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A phytochemical study on the most bioactive extract from Tectona grandis led to the isolation of two new
norlignans, tectonoelin A and tectonoelin B, together with ten known compounds. The structures of the
compounds were determined by a combination of 1D and 2D NMR techniques. This is the first time that
this type of compound (C8-C8’ linkage norlignans) has been isolated from a dicotyledon. The general

bioactivities of the isolated compounds have been studied using etiolated wheat coleoptiles. The
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this plant.

activities showed that the isolated lignans and norlignans should be part of the defence mechanisms of

© 2012 Phytochemical Society of Europe. Published by Elsevier B.V. All rights reserved.

1. Introduction

Forest species’ produce large amounts of non-wood forest
products (NWFPs) in which bioactive substances are present in
high percentages. These compounds can be transported to the
ground by exudation from roots or leaching of the aerial parts. The
increased forest area is not only a source of wood as forestry
systems provide an excellent opportunity to explore the properties
of these species in the control of weeds, insects and nematodes or
for the improvement of grounds and as a source of bioactive
products in Pharmacology.

Tectona grandis L.f. (teak) is a native tree from tropical countries
of Asia. Teak wood is one of the most valuable and better known
woods and it has a large number of applications in the timber
industry due to its beautiful surface and its resistance to termite
and fungal damage (Sumthong et al., 2008). Research on this plant
has led to interest in terms of Allelopathy because teak has been
successfully used in agroforestry systems (system taungya) and in
crop rotation in India, Costa Rica, Venezuela and Cuba (Raets, 1965;
Betancourt, 1983; Mishra and Prasad, 1980; Wiersum, 1982).
Furthermore, phytotoxic effects on maize, bean, mountain rice and
peanut have been reported (Jayakumar et al., 1987; Krishna et al.,
2003).

In order to study the potential use of this species as a source
of natural herbicide models and/or bioactive compounds, we
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continued our systematic allelopathic and phytochemical studies
on leaves from teak (NWFPs). Previously, we reported the isolation
of apocarotenoids, terpenoids and quinones from bioactive
extracts of leaves of T. grandis (Macias et al., 2008, 2010; Lacret
et al,, 2011). As a continuation of this research, we report here the
isolation and structure elucidation of two new norlignans and ten
known compounds (six lignans and four phenolic compounds),
which are shown in Fig. 1. The general bioactivities of the isolated
compounds were studied using etiolated wheat coleoptile.
Norlignans are found mainly in conifers, monocotyledons and a
few species of dicotyledons (Chang et al., 1997; Kawazoe et al.,
1999; Ning et al., 2005; D’Abrosca et al., 2006; Lee et al., 2010;
Mohamed et al., 2010; Wang et al., 2010). This is the first time that
lignans and norlignans have been isolated from T. grandis.

2. Results and discussion

The study of the allelopathic potential of T. grandis and its
possible use as a source of natural herbicide models was initiated
with the phytochemical study of (i) the DCM/H,0 extract obtained
from the aqueous extract and (ii) the DCM extract obtained by
direct maceration of the dry leaves. Both extracts were selected on
the basis of the bioactivity levels shown in the wheat coleoptile
bioassay (Macias et al., 2008).

The chromatographic study of the DCM/H,0 active extract
allowed us to isolate four phenolic compounds (1-4) and eight
lignans (5-12) (Fig. 1). The spectroscopic data of 1-10 were
identical to those previously reported for acetovanillone (1)
(Knapp et al., 1972), E-isofuraldehyde (2) (Macias et al., 2004),
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Fig. 1. Compounds isolated from Tectona grandis.

3-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)propan-1-one (3)
(Jones et al., 2000), evofolin A (4) (Wu et al., 1995), syringaresinol
(5) (Macias et al., 2004), medioresinol (6) (Macias et al., 2004), 1-
hydroxypinoresinol (7) (Tsukamoto et al., 1984), lariciresinol (8)
(Macias et al., 2004), balaphonin (9) (Haruna et al., 1982) and
zhebeiresinol (10) (Chiji et al., 1986). All of these compounds were
isolated for the first time from T. grandis. Compounds 11 and 12 are
also described for the first time in the literature.

2.1. Tectonoelin A (11)

11 was isolated from the DCM/H,0 extract as a brown oil. The
molecular formula was determined to be C;gH;§0¢ from the
molecular ion peak at m/z 328.0948 (calc. 328.0947) in the HR-
EIMS. The IR absorptions at 3429, 1735, and 1607 cm~! indicated
the presence of hydroxyl groups, ester group and double bonds,
respectively.

The 'H NMR spectrum contained signals for one aromatic
methoxy group at § 3.85 (3H, s) and six aromatic protons as two
groups of signals. The first group of signals was at § 6.77 (1H, d,
J=8.0Hz, H-5'), § 6.78 (1H, d, ] = 2.0 Hz, H-2") and § 6.68 (1H, dd,
J=8.0Hz,J = 2.0 Hz, H-6') and the second group was at § 6.87 (1H,
d,]=8.0Hz, H-5), 8 7.06 (1H, bs, H-2) and § 7.04 (1H, dd, ] = 8.0 Hz,
J = 2.0 Hz, H-6), indicating the presence of two 1,3,4-trisubstituted
benzenic rings.

Other signals were assigned to one methylene at § 3.07 (1H, ddd,
J=17.6 Hz, J=8.4Hz, J=3.0Hz, H-8a) and § 3.62 (1H, ddd,
J=17.6 Hz, J=8.4Hz, J=3.0Hz, H-8b) and one methine at §
548 (1H, dd, J=8.4Hz, J=6.0Hz, H-7') bonded to oxygen.
Additionally, a signal was observed for a downfield olefinic proton
at § 7.45 (1H, t, J=3.0 Hz, H-7), suggesting the presence of a

trisubstituted double bond attached to an electron withdrawing
group.

The 'H NMR-2D-COSY spectrum of 11 showed the presence of
the fragment -CH=C-CH,-CH-(O)-. Thus, the geminal system
that gave signals at § 3.07 (H-8'a) and § 3.62 (H-8b) showed a
coupling with the signals at § 7.45 (H-7) and & 5.48 (H-7').

All of the signals and their correlations suggested the presence
of a nor-7-ene-lignan-9,7’-lactone. This proposal was further
supported by the similarity of the spectroscopic data to those
reported for other analogous compounds (D’Abrosca et al., 2006).

The '3C NMR spectrum contained 18 signals as follows: 1
methyl, 1 methylene, 8 methines and 8 quaternary carbons,
according to an HSQC experiment. Twelve of these signals were
due to aromatic carbons that belonged to the two 1,3,4-
trisubstituted benzenic rings. Three signals were due to sp?
carbons, with the two at § 122.8 and 138.4 belonging to the double
bond. The last signal, at § 174.9, was consistent with the presence
of a carbonyl group.

The HMBC experiment confirmed the presence of a y-lactone,
with correlations observed between H-7’ (§ 5.48), H-8'a (§ 3.07)
and H-8'b (6 3.62) with C-9 (5§ 174.9) as well as H-7 (§ 7.45) with C-
8 (6 37.2), C-1 (§ 127.9), C-2 (6 114.6), C-3 (6 149.1) and C-8 (8
122.5) (Fig. 2).

The stereochemistry of the double bond at C-7 and C-8 was
deduced from the NOE effects observed on irradiation of H-8'a and
H-8b with H-7 and H-7'. The relative position of the rings was
confirmed by NOE effects between protons H-8' (2H) and H-2’, H-5’
and H-6'. Compound 11 was therefore (7Z)-9'nor-3',4,4'-trihy-
droxy-3-methoxylign-7-ene-9,7’-lactone. This compound has not
been described previously in the literature and we have named this
compound tectonoelin A.
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Fig. 2. HMBC correlations observed for compounds 11 and 12.

2.2. Tectonoelin B (12)

12 was obtained from the DCM/H,0 extract as a brown oil. The
molecular formula was determined to be C;gH;30; from the
molecular ion peak at m/z 358.1053 (calc. 358.1053) in the HR-
EIMS. The IR absorptions at 3438, 1727 and 1626 cm™! indicated
again the presence of the same functional groups, hydroxyl, ester
and double bonds.

The 'H NMR spectrum of 12 was very similar to that of
tectonoelin A (11), which would indicate that it was a derivative of
tectonoelin A. The most significant difference between the two
spectra was the chemical shift and multiplicity of the signals due to
protons on one of the rings (§ 6.78, 2H, s, H-2, H-6 and § 3.83, s,
2 x OCHj3). The data suggested that these two compounds differ in
the presence of one extra methoxyl group in 12, which must be
located at C-5. The correlation observed in the g-HMBC experiment
between the methoxyl groups at § 3.83 (6H, s) and the signals at &
108.9 and § 149.3 confirmed the positions of methoxyl groups at C-
3 and C-5. On the other hand, the NOE effect between H-7 and H-8’
confirmed a Z stereochemistry for the double bond.

On the basis of these data the structure suggested for this
compound was (7Z)-9'nor-3',4,4'-trihydroxy-3,5-dimethoxylign-
7-ene-9,7'-lactone, as shown in Fig. 1. An isomer isolated from
Cestrum parqui has been described in the literature, i.e. 13
(D’Abrosca et al., 2006). The differences observed between the
spectroscopic data of compound 12 and its isomer 13 suggested
that the stereochemistry of the double bond of these compounds
should be different [1>C NMR spectrum, §: 129.2 (C-1), 109.5 (C-2),
133.6 (C-4), 133.6 (C-8), 123.3 (C-1'), 81.1 (C-7")], as shown in
Fig. 1. This is the first time that compound 12 has been isolated and
we have named it tectonoelin B.

Norlignans are unusual compounds and most of them have
been found in the heartwood of coniferous trees (Castro et al.,
1996). Compounds 11 and 12 can be included in the group with a
C8-C8 linkage type, which is particularly rare (Suzuki and
Umezawa, 2007). This kind of compound has been obtained from
conifers (Erdtman and Harmatha, 1979; D’Abrosca et al., 2006).
However, this is the first time that compounds of this type (C8-C8’
linkage norlignans) have been isolated from a dicotyledon -
although teak is a timber tree — and, more importantly, from the
leaves, which is in full even more uncommon.

2.3. Bioassay results

Etiolated wheat coleoptiles bioassay is a rapid test that is
sensitive to a wide range of bioactive substances (Cutler et al.,
2000; Cutler, 1984; Jacyno and Cutler, 1993). Twelve compounds
were isolated from T. grandis and, as dictated by the available
quantities of these compounds, the bioactivities of the CgCs
phenolic 1, four known lignans (5, 6, 8 and 9) and tectonoelins
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Fig. 3. Bioactivities obtained in the etiolated wheat coleoptile bioassay.

(11 and 12) were evaluated (Fig. 3). The highest concentration
tested was 10~ M. The results obtained showed that compounds
5, 6, 8 and 11 have good levels of activity. The most active
compound was 8, which gives values of around —85% at 10> M.
Compounds 5, 6 and 11 showed inhibition effects of between —70
and —60% at the highest concentration. The activities observed
for 5 and 8 were consistent with those previously reported for
these compounds (Macias et al., 2004). Compounds 5 and 6 have
a tetrahydrofurofuranic skeleton and the only structural differ-
ence is the presence of an additional methoxyl group. This
difference has very little influence on the bioactivity observed. In
the case of the new compounds, tectonoelins A (11) and B (12),
which have a norlignan skeleton, the presence of an additional
methoxyl group in 12 seems to decrease the bioactivity levels in
comparison with 11.

These activities show that the isolated lignans and norlignans
should form part of the defence mechanism of this plant and
contribute to the success of this species in a variety of
agroecosystems.

3. Experimental
3.1. General

IR spectra (KBr) were recorded on a Perkin-Elmer FT-IR
Spectrum 1000 or a Mattson 5020 spectrophotometer. NMR
spectra were run on Varian INOVA 400 and Varian INOVA 600
spectrometers. Chemical shifts are given in ppm with respect to
residual 'H signals of CHCl5-d; and methanol-d, (§ 7.25 and 3.30,
respectively), and '3C signals are referenced to the solvent signal (8
77.00 and 49.00, respectively). Optical rotations were determined
using a Perkin-Elmer model 241 polarimeter (on the sodium D
line). HRMS were obtained on a VG AUTOESPEC mass spectrometer
(70 eV). HPLC was carried out on a Merck-Hitachi instrument with
RI detection, using three different Merck LiChrospher columns: RP-
18 (10 wm, 250 mm x 10 mm), RP-18 (5 pm, 250 mm x 4 mm) SI
60 (5 pm, 250 mm x 4 mm)and SI 60 (10 wm, 250 mm x 10 mm).

3.2. Plant material

Leaves of T. grandis L.f. were collected between the months
February and March (2003) in Ciudad de La Habana and were
identified by MsC. Lutgarda Gonzalez. Voucher specimen (80613)
were deposited at the Jardin Botanico de Cuba.

3.3. Extraction and isolation
Dried leaves of T. grandis (5 kg) were extracted with water

(35L) for 24 h at room temperature in the dark. The aqueous
solution was extracted with CH,Cl, and then with EtOAc at room
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Table 1
TH NMR and '3C NMR spectral data for compounds 11 and 12 (in CDs0D).
H/C 1 12
TH NMR 13C NMR TH NMR 13C NMR

1 1279 s 1269 s
2 7.06 bs 1146d 6.78 s 1089 d
3 149.1 s 1493 s
4 150.1 s 139.2 s
5 6.87 d (J=8.0Hz) 116.7 d 1493 s
6 7.04d (J =8.0, 2.0Hz) 1259d 6.78 s 1089 d
7 7.45 t (J=3.0Hz) 138.1d 742 t (J=3.0Hz) 138.4d
8 1225s 1228 s
9 1749 s 1749 s
1 1333s 13325
2 6.78 d (J=2.0Hz) 113.9d 6.78 d (J=2.0Hz) 113.9d
3 146.7° s 146.9° s
4 146.8% s 146.7° s
5’ 6.77 d (J=8.0Hz) 1164 d 6.76 d (J=8.4Hz) 116.4 d
6 6.68 d (/J=8.0, 2.0Hz) 118.8d 6.68 d (J=8.4, 2.0Hz) 118.9d
7 5.48 dd (J=8.0, 6.0Hz) 80.6 d 5.46 dd (J=8.4, 6.0Hz) 80.6 d
8a’ 3.07 ddd (J=17.6, 8.4, 3.0Hz) 372t 3.10m 37.2¢t
8b' 3.62 ddd (J=17.4, 8.4, 3.0Hz) 3.60 ddd (J=17.6, 8.4, 2.8 Hz)

OCH; 3.85s 56.4 q 2x383s 56.8 q

¢ Signals may be interchanged.

temperature. Details of the extraction procedure and the bioassays
on the extract have been described previously (Macias et al., 2008).

The DCM/H,0 extract (8.8 g) was chromatographed on silica gel
(160 g) using hexane/ethyl acetate mixtures of increasing polarity,
acetone and methanol to yield twelve fractions: A;-L;.

Fraction E; (0.750g, hexane/ethyl acetate, 17:3-4:1) was
subjected to CC on Sephadex LH-20 using n-hexane/chloroform/
methanol (3:1:1) to afford 11 fractions (E;1-E;11). Fraction E;5
(72 mg) was separated by CC on silica gel using hexane/ethyl acetate
mixtures to yield compound 1 (2.0 mg). Fraction E;7 (54 mg) was
purified by C-18 HPLC (water/methanol, 1:1) to yield 2 (1.0 mg).

Fraction H; (0.734 g, hexane/EtOAc, 3:2-2:3) was subjected to
CC on Sephadex LH-20 using n-hexane/chloroform/methanol
(3:1:1) to yield compound 11 (60 mg).

Fraction I; (0.719 g, hexane/EtOAc, 1:4) was subjected to CC on
silica gel using chloroform/acetone mixtures of increasing polarity
and methanol to afford ten fractions: 1;1-1;10. Fraction [;2
(0.055 g) was purified by silica gel HPLC to yield 5 (8.6 mg), 6
(5.0 mg) and 10 (2.6 mg). The largest fraction, 6 (0.300 g), was
purified by CC on silica gel using hexane/acetone mixtures to afford
ten fractions: [;6A-1;6]. Further purification of fraction I,6I
(0.058g) by C-18 HPLC (water/methanol, 9:11) yielded 8
(20.0 mg), 9 (8.0 mg) and 4 (3.0 mg). Fraction I;6H (0.028 g) was
purified by RP-18 HPLC (water/methanol, 2:3) to yield 9 (5.0 mg)
and 7 (3.4 mg). Fraction 1,7 (0.112 g) was purified using hexane/
chloroform/methanol (3:1:1) on Sephadex LH-20 to afford
compound 12 (27.0 mg).

Fraction J; (1.730 g, hexane/EtOAc, 1:4) was subjected to CC on
Sephadex LH-20 using hexane/chloroform/methanol (3:1:1) to
afford four fractions (J;1-J,4). Fraction J;4 (0.400 g) was subjected
to CC on silica gel using chloroform/acetone mixtures (10-100%
acetone) to afford 6 fractions. Further purification of J;4A (0.077 g)
by C-18 HPLC (water/methanol, 3:2) yielded compound 3 (3.0 mg).

3.3.1. Tectonoelin A (11)

Brown oil; [a]p?® = 0 (c 0.10, CH30H); IR vppax (KBr): 3438 (OH),
1727 (C=0), 1626 (C=C)cm~! 'H NMR and '3C NMR data, see
Table 1; EIMS m/z (rel. int.): 328 [M]"; HREIMS m/z 328.0948 (calc.
for C18H1606 m/Z 3280947)

3.3.2. Tectonoelin B (12)
Brown oil; [a]p?® = =10 (c 0.10, CH30H); IR vmax (KBr): 3429
(OH), 1735 (C=0), 1607 (C=C) cm™';. 'TH NMR and '3C NMR data,

see Table 1; EIMS m/z (rel. int.): 358 [M]"; HREIMS m/z 358.1053
(calc. for C;9H,807 m/z 358.1053).

3.4. Coleoptiles bioassay

Wheat seed (Triticum aestivum L. cv. Duro) were sown in 15 cm
diameter Petri dishes moistened with water and grown in the dark
at 22 + 1 °Cfor 3 days (Hancock et al., 1964). The roots and caryopses
were removed from the shoots. The latter were placed in a Van der
Weij guillotine and the apical 2 mm were cut off and discarded. The
next4 mm of the coleoptiles were removed and used for bioassays. All
manipulations were performed under a green safelight (Nitsch and
Nitsch, 1956). Compounds were predissolved in DMSO and diluted to
the final bioassay concentration with a maximum of 0.1% DMSO.
Parallel controls were also run.

Crude extracts, fractions or pure compounds to be assayed for
biological activity were added to test tubes. Each assay was carried
out in duplicate. Phosphate-citrate buffer (2 ml) containing 2%
sucrose (Nitsch and Nitsch, 1956) at pH 5.6 was added to each test
tube. Five coleoptiles were placed in each test tube (three tubes per
dilution) and the tubes were rotated at 0.25 rpm in a roller tube
apparatus for 24 h at 22°C in the dark. The coleoptiles were
measured by digitalization of their images. Data were statistically
analyzed using Welch’s test (Martin Andrés and Luna del Castillo,
1990). Data are presented as percentage differences from control.
Thus, zero represents the control; positive values represent
stimulation of the studied parameter, and negative values
represent inhibition.
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