facial AU, which 

are considered as building blocks of facial expressions, are detected first and then the output 

emotion is inferred from the detected AUs. Then latter approach is found to be more practical 

than the former, as most of the facial expressions can be described using a sub-set of 44 AUs 

defined by Paul Ekman. Detecting AUs prior to emotion makes a recognition system more 

suited to a culture-independent interpretation. Besides, it reduces the amount of independent 

training data required to model each emotion as there are around 7,000 emotions in practical. 

 

 

Figure 4.2 shows the six basic expressions described by Paul Ekman, who has also identified 

a set of facial features. Those features can characterize an expression of each basic emotion. 

 

 
30 Figure 4.2 Six basic facial expressions described by Paul Ekman 

 

Sadness: inner corner of eyebrows are raised, eyelids are loose and lip corners are pulled 

down. 
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Happiness: muscles around the eyes are tightened, crow‘s feet wrinkles appears around the 

eyes, cheeks are raised and lip corners are raised diagonally. 

 

Fear: eyebrows are pulled up and together, upper eyelids are pulled up and mouth are 

stretched. 

 

Surprise: entire eyebrows are pulled up, eyelids are also pulled up and mouth are widely 

open. 

 

Anger: eyebrows are pulled down, upper lids are pulled up, lower lids are pulled up and lips 

may be tightened. 

 

Disgust: eyebrows are pulled down, nose is wrinkled and the upper lip is pulled up. 

 

 
4.1.1 Facial Action Coding System (FACS) 

 

Ekman and Friesen (1978) developed the FACS for describing facial expressions by 

Action Units AUs. Of 44 FACS AUs that they defined, 30 AUs are anatomically related to the 

contractions of specific facial muscles: 12 are from upper face, and 18 are from lower face. 

AUs can occur either singly or in combination. When AUs occurs in combination, they may 

be additive, situation in which the combination does not change the appearance of the 

constituent AU, or non-additive, which is the opposite situation, when the appearance of the 

constituents does change. Although the number of AU is relatively small, more than 7,000 

different AUs combinations have been observed by Scherer and Ekman (1982). FACS 

provides descriptive power necessary to describe the details of facial expression. 

Commonly occurring AUs and some of the additive and non-additive AUs combinations 

are shown in Tables 4.1 and 4.2. As an example of a non-additive effect, AU 4 appears 

differently, depending on whether it occurs alone or in combination with AU 1 (as in AU 

1+4). When AU 4 occurs alone, the brows are drawn together and lowered. In AU 1+4, the 

brows are drawn together but are raised due to the action of AU 1. AU 1+2 is another 

example of non-additive combinations. When AU 2 occurs alone, it not only raises the outer 

brow, but also often pulls up the inner brow, which results in a very similar appearance to AU 

1+2. These effects of the non-additive AUs combinations increase the difficulties of AUs 

recognition. 
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13 Table 4.1 Upper face action units and some combinations (source: Ying-Li, 2001). 

 
 

14 Table 4.2 Lower face action units and some combinations (source: Ying-Li, 2001). 

 
 

Table 4.3 lists the names, numbers and anatomical basis of each AU. Most of the AU involves 

a single muscle. The numbers are arbitrary and do not have any significance except that 1 

through 7 refer to brows, forehead or eyelids. The table indicates where more than one muscle 

collapses into a single AU, or where distinguished AU are represented by a single muscle. 

The FACS names given in the table are a shorthand, not meant to describe the appearance 

changes, but a convenience to call them to mind. 
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15 Table 4.3 Action Units list in FACS system (Source: Ekman 1982). 

 

 

4.1.2 Automatic facial features extraction and AU recognition 

Automatic recognition of FACS-AU is a difficult problem and relatively few works have been 

reported. AUs have no quantitative definitions and, as noted, they can appear in complex 

combinations. Mase (1991) and Essa (1997) described patterns of optical flow that 

corresponded to several AUs, but did not attempt to recognize them. Bartlett et al. (1999) and 

Donato et al. (1999) reported some of the most extensive experimental results of upper and 
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lower face AUs recognition. An automated facial expression analysis system must solve two 

problems: facial feature extraction and facial expression classification.  

 
4.1.3 Facial feature extraction 

Contraction of the facial muscles produces changes in the direction and magnitude of the 

motion on the skin surface and in the appearance of permanent and transient facial features. 

Examples of permanent features are the lips, eyes, and any furrows that have become 

permanent with age. Transient features include facial lines and furrows that are not present at 

rest but appear with facial expressions. Even in a frontal face, the appearance and location of 

the facial features can change dramatically. 

 

Table 4.4 shows an example for lips feature extraction: a state lip model represents open, and 

closed. A different lip contour template is prepared for each lip state. The open and closed lip 

contours are modeled by two parabolic arcs, which are described by six parameters: the lip 

center position (xc, yc), the lip shape (h1, h2 and w), and the lip orientation (µ). For tightly 

closed lips, the dark mouth line connecting the lip corners represents the position, orientation, 

and shape.  For the eyes, brows, cheeks, furrows, etc, it is possible to obtain different state 

model representations and, then, extract their features. 

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.4 Facial expression classification 

 

Since each AU is associated with a specific set of facial muscles, using an accurate 

geometrical modeling and tracking of facial features will lead to better recognition results. 

Furthermore, the knowledge of exact facial feature positions could be useful for the area-

based (Yacoob and Davis, 1996), holistic analysis (Bartlett et al., 1999), and optical flow 

based (Lien et al., 2000) classifiers. 

 

16 Table 4.4. Multi-state facial component models of a lip (source: Ying-Li, 2001) 



60 
 

Figure 4.3 depicts the overall structure of the Automatic Facial Action Analysis AFA system. 

Given an image sequence, the region of the face and approximate location of the individual‘s 

face features are detected automatically in the initial frame (Rowley, 1998). Furthermore, the 

contours of the face features and components are adjusted in the initial frame. Both permanent 

(e.g., brows, eyes, lips) and transient (lines and furrows) face features changes are 

automatically detected and tracked in the image sequence. Informed by FACS AUs, the facial 

features can be grouped into separate collections of feature parameters, since the facial actions 

in the upper and lower face are relatively independent for the AUs recognition (Ekman and 

Friesen, 1978). In the upper face, 15 parameters describe shape, motion, eye state, motion of 

brow and cheek, and furrows. In the lower face, 9 parameters describe shape, motion, lip 

state, and furrows. These parameters are geometrically normalized to compensate image scale 

and in-plane head motion. 

 

 

31 Figure 4.3. Feature-based Automatic Facial Action Analysis (AFA) system (source: Ying-Li, 

2001) 

 

 

4.2 Implementation of the system for expression recognition 

Figure 4.4 shows the block diagram of the method for expression recognition developed in 

this research based on the FACS-AU system. To facilitate the design of this interface, five 

modules were implemented, which consist on: data acquisition module for acquiring and 

managing data from the Kinect; face detection module for detecting the face and FACS 

points; AU features extraction module, to allow facial AU recognition; and a train classifier 

and expression recognition modules, for expression detection and classification. 
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32 Figure 4.4 Block diagram of the proposed Expression recognition system 

 

 

4.2.1 Data acquisition  

The data acquisition module is composed of one Microsoft Kinect 2.0 device, which provides 

high quality color, infrared and depth images (Figure 4.5) that are used to obtain a 3D-

positions facial model. The algorithms for data acquisition, filtering and preprocessing were 

developed by methods from Microsoft.Toolkit.FaceTracking (Kinect for Windows SDK, 

2013). 

 

 

33 Figure 4.5 Kinect data acquisition: A) Depth image; B) Infra-red image; C) Color image 4.5 

Kinect data acquisition: A) Depth image; B) Infra-red image; C) Color image. 
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4.2.2 Face feature extraction: Action Units (AUs) 

Functions provided by the Brekel proFace 2 Software applications were used for face 

detection and AU features extractions. 

 

 

Face detection module 

Automatic functions provided by Brekel proFace 2 Software are used to detect a 3D facial 

model, which is based on Colombo (2006)  and Nair  (2009) methods and using curvature 

features to detect high curvature areas, such as the nose tip and eye cavities. Segmentation is 

also applied to 3D face detection. Once the face is detected, geometric correspondence 

between the captured geometry and a model is found. For this the Iterative Closest Point 

(ICP) is used iteratively to align the closest points between the two shapes in the same method 

shown by Alyuz (2012). In such method, visible patches of the face are detected and used to 

discard obstructions before using ICP for alignment. This technique allows the matched 3D 

model to deform. In Mao (2004), a correspondence is established between landmarks of the 

model and the captured data face, using a model to deform the shape to match 3D points to 

the FACS system model. Figure 4.6 shows an example of 3D points detection, extraction and 

match to 3D model FACS using the Brekel proFace 2. 

 

 

34 Figure 4.6 Face detection and 3D facial model creation. 

 

Action Units Features  
 

The AUs features module allows obtain 20 AU features, which are the value of 20 action 

units. Those values are represented as a set of values that range between 1 and -1, which can 

be treated as a vector from a 20-dimensional space. Figure 4.7 shows the module for AU 

feature extraction. 
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35 Figure 4.7 Module for AUs feature extraction. 

Table 4.5 describes the AUs extracted by the features detection module. This module allows 

obtaining 9 bilateral (left/right face side) and 2 unilateral AUs, thus corresponding to 20 

action units. 

17Table 4.5. Description of the 20 AUs features detected in this system. 

 

 

 

N° AU description Quantity  

1-2  AU(1) InnerBrowRaiser  2 (Left/Right) 

3-4 AU(2) OuterBrowRaiser  2 (Left/Right) 

5-6 AU(4) BrowLowerer  2 (Left/Right) 

7 AU(10) UpperLipRaiser   1 (Unilateral ) 

8-9 AU(12) LipCornerPuller  2 (Left/Right) 

10-11 AU(13) CheekPuffer  2 (Left/Right) 

12-13 AU(20) LipStretcher  2 (Left/Right) 

14-15 AU(15) 

LipCornerDepressor 

2 (Left/Right) 

16 AU(26) JawLowerer   1 (Unilateral ) 

17-18 AU(43) EyesClosed  2 (Left/Right) 

19-20 AU(47) JawLeftRight  2 (Left/Right) 
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4.2.3 Expression recognition  

In the emotion detector module, in order to classify the user emotion based on 20 AU, K– 

Nearest Neighbors (KNN) and Linear Discriminant Analysis (LDA) algorithms were used, 

based on the work of Jiawei et al. (2012). 

 

K– Nearest Neighbors (KNN) algorithm 

The KNN algorithm allows to predict a value of variables (20-dimentional AU vector), and 

classifying them into different classes (six basic facial expressions). The main assumption of 

this algorithm is that the state of the observed AU vector can be classified based on previous 

observations of similar AU vectors, which were classified with the same features. The AU 

vector is classified by a majority vote of its neighbors, with the object being assigned to the 

class most common amongst its KNN, where K is a positive number, equal or greater than 1. 
 

 KNN algorithm is a type of fuzzy learning classification method. It means that all 

computations of similar objects (AU vectors) from training examples to the object that is 

currently being classified are made during the classification process. The training set was 

always created by learning process. In this case, this process is based on all previous 

observations. A very interesting issue in this algorithm is how to find a similarity between two 

objects based on their features. In Jiawei et al. (2012), KNN emotion detector is used to 

compute the emotion using Euclidean distance, because, as said previously, the emotion 

features (which are the value of 20 AUs) are represented as set of value between 1 and -1. The 

basic Euclidean distance for the two-dimensional space is represented in Equation (4.1): 

 

                     (4.1) 

However in this work the algorithm, which should find distance between 20-dimension 

vectors, the formula used is represented by Equation (4.2): 

 

  (4.2) 

 

Where: D is the distance (similarity); pn is the object; x1,...,xn and y1,...,yn are the features sets. 

 

By using it, the algorithm can find a similarity of each object from the training set to currently 

classified object and choose the K with most similar objects. In classification mechanism, it 

also has been used a normalization formula for all results after computing the similarity 

among the objects.  

Normalization is a process to adjust values which are measured on different scale to strictly 

specified range. Often it is made in order to allow easier data comparison. In this research, a 

Min – Max normalization method was used, which is based on the work of by Jiawei et al. 

(2012). 
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Linear Discriminant Analysis (LDA) algorithm 

 

LDA or Fisherfaces method (Belhumeur et al., 1997) overcomes the limitations of the 

eigenfaces method by applying the Fisher‘s linear discriminant criterion. This criterion tries to 

maximize the ratio of the determinant of the between-class scatter matrix of the projected 

samples to the determinant of the within-class scatter matrix of the projected samples. 

  

The LDA method tries to find the subspace that best discriminates different facial expressions 

classes. The within-class scatter matrix, also called intra-personal, represents variations in 

appearance of the same individual due to different lighting and face expression, while the 

between-class scatter matrix, also called the extra-personal, represents variations in classes.  

 

In this research, one maximize the distance between the face AU of different classes. One 

minimize the distance between the face AU of the same class. In other words, the objective is 

to maximize the between-class scatter (SB), while minimizing the within-class scatter 

matrix (SW) in the projective subspace. 

 

The within-class scatter matrix (SW) and the between-class scatter matrix (SB) are defined as 

in Equation (4.3). 

 

                                                  (4.3) 

where  is the ith sample of class j, μj is the mean of class j, C is the number of classes, Nj is 

the number of samples in class j. In Equation (4.4), it is defined how the scatter matrix (SB) is 

calculated: 

 

                                                            (4.4) 

where μ represents the mean of all classes. The subspace for LDA is spanned by a set of 

discriminant vectors W = [W1, W2, …, Wd], satisfying Equation (4.5): 

 

                                                              (4.5) 

The within-class scatter matrix expresses how closely facial AU are distributed within the 

classes, while the between-class scatter matrix quantifies how separated the classes are from 

each other. When face AUs are projected onto the discriminant vectors W, facial AUs should 

be distributed closely within the classes and separately between the classes, as much as 

possible. In other words, these discriminant vectors minimize the denominator and maximize 

the numerator in Equation (4.5). Therefore, W can be constructed with the aid of the 

eigenvectors of . 



66 
 

4.3 Analysis and results  

Procedure 

In this test, each volunteer is asked to sit comfortably in a chair positioned in front of a 19-

inches computer screen and a Kinect sensor, with his/her eyes at 60 cm away from the screen 

and at 50 cm from the sensor. The screen displayed the six pictures relative to human facial 

expressions (Figure 4.9) for ten seconds. The participant should imitate each emotional 

expression three times, as shown in Figure 4.8. 

The Kinect device recorded images of each emotional facial expression performed by the 

volunteer, and our algorithm based on KNN or LDA identified the set of features related to 

expressions of each emotion, based on the AUs. The test involved the participation of eight 

healthy adults, aged between 24 and 33 years (M: 26, SD: ±3.81). 

  

36FFigure 4.8: Experimental procedure. Participants imitating the model of emotion facial 

expression displayed on the screen. 

 

 

37 Figure 4.9: Emotional facial expressions viewed by the participants. E1 (surprise), E2 

(sadness), E3 (anger), E4 (disgust), E5 (fear) and E6 (happiness) (Source: Du 2014). 
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AU features  

Figure 4.10 shows the 20 AUs signals from the eight volunteers imitating ten seconds the six 

basic expressions, these vectors are used for our algorithm based on KNN or LDA to 

identified the set of expressions of each emotion 

 

38 Figure 4.10 Twenty AUs signals obtained from eight different volunteers imitating the six 

basic expressions 

Regarding the identification of facial emotions by the Kinect device, using the LDA classifier 

for the three emotional classes (positive, negative and neutral), they were recognized with an 

overall accuracy of 80.1%, being 83.6% for neutral, 81.1% for negative class and 75.8% for 

positive. In turn, the KNN classifier recognized an overall accuracy of 82.9%, being 87.5% 

for neutral, 84.2% for negative class and 77.7% for positive, as shown in Table 4.6. Thus, the 

recognition system of emotional classes was able to identify a large quantity of specific facial 

features related to the neutral emotional class. 

 

18 Table 4.6 Accuracy of the emotion recognition for three class. 

Emotion recognition LDA Accuracy KNN Accuracy 

Positive Class 75.8% 77.7% 

Negative Class 81.1% 84.2% 

Neutral Class 83.6% 87.5% 

Total  80.1% 82.9% 
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Expressions recognition 

 

Regarding the identification of facial emotions by the Kinect device and considering the six 

emotional classes (anger, fear, sadness, happiness, surprise, disgust), the LDA classifier 

identifing them with an overall accuracy of 62%, while the KNN classifier recognized the 

classes with an overall accuracy of 70%, as shown in Table 4.7 and 4.8. Thus, the recognition 

system of emotional classes was able to identify a large quantity of specific facial features. 

 

19 Table 4.7 Confusion matrix for six emotion recognition using LDA 

 

 

20 Table 4.8 Confusion matrix for six emotion recognition using KNN 

 

 

4.4 Discussion 

 

In this chapter, was developed a system for expression recognition based on the FACS-AU 

system to classify six basic expressions. The developed system allows: image acquisition (IR, 

depth and color), face detection (FACS 3D model), features extraction (20-dimensional AU 

vector), classifiers training (LDA or KNN) for six expression recognition (anger, fear, 

sadness, happiness, surprise, disgust and neutral).  This system and the implemented functions 

are the basis for the emotion recognition applications, which are presented in Chapters 6 and 

7.   

  

The image acquisition module allows connecting the Brekel application with the Kinect 

device using the Microsoft Toolkit FaceTracking library from Kinect for Windows SDK 2. 

Then, a 3D facial model is obtained and 20 AU features are detected using the face detection 

Expression Anger Fear Sad Happiness Surprise Disgust 

Anger 49 12 15 15 2 17 

Fear 6 55 12 1 12 2 

Sadness 3 4 48 3 1 0 

Happiness 24 3 7 70 5 9 

Surprise 7 25 6 5 80 0 

Disgust 11 1 12 6 0 72 

Expression Anger Fear Sad Happiness Surprise Disgust 

Anger 58 6 11 12 3 11 

Fear 7 64 15 0 5 3 

Sadness 2 5 50 4 0 2 

Happiness 21 4 6 89 3 5 

Surprise 8 20 8 3 85 4 

Disgust 4 1 10 2 4 75 
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and feature extraction module of Brekel. The quality of the AUs depends on the illumination, 

head movements, distance to the sensor, and facial characteristics and accessories (hair length, 

bangs, beard, mustache, glasses) 

 

The expression recognition module is based on trained classifiers (LDA or KNN). Facial 

expressions for three classes (negative, neutral and positive) were recognized by the 

computational system, with accuracy rates of 80.1% and 82.9% for LDA and KNN classifiers, 

respectively. For six classes, the accuracy rates for LDA was 62.3% and for KNN, it 

was70.1%. 
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CHAPTER 5 

5. EMOTION DETECTION USING THERMAL CAMERA 

Emotions are often perceived in the body and face, where it becomes apparent that changes in 

physiological conditions arise from emotional states. The temperature is a kind of, being a 

physiological indicator used as psychological marker of emotions. Studies suggest that 

Infrared Thermal Imaging (IRTI) may assist detection, recognition, and tracking of faces, 

classification of facial expressions, and Automated Affect Interpretation (AAI). Contraction 

or expansion of facial muscles causes fluctuations in the rate of blood flow. Noninvasive 

detection of any changes in facial thermal features may help in detecting, extracting, and 

interpreting facial expressions or emotions. However, a representative model for estimating 

the relationship between fluctuations in blood flow and facial emotional activity is not yet 

available. 

 

The main goal of the present chapter is to ascertain whether facial thermograms can be used 

as a valid and reliable somatic indicator of emotional parameters. Specifically, this work 

wants to determine if there is a relation between changes in facial temperature and valence, 

arousal and subjective feelings. In this chapter, a system for studying the use of thermography 

as an experimental paradigm to recognize emotions and discover the relationship between 

facial thermal variation and emotional activity is presented.  To facilitate the design of this 

system, four modules are implemented, which allow: data and thermal images acquisition; 

Facial Thermal - Region of Interest (FT-RoI) segmentation; features extraction; and detection 

of facial thermal variation. Figure 5.1 shows a diagram of the system.  

 

39 Figure 5.1 System used to study facial thermal variation detection. 
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5.1. Background: application of thermography to study of emotions  

Few studies have applied thermography to study emotions. Pavlidis, Eberhardt, and Levine 

(2002) have used infrared cameras to measure participants‘ facial temperatures, based on the 

idea that facial temperature changes in various regions of the face correlate with emotional 

experience. In particular, they have studied the emotions of deceit and anxiety and found 

evidence that facial temperature changes can indeed predict both. However, some results of 

thermographic studies are sometimes inconclusive.   

 

Briese and Cabanac (1991) found that stress levels correlate with increased blood flow in the 

frontal vessels of the forehead. On the other hand, Tanaka, Ide and Nagashima (1999), and 

Nagumo, Zenju, Nozawa, Ide and Tanaka (2002) obtained correlations between arousal level 

and nasal skin temperature. Zenju, Nozawa, Tanaka, and Ide (2004) found that nasal skin 

temperature increases when shifting to pleasant mental states and decreases when shifting to 

unpleasant mental states. Similarly, Kuraoka and Nakamura (2011) obtained decreased nasal 

temperature in negative emotional states, but Nakanishi and Imai-Matsumura (2008) observed 

facial skin temperature decrements also during joyful expressions in the nose. The 

correlations between facial thermal changes and other brain or physiological measures are 

clearly significant during experimental tasks. However, researchers such as Khan, Ward, and 

Ingleby (2006, 2009) have opened new lines of research in this area: the relation between 

thermographic changes and feelings. Their experiments show variations in the intensity of the 

temperature in subjects that express positive and negative affective states, particularly in 

states of happiness and sadness. In short, thermography can be considered a biometric 

measurement of human emotions, but arousal, valence, basic emotional states, stress, empathy 

or feelings, including complex emotions such as love or happiness, are not differentiated in 

previous research. The characteristics of the populations employed (adults, infants, elderly or 

animals), the ecological or laboratory context, and the different tests and stimuli employed 

yield contradictory results, such as the thermal increments or decrements associated with 

empathy or positive emotions. 

 

The techniques most used for the analysis of facial variation are those based on general 

regions of interest: nose, mouth, forehead, etc. ( named FT-RoI), and those based on more 

specific points of facial AUs or muscles (Facial Thermal Feature Points – FTFP). Figure 5.2 

shows an example of FT-RoI and FTFP. 
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40 Figure 5.2 Techniques for thermal variation detection. A) Facial Thermal - Region of Interest 

(FT-RoI); B) Facial Thermal Feature Points (FTFP). (Source: Salazar-López 2015) 

 
 

5.1.1. Facial Thermal - Region of Interest (FT-RoI) 

FT-RoI allows measuring skin temperature variation around certain parts of the face for 

examining the autonomic nervous activity, such as shown in Figure 5.3. The autonomic 

nervous system‘s response to stress or emotional causes a change in the temperature of the 

skin, which the experimenters measure in the nose, a part of the body that, despite 

experiencing little movement, can undergo variations in temperature under stressful or 

emotional conditions. Results of researches reveal a decrease in nasal temperature during 

stressful situations due to vasoconstriction, which leads to a reduction of blood flow to the 

peripheral capillaries of the nose, causing the decrease in temperature. Veltman and Vos 

(2005) claim that the change in nasal temperature is an important measurement, but not the 

absolute value of the temperature (considering that mental workload may not be the only 

factor that affects nose temperature). In their study, they used thermographic cameras and 

determined as Region of Interest (RoI) the nose and forehead, as forehead is one of the most 

stable temperatures in the body. Their paradigm confirmed the equivalency of temperatures of 

forehead and nose in rest condition, and checked the temperature changes in the nose in all of 

the conditions in which mental workload was used. Khan, Ward, and Ingleby (2009) also 

studied the relations between thermographic changes and feelings using RoIs. Their 

experiments show variations in the intensity of the temperature in subjects that express 

positive and negative valence states, particularly in states of happiness and sadness. 
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41 Figure 5.3 Example of Facial Thermal – Region of Interest (FT-RoI). 

5.1.2. Facial Thermal Feature Points (FTFP) 

FTFP is a noninvasive technique for Automated Facial Expression Classification (AFEC) and 

Automated Affect Interpretation (AAI). Recent studies suggest that FTFP may assist 

detection, recognition and tracking of faces, classification of facial expressions, and AAI 

(Eveland et al. 2003; Sugimoto et al. 2000). Contraction or expansion of the facial muscles 

(thermo-muscular activity) causes fluctuations in the rate of blood flow, which results in a 

change in the volume of blood flow under the surface of the facial skin. Infrared Thermal 

Imaging (IRTI) can help detecting the change in blood flow volume, thus following thermo-

muscular activity through skin temperature measurements. 

 

In fact, contactless detection of any changes in facial thermal features may help detecting, 

extracting, and interpreting facial expressions. However, a representative model for estimating 

the relation between fluctuations in blood flow and facial muscle activity is not yet available. 

Such a model could enhance the understanding of the relation between facial expressions and 

the facial thermal according to physiological characteristics. 

 

A small number of attempts to analyze facial expressions using IRTI, singly or in combination 

with other cues, have been tried (Khan et al. 2005; Pavlidis 2004; Sugimoto 2000). For 

example, IRTIs were recorded to measure skin temperature variation around certain parts of 

the face for examining the autonomic nervous activity (Matsuzaki and Mizote 1996). The 

study suggested that fluctuations in facial temperature could provide a noninvasive measure to 

examine the autonomic nervous activity. Thermal facial screening was employed to detect 

attempted deceit using a three-stage system (Pavlidis, 2004). In the first stage of the system, 

thermal images were acquired using mid-range thermal equipment. Acquired images were 

used to transform facial thermal data into a blood flow model in the second stage. Such 

hemodynamic model was built upon the premise that significant blood flow redistribution 

takes place with a change in emotional condition and level of anxiety. During the third stage, 

the hemodynamic model was used to classify people into deceptive or nondeceptive 

categories. The system reportedly achieved results compatible with the polygraph 

examination by human experts (Khan et al., 2005). Figure 5.4 shows human face FTFPs, 

mapped to facial muscle FTFPs, obtaining the geometric profile of the FTFPs to the facial 

muscle shown in Table 5.1. 
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42 Figure 5.4 FTFPs on human face, facial muscle map, and a geometric profile of the FTFPs.  

(Source: KHAN, 2006). 

21 Table 5.1 Muscular alignment of FTFPs. (Source: KHAN, 2006). 

 
 

5.2. Implementation 

In this study of thermal facial variation, a four-stages system is developed. In the first stage of 

the system, thermal images are acquired using a Therm-App thermal equipment, whose 

acquired images are used to segment the facial thermal data into RoIs in the second stage. 

During the third stage, thermal features are extracted, and in the fourth stage, thermal feature 

variations are analyzed to estimate arousal and valence changes. Figure 5.5 shows a block 

diagram of the system implemented. 

 

 
43 Figure 5.5 block diagram of the system here developed for thermal facial variation detection. 
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5.2.1.  Data acquisition and segmentation 

The data acquisition module allows acquiring thermal images from the Therm-app camera. 

The acquisition use the Therm-App software which is configurated in night vision; the 

thermal image can be saved automated with a application developed in processing using 

REDIS DB; also the thermal image can be saved manually from a tablet. The whole process is 

recorded with the thermal camera, and the videos are saved for further analysis. Figure 5.6 

shows an example of the acquisition process. 

 

 
44 Figure 5.6 Example of the thermal image acquisition process. 

The segmentation module allows obtaining the six FT-RoI (nose, chin, right cheek, left cheek, 

right forehead and left forehead), such as shown in Figure 5.7. To segment the image, it is 

used thresholds and morphological closing and opening filters. Then, in the segmented region, 

the six RoIs are placed. It is possible to obtain RoIs manually, in which the user selects the 

RoIs location (it is more accurate, but needs more time) or in automatic mode, where the 

system geometrically places the RoIs (faster, but not so precise, especially when the volunteer 

moves the head and rotates it in one of the three spacial axes). 
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45 Figure 5.7 Example of the RoIs segmentation. 

 

5.2.2.    Features extraction and detection of thermal variation  

The features extraction module allows obtaining thermal features from the RoIs. For each 

RoI, we obtain the median of five temperature measurements from diferent frames to filter the 

noise of the image, and from these measures the features are calculated. For each RoI, the 

difference to the corresponding baseline is calculated (RoI - BaseLine), obtaining seven 

features, one for each RoI, plus the facial average temperature and the difference of each RoI 

regarding the facial average temperature (RoI – Facial Temperature), which implies obtaining 

six more features, for a total of thirteen features. Figure 5.8 shows the graphics of the thirteen 

features used in this work. 

 

 
46 Figure 5.8 Features used in this work (RoIs temperature, RoI –BaseLine, and RoI - Facial 

Temperature). 
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With the thermal variation module, it is possible to process images of the videos obtained 

from the experiments. The images can be processed in order to get the volunteer‘s thermal 

features at each experiment, making possible to analyze temperature variation patterns during 

evoked emotions. Figure 5.9 shows the analysis of one image and the corresponding pattern 

of thermal features (bar 1 to 7 RoI- BaseLine and bar 8 to 13 RoI – Temperature facial). 

 
47 Figure 5.9 Features extraction (RoI - BaseLine and RoI - Facial Temperature). 

 

5.3. Analysis and results  

The Therm-App in night mode does not provide a linear measure of temperature (Therm-App, 

2014), so results and tables are presented in percentage variation related to the maximum 

value. The Equation (5.1) shows the percentage variation. 

           
               

        
                (5.1) 

 

Procedure 1: Variation of facial temperature by facial expressions 

In this experiment, each volunteer is asked to sit comfortably in a chair positioned in front of 

a 19-inches computer screen and a Therm-App sensor, with his/her eyes at 80 cm away from 

the screen, and at 70 cm from the sensor. The screen displays the six pictures related to human 

facial expressions for ten seconds. The volunteer should imitate each emotional expression 

three times. The Therm-App sensor records images of each emotional facial expression 

performed by the volunteer, and an algorithm identifies the set of features related to 

expressions of each emotion, based on thermal variation for the six basic facial expressions.  

Figure 5.10 shows thermal images for the six facial expressions (fear, sadness, anger, 

happiness, surprise and disgust. 
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48 Figure 5.10 Thermal images for the six facial expressions considered in this work. 

Table 5.2 shows the results obtained for the thermal variation of RoIs for the different facial 

expressions. The thermal variation in the regions is very small, less than 2%; only the nose 

has variation from 3% to 5%, but it is not possible to recognize any pattern in the results. It is 

worth to mention that the sensor sensitivity is 0.07°C, while the temperature variation for 

facial expressions is about 0.05°C 

 

22 Table 5.2 Percentage of RoIs thermal variation for facial expressions 

 

Procedure 2: Variation of facial temperature by emotions (arousal and valence) 

This procedure consist of the visualization by the volunteer of the six emotion-inducing 

videos to evoke certain emotions (surprise, sadness, disgust, fear and happiness). Each 

volunteer sit down comfortably in a chair in front of both a screen and a box with the camera 

system. The Therm-App sensor records images of each emotional facial expression performed 

by the volunteer, and an algorithm identifies the set of features related to expressions of each 

emotion, based on thermal variation for the valence and arousal detection. Figure 5.10 shows 

thermal images for different valence. In the experiments, a great temperature variation at the 

nose region was observed for variation in positive and negative valence stimuli, while the 

other regions of the face did not show a large variation to these stimuli. 

 
49 Figure 5.10 Thermal images for negative, neutral and positive valence 

 

Expression Nose   Chin   Right  cheek Left  cheek  Right  forehead Left  forehead 

Anger 3% 1% 1% 1% 1% 1% 

Fear 3% 1% 1% 1% 1% 1% 

Sadness 5% 2% 3% 3% 1% 1% 

Happiness 3% 1% 1% 1% 2% 2% 

Surprise 3% 1% 2% 2% 1% 1% 

Disgust 1% 1% 1% 1% 1% 1% 
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Figure 5.11 shows thermal images for different arousal stimuli. In the experiments, a variation 

in the region of the forehead and cheek was observed for variation in the arousal stimuli, as 

the temperature in these regions increases when the arousal increases.  

 
50 Figure 5.11 Thermal images for low, medium and high arousal. 

 

Table 5.3 shows the results from the experiments. For valence, the most important variation 

was observed in the nose; for positive valence, the temperature decreases up to 4%, and for 

negative valence, it can increase up to 8% respect to images of neutral valence. On the other 

hand, for arousal, an increase from 3% to 4% in cheek and forehead temperature was 

observed; the nose also had a slightly lower increase of 2%. 

 

 

 

23 Table 5.3 Percentage of RoIs thermal variation in arousal and valence. 

 

5.4. Discussion 

In this chapter, a system was developed in order to analyze facial thermal variation based on 

the technique of Facial Thermal-Region of Interest FT-RoI. The developed system allows: 

data and thermal image acquisition, Region of Interest (FT-RoI) segmentation; features 

extraction; and, detection of facial thermal variation. For the different facial expressions, the 

thermal variation in the regions is very small, and it is not possible to recognize facial 

expressions based on the measured thermal variation. However, for valence and arousal, it 

was found a relation between facial thermal variation and emotional activity. This system and 

its implemented functions are the basis for the applications of emotion recognition, which are 

presented in Chapters 6 and 7.   

Emotion Nose   Chin   Right  cheek Left  cheek  Right  forehead Left  forehead 

Positive 

Valence 
-4% 2% 2% 2% 3% 3% 

Neutral 

Valence 
1% 0% 0% 1% 1% 0% 

Negative 

Valence 
+8% 2% 2% 2% 3% 3% 

Low 

Arousal 
1% 0% -1% -1% 0% 0% 

High 

arousal 
+2% 1% +3% +3% +4% +4% 
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The data acquisition module here developed is able to acquire thermal images from the 

Therm-app camera, which has a resolution of 384 x 288 pixels, accuracy of +/- 3°C, 

sensitivity of 0.07 °C and temperature range of 5 to 90 °C, and capture mode in night vision 

(Therm-App, 2014). Therefore, the results obtained in our research are limited by these 

features of the sensor. The segmentation module gets six FT-RoI (nose, chin, right cheek, left 

cheek, right forehead and left forehead). Based on the FT-RoIs, the feature extraction module 

obtains thirteen thermal features (seven features for RoI - BaseLine and six more features for 

RoI - Facial Temperature). Finally, the thermal variation module obtains the thermal features 

of the volunteer, in order to study possible patterns in the variation of temperature in situation 

of emotional variation. 

 

The results obtained for the first proposed experimental procedure are that it is not possible to 

obtain a sufficiently small measure of temperature, as the sensitivity of the sensor is not small 

enough for this analysis. Thus, with this sensor, it is not possible to analyze facial thermal 

changes due to facial expressions since the thermal variation of facial expressions is about 

0.05°C, while the minimum sensitivity of the sensor is 0.07°C. 

 

The results obtained for the second proposed experimental procedure are that the temperature 

patterns of the RoIs show variation for different valence and arousal stimuli. For valence, 

there are variations in the nose, and for arousal there are changes in the forehead and cheeks. 

We consider that these results are not conclusive, maybe due to the few number of 

participants or because the stimuli were nor sufficiently strong neither long as to produce 

strong emotion variation. 
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CHAPTER 6 

 

 

6. MULTISENSORIAL INTEGRATION  

 

One of the challenging issues in affective computing is to endow a machine with an emotional 

intelligence. Humans employ multiple sensors in emotion recognition. At the same way, an 

emotionally intelligent system requires multiples sensors to be able to create an affective 

interaction with users. Many factors render multisensorial emotion recognition approaches 

appealing. First, humans employ a multisensorial approach in emotion recognition, then, 

machines attempt to reproduce elements of the human emotional intelligence. Second, the 

combination of multiple-affective signals not only provides a richer collection of data, but 

also helps alleviating the effects of uncertainty in the raw signals.  

 

In this Chapter, three multisensorial integration strategies are proposed and implemented: 

Kinect and eye tracker integration, thermal camera and Kinect integration, and thermal 

camera, Kinect and eye tracker integration. Figure 6.1 shows a multisensorial integration of 

thermal camera, Kinect and eye tracker, in order to improve the results of the system. 

 

 

 

51 Figure 6.1 Multisensorial integration: thermal camera-Kinect-eye tracker. 
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6.1. Background Multisensorial Integration  

 

The multisensorial approach here developed presents challenges associated with the fusion of 

single signals, dimensionality of the feature space, and incompatibility of collected signals in 

terms of time, resolution and format. With these multimodal emotion recognition approaches, 

information extracted from each modality are reconciled to obtain a single emotion 

classification result, which is known as multimodal integration. The literature on this topic is 

rich and generally describes three types of integration mechanisms: feature-level integration, 

decision-level integration, and hybrid approaches. 

 

6.1.1. Feature-level Integration  

A common method to perform modality integration is to create a single set from all collected 

features, and a single classifier is then trained on the feature set. However, feature-level 

integration is plagued by several challenges: first, multimodal feature set contains more 

information than a unimodal one, which can present difficulties if the training dataset is 

limited. In fact, Hughes (1968) has proven that the increase in the feature set may decrease 

classification accuracy if the training set is not large enough. Second, features from various 

modalities are collected at different time scales (Pantic, 2003). For example, features of Heart 

Rate Variability HRV  in frequency domain typically summarizes seconds or minutes‘ worth 

of data (Al Osman, 2016), while speech features can be in the order of milliseconds. Third, a 

large feature set undoubtedly increases the computational load of the classification algorithm 

(Lingenfelser, 2011). Finally, one of the advantages of multimodal emotion recognition is the 

ability of synchronizing data easily and producing an emotion classification result in the 

presence of missing or corrupted data. However, feature-level integration is more vulnerable 

to the latter issues than decision-level integration techniques (Wagner, 2011). 

 

6.1.2. Decision-level Integration  

Typically, an emotion recognition system produces errors in some area of the feature space 

(Alexandre, 2001). Hence, combining the results of multiple systems can alleviate this 

shortcoming. This is especially true when each system is operating on a different modality 

that corresponds to a separate feature space. Using decision-level integration, modalities can 

be independently classified using separate models, and the results are joined using a multitude 

of possible methods. Therefore, this approach is said to employ an ensemble of systems and 

classifiers. Ensemble members can belong to the same family or different families of 

statistical classifiers. In fact, static and dynamic classifiers can both be employed in such a 

multimodal system. 
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6.1.3.  Hybrid-level integration 

When an integration technique combines feature and decision-level integration, it is referred 

to as a hybrid- integration scheme. For instance, we can achieve integration in two stages. In 

the first stage, a system can perform feature-level integration. For example, a single classifier 

can handle features from audio and video signals. In the second stage, decision-level 

integration can be used to combine the results of that with another one operating on 

physiological (e.g., HRV) features. Kim (2005) proposes a simple hybrid- integration 

approach where the result from the feature-level integration is fed as an additional input to the 

decision-level integration stage.  

 

6.2. Implementation of a multisensorial system for emotion recognition. 

Figure 6.2 shows the block diagram of the three integration levels implemented in this 

research. In the first stage of the system, eye tracker and Kinect were integrated using a 

decision-level technique, and a feature-level technique was used to integrate thermal camera 

and Kinect in the second stage. During the third stage, a hybrid-level technique was used to 

integrate thermal camera, eye tracker and Kinect. 

 

 

52 Figure 6.2 Block diagram of the proposed integration strategy  

 

6.2.1.  Data-Level Integration on Processing Language  

The first type of integration attempted in this research was at the data level. A system was 

implemented in Java-Processing, which acquired the data of the three sensors in a single 

application. The advantage of this proposal was that the data were acquired synchronously 

and processed online. But the disadvantage was the processing consumption required by each 

sensor. Kinect requires USB3.0 technology to acquire data from its three cameras (color, 

infrared and depth). Eye tracker also uses USB3.0 and a complex processing algorithm, while 
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the thermal camera requires virtualizing the android operating system and a Redis server to 

transfer images. 
 

This integration is done in a single computer (NUC). As the requirements of the sensors 

exceeded the characteristics of the previous computer, therefore, when one of the sensors 

failed the whole system failed. Due to continuous failures in this centralized technique, then 

one opted to abandon it and propose other decentralized technique. Figure 6.3 shows images 

acquired and processed online in the centralized application developed in processing. 

 

 

 

 

53 Figure 6.3 Data-level integration online for data processing. 

 

6.2.2.  Decision-Level Integration eye tracker and  Kinect  

The integration of eye tracker and Kinect allows to carry out studies about focus of attention, 

in order to evaluate which parts of the face people focus on when they come to recognize 

expressions, and what is the stimulus that generates an emotional reaction in a person. In 

Chapter 7 we show the use of this integration. 

Integration at the decision level was used in our research, since in this integration the two 

systems do not share features to obtain results, only the final result of the focus of attention 

obtained by the eye tracker with the result of expression recognition obtained by the Kinect 

are integrated. Figure 6.4 shows the integration where the focus of attention is detected on a 

face of a person to recognize a facial expression. 
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54 Figure 6.4 Eye tracker- Kinect integration: A) Focus of attention detection, B) Facial 

expression recognition 

 

6.2.3.  Feature-Level integration Kinect and thermal camera 

The integration of Kinect and thermal camera allows improving the thermal feature detection. 

The main problem to detect these thermal features of the face is the difficulty of segmenting 

the RoI, because in a thermal image it is difficult to detect regions such as eyes, mouth or 

nose. In contrast, in the color image, these facial features are very easy to detect. The 

approach used in our research was to take the features obtained from the Kinect (AUs), and to 

project them in the thermal image. Projecting the points of the AU in the thermal image is 

easier, in order to automatically segment the RoI and obtain the thermal characteristics. 

A mathematical model for these (AUs) projection was implemented using a camera 

calibration toolbox in Matlab. Any three-dimensional point (XW, YW, ZW) in the scene can 

be taken to a camera coordinate system (XC, YC, ZC), which is achieved with a rotation 

matrix R and translation vector T, such as shown in Equation (6.1): 

 

  (6.1) 

The values of R and T are known as extrinsic parameters, then this coordinated system in 

space must be taken into the two-dimensional space of the images, without taking into 

account the radial and tangential information. The coordinates of the image (xb, yb) are 

shown in Equation (6.2). 
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    (6.2) 

where:  

fcx and fcy are the focal distances expressed in pixels, and include the focal length of the 

camera and the size in millimeters of the sensor (Sx, Sy); and Cx and Cy are the optical center 

of the image. The value s is called framing, and most of the time it corresponds to an angle of 

90° and therefore its value is zero. The value k is a scaling factor, and the values fcx, fcy, Cx, 

Cy, s, k are known as intrinsic parameters. Figure 6.5 shows the calibration process for AUs 

projection on the thermal image. The AUs points of the Kinect image are projected to its 

corresponding 3D model, then this model is transformed to the 2D model on the thermal 

image (Figure 6.6). 

 

 
55 Figure 6.5 Calibration process for AUs projection on the thermal image. 

 

 

 
56 Figure 6.6 Projection of AU points from Color to Thermal image: A) Facial expression 

detection; B) Facial thermal variation; C) Integration of AUs on thermal image. 

The integration of Kinect and thermal camera improves the thermal feature detection and the 

RoI segmentation. In Chapter 7 the use of this integration is shown. 
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6.2.4.  Hybrid-Level Integration: eye tracker, Kinect and thermal camera 

For the integration of the three systems, a hybrid-level integration was proposed to take 

advantage of the two integrations previously done (Kinect-eye tracker and Kinect-camera). 

The purpose of the integration of the three systems is to be able to give a more complete 

evaluation of the emotional state during the experimental stage by integrating the results of 

focus of attention, recognition of facial expressions and emotional variation of arousal and 

valence. The multisensorial integration allows realizing studies of social focal attention, 

recognition and expression of emotions, and to detect variation of the emotional state of a 

person. In Chapter 7 the experimental part is shown and the results are explained. Figure 6.7 

shows the multisensorial  integration implemented in this work, allowing focal attention 

detection, facial expression recognition, and estimation of emotional state. 

 

 
57 Figure 6.7 Multisensorial integration: A) Focal attention detection, B) Facial expression 

recognition, C) Estimation of emotional state. 

 

The experimental results and the discussion of the developed multisensory system are 

presented in Chapter 7.  
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CHAPTER 7 

 

7. VALIDATION OF MULTISENSORIAL SYSTEM   

Multisensorial emotion recognition methods require multisensorial systems to collect the 

relevant data from expressions, as these systems are more complex than the unisensorial ones 

in terms of the number and diversity of sensors involved, and computational complexity of the 

data-interpreting algorithms. This challenge is more evident when data are analyzed, since it 

is necessary to synchronize the data of each sensor and show integrated results that allow a 

better analysis than the unisensorial results. 

In this chapter, the results from multisensorial emotion recognition are presented. Three 

experimental procedures were developed using the platform and environment for the 

experiments presented in Section 2.3.  The first experimental procedure was designed to 

evaluate social visual attention; the second procedure was proposed to evaluate the 

recognition of facial expressions and emotional variation; and the third procedure was 

designed to evaluate emotions by integrating the three sensors (eye tracker, Kinect and 

thermal camera). Finally, the results are compared with the functional and technical 

requirements of the research presented in Section 1.1.2. Figure 7.1 shows the three types of 

stimuli used in the experiments. 

 

58 Figure 7.1 Stimuli used in the three experiments conducted in this research; A) images for 

valence study; B) names of the basic emotions; C) emotion-inducing videos; D) pictures 

relative to human facial expressions. 
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7.1. Experiment 1: Social Focal Attention Recognition  

 

This research approaches a procedure used to assess visual attention through the displaying of 

pictures of positive, negative and neutral valence.   

 

7.1.1. Experimental Protocol 

This procedure has the participation of sixteen healthy adult volunteers (twelve men and four 

women), with mean age of 28 years old (±5.32). Each volunteer is invited to sit comfortably 

in a chair positioned in front of the screen of a computer (19 inches) and an eye tracking 

device (Eye Tribe), with eyes at 70 cm from screen and at 60 cm from eye-tracker.  The 

volunteer hears a brief explanation about the procedure and solves him/her doubts. Figure 

7.2A shows the setup used for the experimental test. A previous calibration is necessary to 

gather a good data acquisition, which consists of tracking visually mobile points in the screen 

and, subsequently, fixating points of known coordinates in the viewing scene. 

The participant views a set of six images (1024 x 768 pixels), being two of positive valence, 

two of negative valence and two neutral. The valence classification is based on 1-9 scale, 

where scores were ˃ 7 (for pleasant pictures), ˂ 5 (for unpleasant pictures) and between 5 and 

6.5 (for neutral pictures), respectively. Figure 7.2B shows the chosen images portray, with 

puppies and animals playing, for positive valence (images 1 and 5); injured person and angry 

animal, for negative valence (images 2 and 6), and person in daily activities and common 

objects, for neutral valence (images 3 and 4). The pictures are selected from an international 

database (IAPS – International Affective Picture System), commonly used in studies about 

emotions and attention (Lang 2008). The picture set is displayed five times and the time of 

exhibition of each image is ten seconds. 

A                                                                    B 

 

59 Figure 7.2 A) Setup for the 

experimental tests. B) Set de images 

for Valence Study. Source: IAPS (Lang 2008) 

In this procedure, it is assessed the number of times and the time of viewing of the pictures, in 

order to identify which valence stimulus (negative, positive or neutral) got more attention. 
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7.1.2. Results 

  

Table 7.1indicates the percentage of the average time of viewing each image by the 

participants. These images correspond to valence: positive (images 1 and 5), negative (images 

2 and 6) and neutral (3 and 4). The highest values and the smallest values are bolded. Table 

7.2 shows the number of observers who presented highest and lowest attention time to 

positive and negative valence and neutral stimuli. 

 

24 Table 7.1: Percentage of the time of viewing of the pictures. 

Picture Number  Time of viewing (%) 

Image1 19.96 

Image2 16.33 

Image3 15.52 

Image4 11.49 

Image5 19.33 

Image6 10.30 

Outside of images 7.04 

 

 

25 Table 7.2. Number of observers who present highest and lowest attention to pictures featured 

by the valence. 

Valence  Maximum attention 

attracted (Number of 

people) 

Minimum attention 

attracted (Number 

of people) 

Positive 11 1 

Negative 3 7 

Neutral 2 8 

 

Images 1 e 5, which correspond to the positive valence, have the highest percentage of 

average time of viewing, with 19.96% and 19.33%, respectively. On the other hand, image 6, 

which corresponds to the negative valence, has the lowest percentage of average time of 

viewing with 10.30%. From Table 7.2, the images with positive valence had high number of 

observers (11 participants), whereas images with negative valence had 3, and neutral images 

had 2. The images with neutral and negative valence elicited low attention in 8 and 7 

participants, whereas images with positive valence elicited low attention in 1 participant. 
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7.2. Experiment 2:  Expression comprehension and recognition  

 

7.2.1. Experimental Protocol 

 

This procedure has the participation of eleven healthy adult volunteers (eight men and three 

women), with mean age of 28.27 years old (±5.33). The participant‘s setup in this test are the 

same as described in Procedure 1. In the first exhibition, the participant views six pictures 

relative to human facial expressions (surprise, sadness, anger, disgust, fear and happiness) for 

10 s, individually. Then, the participant should answer the emotion correspondent to the 

viewed emotional expression. Figure 7.3 shows examples of human face emotional 

expressions used in the procedure. 

 
60 Figure 7.3 Examples of human face emotional expressions used in the procedure 2. (Source: 

Du, 2014) 

In sequence, the volunteer views the set of the six human affective pictures for 3 times, during 

10 s, displayed together, as observed in Figure 7.3. Finally, the volunteer is asked to focus on 

the picture (among the six) correspondent to the emotion said by the mediator of the 

procedure. Then, when the participant focus rightly, the border of the picture become green. 

In case of wrong focus, the picture border become red.  

With this procedure, it is evaluated: a) which face regions the participant focused on to 

recognize an emotion and if he/she identifies the emotion correctly; b) which emotional facial 

expressions more attracts his/her attention; and c) if the participant has difficulty to recognize 

the emotion required by the mediator. For this, is assessed the number of times and the time of 

viewing the pictures. 
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7.2.2.  Results  

Figure 7.4 shows an example of data obtained from the eye-tracking sensor (blue circles). 

These data were processed to detect the regions of the pictures more observed (attention 

focus), during the recognition of emotions in the facial expressions. The red square in Figure 

characterizes the mean attention focus. 

  

 
61 Figure 7.4: Data from eye-tracking sensor referent to attention focus, featured by blue circles 

overlapping on the facial image. The mean focus obtained is shown in red square. 

Table 7.3 shows the result of the calculation of the average and standard deviation in pixels 

for the focus of attention performed for all participants in relation to all pictures relative to 

emotional facial expressions. 

26 Table 7.3 Mean and standard deviation of the focus points performed by the participants 

during the visualization of facial expressions. 

Screen 

axis 

Center of the 

Screen (pixels) 

Attention 

focus (pixels) 

Standard deviation 

(pixels) 

Axis X  512 498.8 20.4 

Axis Y  384 385.8 19.1 

 

Table 7.4 shows the average time required by the participants to recognize the six facial 

expressions. The highest and the lowest values are bolded.  

27 Table 7.4 Time to recognize the emotional facial expressions. 

Emotion 

expressions 

Time to 

recognize (s) 

Standard deviation 

(s) 

Anger 9.71 5.08 

Sadness 8.72 2.49 

Surprise 8.79 3.88 

Disgust 12.50 7.24 

Fear 8.89 3.52 

Happiness 6.33 0.60 
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Table 7.5 shows the number of mistakes of the participants in the recognition of emotions 

from facial expressions. 

 

28 Table 7.5 Number of mistakes in the facial expressions recognition. 

Emotion 

expressions 

Number of 

mistakes 

Anger 1 

Sadness 1 

Surprise 2 

Disgust 3 

Fear 1 

Happiness 0 

Total 8 

 

Table 7.6 indicates the percentage of expression recognition, the valence and arousal detected 

and the percentage of focus detection for the experiment. 

 

29 Table 7.6 Values for expression recognition. 

Expression Expression 

recognition 

Valence 

detection 

Arousal 

detection 

Focus of 

attention 

Anger 58% Neutral Low 83% 

Sadness 50% Neutral Low 79% 

Surprise 85% Neutral Low 72% 

Disgust 75% Neutral Low 68% 

Fear 64%  Neutral Low  79% 

Happiness 89% Neutral Low  87% 

Total 70% Neutral Low 78% 

 

The highest focus of attention is relative to the central regions of the pictures (498.8x385.8 

pixels) exhibited in the screen, featured by the regions of the eyes, nose and cheeks. 

On the other hand, the average time required by the participants recognizing the six facial 

expressions was low for the happiness emotion (6.33 s) and high for the disgust (12.50 s). It 

was also noted that for the sixteen volunteers the number of mistakes for emotion recognition 

was higher for disgust (3 mistakes) while happiness had no mistake. Finally, the expression 

recognition was 70%, and for changes detected in the temperature, which would show 

variation in valence or arousal, the average of focus of attention was 78%. 
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7.3. Experiment 3:  Multisensorial Emotion Analysis 

 

7.3.1. Experimental Protocol 

This procedure has the participation of 105 healthy children volunteers, with age ranged 

between 6 to 11 years old. The initial procedure consists of the visualization and the imitation 

of facial expressions from pictures relative to six classes of emotions. Each volunteer sits 

down comfortably in a chair in front of both a screen and a box with the camera system. The 

screen exhibits six names of the basic human emotions (surprise, sadness, anger, disgust, fear 

and happiness). Each emotion name is displayed during five seconds, allowing the participant 

making the emotional expression visualized. Afterwards, the screen exhibits six pictures of 

human faces expressing six emotional expressions (surprise, sadness, anger, disgust, fear and 

happiness). Each picture is displayed during five seconds, allowing the participant imitating 

the emotional expression visualized. Finally, the screen exhibits six emotion-inducing videos 

for evoke certain emotions (surprise, sadness, disgust, fear and happiness). Table 7.7 shows 

the emotions that each video intended to evoke. It is worth to comment that due to the 

difficulty in synchronizing data from the different sensors, three participants, from the 

database, were selected and evaluated as study case.  

 

30 Table 7.7 Emotions that each video is intended to evoke. 

Case 1 Video 1 Video 2 Video 3 Video 4 Video 5 Video 6 

Sadness - Yes Yes - Yes Yes 

Happiness Yes - - Yes - Yes 

Fear - Yes Yes - - - 

Disgust - Yes yes - - - 

Valence positive Negative Negative Positive Negative Neg/pos 

Arousal Low High High High High Medium 

Focal 

Attention  

High Low Low High Medium Medium 

 

 

7.3.2. Results 

 

Case 1 

 

Table 7.8 indicates the emotions recognized by the multisensorial system. For volunteer 1, it 

was observed that video 1 evokes happiness, neutral to positive valence and high focal 

attention. Video 2 evoked sadness and disgust, in which the valence was negative, the arousal 

was medium and there was a low focus of attention. Video 3 evoked mostly sadness, fear and 

disgust, in which valence was negative, arousal was medium and the focus of attention was 
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low. Video 4 showed a high level of happiness, positive valence, a medium arousal and high 

attention. In video 5, the main emotion was sadness, there was negative valence, the level of 

arousal was high and the focus of attention was high. Finally, the video 6 showed in the firs 

part of video sadness and the last part happiness, with negative and positive valence 

respectively, a high arousal and a medium focus of attention. 

 

31 Table 7.8 Recognition of emotions evoked for each video by volunteer 1.1 

Case 1 Video 1 Video 2 Video 3 Video 4 Video 5 Video 6 

Sadness - Yes Yes - Yes Yes 

Happiness Yes - - Yes - Yes 

Fear - - Yes - - - 

Disgust - Yes Yes - - - 

Valence Neutral/pos Negative Negative Positive Negative Neg/pos 

Arousal Low Medium Medium Medium High High 

Focal 

Attention  

High Low Low High High Medium 

 

 

Case 2 

 

Table 7.9 indicates the emotions recognized by the multisensorial system. For volunteer 2, it 

was observed that video 1 evokes happiness, neutral valence, low arousal and high focus of 

attention. Video 2 evoked happiness and disgust, the valence was neutral, there was low 

arousal and medium focus of attention. Video 3 evoked happiness and fear, while valence was 

neutral, there was low arousal and low focus of attention. Video 4 showed a high level of 

happiness, positive valence, a low arousal and high focus of attention. In video 5, the main 

emotion was sadness, negative valence, and the level of arousal was medium and the focus of 

attention was high. Finally, the video 6 showed happiness, with negative and positive valence, 

medium arousal and high focus of attention. 

32 Table 7.9 Recognition of emotions evoked for each video by volunteer 2. 

Case 2 Video 1 Video 2 Video 3 Video 4 Video 5 Video 6 

Sadness - - - - Yes - 

Happiness Yes  Yes Yes Yes  - Yes 

Fear - - Yes - - - 

Disgust - Yes - - - - 

Valence Neutral Neutral  Neutral Positive Negative Neg/pos 

Arousal Low Low Low Low Medium Medium 

Focal 

Attention  

High Medium  Low   High High High 
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Case 3 

 

Table 7.10 indicates the emotions recognized by the multisensorial system. For volunteer 3, it 

was observed that video 1 evokes happiness, positive valence, low arousal and high focus of 

attention. Video 2 evoked disgust, the valence was neutral, with low arousal and high focus of 

attention. Video 3 evoked fear, while valence was neutral, with low arousal and medium focus 

of attention. Video 4 showed happiness, positive valence, medium arousal and high focus of 

attention. In video 5, the main evoked emotion were sadness and disgust, with negative 

valence, high level of arousal and medium focus of attention. Finally, video 6 showed 

sadness, with negative valence, high arousal and low focus of attention. 

33Table 7.10 Recognition of emotions evoked for each video by volunteer 3. 

Case 3 Video 1 Video 2 Video 3 Video 4 Video 5 Video 6 

Sadness - - - - Yes Yes 

Happiness Yes - - Yes - - 

Fear - - Yes - - - 

Disgust - Yes - - Yes - 

Valence Positive Neutral Neutral Positive Negative Negative 

Arousal Low Low Low Medium High High 

Focal 

Attention  

High High Medium High Medium Low 

 

 

The three case studies show that the evoked emotions were those proposed in Table 7.7. The 

facial expressions detected correspond to those expected, with valence levels also related to 

the expected ones. The levels of arousal were not so high, which may be due to the videos 

were edited in order to have low negative impact. Finally, the focus of attention detected  also 

corresponded to those expected. 

 

7.4. Discussion 

 

In this research, a multisensorial system for emotions recognition was developed. The system 

is based on the integration of three sensors (Kinect, eye tracker and thermal camera). The 

proposed strategy for integration of these sensors was designed to improve the emotion 

recognition system, which is based on the detection of focus of attention, expression 

recognition and thermal variation. The technique used for detection of focus of attention was 

IR-pupil corneal reflection (IR-PCR) introduced in Duchowski (2003) and Bengoechea et al. 

(2012), which provides highly accurate gaze point measurements, of up to 0.5° of visual 

angle. For expression recognition, the implementation was based on Facial Action Coding 

System (FACS), that describes all possible perceivable facial muscle movements in terms of 
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predefined action units (AUs) proposed by Ekman and Friesen (1978) and implemented in 

different researches (Mase, 1991; Essa, 1997; and Bartlett et al., 1999). For detection of 

thermal variation, two techniques were implemented: Facial Thermal - Region of Interest (FT-

RoI) introduced in Veltman and Vos (2005) and Khan, Ward, and Ingleby (2009), and Facial 

Thermal Feature Points (FTFP), which have been tried by Khan et al. (2005), Pavlidis (2004) 

and Sugimoto (2000). 

Different procedures for multisensorial integration have been proposed in the literature 

(Pantic 2003), (Al Osman, 2016), (Lingenfelser, 2011) and (Wagner, 2011), nevertheless, the 

multisensorial approach presents challenges related to the integration of individual signals 

from the different sensors, dimensionality of the feature space, and incompatibility of 

collected signals in terms of time resolution and format.  

In order to integrate Kinect, eye tracker and thermal camera, three integration levels were 

implemented. In the first stage of the system, eye tracker and Kinect were integrated using a 

decision-level technique. Feature-level technique was used to integrate thermal camera and 

Kinect in the second stage. During the third stage, a hybrid-level technique was used to 

integrate thermal camera, eye tracker and Kinect.  

To test and evaluate the multisensorial system, three experiments were proposed the first 

experimental procedure was designed to evaluate social visual attention. The second 

procedure was proposed to evaluate the recognition of facial expressions and emotional 

variation, and the third procedure was designed to evaluate emotions by integrating the three 

sensors. 

Experiment 1 allowed evaluating focal attention and valence comprehension. The results 

obtained showed that images that correspond to positive valence have the highest percentage 

of average time of viewing. On the other hand, images that correspond to negative valence 

have the lowest percentage of average time of viewing, and images with positive valence have 

the highest number of observers. The images with neutral and negative valence elicited low 

attention in 8 and 7 participants, respectively, whereas images with positive valence elicited 

low attention in 1 participant. All these results about focus of attention and comprehension of 

valence are considered very important for medical and psychological therapies as well as 

evaluation tool for therapists. 

Experiment 2 allowed evaluating facial expressions recognition and emotional variation. The 

results obtained show that the highest focus of attention is relative to the central regions of the 

pictures exhibited in the screen, featured by the regions of the eyes, nose and cheeks. On the 

other hand, the average time required by the participants to recognize the six facial 

expressions was lower for happiness and higher for disgust. It was also noted that for the 

sixteen volunteers, the number of mistakes for emotion recognition was higher for disgust 

while happiness had 0 mistake. Finally, the expression recognition was 70%, and the average 

focus of attention was 78%. No changes were detected in the temperature that would show 

variation in valence or arousal. We believed that this is due to the small changes in facial 

expressions, as the muscle movements are very smooth, and the low sensibility of the thermal 
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sensor does not allow measuring such small temperature variation, as explained in Section 

5.4. 

Experiment 3 allowed evaluating valence, arousal  and emotion recognition. The three case 

studies show that the evoked emotions were those proposed in Table 7.7. This experiment 

only shows a trend, but it is not conclusive because only three selected cases were evaluated 

from the database, out of 105 children who performed the experiment.  

The major difficulties of the experiments were that the data acquisition for the three sensors is 

not synchronized and a manual synchronization process is required. The characteristics of the 

thermal camera (vision mode, image resolution and sensitivity) are not suitable for the 

proposed procedures. On the other hand, the eyes are small and very limited regions to be 

analyzed. Despite the difficulties presented, the system has potential to be used in applications 

of emotion recognition, although more investigations are necessary. 

Table 7.11 shows the evaluation of functional and technical sensors features presented in 

Section 1.1.2. According to the results, the system is able to meet all the technical 

requirements, in case of suitable operation of thermal camera.   

34 Table 7.11 Validation of functional and technical sensors features 
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Eye tracker X X X    X X X X 

Kinect    X   X X X X 

Thermal cam     X  X X X X 

Multisensorial X X X X X X X X X X 

 

Finally, it was observed that, once the thermal camera limitation is overcame, the 

multisensorial system can be used in the evaluation of emotions, and integrated to a robot or 

computer. 
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CHAPTER 8 

 

8. CONCLUSIONS AND FUTURE WORKS 

 

8.1. Conclusions: 

 

In this M.Sc. Thesis, the development of a multisensorial system, composed of three sensors, 

for emotion recognition was introduced.  The advantage of such multisensorial system was 

that the three sensors allowed exploring different emotional aspects, as the eye tracker, using 

the IR-PCR technique, helped conducting studies about visual social attention; the Kinect, in 

conjunction with the FACS-AU system technique, allowed developing a tool for facial 

expression recognition; and the thermal camera, using the FT-RoI technique, was employed 

for detecting facial thermal variation. When performing the multisensorial integration of the 

system, it was possible to obtain a more complete and varied analysis of the emotional 

aspects, allowing evaluate focal attention, valence comprehension, valence expressions, facial 

expression, valence recognition and arousal recognition. 

 

In Chapter 1, a general review of the different techniques used for automatic recognition of 

emotions was presented. Various modalities of emotional channels were used for the 

automated recognition, and each one provides different measurable information to estimate 

human emotion. In this context, different technologies have been developed to detect human 

emotional information, and each technology presents advantages and disadvantages, 

depending on the application. Color camera-based systems continue being the gold standard 

technology to estimate facial emotions. Eye tracking technologies have emerged as an 

important tool in recognition of visual social attention and are widely used for research and 

commercial purposes, while technologies based on thermal device have begun to be studied in 

the last years. After the bibliographic review of Chapter 1, three devices were proposed to be 

used in this work: eye tracker, Kinect and thermal camera. These devices have important 

advantages, since they are contactless (non-invasive), portable, besides having a robust 

operation and being easy to set up.  

 

The methodological aspects on which the research was based were presented in Chapter 2. 

The construction of an experimental platform allowed the integration of the devices in a box, 

facilitating the transportation and adaptation of the platform to different experimental 

environments. These experimental environments were previously adapted in conditions of 

light, temperature, humidity and noise required for the tests, and filters were used to attenuate 

external factors that could affect the results of the research.  
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The implementation of an eye tracking interface was presented and validated in Chapter 3. An 

eye tracker was used to identify eye gaze, in order to recognize the visual focal attention of a 

person. The main problem was that there is no interface to connect the eye tracker to an 

application in Matlab. To solve this problem, a server in Python was used and an interface in 

Matlab was developed. This interface was very important for this study, since it allowed 

automating the experiments of visual attention required to evaluate emotions and, 

additionally, the use of eye tracking technique in other assistive applications of our lab, such 

as controlling intelligent environments, wheelchairs, intelligent walkers, etc. 

 

In Chapter 4, a system for facial expression recognition using the Kinect was presented. 

Detecting facial features for expressions recognition is a difficult task, and, in order to fulfill 

this objective, a method based on the FACS-AU facial muscle system was implemented, 

using the Brekel software to obtain the AU face features. Then, KNN and LDA algorithms 

were implemented to recognize the six basic facial expressions. The results obtained reached 

about 70% of success rate. This low success rate is due to the system is based on Brekel, 

which only allows the detection of 20 AUs, while the FACS system has more than 44 AUs. 

However, the results show the possibility to implement algorithms to detect more AUs , and, 

consequently, improve the accuracy. 

 

A facial thermal variation detection method was presented in Chapter 5. Detection of 

emotions using the modality of thermal physiological variation is one of the most 

controversial in the literature, since representative model for estimating the relation between 

fluctuations in facial temperature and facial emotional activity is not yet available.  In this 

work, two approaches were studied: in the first one, the thermal facial variation was evaluated 

based on the analysis of variation in the facial expression.  Here, due to the features of the 

thermal sensor, which does not have the required sensitivity, no thermal variation was 

detected. Nevertheless, in the second approach, based on thermal variation related to changes 

in arousal and emotional valence, it was possible to measure thermal facial variations that 

correspond to changes in emotions. These variations were detected in the nose, cheeks, and 

forehead. The results obtained are not conclusive and the use of a thermal camera with better 

performance is required. 

 

A multisensorial integration strategy was presented in Chapter 6. The multisensorial approach 

presents challenges related to the fusion of individual signals from the different sensors, 

dimensionality of the feature space, and incompatibility of collected signals in terms of time 

resolution and format. The strategies presented in this work allowed to integrate such 

heterogeneous devices like eye tracker, Kinect and thermal camera into a all-in-one system. 

The main difficulties in the integration were the range of operating of each equipment and the 

difficulty of synchronizing the data that were captured by different computers. These 

problems were solved, firstly by changing the setup for the experimental tests, and secondly 
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with a manual synchronization of the videos. The integration of eye tracker and Kinect 

allowed to perform joint studies of focus of attention in recognition of facial expressions and 

valence, while the Kinect-thermal camera integration allowed proposing a novel technique 

using the AU in the thermal images, which has improved the detection and segmentation of 

FT-RoI in the thermal image. 

 

In Chapter 7, the multisensorial system was validated.  The multisensorial system was tested 

in sixteen adults and three children volunteers. An experimental protocol for evoking 

emotions was proposed to be used with the developed system, which was able to detect eye 

gaze, recognize facial expression and estimate the valence and arousal for emotion 

recognition, fulfilling the main objective of this M.Sc. Thesis.  

 

Finally, with the system here developed, emotions of people can be analyzed by facial 

features using contactless sensors in semi-structured environments, such as clinics, 

laboratories, or classrooms. This system also presents the potential to become an embedded 

tool in robots to endow these machines with an emotional intelligence for a more natural 

interaction with humans. 

 

8.2. Contributions 

 

The main contribution of this research was the development of a multisensorial system in 

order to automate the emotion recognition. The system allows detecting visual social 

attention, recognizing facial expression, estimating the valence emotion, and integrating 

results for further evaluation. The calibration procedure is fast and performed at the beginning 

of each experiment. Also, the integrated system provides an easy-to-use tool, which is 

versatile, robust, contactless and portable, and, additionally, can be used in social emotion 

therapy and assistive robotic applications. Other contributions involve the development of an 

eye tracking interface for assistive applications using an eye tracker as a tool for social visual 

attention applications and control of devices through eye gaze. In addition, this research 

presents a novel technique for FACS-AU and FT-RoI integration in order to improve the 

detection and segmentation of FT-RoI in thermal image.  Additionally, a database of more 

than 100 children with facial information from color camera, thermal camera and eye tracking 

in a semi-controlled environment was collected. This is an important contribution, since, in 

the literature, it is difficult to find a multisensorial database of children's emotional 

information. 
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8.3. Publications 

 

During this research, the following publications were realized: 

 

 RIVERA, H.; GOULART, C.; CALDEIRA, E.; BASTOS, T. Using Eye-Tracking for 

the Study about Valence and Emotional Facial Expressions. In: Anais do XXV 

Congresso Brasileiro de Engenharia Biomédica CBEB 2016. 

 RIVERA, H.; COTRINA, A.; VALADAO, C.; BENEVIDES, A.; BASTOS, T.  Motor 

Intention Detection for Robotic Walker Users Using Artificial Neural Networks and 

Eye-Tracking. In: Anais do XXV Congresso Brasileiro de Engenharia Biomédica 

CBEB 2016. 

 RIVERA, H.; BISSOLI, A.; GOULART, C.; CALDEIRA, E.; BASTOS, T. 

Development of Matlab Toolbox for Eye Tracking Systems. In: Anais do XXI 

Congresso Brasileiro de Automática CBA 2016. 

 

 GOULART, C.; RIVERA, H.; FAVARATO, A.; BINOTTI, V.; BALDO, G.; 

VALADAO, C.; CALDEIRA, E.; BASTOS, T. Towards an Improved Human-

Affective Robot Interaction. In: Anais do XXV Congresso Brasileiro de Engenharia 

Biomédica CBEB 2016. 

 COTRINA, A.; VALADAO, C.; RIVERA, H.; BENEVIDES, A.; BASTOS, T.  

Towards Motor Intention Detection of Robotic Walker Users Based on Brain-

Computer Interfaces. In: Anais do XXV Congresso Brasileiro de Engenharia 

Biomédica CBEB 2016. 

 VALADAO, C.;  GOULART, C.; RIVERA, H.; CALDEIRA, E.; BASTOS, T.; 

FRIZERA NETO, A.; CARELLI, R. Analysis of the use of a robot to improve social 

skills in children with autism spectrum disorder. In: Research on  Biomedical 

Engineering RBE. 2016.  

 GOULART, C.; RIVERA, H.; VALADAO, C.; CALDEIRA, E.; BASTOS, T. 

Recognizing Emotions and Focus of Attention in Individuals with ASD Based on 

Facial Images. In: Anais do VI Congresso Brasileiro de Biotecnologia 2015. 

 COTRINA, A.; Glasgio, G.; RIVERA, H.; Ferreira, A.; BASTOS, T.  Evaluation of 

Eye Movements Using Tracking Devices in Context of a Novel Ssvep-Bci Setup. In: 

Anais do XII Simpósio Brasileiro de Automação Inteligente SBAI 2015. 
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8.4. Future works 

 

The following tasks are indicated as possible future works: 

 Synchronize the database information and testing algorithms in order to improve the 

emotion detection and classification. 

 Try a thermal camera with higher resolution and better sensitivity to capture 

thermographic images suitable for detecting emotions 

 Implement methods to detect more AUs in order to improve the facial expression 

detection and classification. 

 Develop a strategy of synchronization of the sensors that allows to work on-line and 

detect emotions in real time. 

 Integrate the emotions recognition system to a multimedia system (animated face, 

sound and video) to create affective computing applications.  

 Test the multisensory system in experimental therapy with children with autism. 
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