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Abstract

Arm and hand movements are generally controlled using a combination of 

sensory-based and memory-based guidance mechanisms. This study examined 

similarities and differences in visually-guided and memory-guided arm movements, and 

sought to determine to what extent certain control principles apply to each type of 

movement. In particular, the 2/3 power law is a principle that appears to govern the 

formation of complex, curved hand trajectories; it specifies that the tangential velocity 

should be proportional to the radius of curvature raised to an exponent of 1/3. A virtual 

reality system was used to project complex target paths in three-dimensional (3D) space. 

Human subjects first tracked (with the tip of a hand-held pen) a single target moving 

along an unseen path. The entire target path then became visible and the subject traced 

the shape. Finally, the target shape disappeared and the subject was to draw it, in the 

same 3D space, from memory. Most aspects of the movements (speed, path size and 

shape, arm postures) were very similar across the three conditions. However, subjects 

adhered to the 2/3 power law most closely in the tracing condition, when the entire target 

path was visible. Also, only within the tracing condition, there were significant 

differences in the value of the exponent depending on the size and the spatial orientation 

of the trajectory. In the tracking and drawing conditions, the exponent was greater than 

1/3, indicating that subjects spent more time in areas of tight curvature. This may 

represent a strategy for learning and remembering the complex shape.
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Introduction

Imagine carving a sculpture in wet clay. You directly observe the model’s 

silhouette and copy it into your sculpture, but, at times, you ignore the model and work 

from memory. You also guide your knife to visible rough spots for further refinement. 

Routine tasks such as shaving, applying lipstick, and stroking a dog, involve a similar 

hybrid of sensory and internal guidance. In fact, although these two mechanisms have 

provided a useful dichotomy for studies of sensorimotor systems, most of our arm and 

hand movements seamlessly combine aspects of sensory-based and memory-based 

control.

Thus we sought to tease apart aspects of arm movement that may or may not 

differ across a range of sensory-based and memory-based conditions. We compared a 

number of movement characteristics across the following conditions: 1) tracking a target 

that moves with a particular time course, along an unseen path, 2) self-paced tracing of 

the same path, now entirely visible as the outline of a three-dimensional (3D) shape, and 

3) self-paced drawing of the again invisible shape, from memory.

In the companion paper (Mrotek et al. submitted) we examined, in detail, our 

results from the tracking condition. As the target made four consecutive cycles around a 

closed shape, tracking improved to steady state about 3/5 of the way through the first 

cycle. Steady-state tracking exhibited evidence of anticipation, suggesting that subjects 

had “learned” something about the target trajectory. Furthermore, compared to the 

subsequent tracing condition (where the target path was entirely visible), during tracking, 

the hand path was spatially distorted: it was flatted into the frontal plane due to relatively 

poor tracking in depth.
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We wondered if we would also find consistent spatial distortions when we 

compared tracing the visible shape to drawing that shape from memory. This was 

motivated by a broad literature on memory vs. visual guidance (e.g., Gnadt et al. 1991) as 

well as specific examples from studies of reaching to remembered target points in 3D 

(e.g., McIntyre et al. 1997, 1998). In one of the first reaching studies, Soechting and 

colleagues (1990) found that finger placement was centered around the eyes when the 

finger was visible, but around the shoulder when it was not. Thus in the present study, 

we hypothesized that subjects might distort the remembered shape by centering it around 

the eyes or the shoulder. Other distortions are also possible, such as rotating and 

flattening the remembered shape into the frontal plane (cf. Klein Breteler et al. 2003).

Along these same lines, we wondered if the target shape would be properly 

remembered and executed as containing planar segments, or alternatively, if the tendency 

for piecewise planar segments (Soechting and Terzuolo 1987) might be enhanced or 

degraded in memory. We also sought to test the idea that after the extensive practice of 

the tracking and tracing conditions, the planning of joint angle trajectories might be 

improved to allow the memory-guided movements be generated in a more energetically 

efficient style (Klein Breteler et al. 2003; Flanders et al. 2003).

Finally, we aimed to compare subjects’ adherence to the 2/3 power law

(Lacquaniti et al. 1983) across the three conditions of our study (tracking, tracing and

drawing). This law prescribes a nonlinear relationship between the tangential velocity

and the radius of curvature of the hand trajectory; if  the power-law is written as v(t) = C

r(t)b, the theoretical relation predicts an exponent of b=1/3. Although there is a great deal

of evidence for this phenomenon, its validity as a fundamental constraint of neural
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control has recently been questioned (Schaal and Sternad 2001; Richardson and Flash 

2002). In a study where subjects drew planar ellipses with eyes closed, Schaal and 

Sternad (2001) reported systematic differences in the value of the power law exponent 

due to mechanical variables such as the size of the drawing and the plane of the 

movement (horizontal vs. vertical). The various studies on this topic have used many 

different sensory and mechanical conditions, including 2D, 3D, and even isometric 

conditions (Massey et al. 1992; Todorov and Jordon 1998), but few have compared 

subjects’ strategy across conditions. Thus, our goal was to use the exponent of the power 

relation to measure and interpret changes in trajectory formation across visual-memory 

conditions, and also within a condition, across shapes and across particular segments of a 

shape. For example, based on the work of Schaal and Sternad (2001), within the drawing 

condition we expected differences between shapes with different sizes, and differences 

between the horizontal and vertical segments of the same shape. Thus, the main aims of 

our study were to compare visually-guided and memory-guided drawings of a 3D 

trajectory, and to examine the validity of the 2/3-power law for various conditions of 

tracking, self-paced tracing and drawing from memory.

Methods

Subjects

The experimental procedures followed the human subjects regulations of

Radboud University Nijmegen, where six subjects took part in the experiment. All

subjects were neurologically normal and had normal or corrected to normal vision. The

average age was 33±12(SD) years, four of the subjects were female, and two of the
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female subjects were left-handed but performed with the right arm. In a preliminary 

attempt to study the influence of prior experience, we choose subjects with a wide range 

of familiarity with the target shapes: one subject had designed and tested the shapes, two 

were coauthors, and three were completely naïve about the shapes and the purpose of the 

experiment. Also, one of the experienced subjects and one of the naïve subjects 

performed the experiment twice. We did not find any evidence for an influence of prior 

experience, and for these two subjects corresponding data from the two sessions were 

averaged. Thus our data set was derived from n=6 subjects.

Target conditions and target shapes

In each experimental session, each of the 17 target shapes was used once, in an 

order that was varied randomly across sessions. Targets were displayed in the 3D 

workspace directly in front of the seated subject, using a virtual reality system with an 

LCD projector and red/green glasses (see Mrotek et al. submitted). As shown in Fig. 1, 

the data were measured and analyzed in a right-handed Cartesian coordinate system, with 

the Z-axis in the upward direction, the X-axis in the horizontal direction (to the subject’s 

right), and the 7-axis in depth (orthogonal to the frontal plane of the subject’s body).

The subject was first asked to track a single target (a sphere with a diameter of 2.5 

cm) moving along the perimeter of the unseen shape. After a rest (with the arm at the 

side) of about 30 s, the subject then traced the perimeter of the shape while it was entirely 

visible. Finally, the shape disappeared and after another 30 s rest period, the subject was 

asked to draw it, in the same 3D space, from memory. For the drawing condition, the 

target sphere appeared and remained at the initial position to help the subject begin the 

drawing in the correct location.
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For the tracking trials, the target moved around the shape four times, with a speed 

profile that approximated the 2/3 power law (see Mrotek et al. submitted). In the tracing 

and drawing conditions, subjects were instructed to “use the same speed” as in the 

tracking condition, and to complete four consecutive cycles. The experimenter (and not 

the subject) counted silently and gave a verbal warning at the end of the third cycle, as 

well as an indication to stop at the end of the fourth cycle. As explained below, all 

analyses were applied only to data from the second and third cycles.

Target shapes are described in detail in the companion paper (Mrotek et al. 

submitted). Briefly, the main shape was a Cassini ellipse, presented either in a front or a 

side orientation (Fig. 2, top row). The long axis was 48 cm and the width was 32 cm.

For both the front and the side orientations, we produced variations of the Cassini shape 

by folding it at an angle of either 30o or 60o. These folds were either down the long axis 

(Fig. 2, bottom right panel), across the short axis, or along an oblique axis (see Figs. 1-2 

of Mrotek et al. submitted). This produced 14 of the 17 shapes.

We also presented a more spherical shape, which we will refer to as the 4-Plane 

shape, where four connected semi-circles lay in horizontal and vertical planes (Fig. 2, 

bottom left panel). We presented three sizes of the 4-Plane shape: the small shape was 

16 cm in the frontal plane and 16 cm in depth (radius of the semicircles = 8 cm), the 

medium shape was 28 x 28 cm, and the large shape was 40 x 40 cm. In accord with the 

2/3 power law, both the speed and the radius of curvature were constant. In the tracking 

condition, the target moved at a different constant speed for each size, such that each 

cycle took 6.7 s.
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In Fig. 2, the Cassini shapes are shown from the perspective of the subject. The 

subject sat 90 cm from the vertical screen (wearing the red/green glasses) and the height 

of the chair was adjusted so that the center of the shape was at eye level. The projection 

of the 4-Plane shape on the frontal plane was a square. Therefore to give a better 3D 

view of the 4-Plane shape, in Fig. 2 it is rendered as viewed from a position slightly to the 

right and above the eyes of the subject.

Data collection and processing

We used an Optotrak 3020 system (Northern Digital Inc., 100 Hz, precision better 

than 0.15 mm) to record the locations of LED markers, in three dimensions. The markers 

were placed on the right shoulder, elbow, and wrist, and on the tip of a pen-like object 

held in the subject’s right hand (“hand marker”). Subjects were asked to refrain from 

bending the wrist, and thus they were to produce (track, trace or draw) the shape with the 

hand marker, using mainly shoulder and elbow rotations.

To avoid the transients associated with starting (at the beginning of the first cycle) 

and stopping (at the end of the fourth cycle), we focused the analysis on the second and 

third cycles. In the tracking condition each target cycle had a fixed duration: 5 s for the 

Cassini shapes and 6.7 s for the 4-Plane shapes. For tracing and drawing, the exact cycle 

time could vary. Therefore for all conditions, we marked and extracted data from the 

center two cycles based on the distance of the hand marker from the starting target 

location. Using custom software we found the minima of the distance vs. time plot and 

extracted data (the X-, Y-, Z-locations of all markers) from the center two cycles.
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Computing normalized kinetic energy

If the hand trajectory is similar across conditions, it is still possible that the hand 

followed this trajectory using sets of joint rotations that differed across conditions. For 

example, subjects may have used more elevated elbow locations during tracking, but a 

relatively low (more relaxed) elbow location during drawing. A sensitive measure of the 

arm configuration during each movement is provided by a calculation of normalized 

kinetic energy.

We performed this calculation as described previously (Flanders et al. 2003), 

using three degrees of freedom at the shoulder and one at the elbow. The basic formula 

for kinetic energy (KE) is

KE = /  mv2 + /  IQ 2 (1)

where m is the mass of the arm, v is the velocity of the center of mass, Q is the joint 

angular velocity vector and I  is the inertia tensor of the two-link arm. Obviously, a 

comparison of this parameter across conditions would be heavily influenced by slight 

changes in velocity. Therefore, to isolate the aspect of KE due to arm geometry, we 

applied the calculation to the center two cycles after each had been time-normalized to

5 s. We then computed the average normalized KE across each cycle and averaged the 

values for the two cycles to give one normalized KE value for each trial.

The amount of KE during each movement is also heavily influenced by the total 

distance of the hand path (i.e., the size of the shape), which may vary across conditions 

and across subjects. Therefore, to better isolate the aspect of KE due to arm 

configuration, and to combine normalized KE values across subjects, we used linear

regression to relate this parameter to path distance (see Fig. 6D). For each condition and
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subject, we then evaluated this relation to find the predicted normalized KE value at a

common distance (the average path distance across all subjects and conditions).

Planarity and 2/3 power law

Measures of hand path planarity and adherence to the 2/3 power law were applied

to sub-cycles within the center two cycles. As illustrated in Fig. 3 and Fig. 4, we used the

minima of the hand speed profile to delineate sub-cycles. The hand paths for the two

cycles along the 4-Plane shapes were divided into 8 sub-cycles, corresponding to

horizontal and vertical sections (Fig. 3). The two cycles along the Cassini shapes were

divided into 5-8 sub-cycles by virtue of the fact that the hand slowed down at bends (i.e.,

the locations of the 30o or 60o folds) and indents (the areas of tight curvature in between

the two main lobes) (Fig. 4).

Deviation from planarity was measured as the standard deviation of hand

distances perpendicular to a plane that was fit to the 3D hand locations. For this analysis,

we used a spatially balanced set of complete sub-cycles of the Cassini shapes: two for the

No Bend and Short Axis Bend shapes (i.e., the full top and bottom lobes), and four for

the shapes bent around long and oblique axes. For example, Fig. 4 shows data from the

tracing of the Side 60o Long Axis Bend shape. The first segment (brown) was excluded

and the next four segments (pink, purple, blue, green) were used, to give a balanced

coverage of the shape.

Adherence to the 2/3 power law was evaluated using the slope of a linear

regression fit to the relation between log hand velocity and log hand path radius of

curvature. This gave us a separate slope value for each analyzed segment. For 4-plane

shapes we used all 8 sub-cycles (see Fig. 3). This gave four values for horizontal
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segments and four values for vertical segments, for each trial. For Cassini shapes we 

excluded the first sub-cycle and used the next four sub-cycles (see Fig. 4), to yield an 

equal number of values for each shape. The value of the slope of log velocity vs. log 

radius was then interpreted as described below.

Interpreting deviations from the 2/3 power law

In this section, we will show that the 2/3 power law (Lacquaniti et al. 1983), 

which states that the radius r(t) and velocity v(t) are related by r(t)/v(t)= C r(t)2/3 or in

1/3equivalent notation v(t) = C r(t) , follows in a straightforward way for a simple model, 

in which an object moves along a trajectory that is described by two orthogonal sinusoids 

(see Hollerbach 1980). We will use this as a starting point to interpret deviations from 

the expected 0.33 value for the exponent. The position of an object, that moves along a 

trajectory of two orthogonal sinusoids, 90o out of phase, is given by the elliptic trajectory

^x(t) = Ax cos(®t)^

y (t) = Ay sin(®t) j
(2)

According to straightforward mathematics, the curvature K(t) of the ellipse at time t is 

given by

K(t t = (. ? -  y ) 2  (3)
(x + y  )

where x and &x& represent the first derivative (velocity) and second derivative 

(acceleration) of x(t), respectively. More detailed information about Eq. (3) can be found 

in Stoker (1969). The curvature k  of this ellipse is equal to the inverse of the radius r of

the path ( k  =  -1 ).
r

11



Substitution of the first and second derivates of x(t) and y (t) in Eq. 2 gives

1 AxAya 3 sin2(at) + AxAya 3 cos2(at) a 3A A  
1 = K(t) = ----------v 7 3 x y---------- —  = ------(4)

r(t) v(t)3 v(t)3

For constant amplitudes Ax and Ay and for constant frequency a , we obtain 

r(t)=Constant v(t)3, or log v(t) = C + 1/3 log r.

According to the derivations above, we expect a slope of 0.33 if we plot log v(t) 

as a function of log r(t) for the simple model above. This is shown schematically in 

Fig. 5 (solid lines). The upper left panel shows the X- and 7-trajectories as a function of 

time (for 2.5 s). The upper right panel shows the elliptical path in the X-Y plane (for 5.0 

s). The lower left panel shows the tangential velocity as a function of time (2.5 s) and the 

lower right panel shows the relation between log velocity and log radius, which follows a 

perfectly straight line with slope of 0.33.

Since several studies have reported exponents that deviate from the 0.33 value, we 

speculated about explanations for this behavior. One possible explanation might be that 

in various phases, the subjects move faster or slower than predicted by the simple model 

described above. Therefore, we did simulations to produce a model where the hand 

moves faster (slower) along relatively flat parts of the path, and slower (faster) along the 

tight-curvature parts of the path. For this purpose the model was modified into

^x(t) = Ax cos(a(t)t)^

y (t) = Ay sin(a(t)t) j
(5)

where the angular velocity is not constant but instead depends on the phase of the elliptic 

trajectory.
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The results are shown in Fig. 5 (dashed and dotted lines). The heavy dashed lines 

show the predictions for a model which moves faster in the relatively flat (large radius of 

curvature) areas and slower in the tight-curvature (small radius) areas. The dotted lines 

show the results for the opposite case: lower tangential velocity for flat sections and 

higher tangential velocity for tight curves. All trajectories in the X-Y plane (upper-right 

panel) superimpose, but they differ in their velocity traces (lower left panel), and the 

slopes of the log velocity/log radius plots are clearly different. This simulation shows 

that a higher slope in the log v/log r plot is compatible with the idea that movement is 

faster than the simple model for a large radius of curvature (a gradual curve) and slower 

at a small radius of curvatures (a tight curve, as occurs around an indent or at a bend).

Results

Lack o f spatial distortion

We hypothesized that there might be a consistent spatial distortion in 3D shapes 

drawn from memory, compared to the hand paths of the tracked and traced shapes since 

the target was not visible in the drawing condition. As a first step in the analysis to test 

this hypothesis, we superimposed the paths from the three conditions and rotated the plots 

to look for similarities and differences for each subject and for each shape. An example 

is shown in Fig. 1, where we have plotted the hand paths for the second and third cycles 

of the Front No Bend shape (the target shape is shown in the top left panel of Fig. 2).

The tracking, tracing and drawing conditions are plotted with different line styles. For 

this subject, the drawing made from memory (dashed line) was a bit lower than the
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others, and appeared to be rotated around a vertical axis. However this was not a 

consistent result.

The six subjects exhibited idiosyncratic spatial distortions in the memory 

condition; there was no common pattern. The most frequent observation was a tendency 

to rotate the top lobe of the side orientation Cassini shape (see Fig. 2, right panels) 

towards the frontal plane. However, this was seen in only half of the subjects, and even 

for these subjects, not for every side orientation shape. One subject tended to make the 

memory-based drawings longer and lower, and another made them slightly closer to her 

body. For the 4-Plane shape, we also noticed a tendency for some subjects to make 

flatter shapes in the tracking condition and deeper shapes in the memory condition, 

compared to the tracing condition (see lower panel in Fig. 3). However, with the 

exception of the general lack of depth in tracking (documented in Mrotek et al. 

submitted), none of these tendencies were consistent across subjects.

Speed, distance and planarity

Although we did not attempt to quantify spatial rotations, translations or 

distortions in aspect ratios, we did quantify several other kinematic and kinetic 

parameters (Fig. 6). The results in Fig. 6 include all Cassini shapes (but not the 4-Plane 

shapes) and show grand means across the six subjects and standard errors. The small and 

large 4-Plane figures had path distances outside the range of the Cassini shapes, and all 4- 

Plane shapes had tracking cycle periods that were different from those of the Cassini 

shapes (6.7 s instead of 5 s). Thus to allow for linear regression and ANOVA tests on the 

pooled data, we chose to exclude the 4-Plane shapes.
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In spite of our instruction to use the same speed, some subjects traced and drew 

the shapes faster than the speed of the target in the tracking condition. Thus, the average 

cycle period was less than 5000 ms for tracing and drawing (Fig. 6A). However, the 

difference across the three conditions was not statistically significant (ANOVA, p>0.05). 

As expected, the standard error (across subjects) was very small in the tracking condition 

(black bar), but it was much larger in the tracing condition (white bar) and the drawing 

condition (gray bar). Of the 6 subjects, two showed the main trend (track>trace>draw) 

and two had comparable cycle period reductions for tracing and drawing 

(track>trace=draw), but one subject had longer cycle periods for tracing and drawing 

(track<draw<trace). The sixth subject had approximately equal durations for all three 

conditions. The overall size of the shape (path distance for each cycle) was also not 

significantly different across conditions (Fig. 6B); there was a great deal of variability 

across subjects, but in this case, the mean values were similar.

In Fig. 6C we show the results of our analysis of the hand path during sub-cycles 

of all Cassini shapes. As explained in Methods, cycles two and three were divided into 

sub-cycles by virtue of the fact that the hand trajectory slowed at indents and bends (see 

Fig. 4). For complete sub-cycles, we calculated the standard deviation of a 3D planar fit 

to the hand path data. The deviation from planarity was greater in the tracking condition 

compared to the tracing condition (ANOVA with Scheffé post-hoc analysis, p<0.05), but 

the tracing and drawing conditions were not different from one another. Thus, despite the 

inherent variability and distortion in the drawing condition (see Fig. 1), the deviation 

from planarity was not significantly greater than in the tracing condition.
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Normalized kinetic energy

Normalized kinetic energy (nKE) also did not vary significantly across conditions 

(Figs. 6D and 6E). In Fig. 6D we show the relation between nKE and path distance for 

the naïve subject who performed the experiment twice. As in the histograms, the tracking 

condition is represented with black symbols, the tracing condition is represented with 

white symbols, and the drawing condition is represented with gray symbols. As 

expected, for this subject, and for all subjects, there was a strong positive relation 

between nKE and distance. However, contrary to our hypothesis, neither the slope nor 

the intercept was significantly different across conditions. To combine the results across 

subjects, we evaluated each regression to predict nKE at a common distance (1.2 m, the 

overall average distance). As shown in Fig. 6E, using an ANOVA, we found no 

difference across conditions.

Deviations from the 2/3 power law

In the Methods section, we presented a simulation that will aid in interpretation of 

deviations from the expected value of 0.33, for the slope of the linear fit of log velocity to 

log radius of hand path curvature (Fig. 5). This simulation showed that a value higher 

than 0.33 would correspond to a movement that was faster for a large radius of curvature 

(a relatively flat curve) and slower for a small radius of curvature (an indent or a bend), 

compared to a movement composed of sinusoids. Figure 7A shows that the Cassini 

shapes for the tracing condition came very close to the ideal value of 0.33. However, 

there were significant differences across conditions (Figs. 7A, 7B and 7C), as well as 

significant variation across sub-cycles (Fig. 7C) and shapes (Fig. 7D) within the tracing 

condition.
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In Fig. 7A, we show a comparison of the equivalent Cassini shapes in the front 

and side orientations, as well as a comparison across conditions. Within each condition, 

we used a paired t-test to compare the front and side versions for each subject and each 

particular shape (i.e., No Bend, 60o Long Axis Bend, 30o Long Axis Bend, 60o Short Axis 

Bend, etc.). We found no significant differences within condition (p>0.05), and thus the 

different mechanical parameters (i.e., inertia of the arm, joint angles) for the front and 

side orientations did not produce different exponents for the velocity/curvature relation. 

However, we also did t-tests across conditions (paired for subject, shape and orientation) 

and found that in each case, the tracing condition had a lower exponent than its tracking 

or drawing counterpart (p<0.001).

In a similar way, we compared the exponents for pairs of large and small 4-Plane 

shapes. We found that the large shape had a significantly larger exponent than the small 

shape, but only for the tracing condition (0.30 vs. 0.25, p<0.05). Although the target 

shape had constant curvature, many subjects flattened it into the frontal plane (see Fig. 3), 

thus producing tighter curves at the transitions between horizontal and vertical segments. 

The relatively small exponent for the small shape implies that, for a given range of 

curvature values, subjects tended to use a smaller range of velocity values. Indeed, for 

the small 4-Plane shape shown in Fig. 3, the speed profile rarely came close to zero 

(compared to the profile shown in Fig. 4) and the exponent value for most cycles was less 

than 0.33 (as indicated above each sub-cycle in the speed profile).

Fig 7B also shows differences in corresponding 4-Plane shapes across conditions,

and Fig 7C shows differences in corresponding sub-cycles of 4-Plane shapes across

conditions. The main difference was the relatively high exponent for the tracking
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condition (black bars) compared to the tracing condition (white bars). The difference was 

the greatest when small tracked shapes were compared to small traced shapes (Fig. 7B, 

p<0.001), and when the tracked vertical segments were compared to the traced vertical 

segments (Fig. 7C, p<0.001).

Fig. 7C also shows that only within the tracing condition, the vertical segments 

had slightly smaller exponents than the horizontal segments (p<0.05). A representative 

example is provided in Fig. 3, where the horizontal segment shown in green (fifth 

segment) had an exponent of 0.34, while the next vertical segment (orange, sixth 

segment) had an exponent of 0.22. Since the exponent is the slope of a log velocity vs. 

log radius plot, it is difficult to appreciate the correspondence between the speed profile 

and the value of the exponent, without also taking into account the curvature. However, 

it is clear that a rapid fluctuation between maximum and minimum velocity, as occurs in 

the last two sub-cycles in Fig. 3, generally corresponds to larger values for the exponent. 

Regarding Fig. 3, it is also interesting to note that despite the constant velocity of the 4- 

Plane tracking target, all subjects showed cyclic modulation of the speed profile.

However the average range of maximum to minimum speeds was much smaller for the 4- 

Plane shapes (0.2-0.6 m/s, 0.2-0.4 m/s and 0.1-0.3 m/s for the large, medium and small 4- 

Plane shapes, respectively) than for the Cassini shapes (0.02-0.5 m/s).

One of the main goals of this analysis was to describe variations from the 2/3

power trajectory due to mechanical parameters. Curiously, differences across large and

small shapes (Fig. 7B) and across horizontal and vertical segments (Fig. 7C), which

might have been attributed to mechanics, were found only in the tracing condition and

not when comparable shapes were drawn from memory. In fact the difference between
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large and small shapes, while not statistically significant, had the opposite sign in the 

drawing condition (Fig. 7B). This suggests an interpretation based on planning to trace 

the visible shape, rather than mechanics.

Thus we focused our attention on the geometric properties of traced shapes; we 

used an ANOVA, to compare exponents across Cassini shapes (pooled front and side 

orientations) with the four types of 60o bend axis and also across the 4-Plane shapes 

(pooled horizontal and vertical segments) with the three sizes (Fig. 7D). Scheffe post­

hoc analysis revealed many significant differences across shapes. For example, as 

illustrated in Fig. 4, Cassini shapes with long axis bends were associated with the largest 

exponent values. The segment shown in blue (fourth segment) began with an indent at 

nearly zero velocity, which quickly increased to nearly maximum velocity during the 

relatively flat part of the shape. Thus, in general, a relatively large exponent means that 

the subject slowed down more than expected for the bends and indents and moved faster 

than expected along the relatively flat segments. Thus, in the tracing condition, the arm 

movement strategy varied according to features of the traced shape.

Discussion

We compared various aspects of tracking, tracing, and drawing and found that

these behaviors were similar in terms of the size and shape of the hand path, the overall

speed of the arm movement, and the arm configuration (i.e., the series of arm postures).

Surprisingly, in spite of the overall similarities in the movements, we found subtle, but

highly significant differences in the relation between hand path velocity and curvature.

Compared with the tracing condition, in the tracking and drawing conditions, subjects
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slowed down more around the bends, the indents and the transitions between horizontal 

and vertical planes; they also moved more quickly during the relatively flat parts of the 

path. In the two sections below, we will briefly discuss the similarities across conditions 

and then focus on the possible implications of the difference in the velocity/curvature 

relation.

Similarities across conditions

During tracking, the cycle period (and thus the average tracking speed) was set by 

the target; it was 5 s for the Cassini shapes. During tracing and drawing one subject 

moved slower but most subjects moved faster, and therefore we time-normalized (to 5 s) 

the two center cycles (cycles two and three), prior to subsequent analysis. There was also 

a great deal of variability across subjects in the overall size of the shapes that they 

produced (i.e., the hand path distance), and therefore we took both speed and distance 

into account before using kinetic energy as a measure of changes in joint angle 

trajectories.

Normalized kinetic energy (nKE) has been shown to be a sensitive measure of

small changes in arm geometry due to changes in movement strategy. For example, in a

study of sequences of reaching movements, the nKE of the first movement differed

depending on which second movement was planned (Klein Breteler et al. 2003). This

occurred in the absence of a difference in the hand path of the first movement. Also,

simulation studies suggested that neuromuscular strategies for selecting initial and final

arm configurations may take nKE into account (Soechting et al. 1995; Flanders et al.

2003; Klein Breteler et al. 2003). Thus we chose this parameter to test the hypothesis

that visually-guided and memory-guided movements are generated in a fundamentally
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different manner. Our results did not support this hypothesis. Instead, we found that arm 

geometry was very similar across visual-memory conditions.

There has been some debate about whether the tendency for the hand to move in a 

plane reflects mechanics, biologically coupled joint rotations, or higher-level visual- 

spatial representations (Sternad and Schaal 1999; Soechting and Terzuolo 1986; Pellizzer 

et al. 1992). Since the target shapes were piece-wise planar, it was expected that the 

deviation from planarity would be low in the tracing condition. If we had found that 

deviation from planarity was higher in the drawing condition, this would have argued 

against the hypothesis that the planarity arises from the visual-spatial representation of a 

complex 3D shape (presumably drawing from memory would be based upon this 

representation). However, somewhat unexpectedly, we found that hand paths were 

equally planar in the tracing and drawing conditions. Therefore our results are consistent 

with the hypothesis that planarity is a prominent aspect of the memory-based 

representation of 3D shapes.

Implications o f deviations from the 2/3 power law

A common approach to investigate the underlying principles for the planning and 

execution of movements is to look for invariant features. One of the well-known 

invariant features is that the velocity profile for movements between two targets is bell­

shaped, in line with the principle of minimization of jerk (Flash and Hogan 1985). For 

2D and 3D movement trajectories, the 2/3 power law has also been widely reported and 

has been thought to be a fundamental constraint of the central nervous system in the 

formation of rhythmic curved trajectories (e.g., Wann et al. 1988).
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In the past years, several studies have explored whether one of the two principles 

described above could be a consequence of the other. In particular, Todorov and Jordan 

(1998) claimed that minimum jerk could be a guiding principle to explain the velocity for 

curved trajectories in 3D space. These authors assumed that for a given path of the hand 

in space, the speed profile will be the one that minimizes jerk. Analysis of the 

mathematical relationship between this smoothness constraint and the 2/3 power law 

revealed that in both 2D and 3D, the power law is equivalent to setting the jerk along the 

normal to the path to zero. Their conclusion was that extending the 2/3 power law with a 

smoothness constraint gave a better fit to the experimental trajectories.

As mentioned in the Introduction, the validity of the 2/3 power law as a 

fundamental constraint of the central nervous system in the formation of rhythmic 

trajectories was also questioned by Schaal and Sternad (2001) and by Richardson and 

Flash (2002). These studies revealed systematic violations of the 2/3 power law in the 

sense that the exponent of the relation could deviate significantly from the theoretical 

value. In fact, Schaal and Sternad (2001) reported deviations of up to 40%. Moreover, 

these authors used an anthropomorphic robot, which generated end-point trajectories 

modeled as simple harmonic oscillations. Analysis of the endpoint trajectories revealed 

that the power law is systematically violated for larger trajectories. These authors 

concluded that subjects employed smooth oscillatory pattern generators in joint space to 

realize the required movement patterns and that the precise exponent of the non-linear 

relationship between tangential velocity and curvature depends on the biomechanical 

properties of the end effector.
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A good comparison of the results of various studies is complicated by the fact that 

very few have investigated 3D movements in detail and that the paradigm used could be 

very different. In the studies by Richardson and Flash (2002) and Todorov and Jordan 

(1998), subjects were asked to move along complex visible trajectories in a 2D plane. In 

the study by Schaal and Sternad (2001), subjects were instructed to make cyclic 

movements in a horizontal or vertical plane, without a clear target trajectory. Thus the 

goal of our study was to directly compare 3D movements across various visual-memory 

conditions.

We found that the 2/3 power law was followed most closely (i.e., with an 

exponent near 0.33) in the condition where the target path was fully visible. Surprisingly, 

only in this condition did we find an influence of size and spatial orientation on the value 

of the exponent. Within the tracing condition we also found a dramatic influence of the 

type of Cassini shape, with the Long Axis Bend shapes having the highest value for the 

exponent. This may suggest an explanation based on the ability to plan ahead for the 

geometric features of the fully visible shape.

We did not find significantly different values for the exponents for frontal and 

side presentations of the Cassini shapes. Since the mechanical parameters of the arm (i.e. 

inertia, joint angles) are different for the frontal and side orientations, these results tend to 

argue against an effect of mechanical parameters on the exponent of the 2/3-power law. 

The observation that the exponents were significantly different for the tracing condition 

in comparison to the nearly identical movements in the tracking and drawing conditions 

also argues against an explanation based on mechanical parameters, and in favor of other

factors involved in the planning and/or execution of movements.
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The target shapes in our study were designed to contain a range of curvature 

values, as well as abrupt bends, and planar segments. The bends and other local changes 

in the path (i.e., indents and horizontal-vertical transitions) were the key features that we 

used to break the hand path into sub-cycles. We could then examine these sub-cycles to 

evaluate the velocity/curvature relation. Based on the results, it seems that subjects may 

have also made use of these key features to learn (during tracking) and remember (for 

drawing) the target trajectory. This would explain why subjects tended to spend more 

time in these bends and indents and less time in the relatively flat areas, during the 

tracking and drawing conditions. Thus we propose that deviations from the 2/3 power 

law can reveal a subject’s strategy for learning and recalling a complex trajectory.
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Figure Legends

Figure 1 Hand paths for the second and third cycles, for the three different conditions: 

tracking (thin solid black line), tracing (dotted line) and drawing from memory (dashed 

line) for the Front No Bend Cassini shape. Movements were made in the clock-wise 

direction.

Figure 2 Three-dimensional renderings of four of the 17 target shapes. The main shape 

used in this experiment was a peanut-shaped Cassini ellipse. It was presented in frontal 

view in a plane rotated 45° about the horizontal (X) axis, such that the bottom of the 

shape was closer to the subject (upper left), and in side view (upper right) where we 

rotated the shape 80° about the vertical (Y) axis. In addition to these shapes, we altered 

the Cassini ellipse by folding it along three axes. It could be bent along the long axis 

(lower right), the short axis (not shown) or an oblique axis (not shown). The magnitude 

of the bends could be 60° (lower right) or 30° (not shown). For all Cassini shapes, the 

subject began at the location of the discontinuity and moved clockwise around the shape. 

All Cassini shapes are shown from the perspective of the subject. The other shape was a 

4-Plane shape, which consisted of four semicircles in horizontal and vertical planes 

(lower left). The subject began at the location of the discontinuity and moved as 

indicated by the arrow. The 4-Plane shape is shown from a perspective to the right of and 

slightly above the subject’s line of sight.

Figure 3 Position (lower panel) and normalized tangential velocity (upper panel) while 

the subject traced the small 4-Plane shape. The hand paths for the two cycles along the 4- 

Plane shape were divided into 8 sub-cycles, indicated by different colors. The vertical 

dotted lines in upper panel indicate velocity minima. These occurred when the subject 

switched from a horizontal to a vertical plane or the other way around. Also shown, for 

each sub-cycle, is the value of the slope of log velocity vs. log radius of curvature.
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Figure 4 Position (lower panel) and normalized tangential velocity (upper panel) for the 

Side 60o Long Axis Bend Cassini shape in the tracing condition. This subject produced a 

shape that was flatter than the 60o folded target shape, but other subjects followed the 

target more faithfully. The two cycles were divided into 8 sub-cycles by virtue of the fact 

that the hand slowed down at bends (i.e., the locations of the 60o folds) and indents (the 

areas of tight curvature in between the two main lobes). The 8 sub-cycles are shown in 

different colors. Sub-cycles 2-5 were used for the analysis of planarity and the 2/3 power 

law; the values of the slope of log velocity vs. log radius of curvature are shown for these 

sub-cycles.

Figure 5 Simulation to aid in understanding deviations from the 2/3 power law. Solid 

black lines represent a sinusoidal speed profile in both the X- and the 7-dimensions. The 

X- and 7-position values are plotted across time for 2.5 s (top left panel) along with the 

corresponding tangential velocity plot for 2.5 s (bottom left panel) and the elliptical hand 

path for 5.0 s (top right panel). For sinusoidal motion, log velocity vs. log radius of 

curvature gives a slope of 0.33 (bottom right panel). In all panels, dashed and dotted 

lines represent deviations from the 0.33 slope (i.e., deviations from the value dictated by 

the 2/3 power law). A larger slope (dashed lines) represents a case where the hand moves 

more slowly during tight curves and more quickly along more gradual curves. A smaller 

slope (dotted lines) represents the opposite tendency.

Figure 6 Kinematic and kinetic parameters for the Cassini shapes. A, B and C show, for 

all Cassini shapes, the grand mean (n=6) and standard error (SE) of cycle period (A), 

hand path distance (for one cycle) (B), and deviation from planarity (for sub-cycles) (C). 

D shows the relation between normalized kinetic energy (nKE) and hand path distance, 

for the naïve subject who performed the experiment twice (14 Cassini shapes x 2 

repetitions = 28 data points for each condition). Black, open, and gray symbols refer to 

the tracking, tracing and drawing conditions, respectively. E shows the grand mean (+/- 

SE) nKE at a distance of 1.2 m, for each of the conditions. ANOVA on n=6 observations 

for each condition revealed a significant difference in only one case (* p<0.05 in C).
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Figure 7 Overview of the slope of the log velocity vs. log radius plots for various 

conditions. Paired t-tests were used to compare front and side orientations of Cassini 

shapes (A), large (lg) and small (sm) sizes of 4-Plane shapes (B), and horizontal (hor) and 

vertical (vert) segments of 4-Plane shapes (C). We also used paired t-tests to compare 

across conditions: tracking (black bars), tracing (white bars) and drawing from memory 

(gray bars). We used an ANOVA (with n=48 = 8 subcycles X 6 subjects) to compare 

across seven of the main categories of shapes within the tracing condition (D).

Significant differences are indicated as * p<0.05, ** p<0.01, or *** p<0.001.
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