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SUMMARY  

Natural disturbances occur in various ecosystems and have resulted in the evolution of life 

histories to buffer or even benefit from disturbance regimes. However, human activities 

increasingly interact with natural disturbances, posing potentially significant threats to the 

viability of disturbance-adapted species and therefore causing biodiviersity loss. With fires 

regularly affecting 50 % of the Eath’s surface, such compounded effects of disturbance 

interactions are particularly prominent in fire-prone ecosystems. Using the rare carnivorous 

subshrub Drosophyllum lusitanicum (Drosophyllaceae), endemic to Mediterranean 

heathlands under increasing human pressure in the southwestern Iberian Peninsula and 

northern Morocco, this doctoral work illustrates how interactions between fire and small-

scale human disturbances affect population dynamics and the potential evolutionary 

trajectory of populations. Greenhouse and in-situ field experiments and stochastic 

demographic models quantified biological and ecological characteristics of the study 

species that could be linked to an important, positive role of recurrent fires in population 

dynamics. At the same time, population censuses across the species range revealed that 

small-scale human disturbances related to removal of competitively superior shrub 

neighbors significantly increased the probability of population occurrence and the 

abundance of several life-cycle stages. Subsequently, stochastic integral projection models 

confirmed that moderate interactions between human and fire disturbances may 

significantly improve species viability in the absence of fires. However, a crucial finding of 

this work was that frequent human disturbances as well as frequent interactions between 

fires and chronic vegetation removal may be detrimental to population viability because the 

two fundamentally different disturbance types exert opposing selection pressures on 

populations. These findings are of potentially great importance for the management of 

disturbance-adapted species because they highlight the importace of including 

compounding effects of environmental drivers into demographic models and the need to 

consider the local disturbance history when designing conservation strategies of species 

exposed to various disturbance types.     



 

 
 

RESUMEN 

Las perturbaciones naturales que afectan a los distintos ecosistemas conllevan a la evolución de 

las características de los ciclos vitales para soportarlas e incluso beneficiarse de las mismas. Sin 

embargo, las actividades antropogénicas interaccionan con las perturbaciones naturales y pueden 

amenazar potencialmente a las especies adaptadas a estas perturbaciones y resultar en una 

pérdida de biodiversidad. Las interacciones entre ambos tipos de perturbaciones (naturales y 

antropogénicas) son particularmente importantes en ecosistemas adaptados al fuego, el cual 

afecta al 50 % de la superficie terrestre. Esta Tesis Doctoral se centra en cómo las interacciones 

entre el fuego y perturbaciones antropogénicas a pequeña escala pueden afectar la potencial 

trayectoria evolutiva de las poblaciones de Drosophyllum lusitanicum (Drosophyllaceae), una 

planta carnívora endémica de los brezales mediterráneos en el suroeste de la Península Ibérica y 

norte de Marruecos. Para ello se han combinado experimentos in situ y en invernadero, así como 

modelos demográficos estocásticos, con el fin de cuantificar las características biológicas y 

ecológicas de la especie bajo estudio que puedan ser relacionadas con la dinámica de sus 

poblaciones y el papel del fuego sobre las mismas. Así mismo, los resultados procedentes del 

censo de las poblaciones de Drosophyllum lusitanicum muestras que las perturbaciones 

antropogénicas a pequeña escala incrementan la probabilidad de la presencia de poblaciones de 

esta planta y la abundancia de varios estadios de su ciclo vital. En este sentido, los modelos 

estocásticos de proyección integral confirman que interacciones moderadas entre las 

perturbaciones antropogénicas y el fuego podrían incrementar de forma significativa la 

viabilidad poblacional de esta especie. Sin embargo, uno de los puntos claves de esta Tesis es 

que las perturbaciones antropogénicas frecuentes y las interacciones entre fuegos y eliminación 

recurrente de la vegetación pueden influir negativamente en la viabilidad de las poblaciones 

debido a que las perturbaciones de diferente naturaleza ejercen presiones selectivas opuestas 

sobre las poblaciones. Estos hallazgos tienen, potencialmente, una gran importancia para la 

gestión de especies adaptadas a perturbaciones debido a que señalan la importancia de incluir 

diversos componentes relaciondos con efectos ecológicos en modelos demográficos, así como la 

necesidad de tener en cuenta la historia de las perturbaciones locales a la hora de diseñar 

estrategias de conservación para especies expuestas a distintos tipos de perturbaciones. 
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CHAPTER 1 

General Introduction and Objectives 

 

1.1 Introduction 

1.1.1 The increasing interest in disturbance ecology 

Virtually all natural ecosystems are exposed to periodic or stochastic environmental 

fluctuations shaping life histories of species and community composition (Benton and 

Grant 1996; Boyce et al. 2006; Turner 2010). Such fluctuations can take on many forms, 

including seasonal temperature cycles, random interannual climatic variation, or 

multidecadal oscillations (Stenseth et al. 2002; Marshall and Burgess 2015). Among these 

various forms, natural or seminatural disturbances, most commonly defined as “any 

relatively discrete event in time that disrupts ecosystem, community, or population 

structure and that changes resources, substrate availability or condition, or the physical 

environment” (White and Pickett 1985, p. 7), have increasingly gained importance among 

ecologists (Turner 2010). This is in part due to the fact that recurrent disturbance events 

such as floods, fires, or severe windstorms (Fig. 1) have spurred the evolution of some of 

the most perplexing life-history strategies in plants, including seed dormancy, resprouting, 

and vegetative dormancy (Murphy 1968; Tuljapurkar 1990; Benton and Grant 1996). These 

adaptations translate into life-cycle transitions, i.e., survival, growth, reproduction, and 

recruitment, cued to disturbance regimes (e.g., Horvitz and Schemske 1995; Quintana-

Ascencio et al. 2003; Mandle et al. 2015).  
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Figure 1 Examples of natural or seminatural disturbances: wildfires (a), flooding (b), severe wind storms (c), 

or drought (d); Source: Wikipedia.org  

The increasing interest in disturbance ecology may also be explained by the fact that 

natural disturbance regimes are increasingly altered by direct or indirect human action, with 

potentially severe consequences for disturbance-adapted species and entire ecosystems 

(Paine et al. 1998; Turner 2010; Walker 2012; Frishkoff et al. 2016). For example, changes 

to flooding regimes may severely disrupt riparian communities (Fraaije et al. 2015; 

Soriano-Redondo et al. 2016) and cause extinction of plant species that rely on recurrent 

floods for seedling recruitment (Smith et al. 2005). In addition to changes in disturbance 

regimes, an emerging challenge is the introduction of novel anthropogenic disturbances and 

their interaction with natural disturbance regimes (Turner 2010; Ehrlén et al. 2016). These 

novel human pressures to ecosystems are of higher frequency than natural disturbance 

regimes and typically include some form of vegetation removal or harvest of plant parts 

and/or introduction of diseases or invasive species (Paine et al. 1998; Duwyn and 

MacDougall 2015). For example, in forest ecosystems where early-successional species 

germinated mostly into patches cleared of dominant trees after major windstorms, forestry 

practices largely control the patchiness in these systems today (Rogers 1996). The 

compounded effects of natural and human-driven disturbances affect population dynamics 

of disturbance-adapted species in all disturbance-prone ecosystems (e.g., Elderd and Doak 
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2006; Mandle et al. 2015; Tye et al. 2016), but are most prominent in fire-prone areas, 

which are not only the most common but also among the the most biodiverse type of 

disturbance-prone ecosystems across the globe (Chuvieco et al. 2008; Keeley et al. 2012). 

1.1.2 Disturbance interactions in fire-prone Mediterranean ecosystems 

Fires regularly affect 50 % of the Earth’s surface (Chuvieco et al. 2008), and fire regimes in 

ecosystems characterized by seasonal drought and biomass fuel accumulation, i.e., 

grasslands, boreal forests, and Mediterranean shrublands, are the main determinants of 

species composition and interactions (Bond et al. 2005; Thuiller et al. 2007; Walker 2012). 

Recurrent fires typically increase spatial habitat heterogeneity and biodiversity, particularly 

in Mediterranean shrublands, which comprise only 2 % of the global land area (Fig. 2) but 

provide habitat for 15 % of the total vascular plant flora, much of it adapted to a wide range 

of fire regimes (Rundel 2004, Keeley et al. 2012). 

 

 

Figure 2 Location of Mediterranean ecosystems (red) around the globe; Source: The Nature Conservancy 

(2013) 

 

Fire has shaped the evolution of plants for more than 300 million years (Pausas and 

Keeley 2009), promoting the spread of the angiosperms in the Cretaceous (Bond and Scott 
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2010). The two main adaptations are mass germination from either persistent soil seed 

banks or serotinous reproductive structures (e.g., pine cones) and resprouting from dormant 

meristems in fire-resistant vegetative organs triggered by fire-related cues (Keeley et al. 

2011). Such cues can be direct (i.e. pyrogenic), such as heat shock and/or smoke-derived 

compounds (Keeley and Bond, 1997; Moreira et al., 2010), or indirect, such as marked 

increases in light levels (Keeley 1987; Ooi et al. 2014) or drastic reductions of 

allelochemical inhibitors following the removal of aboveground vegetation and litter by fire 

(Preston and Baldwin 1999). Post-fire regeneration strategies typically co-occur across fire-

prone Mediterranean ecosystems (Moreira et al. 2010). In Mediterranean shrublands such 

as the South African fynbos, for example, the relative abundance of resprouter vs. seeder 

(recruiting from a persistent seed bank) populations may be related to extrinsic factors such 

as fire frequency and precipitation (Ojeda et al. 2005) or intrinsic ones such as life history 

strategies and resource-allocation tradeoffs (Keeley et al. 2011). Because the life cycles of 

many species are closely linked to fire regimes in Mediterranean ecosystems, human-driven 

changes to these regimes can have severe effects on population dynamics. 

Humans have for millennia used fire as a management tool (Hobbs et al. 1995; 

Blondel 2006) and have used both deliberate burning to convert forests and shrublands to 

pastures (Grove and Rackham 2001) and fire suppression via intensive grazing and land 

management to protect infrastructure (Keeley 2006; Pausas and Keeley 2009). Although in 

recent decades fire frequency in Mediterranean ecosystems overall has increased due to 

land abandonment (Pausas and Fernández-Muñoz 2012), introduction of invasive species 

(Brooks et al. 2004), or changes to land management such as afforestation campaigns 

(Moreira et al. 2001), active fire suppression policies dominate fire management in many 

regions of the globe (Keeley et al. 2012; Fernandes et al. 2013) and have contributed to 

decreases in annuals fires in some areas (Turco et al. 2016). Both increases and decreases 

in fire frequency may pose severe threats to species which cued their life histories to certain 

fire regimes and face extinction if fire intervals are shorter than required to produce viable 

propagules or longer than survival of adults or seed banks (Quintana-Ascencio et al. 2003; 

Lawson et al. 2010; Buma et al. 2013). 
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However, beyond merely changing fire regimes, it is increasingly recognized that 

anthropogenic disturbances, typically involving vegetation removal, harvesting of plant 

parts, or intense livestock browsing (Fig. 3), interact with fire regimes, posing significant 

challenges to the management of fire-prone species (Walker 2012; Mandle et al. 2015; 

Darabant et al. 2016; Tye et al. 2016). Moderate interactions of fire and human 

disturbances may not necessarily be detrimental to fire-adapted species, as Mediterranean 

ecosystems have been exposed to human activities for millennia (Bartolomé et al. 2005; 

Velle et al. 2014). For example, when post-fire regeneration (either from vegetative 

resprouting or recruitment from seed banks) is triggered by indirect cues such as increased 

light levels or removal of allelopathic compounds (Ooi et al. 2014; Renne et al. 2014), 

human disturbances that mimic the effect of fire of removing vegetation may allow for 

persistence of some species even as fire return intervals decrease (Bond and Kelley 2005; 

Quintana-Ascencio et al. 2007). However, disturbances such as livestock browsing or 

mechanical vegetation removal typically occur at different frequencies and intensities than 

fire regimes and may therefore drastically alter population dynamics of fire-adapted species 

(Keeley et al. 2012). 

 

 

Figure 3 Examples of human disturbances in Mediterranean ecosystems include habitat conversion and 

vegetation removal to suppress fires (a) and livestock browsing (b). (Fotos: M. Paniw) 
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One important way in which human disturbances alter population dynamics of fire-

adapted species is by fundamentally changing their population structure. For example, post-

fire recruiting, even-aged cohort populations of seeders may become mixed-aged if 

vegetation removal promotes germination and establishment in long-unburned habitats 

(Quintana-Ascencio et al. 2007; see also Garrido et al. 2003). The increase of mixed-aged 

populations is typically accompanied by a diminishing role of the seed bank and large 

seedling mortality in repeated germination events (Quintana-Ascencio et al. 2007; Tye et 

al. 2016). This loss of propagules may mean the loss of an important buffer from genetic 

drift (Uchiyama et al. 2006; Dolan et al. 2008; Honnay et al. 2008). By fundamentally 

changing population dynamics, human disturbances may create opposing selection 

pressures compared with natural fire regimes and put species unable to adapt or migrate at 

higher risk of local extinction, thereby decreasing biodiversity in fire-prone ecosystems. 

However, the population-level consequences of disturbance interactions in fire-prone 

ecosystems remain little explored (but see Quintana-Ascencio et al. 2007; Lawson et al. 

2010; Mandle et al. 2015; Tye et al. 2016). 

In addition to changing population structure and selection pressures, human 

disturbances such as livestock herbivory and harvesting typically occur in early post-fire 

years and may threaten the post-fire recovery of species (Winter et al. 2011). For example, 

harvesting of resprouting green parts of plants may weaken plant fitness and hence 

recovery from fire (Paula and Ojeda 2006; Mandle and Ticktin 2012; Mandle et al. 2015). 

Lastly, frequent human disturbances also increase the interannual environmental variation 

populations are exposed to and may thus exacerbate effects of climate change on 

population dynamics (Moreno et al. 2011). Many post-fire dwelling species depend on 

predictable regeneration patterns after fires and are extremely sensitive to environmental 

fluctuation (Ojeda et al. 2005; Moreno et al. 2011). 
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1.2 Disturbance interactions in the population dynamics of a model system – 

Drosophyllum lusitanicum
1
 

As human disturbances are unlikely to decrease in disturbance-prone ecosystems, assessing 

the population-level impacts of increasing interactions of historic natural and novel human 

disturbance regimes are ever more important for conservation and evolutionary biologists 

alike (Syphard et al. 2009). The main aim of this doctoral work was therefore to contribute 

to the important discipline of disturbance ecology by assessing various aspects of the 

biology and population ecology of the rare carnivorous subshrub Drosophyllum lusitanicum 

(L.) Link (Drosophyllaceae). This seeder species (Drosophyllum, hereafter) is endemic to 

fire-prone Mediterranean heathlands on highly acidic, nutrient-poor soils of the 

southwestern Iberian Peninsula and northern Morocco (Fig. 4a, b). However, due to habitat 

degradation and fire suppression policies, most populations persist in habitats where human 

disturbances chronically mimic the vegetation removal effect of fire (Müller and Deil 2001; 

Garrido et al. 2003). These populations in human-disturbed habitats do occasionally burn 

however, making the species a suitable model organism to investigate the role of 

disturbance interactions on population dynamics. 

Plant carnivory is an adaptation to nutrient-poor soils and is often tightly associated 

with fire-prone habitats (Juniper et al. 1989). Carnivorous plants, typically growing slowly 

due to inefficient prey nutrient allocation (Ellison and Gotelli 2009), benefit from fires, 

which remove competitively superior interspecific neighbors (Brewer 2001). Despite this 

widespread association with fires among carnivorous genera, the fate of Drosophyllum 

populations under increasing alterations of fire regimes and introduction of novel 

disturbances across its range has received little attention. More generally, the evolutionary 

biology and ecology of this rare species has remained largely unexplored albeit the fact that 

many populations have gone extinct (Correia and Freitas 2002; Garrido et al. 2003) and this 

alarming trend is continuing (M. Paniw, pers. obs.). 

 

                                                           
1
 The parts of this subchapter that are related to describing Drosophyllum lusitanicum will be published in the 

upcoming book “Carnivorous Plants: Physiology, Ecology, and Evolution” (Ellison, A.M. and Adamec, L. 

eds.) 
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Figure 4 Distribution (a) and physiological/ecological characteristics (b-f) of Drosophyllum lusitanicum. 

Black points show presence of populations and were obtained from historical records and population censuses 

in 2013 and 2014. Individuals occur in communities dominated by Ericaceae (e.g., Calluna vulgaris in b) and 

Fabaceae shrubs (b); grow in rosettes (c) in nutrient-poor sandstone soils (d). Plants acquire nutrients from 

prey insects (e) by trapping insect prey with complex galnds on their leaves (f). 

 

The few investigations on the biology and ecology of Drosophyllum point to the 

importance of disturbances in population dynamics of this ecologically and taxonomically 

unique, endemic species (Heubl et al. 2006). The monospecific Drosophyllum forming the 

monogeneric family Drosophyllaceae is a short-lived perennial, woody subshrub (Garrido 
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et al. 2003) that grows in rosettes attached to secondary stems branched from a woody main 

stem (Fig. 4c, d; Correia and Freitas 2002). Each rosette contains 10-30 erect, narrowly 

linear leaves with thread-like tips. The leaves are circinate when young (Fig. 4f) and can 

reach a length of ca. 25 cm when erect (Correia and Freitas 2002). All leaves are densely 

covered by stalked sessile and pedunculated glands, secreting carbohydrate-rich mucilage 

to capture insects and are located at the abaxial surface and along the leaf margins (Fig. 4d, 

f; Lloyd 1942). The glands on Drosophyllum leaves are complex and have been known to 

be highly efficient in catching a wide variety of prey (Adlassnig et al. 2006). Drosophyllum 

begins flowering two years after emergence, with one stalked inflorescence produced on 

each rosette. Each stalk contains 4-7 flowers arranged in cymose, bracteate inflorescences 

with a pseudocorymbose appearance (Ortega-Olivencia et al. 1995). The flowers are 

hermaphroditic, actinomorphic, and pentameric. The species is highly autogamous (Ortega-

Olivencia et al. 1995), and both the strong reliance on prey capture and high levels of 

autogamy indicate that individuals may have adapted to maximize seed production in the 

first years after fire, before populations are outcompeted by surrounding, regenerating 

shrubs. 

Contrary to the common association of carnivorous plants with wet habitats (Juniper 

et al. 1989; Brewer et al. 2011), Drosophyllum occurs on dry, nutrient-poor sandstone soils 

in fire-prone, Mediterranean heathlands (Fig. 4d). These heathland communities are 

dominated by species of Ericaceae (Calluna vulgaris, Erica australis, E. umbellata, and E. 

scoparia) and Fabaceae (e.g. Stauracanthus boivini and Genista tridens) (Garrido et al. 

2003). Drosophyllum plants are rare in mature, unburned heathlands (M. Paniw, pers. obs.), 

and the formation of extensive soil seed banks facilitates population persistence (Correia 

and Freitas 2002), but the role of the seed bank in population dynamics remains unknown. 

Despite the association of Drosophyllum with Mediterranean heathland habitats, 

most extant populations occur in secondary habitats, where small-scale human disturbances 

such as mechanical uprooting or hand-slashing of shrubs to create fire-break lines have 

replaced the role of fire in vegetation removal (Garrido et al. 2003). Some populations in 

such secondary habitats have persisted above-ground for decades (Adlassnig et al. 2006), 

but it is not known whether populations in human-disturbed habitats are stable and how 
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occasional fires may affect them. It is also unclear whether the changes in community 

structure (by removal of shrub vegetation) may potentially negatively affect Drosophyllum 

plants. 

Despite declining population numbers and its phylogenetic and ecological 

uniqueness, Drosophyllum does not appear in the European Red List of Vascular Plants 

(Bilz et al. 2011). The conservation status of populations varies across the species’ range. 

Populations are largely protected in southern Spain where the species is listed as vulnerable 

in the Andalusian Red List of Threatened Plants (BOJA 1994). In Morocco, Drosophyllum 

is considered rare and protected locally (Fennane and Ibn Tattou 1998). In Portugal 

however, where populations are in a strong decline (Correia and Freitas, 2002), the species 

does not have a formal protection status. This work is therefore not only aimed to quantify 

how disturbance interactions may lead to biodiversity loss by potentially causing local 

extinctions of populations of a rare, fire-adapted plant species but also to inform future 

conservation management of Drosophyllum populations. 

1.3 Thesis objectives 

The general objectives of this thesis were the following: 

Assess key biological and ecological characteristics of Drosophyllum and link these 

characteristics to the role of fires in population dynamics. The first part of this thesis 

focuses on filling some major gaps related to the evolutionary ecology of Drosophyllum 

and link the findings to adaptations to fire regimes. Chapter 2 addresses the role of 

pollinators in the reproductive biology of the study species and discusses why the 

maintenance of large, showy flowers despite high autogamy may be favored in light of life-

history adaptations to recurrent fires. Chapters 3 and 4 discuss the carnivorous syndrome 

in Drosophyllum, highlighting not only the clear separation of prey and pollinator fauna but 

also the complex carnivorous structures that allow Drosophyllum to persist in the extremely 

nutrient-poor Mediterranean heathland habitats. 

Quantify population dynamics in fire-disturbed habitats under the consideration of critical 

parameters and assessment of their uncertainty. After assessing important aspects of the 

evolutionary ecology of Drosophyllum, chapter 5 focuses on quantifying critical life stages 
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that inform on population dynamics in fire-disturbed habitats. Assuming that the persistent 

seed bank is critical for the viability of fire-disturbed populations, a strong focus of this 

chapter is the quantification of uncertainty around model parameters describing seed-bank 

transitions. It is hypothesized that the uncertainty in data-limited estimates of important 

parameters can cause high uncertainty in the estimates and interpretation of population 

dynamics.  

Quantify the structure of populations in human-disturbed habitats as a function of 

environmental variables at different spatial scales. Given that most extant populations of 

Drosophyllum are found in human-disturbed habitats, population dynamics in fire-disturbed 

habitats may not be representative. It is not clear however, whether human-disturbed 

habitats are a step toward extinction of populations or a refuge for the species when natural 

fire regimes cannot be restored. In this context, chapter 6 examines to what extent the 

occurrence and abundance of populations correlate with predictor variables related to 

human disturbance regimes at two spatial scales (regional and local). 

Assess population dynamics and selection pressures under interactive effects of fire and 

human disturbances. Understanding population dynamics under changing disturbance 

regimes will prove critical for the future management of disturbance-adapted species. Since 

many populations of Drosophyllum are exposed to both human disturbances and fires, two 

emerging questions are (i) how increasing human disturbances change demographic rates, 

selection pressures, and population dynamics of a fire-adapted species, and (ii) whether 

disturbance interactions increase the risk of extinction. Chapter 7 adresses these questions 

by modeling stochastic population dynamics under various scenarios of disturbance 

interactions. This chapter also quantifies the different selection pressures exerted on 

individuals by different disturbance types. 

Assess how the community structure may mitigate effects of human disturbances: In human 

disturbed habitats, Drosophyllum populations are not only exposed to different disturbance 

frequencies and intensities than in fire-disturbed heathlands, they are also found in 

different, less diverse communities, with shrub neighbors largely removed. Chapter 8 

assesses how shrub neighbors may affect several vital rates of Drosophyllum throughout 
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post-fire habitat succession and discusses the potential consequences of removing these 

neighbors on the performance of Drosophyllum individuals. 

1.4 General organization  

The following chapters 2-8 are organized in a typical article format including an abstract, 

introduction, materials and methods, results, discussion, and references. This organization 

stems from the fact that chapter 2-8 have been either submitted to or published (chapters 2, 

3, and 5) in peer-reviewed journals. Chapters 6 and 7 contain detailed appendices relevant 

to the population models fit in this study. The appendices include descriptions of all 

populations used, the study designs, and details on the modelling approaches. In addition, 

fully commented R scripts and data sets to run the population models are available on a CD 

attached to the back cover, at the Dryad Data Depository (doi:10.5061/dryad.rq7t3; chapter 

5), and at https://github.com/MariaPaniw/Drosophyllum-Population-Models (chapter 7). 
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2.1 Abstract 

Reproductive biology of carnivorous plants has largely been studied on species that rely on 

insects as pollinators and prey, creating potential conflicts. Autogamous pollination, or 

autonomous selfing, although present in some carnivorous species, has received less 

attention. In angiosperms, autonomous selfing is expected to lead to a reduction in flower 

size, thereby reducing resource allocation to structures with the no-longer-used task of 

attracting insect pollinators. A notable exception is the carnivorous pyrophyte 

Drosophyllum lusitanicum (Drosophyllaceae), which has been described as an autonomous 

selfing species but produces large, yellow flowers. Using a flower removal and a 

pollination experiment, we assessed, respectively, whether large flowers in this species may 

serve as an attracting device to prey insects or whether previously reported high selfing 

rates for this species in peripheral populations may be lower in more central, less isolated 

populations. We found no differences between flower-removed plants and intact, flowering 

plants in numbers of prey insects trapped. We also found no indication of higher 

outcrossing rates or fitness costs of selfing, in terms of either seed set or seed size. 

However, our results showed significant increases in seed set of bagged, hand-pollinated 

flowers and unbagged flowers exposed to insect visitation compared with bagged, non-

manipulated flowers that could only self-pollinate autonomously. Considering that the key 

life-history strategy of this pyrophytic species is to maintain a viable seed bank, any 
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increase in seed set through insect pollinator activity would increase plant fitness. This in 

turn would explain the maintenance of large, conspicuous flowers in a highly autogamous, 

carnivorous plant. 

Keywords: autonomous selfing, Drosophyllum lusitanicum, floral display, pollination 

biology, prey capture, pyrophyte, seed set. 

2.2 Introduction 

Carnivorous plants have long captivated naturalists and scientists worldwide (Chase et al. 

2009; Król et al. 2012). Charles Darwin himself was most fascinated by them and was the 

first to demonstrate plant carnivory experimentally (Darwin 1875). Carnivory has evolved 

several times independently in the angiosperms and approximately 600 species of 

carnivorous plants can be found today across the globe, most prominently in tropical and 

temperate regions (Heubl et al. 2006; Ellison and Gotelli 2009). They are largely restricted 

to infertile, wet, open habitats (Givnish et al. 1984) where they have adapted to extremely 

low soil nutrient levels by evolving elaborately modified leaves that trap small animals, 

mainly insects, as prey (Ellison and Gotelli 2001, 2009; Gibson and Waller 2009) and 

absorb the necessary mineral nutrients from them, particularly nitrogen and phosphorus 

(Adamec 1997). 

Since most carnivorous plants are also entomophilous (i.e. they rely on pollinating 

insects to facilitate sexual reproduction), a pollinator-prey conflict might occur if they 

trapped potentially efficient pollinators (Zamora 1999; Ellison and Gotelli 2001). However, 

there are mechanisms in carnivorous plants to avoid or minimize this conflict, such as 

separation (spatial or temporal) of flowers from leaf traps to avoid pollinators being trapped 

as prey, or the occurrence of autonomous self-pollination to become somewhat independent 

of the role of insect vectors for reproduction (Ellison and Gotelli 2001; Jürgens et al. 2012). 

Autonomous self-pollination is actually common in some species from different 

carnivorous genera (see references in Jürgens et al. 2012). 

 Drosophyllum lusitanicum (L.) Link (Drosophyllaceae), the only extant species of 

the family Drosophyllaceae (Heubl et al. 2006), is a striking example of autonomous self-

pollination in carnivorous plant species (Ortega-Olivencia et al. 1995, 1998). This species 
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(Drosophyllum, hereafter) is endemic to the western Iberian Peninsula and northern 

Morocco (Garrido et al. 2003; chapter 6), where it is restricted to highly acidic, nutrient-

poor Mediterranean heathlands (Müller and Deil 2001; Adlassnig et al. 2006) and tightly 

associated to post-fire habitats (Correia and Freitas 2002; chapter 5). Drosophyllum is a 

short-lived subshrub up to 45 cm tall with circinate, linear leaves grouped in dense rosettes 

and covered with stalked mucilage-producing glands (Paiva 1997). It produces large, 

sulphur-yellow, hermaphrodite flowers, radiate and pentamerous, borne in stalked, cymose 

inflorescences (Paiva 1997; Correia and Freitas 2002; Figure 1). Flowers are homogamous, 

i.e., possess a spatial and temporal closeness between dehiscing anthers and receptive 

stigmas, with high selfing capability even in pre-anthesis (Ortega-Olivencia et al. 1995, 

1998). 

 

Figure 1 Visual description of Drosophyllum. (a) Young reproductive individual with a single rosette of 

leaves and a stalked inflorescences with two open flowers. (b) Lateral view of the flower showing the five 

large, bright yellow petals. (c) Frontal view of the flower, showing the homogamous lack of separation 

between anthers and stigmas. (d) Schematic description of the plant’s life-cycle. 
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It is well established that autonomous selfing in angiosperms is favoured under 

pollinator limitation (Schemske and Lande 1985; Morgan and Wilson 2005), and it is 

usually accompanied by morphological changes in floral traits such as the occurrence of 

homogamy and a dramatic reduction in corolla size (Goodwillie et al. 2010; Sicard and 

Lenhard 2011). This reduction in flower size and other floral traits (e.g. showiness) is 

explained as a way to minimize resource allocation to floral display when pollinator 

attraction is no longer necessary (e.g. Andersson 2005; Celedón-Neghme et al. 2007). 

However, one of the noticeable features of the highly autogamous Drosophyllum is the 

production of still large, showy flowers on peduncled inflorescences (Figure 1). Therefore, 

considering the high allocation costs of flower production (Galen 1999; Andersson 2005), 

what are the benefits of large, conspicuous flowers in a carnivorous plant species 

presumably independent of the role of pollinating insects for reproduction (Ortega-

Olivencia et al. 1995)? 

Here, we present a field experimental study on the floral and reproductive biology 

of Drosophyllum aimed to determine fitness benefits from the production of large, 

conspicuous flowers. First, assuming independence of pollinating insects for reproduction 

(Ortega-Olivencia et al. 1995), we explored whether large, bright-yellow corollas in this 

carnivorous species act as attracting devices for enhancing prey capture onto the sticky leaf 

traps, thereby supporting plant growth. Although there is virtually no overlap between prey 

and flower-visiting insect faunas (chapter 3), it is well established that the bright yellow 

colour is attractive to many insect species, particularly flies (e.g. Neuenschwander 1982; 

Yee 2015), which are the most common prey in Drosophyllum (chapter 3). Specifically, we 

hypothesized that flowering Drosophyllum plants whose flowers are removed would trap 

less prey insects than co-occurring, intact flowering plants, which would indicate an 

increase in plant fitness through insect capture resulting from maintenance of large, yellow 

flowers. 

Second, we conducted a controlled pollination experiment to investigate the actual 

contribution of pollinators to the fecundity (i.e. seed production) of this species. Previous 

pollination experiments on this species (Ortega-Olivencia et al. 1995, 1998) have been 

performed in geographically isolated, small populations (Garrido et al. 2003; Chapter 7). 



Chapter 2 – Materials and methods 

~ 25 ~ 
 

Since marginal populations of normally outcrossing plant species frequently show a 

considerable increase in the selfing rate (Lloyd 1980; Pujol et al. 2009), the highly 

autonomous self-fertilization of Drosophyllum reported previously might be contingent on 

geographical isolation. Therefore, we predicted that attraction of pollinating insects by 

Drosophyllum flowers would increase fitness through an increase in fecundity in this 

carnivorous species, thus accounting for its large, conspicuous flowers. 

2.3 Materials and methods 

2.3.1 Ecological aspects of Drosophyllum 

Drosophyllum is a disturbance-adapted, carnivorous species, colonizing (from a persistent 

seed bank) recently burned heathlands or heathland patches where small-scale disturbances 

create open space (Garrido et al. 2003; chapter 5). Within 4-6 years after fire, regenerating 

heathland shrubs outcompete above-ground Drosophyllum individuals, making the 

formation of a seed bank − in which populations may persist for several decades until 

another fire − a critical life-history strategy (chapter 5). Individuals grow in rosettes, and 

number of rosettes in this species is a good proxy for age. Plants 1-2 rosettes in size 

initially reproduce in the second year after emergence and gain 1-2 rosettes per previous 

rosette each growing season (Ortega-Olivencia et al. 1995; Garrido et al. 2003; Figure 1D). 

The maximum observed lifespan of individuals is approximately 10 years (Juniper et al. 

1989), although most plants die before reaching four years of age (chapter 5). Demographic 

censuses of populations across southern Spain determined that each rosette produces one 

floral scape with an average (± SD) of 3.5 ± 2.1 flowers (M. Paniw et al. in prep.). Bright 

sulfur-yellow flowers on each scape open gradually and last one day in full anthesis, so that 

no more than two flowers per rosette are in anthesis at the same time (Figure 1). Flowers 

are large (Correia and Freitas 2002), with an average petal length of 2.84 ± 0.21 cm and 

petal width of 1.89 ± 0.17 cm (chapter 2). Each flower produces a dehiscent capsule with 

an average of 9.8 ± 2.4 hard seeds (chapter 7). 
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2.3.2 Study region and sites 

Two field experiments were conducted in five natural Drosophyllum populations, located at 

five sites within the southern Aljibe Mountains, at the European side of the Strait of 

Gibraltar (Table 1; Figure 2): Monte Murta, Montera del Torero, Sierra Carbonera, Monte 

Retin North and Monte Retin South. This region is characterized by a mild Mediterranean 

climate (ca. 18 ºC mean annual temperature and ca. 1200 mm annual rainfall) and a rough 

topography dominated by Oligo-Miocene sandstone mountains and hills, which produce 

acidic, nutrient-poor soils in ridges and upper slopes (Ojeda et al. 2000). These infertile 

soils are covered by Mediterranean heathlands, dominated by dwarf shrubs like Erica 

australis, Pterospartum tridentatum, Quercus lusitanica, Calluna vulgaris and Halimium 

lasianthum, and are the primary habitat of Drosophyllum (Müller and Deil 2001; chapter 6). 

Although this species is highly pyrophytic and therefore threatened by large-scale 

anthropogenic disturbances such as afforestation (Andrés and Ojeda 2002) and fire 

suppression (Correia and Freitas 2002), it profits from small-scale vegetation clearances, 

where populations can still thrive (Garrido et al. 2003; chapter 6). 

Table 1 Description of sites used in the flower removal and pollination experiments quantifying the 

role of Drosophyllum flowers in prey capture and pollinator attraction, respectively. N – total 

number of Drosophyllum individuals found in 2014. 

Site Location Experiment Site 

characteristics 

Population 

characteristics 
 

Monte Murta 

 

36° 19' 16'' N    

5° 33' 03'' W 

 

Flower removal 

 

open, rocky 

sandstone ridge 

 

N = 5000; mixed-aged 

population 

 

Monte Retin 

North 

36° 11' 53'' N    

5° 49' 25'' W 

Flower removal 

 

open heathland patch N = 1500; mixed-aged 

population 

Monte Retin 

South 

36° 10' 23'' N    

5° 50' 53'' W 

Flower removal Post-fire regenerating 

heathland (fire 2010); 

browsed and 

trampled by cattle 

 

N = 500; mixed-aged 

population 

Sierra Carbonera 36° 12' 35'' N    

5° 21' 37'' W 

Pollination Post-fire regenerating 

heathland (fire 2011) 

 

N = 3000; mainly young 

reproductive individuals 

Montera del 

Torero 

36° 13' 35'' N    

5° 35' 08'' W 

Pollination Mechanically built 

firebreak 

N = 3700; mainly old 

reproductive individuals 
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Figure 2 Study area and location of the sites where the flower contribution to prey attraction (open star 

symbols) and pollination experiments (closed star symbols) were performed. See Table 1 for detailed 

description of the Drosophyllum populations at each site. 

 

We chose the study sites to represent the most common habitats of Drosophyllum 

populations (chapter 6). Monte Murta (36° 19' 16'' N; 5° 33' 03'' W; 380 m) is an open, 

rocky sandstone ridge with sparse heathland vegetation, which had been mechanically 

removed about 30 years ago for pine afforestation. In 2014, its Drosophyllum population 

consisted of ca. 5000 individuals, where young flowering plants, consisting of 1-2 rosettes, 

and old flowering plants (> 2 rosettes) co-occurred. Sierra Carbonera (36° 12' 35'' N; 5° 21' 

37'' W; 273 m) is a regenerating heathland patch from a fire suffered in early autumn 2011. 

The Drosophyllum population here was also large (ca. 3000 individuals) and consisted 

mainly of young flowering plants, plus juveniles and a few seedlings. Montera del Torero 

(36° 13' 35'' N; 5° 35' 08'' W; 136 m) is an old firebreak line across a heathland created by 

mechanical clearance of the vegetation. The Drosophyllum population at this site consisted 

of ca. 3700 individuals and has persisted for > 30 years, being dominated by very old 

flowering plants. Lastly, two populations with different relative abundance of old 

reproductive individuals were encountered in Monte Retin. The population in Monte Retin 

North (36° 11' 53'' N; 5° 49' 25'' W; 246 m) has persisted for > 20 years in an open 

heathland on a rocky sandstone ridge. It consisted of ca. 1500 individuals where old and 
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young flowering individuals co-occurred. The population in Monte Retin South (36° 10' 

23'' N; 5° 50' 53'' W; 284 m) is found on a regenerating heathland patch from a fire suffered 

in early autumn 2010. This population, which has been heavily disturbed by cattle grazing 

and trampling, consisted of ca. 500 individuals, with an even distribution of young and old 

reproductive individuals. 

2.3.3 Flower contribution to prey attraction 

In order to test whether flowers in Drosophyllum contributed to attract and trap insects as 

prey by the sticky leaves, we carried out a field experiment at three of the five study sites, 

Monte Murta, Monte Retin North and Monte Retin South (Figure 2) in April 2014, during 

peak flowering. At each site, we located ‘isolated’ flowering plants growing in open 

microhabitats (> 1 m from the nearest conspecific and > 30 cm from the nearest 

interspecific neighbour). We randomly marked 14 plants that fulfilled this isolation 

requirement and recorded the number of rosettes and leaves per rosette of each plant. All 

prey insects were then carefully hand-removed with tweezers from each plant. Next, we 

randomly selected seven plants out of those 14 and removed all their flowers by cutting off 

the inflorescence stalks with scissors. After one week, we returned to each of the three 

populations and recorded the number of prey insects attached to the leaves of the 14 plants. 

We analyzed the differences in insect capture between flower-removed plants 

(treatment) and intact ones (control) for each site separately by fitting a generalized linear 

model (GLM) with a Poisson error distribution on the total number of insects, using 

treatment as fixed effect and total number of leaves per plant as the offset. 

2.3.4 Pollination experiment 

We carried out an experiment at two of the five study sites, Sierra Carbonera and Montera 

del Torero (Figure 2), to investigate the contribution of pollinators to Drosophyllum 

fecundity (i.e. seed production). In mid-April 2014, at the beginning of the flowering 

season for this species at the two sites, we labeled 56 and 43 plants in Sierra Carbonera and 

Montera del Torero, respectively. On each plant, flowers were randomly assigned to one of 

four treatments: hand cross-pollination (HCP), hand self-pollination (HSP), spontaneous 

self-pollination (SSP) and control or open pollination (OP). In the first three treatments, 
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flowers were covered with nylon-mesh bags (0.15-mm mesh) before anthesis to exclude 

potential insect visitors. For the two hand-pollination treatments, HCP and HSP, we 

collected ripe anthers from plants separated > 300 meters (HCP) or from the same flower 

(HSP) and brushed the stigmas with them, taking care of bagging them back after this 

artificial pollination. Flowers in the SSP treatment were not hand-pollinated and remained 

bagged in order to account for spontaneous autogamy. Finally, flowers in the OP treatment 

(control) were left exposed to natural pollinator activity. In most plants, there were more 

than one flower for each treatment (Table 2). We also collected a single petal from an extra 

flower per plant to measure petal length as a surrogate for flower size. 

In July 2014, soon after fruit (capsule) ripening and before seed dispersal 

(dehiscence), we collected the fruits of the four treatments on each individual plant from 

the two sites. They were stored individually in labelled paper bags and taken to the lab, 

where we calculated fruit set (percentage of flowers within each treatment developing into 

fruits) and seed set (percentage of ovules per flower maturing into seeds) per treatment. 

Additionally, three randomly chosen seeds per fruit were weighed on an electronic balance 

to the nearest 0.1 mg and their length (as a surrogate for size) measured using an image 

analyzer (Leica Application Suite v4.4.0, LAS v4.4, Leica Microsystems). 

We searched for differences in fruit set, seed set, seed weight and seed size among 

pollination treatments by means of a generalized mixed effect model (GLMM) with a 

binomial error distribution where we considered treatment (OP, HCP, SCP and SSP) as 

fixed effect and plant individual (ID) as a random effect. We fitted a GLMM for each of the 

two sites separately. 

All analyses were performed with R software (R Core Team 2015). We used the R 

package lme4 (Bates 2013) to fit the mixed effect models. When significant differences 

between treatment levels were found, a post-hoc Tukey’s honestly significant difference 

(HSD) test was applied to the linear predictors using the R package multcomp (Hothorn et 

al. 2008) to detect significant pairwise differences between treatments. 
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2.4 Results 

2.4.1 Flower contribution to prey attraction 

Overall, insect capture levels differed between the three sites used for this study, being 

considerably higher in Monte Retin South than in the other two sites (Figure 3). However, 

we detected no significant differences in insect capture rates between flower-removed 

plants and control plants across the three sites (Likelihood ratio tests, D = 2.2 for Murta, D 

= 1.9 for Retin North, and D = 1.8 for Retin South; d.f. =1, P > 0.1 for the three sites; 

Figure 3). 

 

Figure 3 Average number of insects per leaf (± S.E.) at three different sites (Monte Murta, Monte Retin 

North, Monte Retin South) caught by seven intact flowering plants (control; dark grey bar) and seven plants 

whose flowers were removed (flower-cut; light grey). 

 

2.4.2 Pollination experiment 

Flowers had an overall smaller size (i.e. petal length) in Drosophyllum plants from Montera 

del Torero (average petal length ± SD: 2.64 ± 0.89 cm) than in those from Sierra Carbonera 

(2.98 ± 0.59 cm; Welch’s t-test: t64.57 = 6.46, P < 0.0001). 
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Fruit set was very high in Drosophyllum, with almost 100% flowers across the four 

treatments developing into fruits in the two sites (Table 2). By contrast, we detected 

significant differences in seed set among treatments in the two study sites (Likelihood ratio 

test, D = 140.38 for Sierra Carbonera and D = 198.28 for Montera; d.f. =3, p < 0.05 for the 

two sites; Figure 4). These significant differences were due to the OP (open pollination) 

treatment, which produced significantly higher seed set values than the other three 

treatments in Montera del Torero (but not in Sierra Carbonera), and particularly to the SSP 

(spontaneous self-pollination) treatment, which produced significantly lower seed set 

values than the other three treatments at both sites (Table 2; Figure 4). Regarding seed 

dimensions, seeds were overall larger and heavier in Sierra Carbonera than in Montera del 

Torero (Table 2). However, while seeds from the OP (open pollination) treatment in 

Montera del Torero produced slightly but significantly smaller and lighter seeds, no 

differences in seed size nor weight were detected among treatments in Sierra Carbonera 

(Table 2). 

Table 2. Fecundity variables (fruit set, seed set, seed weight and seed length; mean ± sd) of 

Drosophyllum lusitanicum per treatment in the two sites. Pairwise significant differences (P < 0.05; 

Tukey’s HSD tests) between treatments are indicated by different superscript letters. HCP, hand 

cross-pollination (HCP); HSP, hand self-pollination; SSP, spontaneous self-pollination; OP, control, 

open pollination. 

Treatment N flowers Fruit set (%) Seed set (%) Seed weight (mg) Seed length (mm) 

Sierra Carbonera     

HCP 67 98.5 (± 12.2) 77.7 (± 18.9) 
A 

4.36 (± 0.35) 2.48 (± 0.13) 

HSP 36 100 (± 0.0) 77.4 (± 22.6) 
A 

4.40 (± 0.31) 2.48 (± 0.15) 

SSP 167 99.4 (± 7.7) 61.0 (± 30.7)
 C 

4.35 (± 0.45) 2.50 (± 0.16) 

OP 76 100 (± 0.0) 70.6 (± 29.7) 
B 

4.39 (± 0.41) 2.49 (± 0.19) 

Montera del Torero      

HCP 43 100 (± 0.0) 60.0 (± 29.1) 
a 

3.29 (± 0.32) 
a 

2.15 (± 0.13) 
a 

HSP 24 100 (± 0.0) 54.6 (± 28.2) 
a 

3.28 (± 0.23) 
a 

2.15 (± 0.12) 
a 

SSP 135 99.3 (± 8.6) 47.0 (± 31.5)
 c 

3.38 (± 0.37) 
b 

2.15 (± 0.17) 
a 

OP 65 100 (± 0.0) 73.0 (± 25.8) 
b 

3.16 (± 0.31) 
a 

2.10 (± 0.13) 
b 
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Figure 4 Boxplots of seed set of Drosophyllum lusitanicum after hand cross-pollination (HCP), hand self-

pollination (HSP), spontaneous self-pollination (SSP) and control, open pollination (OP) across two 

experimental sites (Sierra Carbonera and Montera del Torero). Different letters represent significant pairwise 

differences (Tukey´s HSD, p < 0.05) of group means between the four pollination treatments at each site. 

 

2.5 Discussion 

Although there are no closely related extant species to Drosophyllum for comparison 

(Heubl et al. 2006), its large, bright-yellow flowers seem to contradict the paradigm of 

dramatic flower size reduction in highly autogamous angiosperms (Goodwillie et al. 2010; 

Sicard and Lenhard 2011). Considering the presumably high allocation costs of flower 

production (e.g. Galen 1999; Andersson 2005), we have explored the advantages or 

benefits that large, conspicuous flowers confer on this highly autogamous, carnivorous 

plant species. 

Since small Diptera (flies) are the main prey insects in Drosophyllum (chapter 3), 

and the yellow colour is particularly attractive to flies (Neuenschwander 1982; Yee 2015), 

we tested the hypothesis that large, showy flowers might not be directly related to 

reproduction, but would instead support plant growth by enhancing prey capture. An 

increase in prey capture might cause an increase in seed production, as it has been reported 
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in Drosera species (Thum 1988), and would therefore have indirect benefits on the 

reproductive output. However, insect capture rates between intact blooming plants and 

those plants whose flowers were removed did not differ in any of the three populations 

(Figure 3), so we rejected the role of large yellow flowers as significant contributors to prey 

attraction in Drosophyllum. 

Considering that the Drosophyllum population at Montera del Torero was 

dominated by old plants while most reproductive individuals in Sierra Carbonera were 

young (Table 1), the differences in flower size between both populations can be explained 

as an allometric effect of plant age. Branching (i.e. number of rosettes) in this species 

increases with age (Ortega-Olivencia et al. 1995; Garrido et al. 2003), and flower (or 

inflorescence) size is known to decrease with branching (Midgley and Bond 1989). 

Regarding the controlled pollination experiments, fruit set was very high, with 

nearly 100% of the flowers developing into fruit in the four treatments at the two sites 

(Table 2). Therefore, our results concur with those of Ortega-Olivencia et al. (1995, 1998), 

suggesting that Drosophyllum is a highly autogamous species regardless of geographic 

isolation and population size (Garrido et al. 2003; chapter 6). However, when looking at 

seed production, some interesting patterns emerged. First, seeds were overall smaller in size 

and weight in plants from Montera del Torero than in those from Sierra Carbonera (Table 

2). Again, this can be attributed to an allometric effect derived from plant age (see above), 

as there is a strong direct relationship between petal size and seed size in angiosperms 

(Primack 1987). The slightly but significantly smaller and lighter seeds from the OP (open 

pollination) treatment in Montera del Torero (Table 2) might be due to the existence of a 

trade-off between seed number per fruit and seed size/weight (e.g. Baker et al. 1994). 

Second, while seed set values after the two hand-pollination treatments (HCP and 

HSP) were remarkably high in Sierra Carbonera, significantly higher than after control 

open pollination (OP), they were significantly lower than after OP in Montera del Torero 

(Figure 4). These differences could also be explained by the overall large differences in 

plant age between reproductive plants of the two populations (Table 1). Since most 

reproductive plants from Montera del Torero were old, their siring ability might be low, as 

pollen viability in plants decreases with aging (Aizen and Rovere 1995; Marshall et al. 
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2010). As only a single anther brush was applied to stigmas of flowers in both HCP and 

HSP hand-pollination treatments, this could have been sufficient in Sierra Carbonera, 

where all reproductive plants were young, but not in Montera del Torero. At the same time, 

the lack of differences in seed set between both HCP and HSP treatments in the two 

populations confirms that no mechanism of self-incompatibility is operating in this species 

(Ortega-Olivencia et al. 1998). 

But the most remarkable result found in this study has been the significantly lower 

seed set values in the SSP (spontaneous self-pollination) treatment at both sites (Table 2; 

Figure 4). This means that, even though Drosophyllum flowers are readily able to self-

pollinate spontaneously, as Ortega-Olivencia et al. (1995) had already reported, insect 

visitation significantly increases seed production by 15−25% in this species, either by 

cross- or insect-assisted self-pollination. 

However, considering the relatively high rates of seed set after spontaneous self-

pollination in Drosophyllum (Ortega-Olivencia et al. 1995; this study), may a 15-25% 

increase in seed set through insect-assisted pollination offset the costs associated with 

maintaining large, showy flowers in this highly autogamous species? Its life history and 

population dynamics suggest an affirmative answer. Adult individuals of this early-

successional pyrophyte species cannot persist in mature, dense vegetation stands, whose 

germination and growth are largely confined to a short post-fire window (M. Paniw et al., 

in prep). In this short temporal window, producing seeds to replenish the seed bank is 

critical for Drosophyllum, as it happens in other pyrophytes (Quintana-Ascencio et al. 

2003; Menges and Quintana-Ascencio 2004). Therefore, any increase in seed set over 

autonomous selfing caused by insect visitation would increase plant fitness. This, in turn, 

would account for the large, conspicuous flowers to attract pollinating insects. 
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3.1 Abstract 

Carnivorous plants have unusually modified leaves to trap insects as an adaptation to low 

nutrient environments. Disparate mechanisms have been suggested as luring traits to attract 

prey insects into their deadly leaves, ranging from very elaborate to none at all. 

Drosophyllum lusitanicum is a rare carnivorous plant with a common flypaper-trap 

mechanism. Here we tested whether Drosophyllum plants lure prey insects into their leaves 

or they act just as passive traps. We compared prey capture between live potted plants and 

Drosophyllum-shaped artificial mimics coated with odourless glue. Since this species is 

insect-pollinated, we also explored the possible existence of a pollinator-prey conflict by 

quantifying the similarity between the pollination and prey guilds in a natural population. 

We conducted all experiments in southern Spain. Drosophyllum’s sticky leaves captured 

significantly more prey than mimics, particularly small dipterans. Prey attraction, likely 

exerted by scent or visual cues, seems to be unrelated to pollinator attraction by flowers, as 

inferred from the low similarity between pollinator and prey insect faunas found in this 

species. Our results illustrate the effectiveness of this carnivorous species at attracting 

insects to their flypaper-trap leaves. 

Keywords: adhesive trap; Drosophyllum lusitanicum; insect attraction; Mediterranean 

heathland; plant-artificial mimic comparison; prey-pollinator conflict 
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3.2 Introduction 

Carnivory in plants is an unusual adaptation to low nutrient availability, mostly in wet, acid 

soils (Benzing 1987; Adamec 1997; Thorén et al. 2003). Although there are only about 600 

carnivorous species from a total of ca. 300,000 angiosperm species, carnivory has evolved 

multiple times independently, and carnivorous species are found in most major angiosperm 

lineages (Chase et al. 2009; Ellison and Gotelli 2009). Carnivorous plants have modified 

leaves to trap small animals as prey, mostly insects and other arthropods (Benzing 1987; 

Ellison and Gotelli 2001; Chase et al. 2009), from which they obtain key mineral nutrients 

(mainly nitrogen and phosphorus; Adamec 1997; Ellison 2006). 

Charles Darwin was the first to actually demonstrate that carnivorous plants 

assimilate nutrients from captured prey (Darwin 1875). Since then, much has been 

investigated and learnt about prey capture mechanisms (Chase et al. 2009; Król et al. 2012) 

and nutrient uptake (Hanslin and Karlsson 1996; Adamec 1997; Farnsworth and Ellison 

2008) in carnivorous plants. But what keeps fascinating scientists is whether and how they 

lure prey into their deadly leaves. Some authors have suggested that trapping structures 

produce visual and/or olfactory signals (e.g. Lloyd 1942; Joel et al. 1985; Moran 1996; 

Bennett and Ellison 2009) to attract insects. However, Ellison and Gotelli (2009) 

highlighted that such attracting devices, although unquestionably existing, do not contribute 

appreciably to prey capture in carnivorous plants with passive trapping mechanisms, such 

as pitcher or flypaper traps. Kurup et al. (2013), nonetheless, provided experimental 

evidence for the contrary (i.e. active prey capture attached to colour attraction) in pitcher 

plants. Chin et al. (2014) also showed that pitchers of Nepenthes species are not passive 

sampling traps, and that sympatric Nepenthes avoid competition by targeting different 

Formicid prey taxa. But, what about flypaper plants with adhesive traps? Would they 

merely function as passive insect traps whose efficiency is determined by shape, size and 

orientation (e.g. Karlsson et al. 1987; Foot et al. 2014)? 

Drosophyllum lusitanicum (Drosophyllaceae) is a rare carnivorous plant in several 

aspects. First, it is phylogenetically rare, being the only species in the family 

Drosophyllaceae (Heubl et al. 2006). This species (hereafter referred to as Drosophyllum) 

is also geographically rare, as it is endemic to the western end of the Mediterranean Basin 
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(Garrido et al. 2003). Finally, Drosophyllum is also ecologically rare among carnivorous 

plants because it is found on dry soils (Garrido et al. 2003; Adlassnig et al. 2006), while the 

vast majority of carnivorous species are restricted to wet soils (fens or bogs; Givnish 1984; 

Juniper et al. 1989). Morphologically, it is a carnivorous subshrub of up to 45 cm high with 

circinate, linear leaves ca. 20 cm long grouped in dense rosettes (Paiva 1997; Correia and 

Freitas 2002) and bright yellow flowers borne in peduncled corymbose inflorescences 

(Garrido et al. 2003). According to Ortega-Olivencia et al. (1995, 1998), it is highly self-

fertilizing but, contrary to their observations, it benefits markedly from the activity of 

pollinating insects to produce seeds (seed-set dropped from ca. 80% in open flowers to ca. 

55% in bagged, non-pollinated flowers; Chapter 2). 

Regarding prey capture, Drosophyllum uses a passive, adhesive or flypaper-trap 

mechanism, common among carnivorous plants (Chase et al. 2009). Its leaves trap insects 

with a carbohydrate-rich, adhesive mucilage produced in large, stalked glands (Darwin 

1875; Adlassnig et al. 2010) and digest them with enzymes secreted by small, sessile 

glands (Darwin 1875; Adlassnig et al. 2006). In his original description of this species, 

Charles Darwin remarked that ‘[Drosophyllum] caught so many insects [...] although the 

weather was cold and insects scarce, that it must have been in some manner strongly 

attractive to them’ (Darwin 1875, p. 332). This presumably efficient attraction might be 

attributable to a noticeable honey-like, sweet scent emitted by this species (Lloyd 1942; 

Juniper et al. 1989; and personal observations by the authors). Unfortunately, this species 

has never been considered in studies of volatile organic compounds in carnivorous plants 

(Jürgens et al. 2009, 2012). 

In this study, we tested whether Drosophyllum plants lure prey insects into their 

flypaper-trap leaves as Darwin (1875) hypothesized or whether they act just as passive 

traps, as Ellison and Gotelli (2009) generalized for carnivorous plants with flypaper traps. 

To do so, we measured insect capture by Drosophyllum live plants and compared it with 

that of Drosophyllum-shaped artificial traps, formed by green-wire mimics coated with 

colourless and odourless adhesive, thus serving as a “null expectation” of insect capture 

determined solely by shape, size and orientation. Since this species, like most carnivorous 

species, is insect-pollinated, an efficient insect-luring mechanism might bring about a 
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pollinator-prey conflict (Zamora 1999; Anderson and Midgley 2001; Jürgens et al. 2012). 

To explore the existence of such a conflict in Drosophyllum, we quantified the similarity 

between the pollination and prey guilds in a natural population. 

3.3 Materials and methods 

3.3.1 Prey capture: study site, material and experimental design 

To test whether Drosophyllum plants attract prey insects into their flypaper-trap leaves or 

they just act as passive traps, we compared prey capture between live plants and artificial 

traps, acting as a “null expectation”. We performed an outdoor experiment around the 

campus of the University of Cadiz in Puerto Real, Spain (36.53º N, 5.79º W), whose 

landscape consists of open lawn with scattered shrubs and trees. The climate is typically 

Mediterranean, with average annual temperature of ca. 18 ºC and rainfall of ca. 600 mm. 

We conducted the experiment in mid spring, when insect activity is high. 

We used 28 young Drosophyllum live plants (6 month old) grown in the glasshouse 

from seeds in individual 0.5-liter clay pots with a substrate of siliceous sand and peat-moss 

(50/50 v/v). Seeds had been collected the previous year in several natural populations from 

the northern side of the Strait of Gibraltar (south Spain). At the onset of the experiment, 

plants had 7.3 ± 0.3 (mean ± SE) leaves per individual plant and leaf mean length was 12.7 

± 0.4 cm. We then made 28 Drosophyllum-shaped artificial adhesive traps (mimics) of 

similar size, shape, colour and number of leaves by using green wire coated with colourless 

and odourless glue (mice glue; Temobí®, Impex Europa S.L., Pontevedra, Spain; available 

at http://impexeuropa.es) and potted them like the live plants. The possible presence of 

volatile compounds that might attract (or repell) insects in this odourless adhesive was 

discarded after headspace solid-phase microextraction coupled with gas chromatography–

mass spectrometry (HS-SPME-GC-MS). So, plants and mimics looked morphologically 

and chromatically similar to the human naked eye (Figure 1), but mimics were fully 

odourless and, although we did not measure reflectance spectra, likely differences in UV 

reflection patterns may be expected between mimics and plants, since Drosophyllum leaves 

produce considerable UV reflection (Joel et al. 1985). Therefore, mimics would function as 

adequate null models against which insect attraction by Drosophyllum plants may be tested, 
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although without distinguishing between visual and olfactory cues as potential attraction 

mechanisms. 

 

Figure 1(a) Detail of Drosophyllum leaf with a lacewing (Chrysopidae, Neuroptera) trapped by its mucilage-

rich, sticky glands; (b) Potted young plant and (c) potted green-wired, artificial mimic coated with odourles 

mice glue used in the experiment. 

 

We then chose seven sites around the campus, and four Drosophyllum plants and 

four mimics were randomly placed at each site, separated about 2 m from each other. We 

counted prey (insect) trapped on Drosophyllum plants and mimics after daylight (from 

09:00 to 19:00) and night (from 20:00 to 08:00) periods across three days, from May 1st 

(09:00) to May 4th 2014 (08:00). At the beginning of each daylight and night period across 

the three days, we hand-removed trapped insects with tweezers from two plants and two 

mimics per site, making sure that neither leaf droplets of plants nor glue of mimics were 

spoiled. Removed insects were placed in vials and frozen for later identification, mostly to 

the order or class level. The two other plants and mimics per site from which insects were 

not hand-removed were used to explore the existence of differences in the cumulative 

number of prey captured between Drosophyllum plants and mimics during the three days. It 

shall be stressed that the sticking power of the odourless adhesive used to coat the mimics 

was much stronger than that of the leaf mucilage of Drosophyllum plants. Considering that 

we used trapped insects as a proxy of ‘attraction’, the attraction values of the mimics (null 

expectation) will be inflated compared to those of Drosophyllum plants. 
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Strictly speaking, this is an ex situ experimental setup and, as such, it might have 

interpretation caveats, since prey capture by carnivorous plants is contingent on the insect 

community of their natural habitats (Bennett and Ellison 2009). For instance, pitcher plants 

in the Asian genus Nepenthes are specialized in trapping ants and termites in their native 

range, but Nepenthes ventricosa captured mostly flies in an ex-situ field experiment in 

Germany (Schaefer and Ruxton 2008). However, in our case, the campus falls within the 

geographic range of Drosophyllum (Garrido et al. 2003), next to a nature reserve (Parque 

Natural Bahía de Cádiz, Cadiz province, Spain) where natural populations of this species 

are found, the closest being less than 7 km from campus (M. Paniw, unpublished data). On 

the other hand, since the aim of the experiment was to compare insect capture between 

Drosophyllum plants and “neutral mimics”, we would not expect major limits to 

interpretation of the results from this ex situ experimental setup. 

3.3.2 Prey capture: statistical analyses 

We analyzed the average number of prey captured using generalized linear mixed models 

(GLMMs). For these analyses, we used only data from the plants and mimics whose insects 

were removed after each period (see above). We examined the main effects of the trap 

(Drosophyllum plant or mimic) and period (daylight or night) treatments. To account for 

differences among the seven sites and repeated insect counts on individual Drosophyllum 

and mimics, we used site and individual (nested within sites) as random effects in the 

models. We fitted models with a negative binomial error distribution as simple Poisson 

models showed overdispersion, i.e. the ratio of squared Pearson residuals and residual 

degrees of freedom was > 1 (χ
2
, p < 0.01; Ver Hoef et al. 2007). We used likelihood ratio 

tests to determine significant differences between treatments (Vuong 1989). These tests 

compare increasingly complex, or nested, models to simpler ones (starting with intercept-

only models). Number of leaves per plant was used as an offset in all models. We 

performed all analyses using the R package lme4 (Bates et al. 2013). 

We used a permutational MANOVA test to detect differences in relative abundance 

of prey taxa between Drosophyllum plants and mimics within daylight and night periods. 

The test was implemented in R using the adonis function provided in the package vegan 

(Oksanen et al. 2013). This function partitioned the sums of squares between trap and 
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period treatments (nested within site) based on the dissimilarity of insects caught in each 

treatment combination. We chose the Bray-Curtis approach for the dissimilarity matrix 

(Beals 1984) and determined significance of the treatments based on 100,000 permutations. 

Finally, to compare natural prey capture to prey capture under manipulation by the 

daily removal of insects, we counted the number of trapped insects per leaf after each 

period (i.e., twice a day) on the plants and mimics whose insects were not hand-removed. 

Since the Drosophyllum plants did not digest completely most prey insects and the mimics 

remained sticky regardless of the number of insect trapped on them, we could obtain an 

estimate of the cumulative number of insects caught without manipulation. To test for 

significant differences in prey capture between non-manipulated Drosophyllum plants and 

mimics, we fitted and compared GLMMs analogously to the insect-removal experiment but 

excluding the period (daylight vs night) treatment. 

3.3.3 Prey-pollinator conflict: study site, data collection and analysis 

To explore the existence of a presumed prey-pollinator conflict in Drosophyllum, we 

estimated the degree of overlap between the prey and pollinator guilds in a natural 

population. To do so, we carried out pollinator and prey censuses on reproductive plants in 

a natural population from the northern side of the Strait of Gibraltar (Montera del Torero, 

Spain; 36.23° N, 05.59° W), ca. 65 km from the Puerto Real University campus. The 

population consists of more than 500 individuals in a sparsely vegetated, firebreak area 

surrounded by dense Mediterranean heathland. 

Pollinator censuses were conducted during six days in mid May 2014 on about 50 

flowering individuals in an area of ca. 100 m
2
. Observations each day started at 08:00h, 

when flowers opened and finished at about 15:00h, when flowers closed and pollination 

activity decreased drastically. Censuses were conducted as follows: nine groups of one to 

eight Drosophyllum individuals were chosen and each group was observed 15 min per day, 

recording insects visiting a flower of any of the plants of the group. Observation order of 

the nine groups was changed every day. By so doing, we covered a total census time of 

13.5 hours. We considered an insect as a pollinator when it visited a flower and was in 

contact with stigma and anthers. We captured samples of those pollinating insects and 
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stored them in vials for later identification. Prey censuses were conducted by collecting all 

identifiable, undigested trapped insects from a total of 21 Drosophyllum individuals from 

the same area for the pollinator censuses and during the same six days. Both insect and prey 

sampled individuals were identified to closest taxonomical level possible (from species to 

order). 

Since pollinator and prey census methods were different, we discarded frequency 

and used only presence/absence data of insect taxa in each group. Then, we used the 

Jaccard similarity index, J (Jaccard 1901) to estimate the degree of overlap between 

pollinator and prey groups in the natural population, 

J =        a 

a + b + c 

 

where a is the number of shared insect taxa (i.e. found both as pollinator and prey), and b 

and c are the number of taxa observed only as pollinator or as prey, respectively. 

3.4 Results 

3.4.1 Prey capture 

Overall insect capture was significantly higher during daylight than during night in both 

plants and mimics (Table 1; Figure 2). Drosophyllum leaves trapped significantly more 

insects than mimic leaves, consistently in both daylight and night periods (Figure 2) as 

indicated by the lack of significance of the trap × period interaction effect (Table 1). When 

looking at the cumulative number of prey captured along the three days’ experiment, the 

same pattern was observed, with Drosophyllum plants trapping significantly more insects 

than mimics (Figure 3). 
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Table 1 Results of likelihood ratio tests for all considered models describing the number of insects 

caught. All models included number of leaves (on the Drosophyllum plants and mimics) as offset 

and site and individual (nested within site) as random effects. 

Model # of parameters Chi Square Deviance p-value 

Intercept 4 1363.4   

Trap 5 1344.6 17.7 < 0.01 

Trap + period 6 1274.7 69.9 < 0.01 

Trap + period + trap × period 7 1274.2 0.5 0.49 

 

 

Figure 2 Average number of insects (± S.E.) per leaf trapped by Drosophyllum plants and mimics during 

daylight and night periods. Different letters a and b represent differences in group means within the pairwise 

trap (plant vs. mimic) treatment. Letters differ if group means are significantly different from each other 

(likelihood ratio tests; see Table 1). 

The majority of insects (> 80%) trapped by Drosophyllum plants and mimics across 

the three days belonged to the Order Diptera (Table 2). Main differences in prey capture 

between plants and mimics were due to relative abundances of Dipterans, with plants 

catching a noticeably higher amount of small Dipterans (body length < 5 mm; mostly 

Drosophilid flies) and a lower amount of large Dipterans (mostly Tachinid flies; Table 2). 
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3.4.2 Prey-pollinator conflict 

A total of 12 different insect species were censused as potential pollinators of 

Drosophyllum flowers. Coleopterans and Hymenopterans were the most abundant flower 

visitors, while only few Dipterans were censused (Table 3). A total of 18 different taxa 

were identified as prey, out of which dipterans predominated, followed by Lepidopterans 

and, to a lesser extent, Coleopterans (Table 3). 

The Jaccard similarity index (J) between pollinator and prey guilds was very low (J 

= 0.04), indicating a high dissimilarity between both pollinator and prey faunas. Therefore, 

a presumed prey-pollinator conflict would not exist in Drosophyllum. 

 

Figure 3 Cumulative number (± S.E.) of insects per leaf on Drosophyllum plants and mimics across the three 

experiment days. DL and N stand for daylight and night periods, respectively. Numbers indicate the 

experiment day. The differences in insect numbers between plants and mimics are significant (χ
2
 deviance = 

5.6, df = 1; p-value = 0.02). 
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Table 2 Number (and percentage of total in brackets) of insect taxa removed from Drosophyllum plants and mimics over the three days. Overall, 

Drosophyllum plants trapped significantly more insects than mimics during both daylight (F1, 12 = 8.1, p-value = 0.03) and night (F1, 12 = 4.6, p-

value = 0.02). 

Period Trap Small 

Diptera 

(< 5 mm) 

Large 

Diptera 

Coleoptera Hemiptera Heteroptera Hymenoptera
1
 Lepidoptera Araneae Total 

Daylight Drosophyllum 

Mimic 

477 (83.5) 

138 (45.7) 

72  (12.6) 

151 (50) 

3 (0.5) 

4 (1.3) 

0 

1 (0.3) 

9 (1.6) 

3 (1.0) 

4 (0.7) 

3 (1.0) 

5 (0.9) 

2 (0.7) 

1 (0.2) 

0 

571 

302 

Night 

 

Drosophyllum 

Mimic 

245 (80.9) 

83 (52.5) 

31 (10.2) 

57 (36.1) 

5 (1.7) 

6 (3.8) 

0 

0 

12 (4.0) 

9 (5.7) 

6 (2.0) 

3 (1.9) 

4 (1.3) 

0 

0 

0 

303 

158 
1
 predominantly bee 
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Table 3 Pollinator and prey fauna in a natural Drosophyllum population (Montera del Torero, 

Spain; 36.23° N, 05.59° W). 

 

# POLLINATORS 

(% of total) 

PREY 

(1/0, pres/abs) 

Hymenoptera   

Panurgus sp. (Andrenidae) 39 (25.6) 0 

Halyctus scabiosae (Halyctidae) 9 (5.9) 0 

Panurgus cephalotes (Andrenidae) 4 (2.6) 0 

Panurgus banksianus (Andrenidae) 2 (1.3) 0 

Andrena sp. (Andrenidae) 2 (1.3) 0 

Dasypoda hirtipes (Melitidae) 1 (0.7) 0 

Formicidae 0 1 

Coleoptera   

Enicopus sp. (Melyridae) 86 (56.6) 1 

Oxythyrea funesta (Cetoniidae) 3 (2.0) 0 

Omaloplia sp. (Melolonthidae) 2 (1.3) 0 

Elateridae 0 1 

Lagria sp. (Tenebrionidae) 0 1 

Curculionidae 0 1 

Coccinellidae 0 1 

Diptera 
  

Drosophila sp. 0 1 

Usia sp. (Bombyliidae) 2 (1.3) 0 

Episyrphus sp.(Syrphidae) 1 (0.7) 1 

Eristalis sp. (Syrphidae) 1 (0.7) 1 

Eupeodes sp. (Syrphidae) 0 1 

Acalyptratae 0 1 

Anthomyiidae 0 1 

Siphona sp. (Tachinidae) 0 1 

Bombylella atra (Bombyliidae) 0 1 

Nephrotoma sp. (Tipulidae ) 0 1 

Lepidoptera 
  

Microlepidoptera 0 1 

Heteroptera 
  

Aphididae 0 1 

Neuroptera 
  

Chrysopidae 0 1 
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3.5 Discussion 

Effective prey attraction can be beneficial to carnivorous plants, since an increase in insect 

capture rates leads to an increase in fitness components (Thum 1988; Zamora et al. 1998; 

Pavlovic et al. 2014). However, although it has long been suggested that carnivorous plants 

might use visual and/or olfactory cues to lure insects into their trap leaves (e.g. Joel et al. 

1985; Jürgens et al. 2009; Kurup et al. 2013), Ellison and Gotelli (2009) concluded that 

prey attraction by pitcher and flypaper carnivorous plants is not more effective than that 

exerted by a passive trap of similar size and shape. Although this was recently disproven 

for pitcher plants (Kurup et al. 2013; Chin et al. 2014), it still appeared to be a reasonable 

conclusion for flypaper plants with adhesive traps (Karlsson et al. 1987; Foot et al. 2014). 

Diptera (flies) was by far the most common order of insects by number of 

individuals trapped by both Drosophyllum plants and mimics in our ex situ outdoor 

experiment as well as by Drosophyllum plants in the natural population at Montera del 

Torero. Flies are certainly predominant as prey for this species across its entire geographic 

range (authors’ personal observations). Thus, despite the caveats of studying prey capture 

through ex situ field designs (Benett and Elison 2009), we are confident of the ecological 

validity of our results. They illustrate an effective prey luring potential of Drosophyllum 

plants, as they captured significantly more insects than the null expectation (mimics) 

despite the stronger sticking power of the mimics (see Methods). 

Differences were largely attributable to the high quantity of individuals, particularly 

of small-sized flies, captured by Drosophyllum plants compared to mimics, being the 

taxonomic identity of prey between plants and mimics unimportant (Table 2). Only the 

amount of large flies (mostly Tachinidae, Muscidae and Calliphoridae) trapped as prey was 

higher in mimics than in plants (Table 2). However, it shall be stressed that we observed 

many large flies attracted to but then escaping from Drosophyllum leaves, whereas no 

insect, whatever size, escaped from the strong stickiness of the mimics. We can therefore 

conclude that Drosophyllum − a rare carnivorous species from taxonomical, geographical 

and ecological points of view but a standard flypaper carnivorous plants in terms of prey 

capture − effectively attracts insects, mostly dipterans. Interestingly, although such 

effective prey luring potential in Drosophyllum was already proposed by Darwin (1875), 
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and other authors have also mentioned it (e.g. Meyer and Dewèvre 1894; Lloyd 1942), this 

study provides the first experimental evidence that Drosophyllum lures its prey. 

Although this study did not assess the role of visual and olfactory cues as potential 

mechanisms for insect attraction, the noticeable prey attraction by Drosophyllum plants 

compared to the mimics was found not only in daylight periods but also and consistently at 

night. Even though overall insect activity decreased at night, which was reflected in the 

overall lower capture values by both plants and mimics, we still detected a consistently 

higher prey capture in Drosophyllum plants during the three nights (Figure 2). At night 

there is less chance for visual attraction, although at low light intensities (e.g. dawn and 

dusk) many insect species are strongly attracted by UV light (Weiss et al. 1942) and 

conspicuous UV patterns have been reported in Drosophyllum leaves (Joel et al. 1985). 

Insect attraction in Drosophyllum is also likely to be exerted by the characteristic sweet, 

honey-like scent of its leaves (Lloyd 1942; Juniper et al. 1989; and personal observations 

by the authors). Certainly, attraction mechanisms in this species deserve further 

investigation, which is currently underway in our institution. 

An efficient insect-luring mechanism based on an olfactory attraction might cause a 

pollinator-prey conflict (Jürgens et al. 2012). However, although results must be taken as 

tentative since they come from a single population, the low similarity of the pollinator and 

prey guilds indicate that such a conflict would not exist. The most frequent pollinators in 

Drosophyllum were small sized Hymenopterans and Coleopterans, whereas the most 

common prey were Dipterans and, to a lesser extent, Lepidopterans (mostly moths, not 

observed as flower visitors) and Coleopterans. The sticky mucilage of Drosophyllum leaf 

glands is based on polysaccharides with an acid reaction, producing a noticeable honey-like 

odour (Adlassnig et al. 2010), which is reflected in Drosophyllum prey composition: flies, 

especially fruit flies, moths and green lacewings, all known to be lured by sweet scents 

(Saad and Bishop 1976; El-Sayed et al. 2005; Becher et al. 2010). The chemical 

composition of volatile compounds in Drosophyllum is currently being studied (J.M. 

Igartuburu, unpublished), but it is known that the wonderfully modified leaf traps of the 

Venus flytrap Dionaea muscipola strongly attract fruit flies by producing volatile organic 

compounds different to those produced by flowers (Kreuzwieser et al. 2014). 
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We conclude that seemingly simple, adhesive traps such as those of Drosophyllum 

are effective at luring prey insects, as Darwin (1875) first noticed. Much more effective 

than what would be expected from adhesive artificial traps of similar shape and size, unlike 

what Jürgens et al. (2009) suggested and what has been recently shown in another flypaper 

carnivorous species using a similar experimental approach (Foot et al. 2014). Prey 

attraction seems to be related to visual cues and/or scent, but unrelated to flower scent, as 

inferred from the virtual lack of prey-pollinator overlap. To explore this further, olfactory 

bioassays will be performed and volatile organic compounds emitted by leaves and flowers 

will be analysed by means of mass spectrometry. Such dissimilarity in attracting signals 

between leaf traps and flowers is surely more widespread among carnivorous plants (e.g. 

Kreuzwieser et al. 2014) than previously thought (Jürgens et al. 2012). 
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Plant carnivory beyond bogs: reliance on prey feeding in 
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4.1 Abstract 

From a cost-benefit framework, plant carnivory is hypothesized to be an adaptation to 

nutrient-poor soils in sunny, wetland habitats. However, apparent exceptions to this cost-

benefit model exist, although they have been rarely studied. One of these exceptions is the 

carnivorous subshrub Drosophyllum lusitanicum, which thrives in Mediterranean 

heathlands on dry sandstone soils and has relatively well developed, xeromorphic roots. 

Our aim was to assess the role of leaf (carnivory) and root (soil) nutrient uptake in growth 

promotion of this particular species. In a greenhouse experiment, we fed plants with lab-

reared fruit flies (Drosophila virilis) and added two concentrations of soil nutrients in a 

factorial design. We recorded aboveground plant growth and final above- and belowground 

dry biomass after 13 weeks. We also tested for nutrient uptake via roots using stable 

nitrogen isotope analysis. Insect feeding resulted in significantly higher growth and above- 

and belowground biomass compared to soil fertilization. No additional benefits of 

fertilization were discernable when plants were insect-fed, indicating that roots were not 

efficient in nutrient absorption. We provide the first evidence of strong reliance on insect 

prey feeding in a dry-soil carnivorous plant with well-developed roots, suggesting that 

carnivory per se does not preclude persistence in dry habitats. Instead, the combination of 

carnivory and xeromorphic root features allow Drosophyllum to thrive on non-waterlogged 

soils. This study adds to recent research emphasizing the role of root systems of 
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carnivorous plants in explaining their distribution, partly challenging the cost-benefit 

hypothesis.

Keywords: carnivorous plant root, dry-soil carnivorous plant, insect prey, pyrophyte, soil 

nutrient uptake, stable isotope analysis 

 

4.2 Introduction 

Intensively studied by Darwin (1875) in his treatise Insectivorous Plants, plant carnivory is 

arguably the most captivating adaptation to nutrient-poor soils (Adamec 1997; Ellison and 

Gotelli 2001; Król et al. 2012). The uptake and assimilation of nutrients via modified leaf 

structures has evolved at least nine times independently across the angiosperms (Givnish 

2015), with ca. 600 extant species of carnivorous plants in the world’s flora (Król et al. 

2012; Givnish 2015). The nutrition of carnivorous plants has been studied on various 

species, with a strong focus on sundews (Drosera spp.: Darwin 1878; Karlsson and Pate 

1992; Adamec 2002; Thorén et al. 2003; Millett et al. 2012), butterworts (Pinguicula spp.: 

Karlsson and Carlsson 1984; Karlsson et al. 1991; Hanslin and Karlsson 1996), and pitcher 

plants (Nepenthes/Sarracenia spp.: Schulze et al. 1997; Moran et al. 2001; Gotelli and 

Ellison 2002; Butler and Ellison 2007; Farnsworth and Ellison 2008). These studies have 

supported the hypothesis that carnivorous plants benefit from captured prey insects by 

acquiring mineral nutrients, mainly nitrogen and phosphorus (Ellison 2006; Farnsworth and 

Ellison 2008).  

Most carnivorous plants are restricted to nutrient-poor, wet soils in sunny habitats 

(Ellison and Gotelli 2001; Brewer et al. 2011; Pavlovič and Saganová 2015). These 

environmental associations led Givnish et al. (1984) to propose a cost-benefit model for the 

evolution of plant carnivory and its general restriction to sunny, infertile wetlands. 

According to this model, the net benefit of carnivory, i.e., the photosynthetic gain in terms 

of leaf production minus the cost of producing and maintaining specialized prey-trapping 

structures, is predicted to be largest when soil nutrient availability is the major limiting 

factor to plant growth but light and soil water are readily available. Several studies have 

since investigated nutrition in carnivorous plants, demonstrating that species vary widely in 
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their capacity to assimilate mineral nutrients from soil (Adamec 1997; Schulze et al. 1997; 

Ellison 2006; Adamec 2010; Król et al. 2012). Support for the cost-benefit model comes in 

particular from studies showing that reliance on prey nutrients decreases with the increase 

in soil nutrient availability (e.g., Benzing 1987; Karlsson and Pate 1992; Millett et al. 2012) 

or shade (Givnish et al. 1984; Schulze et al. 2001).  

More recently, extensions or alternatives to the cost-benefit model have been 

proposed (Benzing, 2000; Brewer et al. 2011; Abbott and Brewer 2016). Brewer et al. 

(2011), for instance, hypothesized that the characteristic, weakly developed and low-

porosity roots, rather than low soil fertility per se, might explain the general restriction of 

carnivorous plants to boggy, waterlogged soils and their disadvantage in drier, non-

waterlogged soils. However, carnivorous plant species that thrive in dry habitats and appear 

to contradict the predictions of the cost-benefit model have received far less attention in the 

literature, despite potentially providing significant novel insights into the evolution of plant 

carnivory (Givnish et al. 1984; Givnish 2015). One prominent example is the subshrub 

Drosophyllum lusitanicum (L.) Link (Drosophyllaceae). This species (Drosophyllum, 

hereafter) is the only extant species of the family Drosophyllaceae (Heubl et al. 2006) and 

is endemic to the western Iberian Peninsula and northern Morocco (Garrido et al. 2003). 

Across its range, Drosophyllum is restricted to fire-prone Mediterranean heathlands on 

acid, nutrient-poor, dry soils, subject to a moderate summer drought (Adlassnig et al. 2006; 

chapter 6).  

Unlike most other carnivorous plant species, many Drosophyllum individuals 

maintain their complex, sticky mucilage on leaves to capture prey even under unfavorable 

conditions in the dry summer months (Adlassnig et al. 2006; Adamec 2009). Another 

difference between Drosophyllum and most other carnivorous plant species is that the root 

system of the former is relatively well developed, consisting of a branched tap-root with 

xeromorphic features (Carlquist and Wilson 1995; Adlassnig et al. 2005, 2006; Adamec 

2009). Despite being one of the few carnivorous plant species with deep, large root 

systems, no research has been done on the putative role of roots for soil nutrient uptake in 

this species (Adlassnig et al. 2005, 2006). The taxonomic uniqueness and habitat 

particularity of Drosophyllum make the species a valuable system for investigating the 
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importance of leaves vs. roots in nutrient acquisition and growth promotion of carnivorous 

plants in dry habitats. 

Here, we studied plant nutrition in Drosophyllum plants through leaves (prey 

insects) and roots (soil nutrients) and the effect of nutrient uptake from the two sources on 

aboveground growth and above- (leaf) and belowground (root) biomass allocation. Given 

the scarcity of fine lateral roots in this species (Adamec 2009), we hypothesized that leaf 

nutrient uptake from trapped insects will determine plant growth, with a low contribution, if 

any, of soil nutrient uptake from roots, despite their considerable size and depth (Adlassnig 

et al. 2005). To test this hypothesis, we performed a full-factorial greenhouse experiment in 

which we fed juvenile plants growing on a substrate mixture of siliceous sand and peat 

moss via leaves (fruit flies) and/or soil (Hoagland’s nutrient solution). We recorded 

aboveground growth as well as final dry biomass of above-ground (leaves) and 

belowground (roots) plant parts and compared them between treatments. Since the 

Hoagland’s nutrient solution used had an anomalously high δ
15

N value (see Materials and 

Methods), we measured δ
15

N values in the above- (leaves) and belowground (roots) tissue 

of plants from the different treatments to ascertain the capability of the plants to absorb 

mineral nutrients from the roots. 

4.3 Materials and methods 

4.3.1 Growth of plants and experimental design 

We grew Drosophyllum plants in the University of Cádiz greenhouse from seeds collected 

in July 2014 from 80 individuals randomly chosen at five sites (16 individuals per site). We 

mixed all seeds to provide a homogeneous pool and, on February 2nd 2015, we randomly 

took 200 seeds from the pool and exposed them to dry heat (100º C) during 5 min to break 

seed dormancy (Correia and Freitas 2002). We then sowed these seeds in seedling trays 

with a 1:1 mixture of siliceous sand and peat moss and selected the first 120 emerged 

seedlings for the experiment. The seedlings emerged 20-26 days after sowing and were then 

individually transplanted into 0.5-L clay pots containing the same mixture of siliceous sand 

and peat moss. This low fertility soil mixture is commonly used in nutrient addition 

experiments for carnivorous plants (e.g., Butler and Ellison 2007) and approximates the 
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low fertility conditions of Mediterranean heathland soils (Ojeda et al. 2010). The pH of this 

substrate, measured in a saturated soil paste, was ca. 4.5, also similar to the pH of 

Mediterranean heathland soils (Ojeda et al. 2010).  

We grew the 120 potted seedlings in the greenhouse at ambient temperature, but 

never exceeding 25ºC, and keeping relative humidity around 70-90 % throughout the whole 

experiment, resembling ambient conditions of natural Drosophyllum populations during the 

spring growing season (chapter 8). During the night, the lowest temperature recorded in the 

greenhouse was 15ºC. Pots were kept moist via a sprinkling system mounted above the pots 

that sprayed decalcified water during daytime for 30 s in 2-h intervals. We used decalcified 

water because soil Ca is toxic to most carnivorous plants (Adlassnig et al. 2005), including 

Drosophyllum (Adlassnig et al. 2006). We maintained the temperature regime and periodic 

sprinkling throughout the study. In addition, before initiating the nutrient addition 

experiment, we watered the pots three-times a week with 50 ml of decalcified water. On 

March 12th 2015, 14 days after being transplanted, the seedlings were large enough (5-7 

leaves of 5.0 (± 0.3 SD) cm length) to start the feeding experiment, which extended for 11 

weeks until May 27th 2015, lasting a total of 91 days since seedling emergence.  

The experiment was performed in a full-factorial design with “insect feeding” (two 

treatment levels: F and NF) and “soil fertilization” (three treatment levels: H, L and O) as 

fixed factors. The 120 potted seedlings were randomly divided into two equal-sized groups, 

one of which, the F treatment, was supplied with fruit flies (Drosophila virilis; ca. 0.3 mg 

dry weight per fly) and the other, the NF treatment, was not. Each plant of the F treatment 

received three flies per leaf in the first two weeks of the experiment, increasing the number 

of flies by two more per leaf each additional week until the sixth week, when the number of 

flies per leaf increased to four more each week. The D. virilis fruit flies used throughout the 

experiment were reared in a carbohydrate-rich medium under standard culture conditions 

and were kept frozen in vials at -20ºC prior to usage.  

Plants of the F and NF groups were further split into three subgroups (20 plants 

each) for the “soil fertilization” treatments: three times per week for the duration of the 

experiment, plants in each subgroup received 50 ml of 1/10 strength nutrient solution (H 

treatment), 50 ml of 1/20 strength nutrient solution (L treatment) or 50 ml of distilled water 
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(O treatment). We used a balanced nutrient mixture (Hoagland’s No. 2 Basal Salt Mixture; 

Sigma-Aldrich, Saint Louis, USA) to avoid potential deficiencies of some nutrients caused 

by abundance of another. Similar dilutions have been used in feeding experiments for other 

carnivorous plant species (e.g., Butler and Ellison, 2007). Plants in the NF-O treatment 

combination, receiving neither flies nor soil nutrients, were considered as control. Each 

time before treatment application, pots were haphazardly shuffled on the greenhouse bench 

to avoid a location effect.  

In order to assure that the amount of nutrients provided to plants via flies or soil 

solution did not differ substantially, we determined the amount of nitrogen available to 

plants from either source. The amount of nitrogen in flies was measured as described for 

plant samples in “δ
15

N analysis” below. Throughout the nutrient-addition experiment, 

plants in the corresponding treatment groups were weekly supplied with approximately 3.1 

(H treatment) and 1.05 (L treatment) mg N through the soil. The fine texture of the moss 

peat in the soil medium aided in retaining the nutrient solution and water. Plants in the FO 

treatment received a total of approximately 2.1 mg of N from insects, which corresponded 

to 60 % (range: 52 % - 69 %) of their total N pool. We assumed that the relative 

concentrations of other nutrients to N were similar between flies and fertilizer. 

To track the aboveground growth of plants under different treatment combinations, 

we counted the number of fully developed leaves and measured the length (cm) of the 

longest leaf on each plant at the beginning of the experiment (day 14 after emergence) and 

every week or second week until the end of the experiment (11 weeks later; day 91 after 

emergence). We then defined size as the number of leaves × length of longest leaf (cm). 

This size measure is biologically significant as it approximates the available leaf area for 

prey capture and has been used in other studies of this species (M. Paniw, unpublished). 

Once the experiment was terminated, we removed plants from the pots, washed them in 

distilled water to remove fruit flies from leaves and soil from roots, separated above-ground 

(shoot) and below-ground (root) material of each plant, and oven-dried them for 72 h at 

65ºC to constant weight . We then weighed the shoot and root dry biomass of each plant to 

the nearest 0.01 mg. 

 



Chapter 4 – Materials and methods 

~ 67 ~ 
 

4.3.2 δ
15

N analysis 

Previous analyses found an average δ
15

N signature of 18.6 ‰ (range: 18.0-19.0 ‰) in the 

Hoagland’s nutrient solution used in this study (Hoagland’s No. 2 Basal Salt Mixture; 

Sigma-Aldrich, Saint Louis, USA), an anomalously high value for standard synthetic 

fertilizers (δ
15

N = −0.2 ± 2.1 ‰, mean ± SD; Bateman and Kelly, 2007), and much higher 

than the δ
15

N signature detected in Drosophila virilis flies (range: 2.8-3.0 ‰). This highly 

δ
15

N enriched nutrient solution provided an excellent means to explore whether 

Drosophyllum plants were able to take up and assimilate soil nutrients through the roots. 

After being weighed, shoot and root dry biomass samples of all Drosophyllum plants from 

the nutrient addition experiment were separately placed into plastic vials (up to three 

samples per plant part if enough biomass was produced), ground to powder using stainless 

steel beads on a Mixer Mill MM400 cell disrupter (Retsch, Llanera, Spain), and analyzed 

for % N and δ
15

N using combustion in the elemental analyzer Flash EA1112 interfaced 

with Finnigan Tracer Mass Isotope Ratio Mass Spectrometer. Analyses were performed at 

the Analytical Service Laboratory from the University of A Coruña (Spain). Results of δ
15

N 

are expressed in per mil (‰) where δ = [(
15

N/
14

N) – 1] × 1000. All δ
15

N values had a 

precision of 0.3 ‰. 

4.3.3 Statistical analysis 

The overall effects of insect feeding (F, NF), soil fertilization (H, L, O) and their interaction 

on above-ground size changes over time were determined by means of a two-way repeated-

measures ANOVA. The plant size variable was log-transformed prior to analysis to meet 

the homoscedasticity assumption. We also explored the effects of insect feeding (F, NF) 

and soil fertilization (H, L, O) on the final dry biomass (g) of the aboveground (shoot) and 

below-ground (root) portions of the plants by performing a two-way MANOVA. Shoot and 

root dry biomass variables were previously log-transformed to ensure the homoscedasticity 

assumption of MANOVA. Post-hoc comparisons through Tukey's HSD tests to search for 

pairwise differences between the six treatment combinations were implemented separately 

for shoot and root dry biomass variables. An equivalent analysis for whole-plant biomass 

can be found in Appendix S1. 
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In order to explore whether plants provided with soil nutrients changed their root-to-

shoot allocation patterns, we calculated the percentage contribution of roots to the total 

plant dry biomass, and tested significant differences between the six treatments by using a 

non-parametric Kruskal-Wallis rank test. Finally, we also used the Kruskal-Wallis rank test 

to search for differences in the δ
15

N signature of the above- (shoot) and belowground (root) 

tissue of plants between the six treatment combinations. As the Kruskal-Wallis rank test 

corresponds to a nonparametric one-way ANOVA, subsequent post-hoc pairwise 

comparisons between treatment combinations were done using Bonferroni-corrected Mann-

Whitney U-tests. All statistical analyses were performed in R (R Core Team 2015). 

4.4 Results 

Insect-fed plants grew more than four times as much as not insect-fed plants during 

the experiment (Fig. 1) and produced a more than five times higher dry biomass, both 

above- and belowground (Fig. 2), regardless of soil fertility conditions.  

 

Figure 1 Changes in size, defined as # of leaves × length of longest leaf (cm), of Drosophyllum plants 

through time (days) as a function of two treatments, insect feeding (F / NF) and soil fertilization (H / L / O), 

and their interaction, resulting in six treatment groups. 
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The two-way repeated-measures ANOVA detected significant effects of the two 

factors, insect feeding and soil fertilization, on relative plant growth (Table 1; Fig. 1). In 

addition, plant size changed significantly with time (days after sowing), with plants 

growing significantly faster when fed with flies compared with unfed plants (Table 1; Fig. 

1). Correspondingly, the two-way MANOVA showed significant effects of both factors on 

the final dry biomass of above- (shoot) and belowground (root) portions of plants, and a 

significant interaction between the two factors (Table 2; Fig. 2).  The significant interaction 

effect stemmed from soil fertilization having a slight but significant effect on final dry 

biomass only when plants were not supplied with fruit flies (Table 2). No significant 

differences in final dry biomass were detected between the H and L soil fertilization levels 

(Fig. 2). Insect-fed plants grew much larger, both above- and below-ground, than soil-fed 

plants, and no additive effects of soil fertilization on them were detected (Fig. 2). 

 

 

Figure 2 Box-plot of dry biomass of (a) above-ground (shoot) and (b) below-ground (root) parts of 

Drosophyllum plants measured at the end of the nutrient addition experiment as a function of two main 

treatments and their interactions: feeding with flies (F) or no feeding (NF) and addition of high-strength (H), 

low-strength (L) nutrient solution or distilled water (O). The combinations of the treatment levels resulted in 

six treatment groups. Different letters represent significant pairwise differences (Tukey´s HSD, P < 0.05) of 

group means (diamonds) between the six treatment groups. Note that the statistical comparisons were 

performed on the log-transformed biomass measure to ensure variance homoscedasticity. 
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On average, the root portion of Drosophyllum plants made up 14.7 % (± 0.06 SD) of 

the total plant dry biomass. This result was similar to previous investigations of root/shoot 

ratios in Drosophyllum (Adamec, 2009). No significant differences in the relative 

contribution of roots to total plant biomass were found between the six treatment 

combinations (Kruskal-Wallis χ
2 
= 9.6, d.f. = 5, p-value = 0.1). 

 

Table 1 Two-way repeated-measures ANOVA of the effects of insect feeding, soil fertilization, and 

their interaction on changes in above-ground size through time (days since emergence) of 

Drosophyllum plants. 

 df Mean squares F-ratio P-value 

Response: plant size     

 

Between-group effect: Error (plant ID) 

    

Insect feeding 1 1.4 × 10
6
 483.0 < 0.01 

Soil fertilization 2 1.3 × 10
4
 4.5 0.01 

Insect feeding × Soil fertilization  2 6.5 × 10
3
 2.2 0.1 

Residuals 113 2.9 × 10
3
   

 

Within-subject effect 

    

Days 6 2.8 × 10
5
 668.7 < 0.01 

Insect feeding × Days 6 1.6 × 10
5
 395.3 < 0.01 

Soil fertilization × Days 12 6.9 × 10
3
 16.3 < 0.01 

Insect feeding × Soil fertilization × Days 12 3.4 × 10
3
 8.1 < 0.01 

Residuals 678 419   
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Table 2 Two-way MANOVA, using the Pillai test statistic, of the effects of “insect feeding” and 

“soil fertilization” factors and their interaction on above- (shoot) and below-ground (root) dry 

biomass (g). 

 df Pillai approx F num df dem df P-value 

Shoot and root dry biomass (g)       

Insect feeding 1 0.865 170.172 2 53 < 0.01 

Soil fertilization 2 0.352 5.767 4 108 < 0.01 

Insect feeding × Soil fertilization 2 0.369 6.099 4 108 < 0.01 

Residuals 53      

 

Soil-fertilized plants presented significantly higher δ
15

N signatures in both shoot and root 

tissues than not fertilized plants, regardless of being supplied with fruit flies on the leaves 

or not (Fig. 3; Kruskal-Wallis χ
2 
= 70.0, d.f. = 5, p < 0.05).  

 

Figure 3 Box-plot of δ
15

N in (a) shoot and (b) root tissues of Drosophyllum plants measured at the end of the 

nutrient addition experiment as a function of two main treatments and their interactions: feeding with flies (F) 

or no feeding (NF) and addition of high-strength (H) or low-strength (L) nutrient solution or distilled water 

(O). Different letters represent significant pairwise differences (Kruskal-Wallis χ
2 
= 70.0, d.f. = 5, p < 0.05) of 

group means (diamonds) between the six treatment groups. 
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Taking into account the high δ
15

N values of the nutrient solution used for soil fertilization 

(see Materials and methods), this result indicates that Drosophyllum plants are able to take 

up and assimilate soil nutrients through the roots. It shall be noted that higher δ
15

N 

signatures were detected in H fertilized than in L fertilized plants (Fig. 3), although higher 

fertilization strength did not cause an increase in plant growth (Figs. 1 and 2). 

4.5 Discussion 

Carnivorous plants are predicted to benefit from prey capture under a specific set of 

environmental conditions, i.e., nutrient-poor, wet soils and open habitats,  which offset the 

cost of producing trapping structures (Givnish et al. 1984; Benzing 1987, 2000). However, 

our nutrient addition experiment provides the first evidence that a strong carnivorous 

syndrome may evolve in dry environments. Drosophyllum plants invest resources in 

carnivorous structures as well as in well developed, deep roots (Adlassnig 2005, 2006) that, 

however, seem to play only a minor role in nutrient acquisition. Plants fed with insects in 

the greenhouse acquired on average more than five times as much biomass as soil-fertilized 

plants, with root nutrient uptake showing no additive benefits to plant growth (Fig. 2). 

These results support the hypothesis that root functionality other than nutrient acquisition 

(e.g. securing water availability) may be a key factor determining the distribution of 

carnivorous plants with respect to soil moisture (Brewer et al. 2011). Indeed, unlike most 

other carnivorous plant species, Drosophyllum produces large, xeromorphic roots most 

likely as an adaptation to water uptake in non-waterlogged soils under a Mediterranean 

climate (Carlquist and Wilson, 1995; Adlassnig et al. 2005). Both, the xeromorphic root 

features (for soil water acquisition) and carnivory (for nutrients) may allow this species to 

persist in nutrient-poor, dry Mediterranean heathlands.   

The strong reliance of Drosophyllum on prey-derived nutrients for growth 

highlighted by our greenhouse study is corroborated by field observations and field 

experiments showing great efficiency of plants of this species in attracting prey (Darwin 

1875; Chapter 3). Individuals produce complex, mucilagenous stalked glands, multicellular 

and vascularized with both xylem and phloem vessels (Renner and Specht 2011). It shall be 

emphasized that this species is, together with the part-time carnivorous Triphyophyllum 

peltatum, the only fly-paper carnivorous species whose glandular trichomes have floem 
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vessels (Renner and Specht 2011). This would allow Drosophyllum plants to add phloem 

sap exudates including carbohydrates and volatile organic compounds to the mucilage 

droplets, increasing their viscosity and hygroscopicity (carbohydrates; Adlassnig et al. 

2006, 2010) as well as their efficiency in insect attraction (volatile organic compounds; 

Jurgens et al. 2009). As a result, even juvenile Drosophyllum individuals, consisting of one 

rosette with 10 leaves, may contain > 100 prey insects (chapter 3). The strong carnivorous 

character in Drosophyllum stands out compared with Byblis lamellata (Byblidaceae), the 

only morphologically and ecologically similar carnivorous species, found in non-

waterlogged, seasonally dry, siliceous sands (Conran et al. 2002). Unlike Drosophyllum, B. 

lamellata has simple trapping structures and does not have sessile, proteolytic enzyme-

producing glands to directly digest prey insects, but may use insect mutualists that feed on 

trapped prey to gain nutrients by digesting their faeces (Hartmeyer 1998). 

Despite the strong reliance on prey for plant growth, our results indicate that 

Drosophyllum is able to take up soil nutrients from the roots, when available, and 

assimilate them in both root and leaf tissue (Fig. 3), although growth is far from optimal in 

the absence of insect prey (Figs. 1 and 2). Drosophyllum is a post-fire dwelling species 

(chapter 5) with life-history adaptations to recurrent fires, which include a mass post-fire 

recruitment from a persistent soil seed-bank (Müller and Deil 2001). Fires release a flush of 

mineral nutrients to soil, including N and P, which are quickly (within one year) leached 

away (Certini 2005; Dijkstra and Adams 2015). By being able to assimilate nutrients from 

the roots, Drosophyllum plants might benefit from that transient, post-fire flush at their 

early seedling stages, when insect capture is unlikely due to small size. They might hence 

use it to assist plant growth to prey-capture levels. Similar results have been found for 

another fire-adapted carnivorous plant, Dionaea muscipula, and may also indicate 

adaptations to post-fire nutrient fluctuations (Gao et al. 2015). As lateral roots appear to be 

lost in mature Drosophyllum plants (Adamec 2009), nutrient uptake via roots is likely 

limited to the seedling and juvenile plant stages, but future studies must determine whether 

mature Drosophyllum individuals can also potentially assimilate nutrients from the soil. 

In practice, nutrient absorption via roots in adult Drosophyllum plants is likely 

limited as roots lack adaptations, such as microsymbiont associations or cluster roots, for 
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nutrient scavenging in low-fertility soils (Carlquist and Wilson 1995; Adlassnig et al. 2005, 

2006). On the other hand, virtually all non-carnivorous plant species in heathland habitats 

show root adaptations for nutrient scavenging (Lambers et al. 2006). Carnivory in 

Drosophyllum may therefore be seen as an alternative strategy to acquire nutrients in 

nutrient-poor, Mediterranean heathlands, with high specialization to leaf prey capture and 

digestion to compensate for the lack of root adaptations. Such a trade-off or constraint-

avoidance solution has been shown in wetland soils, where carnivorous genera produce 

shallow, low-porosity roots to prevent hypoxia, obtaining nutrients from prey instead 

(Karlsson and Pate 1992; Brewer at al. 2011; Gao et al. 2015).             

Despite showing little efficiency in nutrient acquisition, roots may be critical in 

allowing Drosophyllum to persist in dry habitats. In many Drosophyllum populations, 

plants consume prey insects throughout the year, even in the dry summer months 

(Adlassnig et al. 2006; MP and FO, pers. obs.). It has been suggested that plants satisfy a 

large part of their water demand through the highly hygroscopic mucilage of leaf glands 

that capture water from air moisture (Adlassning et al. 2006; Adamec 2009). However, it is 

unlikely that hygroscopic mucilage is sufficient to maintain the water balance in 

Drosophyllum individuals, particularly in the dry summers where average air humidity does 

not exceed 66.5 % (± 9.0 SE) (Appendix S2). The xeromorphic features and relatively large 

size of tap roots in this species, typical of plants adapted to water-limited soils (Carlquist 

and Wilson, 1995), indicate that, apart from the anchoring role, roots would play an 

important role in maintaining the water balance in Drosophyllum plants. 

4.6 Conclusions 

Contrary to the prediction of the cost-benefit analysis of the evolution of plant carnivory, 

we provide evidence that carnivory may evolve in non-waterlogged, dry soils. Therefore, 

roots, decoupled from nutrient-acquisition functions, may be critical in determining the 

distribution of carnivorous genera in response to soil moisture. Previous investigation on 

the nutrition of carnivorous plants has largely focused on a few genera, all found in boggy 

or waterlogged soils, where the ecological conditions have favored a reduction of the root 

system (Brewer 2003; Brewer et al. 2011) coupled with a maintenance of flexible nutrient 

acquisition strategies (e.g., Ellison and Gotelli 2002; Millett et al. 2012), or even the ability 
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to switch off carnivory under increasing soil nutrients (Ellison et al. 2003). Although it is 

certainly true that a majority of carnivorous plants are found in waterlogged soils and have 

reduced, shallow roots (Adlassnig et al. 2005; Brewer et al. 2011), a full understanding of 

the carnivorous syndrome can only be gained by considering species that have adapted to 

extremely low soil fertility conditions with no association to boggy habitats. Our study 

species, Drosophyllum lusitanicum, has complex, sticky glands on their fly-paper-trap 

leaves and is very effective in attracting prey insects (chapter 3). At the same time, the 

species is also very effective at avoiding water stress, allowing it to persist on dry soils 

(Adlassnig et al. 2006). Using a unique system, our study supports the hypothesis that root 

functionality coupled with carnivory may explain the distribution of carnivorous plants 

better than photosynthetic cost and benefits per se. We therefore urge for more studies on 

underrepresented carnivorous taxa from non-waterlogged habitats, such as Byblis spp. in 

Australia or epiphytes such as Catopsis berteroniana (Adamec 2010) to gain a more 

complete picture of the link between soil properties and the evolution of plant carnivory 

beyond bogs. 
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4.9 Appendix S1 - Analysis of whole-plant biomass 

In the main text, we assess, using MANOVA, whether root and shoot biomass of 

Drosophyllum lusitanicum plants differ between the two treatments used in our study. The 

treatments consisted of feeding (F) flies to plants or not (NF); and adding high-strength (H), 

low-strength (L) nutrient solution, or distilled water (O) to the soil. Here, we present results 

of a two-factor ANOVA measuring differences in whole-plant (roots + shoot) biomass as a 

function of the two treatments and their interaction:  

 

 

Figure S1.1 Box-plot of biomass of Drosophyllum plants measured at the end of the nutrient addition 

experiment as a function of two main treatments and their interactions: feeding with flies (F) or no feeding 

(NF) and addition of high-strength (H), low-strength (L) nutrient solution or distilled water (O). The 

combinations of the treatment levels resulted in six treatment groups. Different letters represent significant 

pairwise differences (Tukey´s HSD, P < 0.05) of group means (diamonds) between the six treatment groups. 

Note that the statistical comparisons were performed on the log-transformed biomass measure to ensure 

variance homoscedasticity. 
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4.10 Appendix S2 - Analysis of whole-plant biomass 

We measured climatic variables from January 2013-December 2015 in 10 Drosophyllum 

populations in southwestern Spain. To do so, we positioned HOBO data loggers (Onset 

Computer Corporation, 2013) 1 m above ground within each population and recorded 

relative humidity (%), among other variables, in hourly intervals. Figure S2.1 shows 

average seasonal values. The overall average relative humidity across sites and years = 66.5 

% (± 9.0 SE). 

 

Figure S2.1 Mean (± S.E.) of seasonal relative humidity measured with HOBO data loggers at the 10 

Drosophyllum across three years. Note that climate data were not available for the summer and fall of 2015 at 

some sites. 
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demographic models 
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5.1 Abstract 

Dormant life stages are often critical for population viability in stochastic environments, but 

accurate field data characterizing them are difficult to collect. Such limitations may translate into 

uncertainties in demographic parameters describing these stages, which then may propagate 

errors in the examination of population-level responses to environmental variation. Expanding on 

current methods, we (i) apply data-driven approaches to estimate parameter uncertainty in vital 

rates of dormant life stages and (ii) test whether such estimates provide more robust inferences 

about population dynamics. We built integral projection models (IPMs) for a fire-adapted, 

carnivorous plant species using a Bayesian framework to estimate uncertainty in parameters of 

three vital rates of dormant seeds – seed-bank ingression, stasis and egression. We used 

stochastic population projections and elasticity analyses to quantify the relative sensitivity of the 

stochastic population growth rate (log λs) to changes in these vital rates at different fire return 

intervals. We then ran stochastic projections of log λs for 1000 posterior samples of the three 

seed-bank vital rates and assessed how strongly their parameter uncertainty propagated into 

uncertainty in estimates of log λs and the probability of quasi-extinction, Pq(t).  Elasticity 

analyses indicated that changes in seed-bank stasis and egression had large effects on log λs 

across fire return intervals. In turn, uncertainty in the estimates of these two vital rates explained 

> 50 % of the variation in log λs estimates at several fire-return intervals. Inferences about 

population viability became less certain as the time between fires widened, with estimates of 

Pq(t) potentially > 20% higher when considering parameter uncertainty. Our results suggest that, 

for species with dormant stages, where data is often limited, failing to account for parameter 

uncertainty in population models may result in incorrect interpretations of population viability. 
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5.2 Introduction 

Variation is the rule, rather than the exception, in natural settings (Tuljapurkar 1990; Boyce et al. 

2006; Morris et al. 2008; Ehrlén et al. 2016). Selection pressures have emerged that shape 

strategies maximizing the passing on of genes to the next generation in the light of such a 

variation (Benton and Grant 1996; Smallegange and Coulson 2013). Dormancy is a life history 

strategy allowing organisms to avoid stress (Grime 1977) via sporulation in microorganisms 

(Pozzi et al. 2015), diapause in some animals (Schiesari and O’Connor 2013) or persistent seed 

banks in many plants (Doak et al. 2002). In the latter, seeds delay germination under 

environmental unpredictability, compensating for the risk of mortality associated with other 

stages through time (Cohen 1966; Venable 2007).  

Persistent seed banks play a crucial role in the viability of many plant populations 

(Baskin and Baskin 1998; Doak et al. 2002), including in rare and invasive species (Adams et al. 

2005; Gioria et al. 2012). Seed dormancy typically evolves in habitats where important events, 

such as precipitation (Gremer and Venable 2014) or fires (Quintana-Ascencio et al. 2003; 

Menges and Quintana-Ascencio 2004), are unpredictable. In these habitats, plant species with 

high temporal variation in reproductive output and high risk of reproductive failure with 

increasing environmental stochasticity typically produce dormant seeds (Baskin and Baskin 

1998; Venable 2007; Tielbörger et al. 2012). The resulting seed banks may buffer against 

environmental stochasticity (Cohen 1966; Rees et al. 2006) and, in turn, against genetic drift 

(e.g., Honnay et al. 2008). Therefore, seed banks are of great interest in ecological and 

evolutionary processes because they may provide an important link between environmental 

stochasticity and population viability. 

Understanding how seed banks influence population dynamics in stochastic environments 

is crucial to accurately project population trends (Menges 2000; Adams et al. 2005). Plant 

species with persistent seed banks may optimize fitness in stochastic environments by 

decoupling two key demographic processes: reproduction and survival-dependent growth (Doak 
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et al. 2002). On the one hand, seeds that enter (ingress) and remain dormant (stasis) in the seed 

bank do not contribute to immediate germination and aboveground growth, therefore lowering 

apparent short-term population growth rate estimates (𝜆′̂). On the other hand, germination 

(egression) from the seed bank can be triggered by environmental cues at a later time (Venable 

2007), thus increasing �̂�′. Failing to accurately describe seed-bank transitions and the uncertainty 

around related parameters may therefore result in flawed estimates of projected population 

growth rates and extinction probability (Higgins et al. 2000; Doak et al. 2002).   

Parameter uncertainty in general has been shown to contribute substantially to 

uncertainty in stochastic population models including dormant stages. However, the specific 

contributions to this uncertainty of vital-rate parameters describing seed-bank transitions remain 

little explored (Evans et al. 2010; Elderd and Miller 2016). In part, this is due to the difficulty of 

obtaining data for such vital rates, which results in models omitting, using simplified, or using 

latent (unobserved) parameters (Doak et al. 2002; Evans et al. 2010). Obtaining long-term seed-

bank data is challenging for two reasons: (i) seeds may persist in the soil for periods far 

exceeding our own lifespans (e.g., Shen-Miller et al. 1995), and (ii) due to their typically small 

size, tracking the fates of individual seeds in natural habitats without disrupting the soil is 

currently a nearly impossible task (Baskin and Baskin 1998; Navarra and Quintana-Ascencio 

2012). Consequently, even if data on seed banks are collected, researchers usually extrapolate 

their long-term fates (Fig. 1) from short-term field experiments or models (Menges 2000). These 

approaches are sensitive to parameter uncertainty due to relatively small sample sizes and must 

account for this uncertainty when estimating population dynamics.  

Here we show that in population models incorporating limited data on critical vital rates 

describing seed-bank transitions, the related parameter uncertainty alone (independent of other 

vital rates) may contribute greatly to the uncertainty around estimates of stochastic population 

dynamics. Therefore, incorporating parameter uncertainty into stochastic simulations will 

significantly improve demographic interpretations. Using the fire-adapted carnivorous 

Drosophyllum lusitanicum (Drosophyllaceae) as a case study, we quantified how parameter 

uncertainty in seed-bank dynamics affected the potential interpretation of population-level 

responses to changes in fire regimes. The role of the seed bank is not well known for the study 

species, but we expected related vital rates to play a critical role in the estimation of viability as 
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has been shown for other fire-adapted species (Menges and Quintana-Ascencio 2004; Adams et 

al. 2005). Building on existing approaches to separate sources of variation (Evans et al. 2010; 

Elderd and Miller 2016), we developed Bayesian stochastic integral projection models (IPMs; 

Easterling et al. 2000; Ellner and Rees 2006) using census data for above-ground and limited 

experimental data for the seed-bank transitions. We used elasticity analyses to determine the 

relative sensitivity of the stochastic population growth rate, log λs, to changes in the mean of the 

three seed-bank vital rates. We then used stochastic simulations of different fire return intervals 

and IPMs built from parameter samples of seed-bank vital rates to estimate nested levels of 

variation in log λs and assess the variation (uncertainty) in estimates of the probability of quasi-

extinction, Pq(t), among parameter samples. We provide R scripts to apply the models and 

simulations (Appendix S1). Our results have important implications for the use of models to 

understand complex life cycles (e.g. those including diapause, vegetative dormancy, or 

migration) where vital rate quantification from data may contain high uncertainty. 

 

Figure 1 Possible fates of seeds after maturation at time t in the studied species Drosophyllum lusitanicum. Mature 

seeds either germinate and become established as recruits (goCont) the growing season following maturation in t+1 

or enter the permanent seed bank (goSB). Once in the seed bank, seeds may either survive another year without 

germinating (staySB) or germinate (outSB) at t+2, or in later years. Mortality of seeds or seedlings before 

establishment is indicated by red lightning bolts and was only estimated from data for seeds before they reach soil. 
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5.3 Materials and methods 

5.3.1 Study species 

We used data from natural populations of the fire-adapted, carnivorous short-lived subshrub 

Drosophyllum lusitanicum (L.) Link (Drosophyllaceae) (Drosophyllum, hereafter) to build IPMs. 

This species is endemic to the SW Iberian Peninsula and N Morocco and is associated with fire-

prone Mediterranean heathlands (chapter 6). Natural heathlands burn every 40 years on average, 

but may burn as early as 10 years after fire or remain unburned for > 70 years (Ojeda 2009; Plan 

INFOCA 2012). Burned stands recover to mature vegetation within 3-5 years following fires 

(Calvo et al. 2002), and shrubs outcompete above-ground Drosophyllum individuals (chapter 8). 

Plants flower in the second year after germination and produce hard-coated, pear-shaped seeds 

(2.48 cm ± 0.1 SE in length; chapter 2). Most seeds remain dormant in the soil, and mass 

germination occurs after fire (Correia and Freitas 2002; Appendix S2). Reproductive plants 

produce 9.1 (± 2.6) viable seeds per fruit and up to 66 fruits (6.0 ± 0.3) per plant. Although 

viable dormant seeds can accumulate in vast numbers (chapter 2), and populations persist largely 

as seeds in the soil in between fires (Paniw unpubl.), little is known about the importance of seed 

fates for population dynamics of this rare carnivorous species. 

5.3.2 Demographic data 

We parameterized integral projection models (IPMs) with census and experimental field and 

laboratory data. We estimated vital rates of individuals with above-ground biomass from five 

annual censuses (2011-2015) comprising a total of 1,371 individuals from five populations 

spanning the distribution range of Drosophyllum in SW Spain. The populations differed with 

respect to the time since last fire of the habitat (TSF, hereafter), being two, four, six, 10, and 29 

years in 2015 (see Table A2.1 in Appendix A2 for details on TSF for all site-year combinations). 

Vital rates included survival (σ), growth (γ), probability of flowering (φ0), number of flowering 

stalks (φ1), number of flowers per stalk (φ2), number of seeds per flower (φ3), and seedling size 

distribution the next year (φ4) (Appendix S2). The IPM’s state variable for its continuous 

component was size = log(# of leaves × length of longest leaf (cm)), after model selection for σ, 

γ, φ0 and φ1. We also quantified above-ground seed survival from the demographic census data in 
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each population and year as σS = 1 – flower damage (Appendix S2). We then used this parameter 

to modify vital rates describing seed production (φ0, φ1, φ2, φ3, and φ4). 

We performed two 3-year field seed burial experiments and a greenhouse germination 

trial, overall using > 5,100 seeds, to quantify the possible fates of seeds – including seeds in the 

seed bank, the discrete component in the IPM (Fig. 1). Details on all experiments can be found in 

Appendix A2. Both field experiments were initiated in September 2012 and 2013, when 

reproductive Drosophyllum individuals release seeds. In one experiment, we randomly collected 

seeds from five populations and buried mesh bags containing 20 seeds each in recently burned 

and adjacent unburned heathland patches. We then dug out mesh bags 18 months after burial to 

estimate seed seed-bank stasis (staySB), which consisted of two probabilities: surviving and not 

germinating from the seed bank (Fig. 1). We assumed that the proportion of viable seeds 

encountered after 18 months corresponded to stasis within one time interval in the IPMs (one 

year), ensuring that seed-bank dynamics were at the same time scale as the rest of the species’ 

life cycle modeled (Appendix S2). In a separate experiment, using the same design as in the 

mesh-bag burial experiment, we sowed 50 seeds < 1 cm below the soil surface. We recorded 

germination 6 and 18 months after sowing to estimate, respectively, immediate seedling 

establishment, i.e., the probability of establishment in the spring following seed dispersal 

(goCont), and the probability of establishment, or egression, from the seed bank at least two 

springs after dispersal (outSB; Fig. 1). The vital rate outSB consisted of two probabilities that we 

could not separate: seedling emergence and survival to establishment (Fig. 1). We defined the 

proportion of seeds entering the seed bank (goSB) as 1- goCont - ωS, where ωS = seedling 

mortality prior to the census, i.e., seedlings that emerged 4 months after sowing but failed to 

establish (Appendix S2). Lastly, in greenhouse trials, we exposed seeds to heat and smoke 

treatments and quantified germination, which we used as a proxy for seed-bank egression after 

fires (outSB in TSF0, see below). Similarly, seed-bank stasis after fire was estimated from an 

examination of Drosophyllum seeds in soil samples from recently burned patches (Appendix S2). 

5.3.3 Model parameterization 

We used a Bayesian framework to fit all vital-rate models because of its advantages over 

frequentist approaches, including straightforward inclusion of spatial and temporal variation and 

ease of uncertainty simulation (Evans et al. 2010; Elderd and Miller 2016).  
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We modeled the above-ground vital rates as functions of size using generalized linear 

mixed models (GLMMs). To account for environmental variability in vital rates, we included 

TSF as a covariate in all vital-rate models. As heathland habitats >3 years after fire do not change 

significantly in species composition and structure, we organized TSF into a categorical variable 

consisting of 1, 2, 3, or >3 years since fire. IPMs for TSF0 (burning) consisted of stasis in and 

germination from the seed bank, with 0 transition probabilities elsewhere, reflecting the death of 

above-ground individuals by fire. Using the deviance information criterion (DIC), we chose the 

most plausible model for each vital rate (Table 1; see Appendix S3 for all candidate models). 

The best-fit models describing growth (γ) and probability of flowering (φ0) were defined as 

g(μ(i)) =  α0  +  αj(i) + βc × size(i) + βjc ×  size(i)  +  αs(i)             (1) 

where g() is the link function applied to the likelihood distribution of the response 𝜇 for each 

individual i; 𝛼0 is the model intercept; 𝛼j is the mean response at each TSF level j, compared 

with the model intercept; 𝛽c is the overall slope for size; 𝛽jc is the change of the size slope at 

each TSF level j; and 𝛼s is the random effect on the model intercept for each site s (Table 1). 

Ideally, both random temporal and spatial variation should have been included, but our data did 

not offer enough degrees of freedom, as year × site interactions are confounded with TSF effects. 

In our models we used only spatial variation. Sites were chosen to span the topographic gradient 

for our species (Appendix S2). Size × TSF interactions (𝛽jc) were not significant for survival (σ), 

the number of stalks (φ1), and number of flowers per stalk (φ2), so these models contain only 

additive effects (Table 1). No data were available to link seedling size in time t+1 to parent size 

in t, and we therefore excluded the 𝛽 parameters, keeping all other aspects of the general model 

design (eqn. 1; Table 1). Number of seeds per flower (φ3) was treated as a constant in all models 

as it did not depend on size or TSF (Likelihood ratio test, D = 1.4, d.f. = 1).  
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Table 1 Parameterization of the models used to describe vital rates of Drosophyllum lusitanicum. The 

models shown described the data best among several candidate models. Superscripts indicate the names 

of parameters in the R scripts (Appendix S1). The distributions B, ℵ, and NB correspond to the Bernoulli, 

normal, and negative binomial distribution, respectively. TSF – time since last fire. PFS – post-fire habitat 

status. ∆DIC indicate the difference in values between the chosen model and the second-best model with 

fewer parameters, which could be a – intercept-only; b – size only; c – size + TSF. See main text and 

Appendix S3 for detail. 

Vital-rate 

model 

Parameters Link 

function 

Likelihood 

distribution 

∆DIC 

 

 

    

Survival (σ) μsurv =  𝛼0
surv + 𝛼j

surv[TSF] + 𝛽c
surv × size + 𝛼s

surv[site] logit(σ) 

 

σ ~ B(μsurv) -432.0
b
 

Growth (γ) 

 
μgr =  𝛼0

gr
 + 𝛼j

gr
[TSF] + (𝛽c

gr
 + 𝛽jc

gr
) × size + 𝛼s

gr[site] 

 

none 

 
γ ~ ℵ(μgr,  τgr ) -5.0

c
 

Probability of 

flowering (φ0) 

 

μfl = 𝛼0
fl + 𝛼j

fl[TSF] + (𝛽c
fl + 𝛽jc

fl) × size + 𝛼s
fl[site] 

 

logit(φ0) 

 

φ0 ~ B(μfl) -9.0
c
 

Number of 

flowering 

stalks (φ1) 

 

μfs = 𝛼0
fs + 𝛼j

fs [TSF] + 𝛽c
fs × size + 𝛼s

fs[site] 

 

log(φ1) φ1 ~ NB( ρfs, μfs) -7.0
b
 

Number of 

flowers per 

stalk (φ2) 

 

μfps = 𝛼0
fps

 + 𝛼j
fps

[TSF] + 𝛽c
fps

 × size + 𝛼s
fps[site] log(φ2) φ2 ~ NB( ρfps,   μfps) -5.0

b
 

Seedling size 

(φ4) 

 

μsds =  𝛼0
sds + 𝛼j

sds[TSF] + 𝛼s
sds[site] none φ3 ~ ℵ(μsds,  τsds ) -20.0

a
 

     

Immediate 

germination 

(goCont) 

 

μgoCont = 𝛼0
goCont

 + 𝛼p
goCont

[PFS] + 𝛼b
goCont[block] logit(goCont) goCont ~ B(μgoCont) -38.2

a
 

Stasis is seed 

bank (staySB) 

 

μstaySB = 𝛼0
staySB

 + 𝛼p
staySB

[PFS] + 𝛼b
staySB[block] logit(staySB) staySB ~ B(μstaySB) -6.8

a
 

Egression from 

seed bank 

(outSB) 

μoutSB = 𝛼0
outSB + 𝛼p

outSB[PFS] + 𝛼b
staySB[block] logit(outSB) outSB ~ B(μoutSB) -206.0

a
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Table 2 Extrapolation of seed-related vital rates calculated from field experiments to time since fire (TSF) categories used to build integral 

projection models (IPMs) for Drosophyllum lusitanicum. The four vital rates estimated in burned (B) and unburned (U) heathland patches (see 

methods) were modeled as binomial functions (Table 1); Constant values (†) of vital rates in some TSF categories were obtained from soil seed 

bank cencuses (staySB in TSF0,1), a greenhouse germination trial (outSB in TSF0), measurements of seedling mortality (goSB in TSF2,3,>3), or 

censuses of actual field germination (c; see Appendix S2 for details); σS is seed survival in TSF2,3,>3 (see main text). 

          TSF0 TSF1 TSF2 TSF3 TSF>3 

Immediate germination 

(goCont) 

0 0 σS2 × goCont_U× c† σS3 × goCont_U× c† σS>3 × goCont_U × c† 

Ingression into seed bank 

(goSB) 

0 0 σS2 ×                               

(1-goCont_U-0.03†) 

σS3 ×                          

(1-goCont_U-0.03†) 

σS>3 ×                           

(1-goCont_U-0.03†) 

Stasis in seed bank 

(staySB) 

0.1† 0.05† staySB_B staySB_U staySB_U 

Egression from seed bank 

(outSB) 

0.81† outSB_B outSB_B × c† outSB_U × c† outSB_U × c† 
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(3) 

(4) 

Vital rates related to seed-bank transitions (goSB, staySB, and outSB, Table 1) were 

defined as binomial functions of the post-fire status of experimental patches (arranged as blocks), 

𝛼p(r), for each replicate r, where p could be either burned or unburned, and a random block 

effect, 𝛼b: 

g(μ(r)) =  α0  +  αp(r) +  αb(r)                                                      (2) 

The predictions obtained from eqn. 2 were then associated with different TSF categories, 

assuming that the fixed effects of models for the three seed-bank vital rates in burned and 

unburned patches represented dynamics in TSF1,2 and TSF3,>3, respectively (Table 2). 

5.3.4 IPM construction 

In order to associate environmental (post-fire) states with vital rates in stochastic simulations 

(see below), we built IPMs for each combination of TSF and site-effect estimates. The IPMs 

consisted of two coupled equations integrated over L = 0 and U = 9.6 sizes x at t to give a vector 

of sizes y at t+1. The lower and upper integration limits corresponded to the minimum observed 

size (individual with one, 1-cm long leaf) and 1.1 × maximum observed size, respectively. The 

first of the two equations describes the composition of the seed bank (S) at t + 1 through the 

contribution of seeds produced by above-ground individuals (goSB) and dormant seeds 

remaining in the seed bank (staySB) at t: 

S(t + 1) = S(t)staySB + ∫ φ0(x)

U

L

φ1(x)φ2(x)φ3σSgoSBn(x, t)dx 

The second equation describes the dynamics of above-ground individuals through emergence 

and establishment of seedlings from the seedbank, survival of established individuals, and 

contributions of seedlings by reproductive individuals the previous year: 

n(y, t + 1) = S(t)outSBφ3(y) + ∫[σ(x)γ(y, x) +  φ0(x)φ1(x)φ2(x)φ3σSgoCont

U

L

φ4(y)]n(x, t)dx 
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5.3.5 Parameter uncertainty 

We used MCMC sampling to estimate the distributions of all 99 model parameters quantifying 

vital rates. In all models, we used normal (μ = 0; 1/θ
2
 = 1×10

-06
) or uniform uninformative 

priors for most fixed factors. The posterior sampling was based on 100,000 iterations, after a 

burn-in of 100,000 steps, using four chains and subsampling every 400
th

 simulated value (see 

Appendix S3 for details on all priors and MCMC sampling procedures). We therefore obtained 

the parameter distributions for goSB, staySB, and outSB from 1,000 samples of the joint posterior 

distribution of the parameters 𝛼0 and 𝛼p(r) (eqn. 2). The full Bayesian models and application of 

MCMC convergence diagnostics can be found in the R script BayModel.R in the Appendix S1. 

We ran all MCMC simulations in OpenBUGS v. 3.2.3 using the R package BRugs to create an R 

interface to OpenBUGS (Lunn et al. 2009). 

5.3.6 Stochastic simulations of population dynamics  

We built the TSF-site specific IPMs for each posterior parameter sample (n = 1,000) associated 

with the vital rates describing seed-bank transitions: ingression into (goSB), stasis (staySB), 

egression from the seed bank (outSB), and both staySB and outSB. We sampled parameters for 

seed-bank stasis and egression independently because seeds that do not stay in the seed bank 

may die before successful establishment, i.e., outSB ≠ 1 – staySB (Fig. 1). We kept the remaining 

vital rate parameters at their average posterior values to assess effects of parameter uncertainty 

on estimates of population viability of seed-bank related vital rates only (see makeIPM.R in 

Appendix S1).  

For each parameter sample, we ran 100 simulations of stochastic population projections 

to assess population viability under a naturally occurring range of fire return intervals for the 

study region (Ojeda 2009): 10 to 100 years at 10-year increments (Fig. 2). At each fire return 

interval, we defined TSF transitions as a Markov-chain process with states corresponding to the 

five TSF categories: 0, 1, 2, 3, and > 3 years after fire and transitions between states 

corresponding to fire probability = 1/fire return interval (Fig. 2). Each of 100 simulations for a 

given fire return interval initiated with an IPM depicting TSF0, and population dynamics were 

projected for t = 4,000 years after discarding the initial 500 iterations (Fig. 2). At each iteration, 

one of five site IPMs at a given TSF state was randomly chosen, while the sequence of TSF 
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states during the iterations was determined by the Markov-chain process (Fig. 2). For each 

simulation, we calculated the stochastic population growth rate, log λs (Caswell 2001, eq. 14.61). 

Scripts for the simulations of population viability are available in sLambdaSimul.R and 

sLambdaRmpi.R for implementation using parallel processing. 

 

 

Figure 2 Hierarchical structure of simulations of the stochastic population growth rate, log λs, incorporating 

parameter uncertainty of three vital rates: seed-bank ingression (goSB), stasis (staySB), and egression (outSB; Fig. 

1). Bayesian posterior distributions were sampled to obtain 1,000 parameters for each vital rate. For each parameter, 

log λs were simulated from 100 stochastic projections, each run over 4,000 discrete time steps t using Markov chain 

transitions between five time-since-fire (TSF) environments (0, 1, 2, 3, >3). The transitions depended on 10 fire 

return intervals (here 0.1 probability of burning corresponds to 1 fire in 10 years). Each environmental TSF state 

was associated with five IPMs, one for each site (A-E) modeled in the study. The first row and column of IPMs 

(grey) depict seed-bank transitions. Differences in log λs estimates among the 1,000 parameter samples and 100 

stochastic projections depicted parameter uncertainty and environmental variability, respectively. 
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Our simulations therefore produced two nested levels of log λs estimates obtained from (i) 

1,000 samples of parameters, and (ii) 100 simulations of population projections within each 

parameter sample (Fig. 2). Differences in log λs among parameters represented parameter 

uncertainty while differences among the 100 simulations represented environmental variability. 

The latter variability consisted of both between-state (picking IPMs corresponding to different 

TSF categories at each iteration) and within-state (picking a site from the random effect 

estimates at each iteration) variability. We quantified the contribution of parameter uncertainty to 

variation in log λs by fitting a GLMM to the estimates of log λs  at each fire return interval 

treating the posterior parameters as a random effect (see Evans et al. 2010). Lastly, we compared 

the distribution of log λs estimates when incorporating parameter uncertainty to estimates based 

on environmental variability only. We obtained the latter by calculating log λs for 100 

simulations using IPMs built from average parameter samples for each TSF category 

(makeIPM.R in Appendix S1).  

From the mean and variance of the 100 log λs estimates at each posterior parameter 

sample and fire return interval, we analytically obtained the probability of quasi-extinction Pq(t) 

at t = 50 and 100 years as described in Trotter et al. (2013). We chose the extinction threshold to 

be 0.01, i.e., populations were considered extinct when population sizes (including seeds in the 

seed bank) fell to 1 % of current population sizes (see Quintana-Ascencio et al. 2003).  

In order to compare the effects of changes in goSB, staySB, and outSB on log λs, relative 

to other vital rates, at different fire-return intervals, we perturbed each vital rate used to compose 

the IPMs by its mean, µ, and standard deviation, σ, across all environmental states (see 

perturbVR.R in Appendix S1). We then used the chain rule to calculate (i) how these 

perturbations affected the IPM kernels, and (ii) how the latter in turn affected log λs. These 

calculations provided us with elasticities, 𝐸µ and 𝐸𝜎, of log λs to changes in the mean and 

variance of vital rates, respectively (Tuljapurkar et al. 2003; Haridas and Tuljapurkar 2005; 

Appendix S4). Unlike deterministic elasticities however, 𝐸µ and 𝐸𝜎 do not sum to one and thus 

do not provide a measure of relative contribution (Haridas and Tuljapurkar 2005). To calculate 

the relative elasticities focusing on changes in the mean of each vital rate, we therefore divided 

the 𝐸µ for each vital rate, for example staySB, summed over all affected IPM kernel entries, j, by 

the total 𝐸, summed over 𝐸µ and 𝐸𝜎for all vital rates, vr, (see Morris et al. 2008): 
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∑ 𝐸𝑠𝑡𝑎𝑦𝑆𝐵𝑗

µ
𝑗

∑ (𝐸𝑣𝑟𝑖
µ

+ 𝐸𝑣𝑟𝑖
𝜎 )𝑖

⁄                                                         (5) 

We used mean parameter values and a subset of five fire return intervals, 10, 30, 50, 80, 

and 100 years, to calculate the elasticities. As Drosophyllum is a post-fire dwelling, short-lived 

species with vital-rate variation governed by post-fire habitat succession, we didn’t consider 

intrinsic demographic trade-offs, for example between reproduction and growth (Miller et al. 

2012), in the elasticity calculations. 

5.4 Results 

5.4.1 Importance of seed-bank vital rates for stochastic population dynamics 

Seed-bank stasis (staySB) and egression (outSB; Fig. 1) had the largest relative effects on the 

stochastic growth rate, log λs, of Drosophyllum populations across fire return intervals (Fig. 3). 

In particular, changing the average of staySB produced the highest relative elasticities, 𝐸µ, 

among all vital rates (0.5 at fire return interval of 100 years), followed by outSB. For both vital 

rates, relative 𝐸µ increased with fire return interval (Fig. 3). Ingression into the seed-bank, goSB, 

had relatively low 𝐸µ, remaining approx. 0.05 across the five fire return intervals simulated. 

 

Figure 3 Seed-bank vital rates govern the population dynamics of Drosophylum, regardless of fire return interval. 

Elasticities of the stochastic population growth rate, log λs, to changes in the mean, E
µ
, of seed-bank stasis (staySB) 

and egression (outSB) are higher compared with other vital rates (filled grey points and lines) at five simulated fire 

return intervals: 10, 30, 50, 80, and 100 years. SE around the relative E
µ
 obtained from 100 simulations were < 

1×10
-03

. 
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5.4.2 Influence of parameter uncertainty on estimation of population growth and extinction 

In all simulations, average log λs decreased monotonically with increasing fire return interval 

(Spearman’s ρ = -1), while Pq(t) increased with increasing fire return interval (Figs. 4 and 5). In 

simulations using mean parameter values, log λs variance decreased with increasing fire return 

interval because fewer TSF states (largely TSF<3) were sampled at each iteration with burning 

becoming less likely (Fig. 4). However, when uncertainties in staySB, outSB, or both were 

incorporated into simulations, estimates of log λs were more variable compared to simulations 

based on mean parameters, and their variation increased with increasing fire return (Fig. 4). 

Accordingly, the proportion of variation among the 100,000 log λs estimates attributed to 

parameter uncertainty varied across fire return intervals and vital rates sampled, being < 0.01 for 

goSB and increasing from > 0.1 at 10 years to > 0.7 at 100 years return interval for staySB and 

outSB (Fig. 4; Table S4.2). The largest contribution of parameter uncertainty was obtained when 

including samples of both staySB and outSB into simulations (Table S4.2).  

 The high uncertainty in the estimates of log λs at increasing fire return intervals 

influenced potential inferences about population viability. Whereas the 100 projections of log λs 

based on environmental variability alone (grey boxplots in Fig. 4) showed a clear decline in 

viability at a fire return interval of ≥ 50 years, high uncertainty associated with these projections 

meant that the certainty in the threshold of 50 years (fire return interval) was relatively low (Fig. 

4). In fact, uncertainty in Pq(t) markedly increased when accounting for parameter uncertainty in 

staySB and outSB. Compared with estimates based on mean parameter values, Pq(t) could be > 

20 percentage points higher or lower under particular combinations of staySB and outSB (Fig. 5). 

The strongest effects of parameter uncertainty appeared at t = 100 years, where Pq(t) as high as 

0.77 cannot be ruled out at a fire return interval of 100 years (Fig. 5b). 
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Figure 4 Parameter uncertainty contributes significantly to variation of simulated stochastic population growth rate 

estimates (log λs). Box-and-whisker plots display log λs as function of fire return interval (x-axis). At each fire return 

interval, the black and red box plots summarize the variation among 100,000 log λs obtained from 100 stochastic 

projections of log λs for each of 1000 posterior parameter samples describing (a) seed-bank ingression (goSB), (b) 

stasis (staySB), (c) egression (outSB), and (d) both staySB and outSB. Red box plots indicate a proportional 

contribution of parameter uncertainty to the variation in log λs > 50 %. Grey box plots in a-d summarize variation in 

log λs estimates from 100 stochastic simulations using mean parameter values for all vital rates. Black horizontal 

dashed lines indicate stable population sizes. 
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Figure 5 Increases in the probability of quasi-extinction, Pq(t), at t = 50 or 100 years as function of fire return 

interval. The extinction threshold was assumed to be 0.01. At each fire return, Pq(t) was calculated from the mean 

and variance of 100 stochastic growth rates obtained for each of 1000 posterior parameter samples describing seed-

bank ingression (goSB), stasis (staySB), egression (outSB), and both staySB and outSB (different colors in plot). 

Points represent Pq(t) averaged over the 1000 parameter samples. Error bars show ± 95 % non-parametric quantile 

CI (2.5 and 97.5 quantile) obtained from the Pq(t) for each of the 1000 parameter samples. 

 

5.5 Discussion 

Dormant life stages such as larvae in diapause, some spores, or seeds in permanent seed banks 

are believed to play key roles in the adaption of species to environmental stochasticity (Benton 

and Grant 1996; Smallegange and Coulson 2013). Demographic information on these life stages, 

however, is often limited (Doak et al. 2002). When incorporating such data in population 

models, the parameter uncertainty in vital rates describing dormant life stages must be quantified 

in order to separate sources of variability for measures such as extinction or invasion risk or the 

stochastic population growth rate, log λs (Ellner and Fieberg 2003; Evans et al. 2010; Lee et al. 

2015). Here we provide evidence that uncertainty around vital-rate parameters describing critical 

seed-bank transitions of a fire-adapted plant may translate into large uncertainty in the estimates 

of population-level parameters, and omitting it can seriously bias interpretation of population 

performance. The Bayesian framework we employed to quantify parameter uncertainty was 

developed by Evans et al. (2010) for matrix population models and recently extended to IPMs by 

Elderd and Miller (2016). Our study provides an important extension to the work by Elderd and 

Miller – the explicit consideration of discrete, dormant stages and categorical covariates (TSF) 
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when constructing Bayesian IPMs, simulating stochastic environmental transitions, and 

quantifying contributions of parameter uncertainty to population dynamics. 

5.5.1 The role of the seed bank for population dynamics 

Our results showed that life-cycle transitions related to the seed bank (Fig. 1) strongly influence 

population dynamics of the fire-adapted Drosophyllum lusitanicum. Seed-bank stasis can ensure 

population persistence when above-ground individuals cannot survive in long-unburned habitats 

(Menges and Quintana-Ascencio 2004; Adams et al. 2005); while large egression events after 

fires and periodic egression into favorable microhabitats in unburned stands result in growth of 

above-ground individuals, which replenish the seed bank (Quintana-Ascencio et al. 2003; 

chapter 6). Our elasticity analyses suggested that increases in both seed-bank stasis and egression 

would strongly, positively affect the stochastic population growth rate (Fig. 3). However, these 

two vital rates are negatively correlated, implying that seed-bank stasis can only be optimized at 

the expense of egression and vice versa (Benton and Grant 1996). At long fire return intervals, an 

increase in the importance of seed-bank stasis has been shown in other studies (Quintana-

Ascencio et al. 2003; Menges and Quintana-Ascencio 2004) and would likely be more critical 

for Drosophyllum populations than egression. This is because egression is highly dependent on 

open microhabitats being created in unburned habitats, which occurs irregularly and on a small 

scale in natural heathlands (Paniw unpubl.). On the other hand, changes in seed-bank ingression 

affected population growth far less than either seed-bank stasis or egression. This vital rate 

varied little across time-since-fire habitats (Appendix S2), and vital rates related to above-ground 

fecundity have a stronger effect on population dynamics, which has been demonstrated for a 

number of disturbance-adapted, early colonizing species (Silvertown et al. 1996; Smith et al. 

2005). 

5.5.2 Parameter uncertainty in dormant life stages and inference about population dynamics 

Quantifying parameter uncertainty of vital rates with strong effects on population growth can 

help researchers to account for the uncertainty in the effect of environmental processes on 

stochastic population dynamics (Evans et al. 2010). For Drosophyllum, parameter uncertainty 

related to seed-bank stasis and egression explained up to 79 % of log λs variation among our 

100,000 simulations. Overall, the uncertainty around estimates of both log λs and Pq(t) increased 
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with fire-return interval modeled. This occurred mainly because seed-bank dynamics become 

more important for persistence of a fire-adapted species in the absence of fires (Quintana-

Ascencio et al. 2003), with uncertainty in their estimates increasingly affecting the accuracy with 

which population dynamics can be assessed. Therefore, with limited data on seed-bank dynamics 

in the case of Drosophyllum and many other species (Baskin and Baskin 1998), a robust 

interpretation of viability analyses in long unburned populations relies primarily on the 

incorporation of parameter uncertainty into population analyses. Meanwhile, interpretations 

about the role of environmental processes themselves (e.g., fire regimes) become increasingly 

uncertain when projecting data-limited population dynamics into the future (Boyce et al. 2006). 

With high potential for errors in the estimates of population dynamics for species with 

limited demographic data, uncertainty analyses can become critical when defining management 

strategies (Hunter et al. 2010). Fire is of vital importance for Drosophyllum, a species that 

reaches full reproductive potential within the first 2-4 post-fire years in natural Mediterranean 

heathlands (Correira and Freitas 2002) and then mostly persists in the seed bank until the next 

fire or disturbance occurs (chapter 6). However, current fire return intervals in the Mediterranean 

have increased due to fire suppression (Ojeda 2009; Turco et al. 2016), threatening population 

viability (chapter 6). At fire return intervals of ≥ 50 years, which is still within the upper range of 

natural fire regimes across Mediterranean heathlands (Ojeda 2009; Plan INFOCA 2012), the 

mean estimates of log λs < 0, implying population decline. However, the variation around this 

mean attributed to parameter uncertainty in staySB and outSB indicates that Drosophyllum 

populations may be able to persist with a fire return interval of about 60 years, and some even 

with a fire return interval of up to 70 years. For conservation management of this species, which 

may include prescribed burning or controlling for factors that may jeopardize survival of 

dormant seeds in the seed bank (chapter 6), the accurate estimation of parameter uncertainty may 

directly define the heathlands considered for management depending on time since last fire. As 

population growth of Drosophyllum showed non-zero elasticities to changes in the remaining 

vital rates (Fig. 4) and given the large number of parameters estimated in our models, including 

samples of all parameters into the simulations would further increase the uncertainty of log λs and 

Pq(t) estimates (Evans et al. 2010; Appendix S4). However, our aim here was to emphasize that 

interpretations of long-term stochastic population dynamics may strongly depend on 

quantification of a few critical vital rates and their uncertainties. 
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5.5.3 Implications of uncertainty for other life histories 

Studies of other species with adaptations to buffer environmental stochasticity may also benefit 

from a better understanding of different sources of uncertainty, particularly under the emerging 

threats of climate change. In plants, vegetative dormancy may be as difficult to estimate as seed 

dormancy (Lesica and Crone 2007) but can play a critical role in buffering populations from 

stress, either physical (Shefferson et al. 2005) or climatic (Salguero-Gómez et al. 2012). 

Likewise, in many insects, prolonged diapause can spread adult survival over several years but 

may be difficult to estimate (Solbreck and Widenfalk, 2012). Whether and how such strategies 

may continue to buffer populations under human-induced disturbance and climatic changes is an 

emerging question (Boyce et al. 2006; Morris et al. 2008). An equally important question may be 

how to account for the inherent uncertainty due data-limited vital rates when assessing the 

significance of climatic variables on changes in population dynamics (Elderd and Miller 2016). 

Within a given life cycle, the quantification of parameter uncertainty may also be 

important for the estimates of correlated vital rates. Uncertainties in egression of seeds from the 

seed bank may for example influence estimates of recruitment (Eager et al. 2014). In 

Drosophyllum, recruitment is dependent on the environment and not so much on plant density. 

However, many species with persistent seed banks may exhibit a negative density dependence of 

seedling establishment (Eager et al. 2014). Here, uncertainty in the number of recruits from the 

seed bank may propagate to uncertainties in above-ground vital rates. In other organisms, 

responses to stress such as vegetative dormancy may have future consequences on fitness, e.g., 

lower growth as above-ground individual (Gremer et al. 2012). As such, large variation in the 

estimates of dormancy may directly influence the estimates of several other vital rates once 

individuals emerge above-ground. Studies of population dynamics encounter many types of 

covariation in vital rates (Tuljapurkar 1990; Morris et al. 2008), and the potential propagation of 

uncertainty throughout different vital rates has received little attention in plant demography as 

opposed to animal demography (Hunter et al. 2010; Lee et al. 2015). 

5.5.4 Conclusions 

Increasingly sophisticated methods are being used to address ecological and evolutionary 

questions regarding environmental stochasticity (Salguero-Gómez and de Kroon 2010; Low-
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Décarie et al. 2014). Population models have also gained complexity and realism in the last 

decades, allowing for more reliable analysis of population dynamics by accounting for different 

sources of variation in underlying vital-rate regressions (Evans et al. 2010; Merow et al. 2014; 

Tye et al. 2016). Here, we have contributed to this important body of literature by showing that, 

when dealing with dormant life-cycle stages with limited field data, stochastic models may gain 

robustness in the interpretation of projected population dynamics by including parameter 

uncertainty around vital rate means. An exhaustive sensitivity analysis to parameter uncertainty 

may strongly influence conservation management decisions, and we encourage population 

ecologists to explicitly address such uncertainties in their modeling approaches. 
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5.8 Appendix S1 - Overview of the R code 

Here, we provide an overview of the .R and data files to accompany the main text. The .R files 

should be opened with an R editor (e.g., R Studio). The R code is fully commented and intended 

to replicate the analyses used in the manuscript. To understand variable names, the reader is 

referred to the main text itself. All files can be found on a CD attached to the back cover and at 

Dryad (doi:10.5061/dryad.rq7t3). 
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Data files: 

dataDroso.csv: Demographic transitions of Drosophyllum lusitanicum populations recorded in 

annual censuses (from 2011to 2015) in five populations. These data are used to quantify vital 

rates of above-ground individuals. 

dataDrosoSB.csv: Seed fates (in a binary format) inferred from two experiments. These data are 

used to quantify the transitions related to the seed bank and associated parameter uncertainties. 

In case the reader wishes to forego the step of fitting the Bayesian models, we provided a 

mcmcOUT.csv file with 1000 posterior parameter values for each of the parameters estimated 

with Bayesian models using uninformative priors. 

R code: 

BayModel.R:  Executes and saves the results of a Bayesian model quantifying all vital rates; 

illustrates basic diagnostics that can be run on the results of an MCMC run (i.e., the posterior 

parameter distribution) to check for model convergence and autocorrelation of the posterior 

samples. 

makeIPM.R: Demonstrates how to construct IPMs including continuous and discrete (seed 

bank) transitions for (A) mean parameter values and (B) from the parameter distributions of the 

Bayesian models; saves IPMs for all parameters related to seed-bank ingression, stasis, and 

ingression. The code is based on the supporting material in Ellner and Rees (2006), Am. Nat., 

167, 410-428. 

perturbVR.R: Demonstrates how to construct IPMs from perturbed vital rates. Each IPM is 

obtained by (a) perturbing a vital rate by its mean or standard deviation (see makeVRmu.R on 

constructing mean vital-rate kernels) and (b) constructing a new IPM kernel incorporating the 

perturbed vital rate. 

makeIPMmu.R and makeVRmu.R: functions to constructs IPMs and vital-rate kernels, 

respectively, for average environments. 

sLambdaSimul.R: Runs simulations, based on different fire return intervals, of the stochastic 

population growth rate using IPMs constructed (A) from mean parameter values, (B) from 
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perturbed vital rates, and (C) for each posterior sample of the parameters describing seed-bank 

ingression (goSB), stasis (staySB) and egression (outSB); calculates the stochastic population 

growth rate, its elasticities, and the probability of quasi-extinction at time t. The structure of the 

code is based on Tuljapurkar et al. (2003), Am. Nat., 162, 489-502 and Trotter et al. (2013), 

Methods Ecol. Evol., 4, 290-298. 

sLambdaRmpi.R: Implements the simulations of the stochastic population growth rate using 

parallel processing, where simulations are split into different processors of a supercomputer to 

greatly speed up computational time. 

 

5.9 Appendix S2 - Details on demographic censuses and field experiments on Drosophyllum 

lusitanicum (L.), Link (Drosophyllaceae) 

Here, we provide details on the study species, sites, demographic censuses, and field experiments 

that were the sources of the vital-rate data used in the manuscript. 

5.9.1 Study species 

Drosophyllum lusitanicum (L.) Link. (Drosophyllaceae) is a geographically and taxonomically 

rare carnivorous subshrub, endemic to Mediterranean heathland habitats in SW Iberian Peninsula 

and N Morocco (Garrido et al. 2003). This species is distinguished from the majority of 

carnivorous plants by its xeromorphic woody anatomy and unique realized niche in dry, nutrient-

poor, acidic soils and harsh environments marked by prolonged summer drought (Adlassnig et 

al. 2006; Adamec 2009). 

Drosophyllum is a short-lived subshrub (mean life expectancy of 2.1 years ± 1.6 S.D.). 

Individuals range in size between 1-17 rosettes, and each rosette contains ~ 14 leaves (11.8 ± 5.6 

cm in leaf length) but can contain up to 45 leaves. Rosettes are produced each growing season, at 

the onset of the rainy season (Adlassnig et al. 2006; Adamec 2009). The leaves bear sticky 

mucilage on stalked glands to capture and digest small insects of mostly Diptera, Coleoptera, and 

Lepidoptera (Adlassnig et al. 2006; Chapter 3). The species is predominantly autogamous 

(Ortega-Olivencia et al. 1995; 1998) and produces hard-coated seeds that can remain dormant in 
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the soil for at least 10 years (chapter 6). Figure S2.1 provides a simplified life-cycle graph of the 

species. 

 

Figure S2.1 Life cycle of Drosophyllum lusitanicum 

 

5.9.2 Study area and environmental data 

The demographic censuses were conducted in the northern Strait of Gibraltar (SW Spain; Fig. 

S2.2; Table S2.1). This region is characterized by a mild Mediterranean climate with a rainy 

season in winter and spring followed by summer drought somewhat alleviated by coastal moist 

winds (Ojeda et al. 2000). The altitude at the sites ranged from 200 to 450 m a.s.l. The heathland 

communities in the study area are dominated by species of the Ericaceae (i.e., Calluna vulgaris, 

Erica australis, E. umbellata, and E. scoparia) and Fabaceae (i.e., Stauracanthus boivini and 

Genista tridens; Garrido et al. 2003). These communities occur on sandstone soils which are 

acidic (pH of 4.46 ± 0.41) and highly infertile (Adamec 2009). 
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Figure S2.2 Locations in SW Spain (study area) where demographic censuses of Drosophyllum lusitanicum were 

conducted (2011-2015); TSF - time since last fire; A-E site identification as can be found in the data file 

dataDroso.csv (note that for modeling two adjacent populations (100-m distance)  were pooled into one site (B). 

 

Table S2.1 Time-since-fire (TSF) of the five populations monitored at each site-year combination. 

Overall, we censused nine TSF>3, three TSF3, two TSF2, and two TSF1 states. A balanced design (equal 

numbers of TSF states) could not be achieved as we could not perform prescribed burns and only few 

populations of our rare study species persist in natural heathland habitats. 

 Site A Site B Site C Site D Site E 

2011 TSF>3 TSF3 TSF2 burned NA 

2012 TSF>3 TSF>3 TSF3 TSF1 NA 

2013 TSF>3 TSF>3 TSF>3 TSF2 burned 

2014 TSF>3 TSF>3 TSF>3 TSF3 TSF1 

2015 TSF>3 TSF>3 TSF>3 TSF>3 TSF2 

 

The heathlands in this geographic area represent the most important natural habitats for 

Drosophyllum (Garrido et al. 2003). They have not experienced large-scale anthropogenic 

pressures (e.g., infrastructure development and afforestation) common in Morocco and Portugal 

(Garrido et al. 2003). We positioned HOBO data loggers (Onset Computer Corporation 2013) 1 
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m above ground within each of our five study populations to record temperature (
°
C) and relative 

humidity (%) in hourly intervals from January 2013-December 2015.  The data loggers 

confirmed that the microclimate did not differ significantly between the sites and years (Fig. 

S2.3). 

 

 

Figure S2.3 Mean (± S.E.) of seasonal temperature (a) and relative humidity (b) measured with HOBO data loggers 

at the five study sites (site B is pooled across two populations) in 2013(dark blue), 2014 (medium blue) and 2015 

(light blue).  The two populations pooled in B were relatively close together (100 m apart), and climate values there 

were measured with the same HOBO. Note that climate data were not available for the summer and fall of 2015 at 

site B. 

 

5.9.3 Demographic data: above-ground vital rates 

The transitions between continuous stages were based on individual-level data collected in 

annual censuses between April 2011 and April 2015. In each study population, we established 

ten 1 × 1-m
2
 quadrats along four horizontal line transects of 10 m each, resulting in 40 quadrats. 

The four transects were located 3 m from each other and perpendicular to the main slope. We 

quantified the size of all tagged individuals by measuring the sum of rosettes, number of leaves 

per rosette, and the length of the longest leaf. We defined new recruits (as opposed to plants not 
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identified during the previous census due to observation error, 1 %) as plants with < 9 leaves and 

a maximum leaf length of 11 cm. 

We quantified the reproductive output of individuals as the product of the number of 

flowering stalks per plant, number of flowers per stalk, and number of seeds per flower. In order 

to estimate the production of viable seeds per flower, we randomly collected 100 individual 

fruits from reproductive Drosophyllum individuals across all populations in which plants 

flowered in August 2012 and July 2014. We estimated the average number of seeds per fruit to 

be 9.1 (± 2.6 SE). We also quantified the number of damaged flower heads (mainly from 

herbivory or wind) in each population and year (Fig. S2.4). 

 

Figure S2.4 Mean (± S.E.) damaged flowers in Drosophyllum populations across time-since-fire categories. 
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5.9.4 Seed fates 1 

In the following paragraphs, you will find a detailed description of how seed-bank vital rates were derived and linked to TSF 2 

categories. Table S2.2 summarizes the derivation of these vital rates. 3 

Table S2.2 Extrapolation of seed fates from field experiments to time since fire (TSF) categories in the integral projection models (IPMs) based on 4 

field data. R is the total number of experimental replicates within burned (B) and unburned (U) heathland patches; † constant in models; σS is seed 5 

survival. Vital rates goCont, staySB, and outSB are described in the text below. 6 

 7 

         TSF0      TSF1               TSF2                       TSF3                             TSF>3 

% of seeds immediately 

germinating (goCont) 

0 0 σS × goCont_U× 0.18  

= 0.008 

σS × goCont_U × 0.18 

= 0.007 

σS × goCont_U × 0.18 

= 0.007 

  R = 14 R = 14 R = 14 

% seeds entering seed 

bank (goSB) 

0 0 σS × (1-goCont_U-

0.03) = 0.76 

R = 14 

σS × (1-goCont_U-

0.03) = 0.77 

R = 14 

σS × (1-goCont_U-

0.03) = 0.76 

R = 14 

% seeds staying in seed 

bank (staySB) 

0.1† 0.05† staySB_B = 0.6 

R = 49 

staySB_U = 0.85 

R = 105 

staySB_U = 0.85 

R = 105 

     

% seeds germinating 

from seed bank (outSB) 

0.85 × 0.84 = 

0.68 

outSB_B × 0.84  = 

0.05 

R = 21 

outSB_B × 0.18 =  

0.01 

R = 21 

outSB_U × 0.18 = 

0.005 

R = 21 

outSB_U × 0.18 =   

0.005 

R = 21 

     



Chapter 5 – Appendix S2  

~ 114 ~ 
 

5.9.5 Immediate recruitment and recruitment from the seed bank 

We quantified immediate seedling recruitment (goCont in the main text) and recruitment from 

the seed bank (outSB in the main text) using a field experiment. This experiment was initially 

conducted at a natural-heathland site (Sierra Carbonera; 36° 12' 16'' N, 5° 21' 39'' W) in August 

2012 and repeated in August 2013. Care was taken to choose a study site that was potentially 

(edaphically and climatically) suitable for Drosophyllum but with the closest natural 

Drosophyllum population at least 200 m away (site D, Fig. S2.1). In this experiment, we 

established seven randomized paired blocks perpendicular to an elevation gradient (Fig. S2.5). 

Each block consisted of adjacent burned (last fire in the summer of 2011) and unburned (last fire 

in the summer of 2005) patches. We sowed 50 seeds, randomly collected from > 80 individuals 

across five Drosophyllum populations, in squares (20 × 20 cm, 0.5-1 cm deep) in the burned and 

unburned patches. In three blocks, we created a control treatment by digging up soil in 20 cm
2
 

without sowing seeds to control for potential germination of naturally occurring seeds by 

mechanical disturbance. We recorded the number of seedlings in each square in the spring 

(April) following sowing, from which we determined goCont. We also recorded seedling 

emergence in winter (February), in order to estimate the mortality of newly emerged seedlings 

from emergence to April. On average, 3 % of sown seeds died as seedlings (Fig. S2.6). Input into 

the seed bank was then defined as 1-goCont-0.03. Seeds that germinated two growing seasons 

after sowing were considered germination out of the seed bank. 
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Figure S2.5 Location in SW Spain of the site where seed-addition and seed-bank experiments were performed. At 

the site, the experiments were performed in seven blocks in burned and unburned patches. The back dots in the 

upper map identify Drosophyllum presence locations across the range of the species. 

 

 

Figure S2.6 Mean (± S.E.) mortality of 50 sewn seed as seedlings as function of burned and unburned habitat 

patches and two years in which mortality was measured. 
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In addition, we estimated germination from the seed-bank after fire in a growth-chamber 

experiment. We applied three fire treatments to Drosophyllum seeds: (a) heating seeds at 100 ºC 

for 5 minutes; (b) incubating seeds in a smoke solution (see Jäger et al. 1996) for 24 h; and (c) 

combining treatments (a) and (b). Treated seeds along with dry (unmanipulated) and wet 

(incubation in distilled water) controls were incubated for 3 months at 20 (± 2) ºC in darkness. 

We quantified germination from the seed bank after fire (TSF0, see main text) as 81 %, which 

corresponded to germination results from the fire × heat treatment (Fig. S2.7), multiplied by the 

probability of seedling establishment (84 %), which corresponded to survival of emerged 

seedlings from February to April in burned habitat patches from the experiment detailed above 

(data not shown). 

 

Figure S2.7 Mean (± S.E.) germination in a growth-chamber experiment as a function of different seed treatments. 

 

Additional seed-bank analyses conducted in the spring of 2012, in which we collected 20 

random soil samples from the five study populations and an additional three populations from the 

study area and counted viable Drosophyllum seeds in the samples, indicated depleted seed banks 

in early post-fire habitats (Fig. S2.8). We therefore assumed that only a small proportion of seeds 

(0.05-0.1) survives in the seed bank after fire. 
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Figure S2.8 Number of seeds per m
2
 (extrapolated from 20 samples in 4 × 4 cm cores) in Drosophyllum populations 

characterized by different time since fire. 

 

Our estimates of germination, both goCont and outSB, were likely elevated compared to 

germination in natural populations in unburned habitats. This is because we had to perturb soil in 

order to bury seeds and therefore removed potential sources that may otherwise have inhibited 

germination, e.g., herbaceous vegetation cover, roots of shrubs, or plant litter. Using our census 

data, we therefore calculated the ratio of recruits at t+1 to seeds available at t in all five 

populations. We estimated from the seed addition experiments detailed above that approximately 

65 % of recruits at t+1 came from seeds produced at t and 35 % from the seed bank. Using this 

information, we estimated the average real immediate germination to be approx. 0.06 % in 

heathlands with 3 or >3 years since fire (Fig. S2.9). This corresponded to goContunburned × 0.18 

and goContunburned × 0.18. Assuming that we biased goCont and outSB equally in the seed 

addition experiment, we multiplied both vital rates by 0.18 in TSF3,>3 to get a more realistic 

estimate of germination proportions in long unburned heathlands. 
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Figure S2.9 Mean (± S.E.) estimated immediate germination in the field as a function of time since fire of the 

habitat. 

 

5.9.6 Seed-bank stasis 

Lastly, we estimated long-term seed-bank dynamics (staySB in main text) from an in-situ 

experiment identical to the germination experiment in design and location (Fig. S2.4) and 

initiated in September 2012 (repeated in 2013 and 2014). We randomly buried (5-8 cm depth) 

four mesh bags (4 × 4 cm
2
, 1 mm mesh size), each containing 20 seeds collected across five 

Drosophyllum populations, in burned and unburned patches. We removed one bag each spring 

(April) in 2013 and 2014, and the remaining bags in April 2015, and counted the number of 

viable seeds. Seed-bank survival was measured from bags buried for 1.5 years in the soil, i.e., 

bags buried in September 2012 and 2013 and retrieved in April 2013 and 2015, respectively. 

This is because seed mortality in seed bags dug up six months after burial (in April 2013 and 

2014) was very low (< 1%); seeds that did not remain in the mesh bags had germinated, as 

evidenced by the presence of seedlings or empty seed coats with characteristic germination signs. 

We therefore assumed that measuring stasis after 1.5 years in soil corresponds to what we would 

have measured by keeping seeds in the soil April-April. We also pooled the data across the two 

years since we did not have enough data to model year as a random effect. 
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5.10 Appendix S3 - Additional information on the modeling processes used quantify 

variation in the stochastic growth rate and elasticities in stochastic simulations 

In this appendix, we provide (a) the statistics we used to determine the best-fit model for a vital 

rate; (b) an overview and Bayesian diagnostics of the best-fit models (vital rate regressions) 

parameterized; and (c) A detailed description of elasticity calculations.  

5.10.1 DIC model selection 

From the census and experimental data on Drosophyllum, we chose the best-fit model for each 

vital rate (see Table S3.1) by comparing several candidate models using DIC. The DIC is a 

hierarchical modeling equivalent of the AIC measure used in frequentist statistics (Burnham et 

al., 2011). It is defined as 

𝐷𝐼𝐶 = �̅� + 2(�̅� − 𝐷(�̅�))        
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where �̅� is the posterior mean deviance (-2 × log likelihood of the model) evaluated from 

deviance measures at each step of the simulation chain, 2(�̅� − 𝐷(�̅�))  is the effective number of 

parameters, and 𝐷(�̅�) is deviance calculated at the posterior mean of  the parameters 

(Spiegelhalter et al. 2002). As in AIC model comparison, lower values of DIC imply higher 

model plausibility. Differences of ≥ -5 suggest substantially better fit of the best model compared 

to the second best model with fewer parameters. 

 For above-ground vital rates (main text), our candidate models were (a) an intercept-only 

model, (b) a model including only size as predictor, (c) a model including size + TSF as 

predictors, and (d) a model including size × TSF as predictors. TSF, or time since fire, was a 

categorical variable consisting of j = 4 levels (1, 2, 3, >3 years since fire). One exception was 

seedling size (φ4) where candidate models were either an intercept-only model or a model 

including TSF as predictor of seedling size. Similarly for below-ground, seed-related vital rates, 

candidate models were (a) an intercept-only model and (b) a model including post-fire habitat 

state, PFS, as predictor, consisting of two levels p, burned and unburned. The random site (for s 

= 5 sites) and block (for b = 7 blocks) effects were included in all candidate models describing 

above- and below-ground vital rates, respectively. All models within the Bayesian framework 

were parameterized as described below for the best-fit models.  

5.10.2 Overview of Bayesian model parameterization  

Here, we intend to facilitate the understanding of the R script that runs the Bayesian approaches 

via OpenBUGS (i.e., BayModel.R). For example, using the inverse logit, the likelihood 

function of probability of flowering within the Bayesian models is described as:  

for ( f in 1:NtotalFL ) { 

fl[f] ~ dbern( mu.fl[f] ) 

mu.fl[f] <- 1/(1+exp(-( a0.fl + a1.fl[TSF.fl[f]] + 

aS.fl[site.flf]] + ( bc.fl + bcTSF.fl[TSF.fl[f]]) * size.fl[f] 

))) 

} 
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This means that for each data record, f, where flowering (either 0 or 1) is known for 

NtotalFL individuals, probability of survival, fl[f], is estimated as a Bernoulli distribution, 

dbern. The parameter describing the shape of the distribution, mu.fl[f], is a function, with 

associated parameters, of the categorical variable time since fire, a1.fl[TSF.fl[f]], the 

categorical variable site, aS.fl[site.fl[f]], the continuous variable size, bc.fl * 

size.fl[f], and the interaction of TSF and size, bcTSF.fl[TSF.fl[f]] * 

size.fl[f]. The parameter a0.surv describes the overall mean of the survival data.    

We used normal uninformative priors (μ = 0; 1/θ
2
 = 1×10

-6
) for most fixed factors and for 

the Gamma-distributed rate parameters, ρ, of the Poisson-Gamma mixture models for the number 

of flowering stalks (𝜑1) and number of flowers per stalk (𝜑2). (Fig. S3.1). The 𝜏 parameters 

describing the standard deviation in the growth (γ) and seedling-size (φ4) likelihood functions 

were associated with uniform priors. We used hyperpriors for the random site and block effects 

(Fig. S3.1). The hyperpriors were defined as a normal distribution 𝑁(0, 𝜏) in which the 

precision, 𝜏 to be estimated using the prior σ ~ 𝑢𝑛𝑖𝑓(0, 100) for the linear and σ ~ 𝑢𝑛𝑖𝑓(0, 20) 

for the logistic regressions, respectively. Details on the priors we used can be found in the R file 

BayModel.R.    
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Figure S3.1 Hierarchical structure of the Bayesian modeling process used in the study to simulate log λs as a 

function of parameter uncertainty. Regression models (black boxes) within the Bayesian framework describe the 

vital rates of the study species. Within the model boxes, circles and rectangles represent parameters to be estimated 

and fixed data points/prior definitions, respectively (see main text). Hierarchical estimation of parameters occurred 

via hyperpriors. 

 

The posterior sampling of parameters was based on 100,000 iterations, after a burn-in of 

100,000 steps, using four chains and subsampling every 400
th

 simulated value. We initialized the 

four chains starting with different initial parameter values, which were smaller (by a magnitude 

of 0.6 or 0.8) or bigger (by 1.2 and 1.5) the then ones obtained from mixed-effect models fitted 

to the full Drosophyllum dataset. We used trace plots and the Gelman-Rubin-Brooks diagnostic 

of convergence (Brooks and Gelman 1998). In addition, to make the model identifiable, we used 

the sum-to-zero constraint (Kaufman and Sain 2010) on all categorical variables. For each vital 

rate x, this constrains the difference between the model mean, 𝛼0
x, and the parameters at each 

level of a categorical variable, e.g., 𝛼j[TSF]
x , to sum to zero.  
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We assessed convergence of the chains within the Bayesian framework in several ways: 

using trace plots and the Gelman-Rubin-Brooks diagnostic of convergence (Brooks and Gelman 

1998), plotting priors vs. posteriors, and performing posterior predictive checks as described in 

Kéry (2010, p. 247).  The results can be found in Appendix S4.  

5.10.3 Elasticity analyses of lower-level vital rates 

Elasticities of a = log λs to IPM kernel transitions ij can be calculated using the formula derived 

by Tuljapurkar (1990) and Tuljapurkar et al. (2003): 

    𝐸𝑎𝑖𝑗 =  lim𝑇→∞ (
1

𝑇
) ∑

V𝑖(𝑡)′𝐶𝑖𝑗(𝑡)U𝑗(𝑡−1)

𝜆(𝑡)〈𝐕(𝑡)′𝐔(𝑡)〉
𝑇−1
𝑡=1                (F.1) 

where V and U are the left and right eigenvectors associated with 𝜆 at each iteration t and t-1, 

respectively, and 𝐶𝑖𝑗(𝑡) denotes the IPM of proportional changes in entries ij. Elasticities to 

changes in mean transitions can be calculated by defining 𝐶𝑖𝑗(𝑡) =  𝜇𝑖𝑗, where 𝜇𝑖𝑗 is the average 

transition ij across a sequence of environmental states during simulations. Similarly, elasticities 

to changes in the standard deviation of transitions can be calculated by defining 𝐶𝑖𝑗(𝑡) =

𝐾𝑖𝑗(𝑡) − 𝜇𝑖𝑗, where 𝐾𝑖𝑗 (t) is the IPM kernel values for transition ij at time t.  

The perturbation kernel 𝐶(𝑡) can also be derived from lower-level vital rates but requires 

the application of the chain rule (Haridas and Tuljapurkar 2005).  

Elasticities of log λs to changes in the mean of the vital rates defined for Drosophyllum 

(see main text) were calculated by perturbing a vital rate j VRj(t) to VRj(t) +  𝑉𝑅𝑗(𝑡) ̅̅ ̅̅ ̅̅ ̅̅ ̅, where 

𝑉𝑅𝑗(𝑡) ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average of VRj across environmental states. This is equivalent to perturbing the 

entire vital-rate functions (Rees and Ellner 2009). The resulting changes in the kernel 𝐶(𝑡) were 

substituted into equation F1. For elasticities of log λs to changes in the standard deviation of a 

vital rate, the vital rate j would be perturbed from VRj(t) to VRj(t) + VRj(t) -  𝑉𝑅𝑗(𝑡) ̅̅ ̅̅ ̅̅ ̅̅ ̅. The script 

lamdaSimul.R in Appendix S1 shows how to perform the elasticity calculations for the lower 

vital rates.  
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5.11 Appendix S4 - Additional modeling results 

Here, we present (a) a graphical representation of the fit of models quantifying vital rates; (b) 

results from our diagnostic analyses aimed to test performance of the vital-rate models fitted in 

the Bayesian framework; (c) contribution of parameter uncertainty to the variance of the 

stochastic growth rate at different fire return intervals; and (d) contribution of uncertainty of the 

remaining (not seed bank) model parameters to overall variance.    
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5.11.1 Visualization of model fit 

 

Figure S4.1 Predictions of vital rates (lines; points for seedling size) describing population dynamics of the 

continuous state (above-ground individuals) in the life cycle of the carnivorous plant Drosophyllum as a function of 

time-since-fire (TSF) categories, depicted by different colors. Predictions were obtained with Bayesian models. The 

points (except for seedling size) represent mean observed values (± S.E.) of the response variables for each TSF 

category within certain size ranges (0.1–9.0 at interval of 0.1) at t for display purposes.  
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Figure S4.2 Predictions of vital rates (points) describing seed-bank trnasitions in burned and unburned patches 

where seed addition experiments were performed. Predictions were obtained with Bayesian (point shape) models. 

The bars represent mean observed values (± S.E.). The parameters depict (a) ingression into (goSB), (b) stasis in 

(staySB), and (c) egression out of the seed bank (outSB).  
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5.11.2 Diagnostics of model convergence within Bayesian framework 

 

Figure S4.3 Prior (red) vs. posterior (black) density plots for 25 parameters representing above-ground 

transitions(all priors are non-informative). The remaining parameters had similar shapes.  
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Figure S4.4 Prior (red) vs. posterior (black) density plots for parameters related to seed-bank transitions (ingression 

– 1-goCont; stasis – staySB; and egression – outSB).  

 



Chapter 5 – Appendix S4 

~ 129 ~ 
 

 

Figure S4.5 Graphical posterior predictive check of the model adequacy for the vital rate probability of flowering 

(φ0). The Bayesian p-value is equal to the proportion of symbols above the 1:1 line.  

 

Figure S4.6 Graphical posterior predictive check of the model adequacy for the vital rate ingression (1-goCont). 

The Bayesian p-value is equal to the proportion of symbols above the 1:1 line. 
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Figure S4.7 Graphical posterior predictive check of the model adequacy for the vital rate stasis (staySB). The 

Bayesian p-value is equal to the proportion of symbols above the 1:1 line. 

 

Figure S4.8 Graphical posterior predictive check of the model adequacy for the vital rate egression (outSB). The 

Bayesian p-value is equal to the proportion of symbols above the 1:1 line. 



Chapter 5 – Appendix S4 

~ 131 ~ 
 

5.11.3 Parameter uncertainty    

Table S4.1 Differences in proportional contribution of parameter uncertainty to the variation in the 

stochastic population growth rate of Drosophyllum lusitanicum as a function of vital-rate 

parameters sampled in stochastic simulations. The simulations were defined by varying fire return 

intervals, and the vital rates sampled corresponded to ingression, goSB, stasis, staySB, and 

egression, outSB (Figure 1 in main text). Proportional contributions of > 0.5 are highlighted in bold.  

Vital rate Fire return interval (years) 

 10 20 30 40 50 60 70 80 90 100 

goSB <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 < 0.01 < 0.01 

staySB 0.12 0.25 0.34 0.41 0.46 0.50 0.54 0.57 0.60 0.62 

outSB 0.14 0.32 0.44 0.51 0.57 0.62 0.66 0.68 0.71 0.73 

staySB+outSB 0.17 0.40 0.51 0.60 0.64 0.69 0.72 0.75 0.77 0.79 

 

5.11.4 Parameter uncertainty in all vital rates  

 

Figure S4.9 Plots display average log λs (points) and 2.5 and 97.5 quantiles (vertical lines) as function of fire 

return interval (x-axis). At each fire return interval, the quantiles were calculated from log λs estimates 

obtained from four different approaches: running 100 stochastic projections of log λs for each of 1,000 

posterior parameter samples describing either seed-bank ingression and stasis (black; six parameter); or model 

parameters describing above-ground survival (blue; 13 parameters); or all parameters related to above-ground 

dynamics (red; 93 parameters); or running 100 stochastic simulations using mean parameter values for all 

vital rates (grey). Black horizontal dashed lines indicate stable population sizes.  
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the absence of fire 

Maria Paniw, Roberto Salguero-Gómez, and Fernando Ojeda 

This chapter was published in Biological Conservation, 187 (2015), 74–81. 

6.1 Abstract 

Fire-prone Mediterranean heathlands are biodiversity hotspots and home to a multitude of 

fire-dependent species. Fire-suppression policies worldwide have increased the risk of 

extinction of such species or have delegated relative prominence to other disturbances. This 

study explores how such a substitution of disturbances can alter the realized niche and 

population structure of a post-fire specialist. Using multi-model inference, we evaluate the 

relative magnitude and directionality (positive or negative) in the effect of large-scale 

(entire range) and local-scale (southern Spain) anthropogenic disturbances on the 

occurrence and abundance of Drosophyllum lusitanicum. This rare carnivorous plant is 

endemic to heathlands in the Southwestern Iberian Peninsula and northwestern Morocco 

managed under strict fire suppression policies. An increase in regional-scale anthropogenic 

disturbances did not affect regional-scale occurrence but significantly decreased abundance 

of Drosophyllum. On the other hand, local-scale anthropogenic disturbances positively 

affected both population occurrence and abundance. We demonstrate that non-fire 

anthropogenic disturbances can drive the population structure and distribution of an 

endemic post-fire specialist in Mediterranean heathlands, but their impacts change with 

their spatial scale. Although large-scale disturbances may threaten populations, small-scale 

disturbances may be more significant for species occurrence, and positively affect the 

distribution and abundances of pyrophytic species. In heathlands where fire suppression is a 

common practice, applying such disturbance regimes can be crucial for the preservation of 

fire-adapted species. 
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Keywords: anthropogenic disturbances, carnivorous plants, Drosophyllum lusitanicum, fire 

suppression, post-fire specialists, pyrophytic species 

 

6.2 Introduction 

Mediterranean heathlands, characterized by dense shrub vegetation on acidic, nutrient-poor 

soils, constitute a singular biome worldwide owing to their remarkable plant diversity and 

endemism levels (Cowling et al. 1996; Médail and Quézel 1999; Ojeda et al. 2001). The 

five Mediterranean-climate regions in which heathlands occur occupy less than 5% of the 

global area and host about 20% of the world’s vascular plants, many of them endemics 

(Cowling et al. 1996). The diverse flora of heathlands has provided humans with important 

resources such as fuel or animal feed for millennia (Hobbs et al. 1995). In part, the high 

levels of endemism in Mediterranean heathlands are due to recurrent wildfires, natural 

disturbances that have promoted unique adaptations such as fire-induced germination or 

post-fire resprouting (Ojeda 2001; Ojeda et al. 2010; Keeley et al. 2012). 

Effective post-fire recruitment from a soil-stored persistent seed bank is one of the 

key adaptations in Mediterranean heathlands (Keeley et al. 2011). Fire-induced cues for 

germination can be direct (i.e., pyrogenic), such as heat shock and/or smoke-derived 

compounds (Keeley and Bond 1997; Moreira et al. 2010), or indirect, such as marked 

increases in light levels (Keeley 1987; Ooi et al. 2014) or drastic reductions of 

allelochemical inhibitors following the removal of aboveground vegetation and litter by fire 

(Preston and Baldwin, 1999). Many short-lived perennial plants are killed by fire and only 

recruit after fire from a seed bank. After a fire-triggered recruitment event, their mostly 

even-aged populations reach highest above-ground densities in the first few years after fire, 

and then decline, disappearing aboveground into the mature community vegetation, but 

persisting in the seed bank (e.g., Quintana-Ascencio et al. 1998, 2003). Many of these post-

fire dwelling species are hence highly sensitive to alterations in fire frequency (Quintana-

Ascencio et al. 2003; Lawson et al. 2009). 

In the western Mediterranean Basin, fire suppression and habitat degradation have 

altered fire frequency in heathlands in the last centuries, which poses a threat to post-fire 

specialists (e.g., Bartolomé et al. 2005). Fire suppression has become a common goal in 
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current management policies (Bartolomé et al. 2005; Keeley et al. 2012; Fernandes et al. 

2013), which has led to the loss of heathlands by oak (Quercus spp.) or pine (Pinus spp.) 

forest encroachment (Bartolomé et al. 2005). The transformation of heathlands into forests 

is also the result of active afforestation campaigns (Andres and Ojeda 2002). The 

combination of fire suppression and anthropogenic disturbances should increase local 

extinction risk of pyrophytic species (Bartolomé et al. 2005; Lawson et al. 2010; Fagúndez 

2013). Nonetheless, species responding to indirect fire-related germination cues, such as 

light increase from vegetation removal, may still find refuges from local extinction in 

habitats where disturbances such as shrub slashing mimic the fire effect of elimination of 

the aboveground vegetation (Pavlovic 1994; Quintana-Ascencio et al. 2007). At the same 

time, anthropogenic disturbances that prevent natural habitat succession (e.g., vegetation 

clearance) and therefore allow for multiple recruitment events of post-fire specialists may 

affect not only the distribution but also the age structure of otherwise cohort-pulsed 

populations (Quintana-Ascencio et al. 2007). 

Here, we explore how anthropogenic disturbances occurring at different spatial 

scales affect the regional and local occurrence and population structure of the endemic, 

post-fire dwelling carnivorous plant Drosophyllum lusitanicum (L.) Link. 

(Drosophyllaceae; hereafter Drosophyllum). This pyrophytic species is threatened by large-

scale anthropogenic disturbances such as afforestation and fire suppression (Correia and 

Freitas 2002) but profits from small-scale vegetation clearances (Garrido et al. 2003). In 

order to predict the current distribution and population structure of Drosophyllum, we fitted 

both responses to explanatory variables related to non-fire disturbances at two spatial 

scales. As regional-scale disturbances are associated with permanent habitat loss (Correia 

and Freitas 2002) while local-scale disturbances may increase germination and above-

ground survival (Quintana-Ascencio et al. 2007), we tested the following hypothesis: 

anthropogenic disturbances will have significant effects on the distribution/abundance of a 

post-fire specialist with indirect germination cues, but the effect will be negative at a 

regional and positive at a local spatial scale. We used generalized linear models to predict 

occurrence and abundance of various stages in the life cycle of Drosophyllum and model 

inference to quantify the relative importance of explanatory variables. 
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6.3 Materials and methods 

6.3.1 Study species 

Drosophyllum lusitanicum is a geographically and phylogenetically rare carnivorous 

subshrub, endemic to heathlands in the southwestern Iberian Peninsula and northwestern tip 

of Morocco (Garrido et al. 2003; Heubl et al. 2006). The species is a post-fire specialist on 

nutrient-poor, acid soils (Correia and Freitas 2002). Individuals are outcompeted by 

surrounding shrubs in mature post-fire stands, and populations persist in soil seed banks 

until the appropriate fire cues (presumably heat shock and light from above-ground 

vegetation removal) trigger their germination (Correia and Freitas 2002). Individuals grow 

in rosettes, and size in this species is a good proxy for age, with plants initially reproducing 

in the second year after emergence and gaining 1-2 rosettes each growing season (Ortega-

Olivencia et al. 1995; Garrido et al. 2003). The maximum observed lifespan of individuals 

is approximately 10 years (Juniper et al. 1989). However, a mean life expectancy of 1.6 

years (M. Paniw, unpubl.), as approximated through integral projection models (Easterling 

et al. 2000; Caswell 2001; Metcalf et al. 2013) highlights a greatly skewed distribution of 

mortality early on in life. 

The species is in stark decline due to heathland afforestation (Andrés and Ojeda 

2002) and fire suppression. However, some populations in non-fire habitats persist due to 

anthropogenic disturbances that clear vegetation and create open patches (e.g. fire-break 

lines, sandstone quarries; Garrido et al. 2003). These open patches may expose seeds to 

direct sunlight and may eliminate putative allelopathic compounds that inhibit germination 

(Preston and Baldwin 1999). As non-fire disturbances may permanently eliminate 

vegetation (e.g. quarries, mechanical uprooting) or are maintained by periodic vegetation 

slashing (e.g. firebreak lines), open space is either long lasting or continuously created, 

respectively. In either case, the permanent availability of open space promotes annual seed 

germination and may contribute to the prevalence of mixed-aged populations of 

Drosophyllum (Garrido et al. 2003). 

In order to model the effects of anthropogenic disturbances and climate on the 

population structure of Drosophyllum, we divided the life cycle of the species into three 
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life-cycle classes: (i) juveniles, defined as individuals of 1-2 years consisting of one rosette 

without a flowering stalk; (ii) young reproductive individuals (2-3 years old), characterized 

by 1-2 rosettes with at least one flowering stalk; and (iii) old reproductive individuals (> 3 

years old), characterized by at least three rosettes and at least one flowering stalk. The 

mean number of flowers per stalk is 5 ± 2 (SD), according to Ortega-Olivencia et al. 

(1995). We sampled populations in February-June 2013 and 2014, and chose to exclude 

newly emerged seedlings from our analyses as fluctuations in the abundance of this life-

cycle class is strongly affected by the month of sampling (Garrido et al. 2003; M. Paniw, 

pers. obs.). 

6.3.2 Study sites, design, and sampling 

We aimed to model the distribution and population structure of Drosophyllum at a regional 

and local scale in order to analyze scale-specific effects of non-fire disturbances. We 

therefore recorded species occurrence and abundance of the aforementioned three life-cycle 

classes across the entire range of the species (regional scale) and in southern Spain (local 

scale). The three regions that comprise the geographical range of Drosophyllum, i.e. 

southern Spain, northern Morocco, and western Portugal, differ in the type, frequency, and 

intensity of anthropogenic disturbances in heathlands (Garrido et al. 2003; Fig. 1d). While 

Drosophyllum is protected in southern Spain (BOJA 1994) and its heathland communities 

are relatively undisturbed (but see Andrés and Ojeda 2002), these habitats have been 

severely altered in Portugal by settlement construction and intense aforestation with gum 

trees (Eucalyptus globulus and E. diversicolor) and pines (Pinus pinaster). Moroccan 

heathlands have not been altered to the same extent as Portuguese ones, but they experience 

intense levels of goat browsing and hand-slashing (Ojeda et al. 1996; Garrido et al. 2003). 
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Figure 1 Coordinates of sampled locations indicating presence or absence of Drosophyllum lusitanicum 

populations at the study region (a). Close-up of sampled locations in S. Spain used for local-scale modeling 

(b); subsampled locations for climatic models marked as stars. Distribution of rainfall (mm) (c) and human 

activities (no unit) (d). 

 

Across the species' range, we surveyed 74 sites characterized by nutrient-poor soils 

and different degrees of disturbances in heathlands (Fig. 1a; Appendix S1). We used 

publications (Correira and Freitas 2002; Garrido et al. 2003), species presence records from 

public online databases (www.flora-on.pt for Portugal and www.anthos.es for Spain), and 

expert knowledge (see Acknowledgements) to identify sites where Drosophyllum 

http://www.flora-on.pt/
http://www.anthos.es/
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populations have been recorded. We then thoroughly surveyed all sites across the species 

range to authenticate presence of Drosophyllum. Sites that suffered a natural fire < 10 years 

ago were excluded from the regional-scale survey in order to evaluate only effects of non-

fire disturbances on the occurrence of populations. We used satellite imagery (Arino et al. 

2011), public records (Junta de Andalucía 2013), and visual clues (i.e., fire scars on mature 

scrubs) to determine the post-fire stage of each site. Climatic features were consistent 

between sites, dominated by oceanic-Mediterranean conditions (Fig. 1c). We took a subset 

of 30 out of the 74 locations in southern Spain to fit models for anthropogenic disturbances 

at the local scale (Fig. 1b). Here, the sampled locations represented (i) a mixture of mature 

Mediterranean heathlands characterized by dense, low scrub cover (Ojeda et al. 2000; 

Garrido et al. 2003); (ii) marginal habitats in clearances such as firebreaks, road sides, or on 

steep slopes characterized by sparse shrub cover; and (iii) managed habitats (e.g., sparsely 

planted pine plantations on heathlands; Appendix S1). 

At both scales, regional and local, abundance of Drosophyllum was recorded in 

sixty 1 m
2
 quadrats along six linear transects of 10 m each. Each transect was randomly 

started at the edge of a Drosophyllum population and extended perpendicular to the main 

slope of the site towards the center (i.e., highest abundance of individuals) of the 

population. We measured the abundance of different life-cycle classes in each quadrat 

(juveniles, young reproductive, and old reproductive individuals). Total and class-specific 

abundances were then used as response variables for the disturbance and climatic analyses 

at the local scale (below). At the regional scale, the abundances at 60 m
2
 were extrapolated 

to 1 km
2
 in order to standardize the abundance estimates to account for the variable size of 

the sampling area (Appendix S1). We derived three responses from our measurements for 

the abundance models: total abundance; abundance of juveniles and young reproductive 

individuals, and abundance of old reproductive individuals. We used three responses 

because disturbance variables may have different effects on abundance depending on life-

cycle stage, indicating whether mixed-aged populations are favored by disturbances. 

6.3.3 Anthropogenic disturbances 

To model the occurrence and abundance of Drosophyllum at two spatial scales, we 

selected, based on ecological relevance for the distribution of the species, a total of 15 
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candidate variables (ten and five for regional- and local-scale analysis, respectively) related 

to non-fire disturbances. All candidate variables were either available as – or converted to 

— GIS raster layers, and were aggregated to a resolution of 1 km for regional-scale and 30 

m for local-scale modeling. 

We derived candidate variables approximating anthropogenic disturbances from 

CORINE land cover (250-m resolution; European Topic Centre on Spatial Information and 

Analysis, 2013) for regional-scale and a high-resolution (5 m) land-use map (Junta de 

Andalucía 2007) for local-scale modeling. Candidate variables included sum of and mean 

log distance to pixels classified as managed, forested (pine plantations) or natural (shrub) 

areas (regional scale), or distance to roads/firebreaks and percent bare soil (local scale). At 

the regional scale, we also included the Human Influence Index (HII; Wildlife 

Conservation Society and Columbia University 2005), which uses data on population 

density, infrastructure, and land use to classify areas ranging from completely free of 

human influence (1) to highly disturbed by humans (64). To control for the effect of natural 

disturbances on Drosophyllum populations in the absence of human activities, we 

calculated three measures of terrain roughness. We obtained all three measures from digital 

elevation models (NASA LP DAAC 2001) at 90 and 30 m resolution for regional and local 

analyses, respectively. The measures included slope, slope variability and standard 

deviation of elevation - calculated for each grid cell based on a 3 × 3 grid-cell 

neighborhood (Wilson and Gallant 2000). 

To reduce colinearity of explanatory variables when deriving relative predictor 

importance, we included into the final multi-model framework only those explanatory 

variables which were not strongly correlated (Pearson’s r < 0.4) with other variables 

(Thuiller et al. 2007).  Table 1 summarizes the explanatory variables chosen for statistical 

analyses at each spatial scale. 
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Table 1 Description of the explanatory variables used to model occurrence and abundance of 

Drosophyllum lusitanicum (L.) Link. at the regional and local scale. 

 Category Variable Values Source 

R
eg

io
n

al
 

(1
 k

m
2
 g

ri
d

 r
es

o
lu

ti
o
n

) 

Anthropogenic 

disturbance 

(a) Log distance 

from needle-

leaved 

evergreen 

forests (m); 

 

(b) Human 

Influence Index 

(a) Euclidean distance from 

pixels classified as “needle-

leaved evergreen tree cover” 

aggregated (mean) from 

250-m to 1-km resolution; 

 

(b) Values obtained from 

maps classifying human 

activities & infrastructure 

and range from 1 (least 

influenced by humans) to 64 

(heavily influenced by 

humans) 

(a) European 

Topic Centre, 

2010; 

http://www.eea.

europa.eu/data-

and-maps 

(b) LTW-2, 

2005; 

http://sedac.ciesi

n.columbia.edu/

wildareas/ 

 

Natural 

disturbance 

Terrain 

roughness 

(degrees) 

Difference between 

maximum and minimum 

slope (calculated from a 

DEM)  in a 3 × 3-cell 

neighborhood of each 90-m 

grid cell aggregated (mean) 

to 1-km resolution 

 

LP DAAC, 

2001; 

https://lpdaac.us

gs.gov/get_data 

L
o

ca
l 

(3
0

 m
2
 g

ri
d

 r
es

o
lu

ti
o
n

) 

Anthropogenic 

disturbance 

(a) Distance to 

roads or 

firebreaks (m) 

 

 

(b) Bare soil 

cover (%) 

(a) Euclidean distance from 

pixels classified as “roads” 

or “firebreak” aggregated 

from 5-m (mean) to 30-m 

resolution 

(b) Mean % soil over a 30-

m grid calculated from a 5-

m resolution land-use map 

(a) Junta de 

Andalucia, 

2007; 

http://www.junta

deandalucia.es/ 

(b) Junta de 

Andalucia, 2007 

Natural 

disturbance 

Terrain 

roughness 

(degrees) 

Difference between 

maximum and minimum 

slope (calculated from a 

DEM) in a 3 × 3-cell 

neighborhood of each 30-m 

grid cell 

LP DAAC, 

2001; 

https://lpdaac.us

gs.gov/get_data 

    

Values for the variables were derived from original datasets using ESRI ArcGIS 10. 

 

6.3.4 Statistical analyses 

We determined the relative importance and positive vs. negative effects of the selected 

explanatory variables on the occurrence and abundance of Drosophyllum populations using 

http://www.eea.europa.eu/data-and-maps/data/global-land-cover-250m
http://www.eea.europa.eu/data-and-maps/data/global-land-cover-250m
http://www.eea.europa.eu/data-and-maps/data/global-land-cover-250m
http://sedac.ciesin.columbia.edu/wildareas/
http://sedac.ciesin.columbia.edu/wildareas/
http://sedac.ciesin.columbia.edu/wildareas/
https://lpdaac.usgs.gov/data_access
https://lpdaac.usgs.gov/data_access
http://www.juntadeandalucia.es/medioambiente/site/rediam/informacionambiental/
http://www.juntadeandalucia.es/medioambiente/site/rediam/informacionambiental/
https://lpdaac.usgs.gov/data_access
https://lpdaac.usgs.gov/data_access
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model averaging based on AICc estimates (Burnham et al. 2011). Before fitting models, all 

explanatory variables were z-transformed (mean = 0, SD = 1) in order to standardize the 

effect of the variables. At the regional scale, models included additive and interaction 

effects between all explanatory variables. At the local scale, models included only additive 

effects due to the small sample size (n ≤ 30) and because preliminary results testing 

pairwise interactions between explanatory variables showed no significance of interactions. 

We fitted generalized linear models with a binomial error distribution to the occurrence 

data. To fit the abundance models, we chose generalized linear models with a negative 

binomial error distribution over simpler Poisson models as the latter was overdispersed, 

while the former provided a better model fit (Ver Hoef and Boveng 2007; Güthlin et al. 

2013; Zipkin et al. 2014). At both spatial scales, we estimated the importance of each 

explanatory variable in explaining the response variable as the sum of the AICc weights – 

comparing model AICc to lowest overall AICc – over all models in which variable i 

occurred (Burnham et al. 2011). We calculated the strength of the weights by permuting 

variable i 1000 times while keeping all the other variables unchanged and subtracting the 

median of the 1000 permuted, summed AICc from the original summed weights for 

variable i. We therefore created an absolute weight of evidence (Thuiller et al. 2007). We 

considered only variables with a positive absolute weight to be significant drivers of 

Drosophyllum occurrence or abundance. We determined significant positive vs. negative 

effects of explanatory variables as the model-averaged mean coefficient values weighted by 

the AICc weight of the models containing variable i. Uncertainty around coefficient 

estimates was calculated as the unconditional standard error of parameter estimates across 

models, as described elsewhere (McAlpine et al. 2008). We performed all AICc analysis 

using the R package MuMIn (Barton 2014). 

6.4 Results 

6.4.1 Occurrence and abundance at the regional scale 

For regional analyses, AICc weights revealed that terrain roughness, approximated by slope 

variability, had the highest rank in the model measuring the occurrence of Drosophyllum, 

although the absolute weight for this variable was low (0.15). Predictors approximating 
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anthropogenic disturbances did not have significant effects on the occurrence of 

Drosophyllum, but were significant in all abundance models (Fig. 2). 

 

Figure 2 Akaike weights for each explanatory variable used to quantify the occurrence, total abundance, and 

abundance of different life-cycle classes of Drosophyllum in the entire range (including additive and 

interaction effects). Predictors depict log distance (m) to needle-leaved forests (Distance F), the Human 

Influence Index (HII), and slope (in degrees) variability (terrain roughness). Variables marked as n.s. did not 

provide a significant fit, i.e. absolute AICc weights < 0. 

 

 The magnitude and direction of the parameter effects overall showed a negative 

effect of anthropogenic disturbances (Fig. 3). All abundance measures increased with 

increasing distance to pine forests and decreased with increasing human influence (HII) 

(Fig. 3b). Terrain roughness had a negative mean effect in occurrence models although this 

effect was not consistently significant across models producing large standard errors (Fig. 

3a).  On the other hand, the interaction between terrain roughness and HII had a strong 

positive effect in abundance models indicating that for increasing values of HII, population 

abundances increase in response to terrain roughness (Fig. 3b). Distance to forest showed 

the strongest positive parameter effect in all abundance models and particularly for 

abundance of old reproductive individuals. For the latter response, the interaction between 



Chapter 6 – Results 

~ 146 ~ 
 

distance to forests and HII showed a strong negative parameter effect, although S.E. 

estimates were also large (Fig. 3b). 

 

Figure 3 Additive and interaction effects of model parameters for each explanatory variable used to predict 

occurrence (a) and abundance (b) of Drosophyllum populations at its entire range. Magnitude of the effect is 

defined as the change in the log odds ratio of species presence or increase in log abundance given a one unit 

increase in predictor value, calculated using model-averaged (± SE) coefficient estimates weighted by AICc 

weights of models. Parameters can change the response positively or negatively, therefore increasing or 

decreasing the probability of presence/abundance, respectively. Black lines at y = 0 indicate no change in 

response variables. 

 

6.4.2 Occurrence and abundance at the local scale 

At the local scale, variables approximating anthropogenic disturbances (distance to 

roads/firebreaks and/or percent bare soil) had high AICc weights and thus high predictor 

ranks on the occurrence and abundance of Drosophyllum (Fig. 4). Percent bare soil had the 
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highest rank among occurrence and abundance models. Distance to roads and firebreaks 

was not a significant factor in occurrence models but significantly affected abundance 

measures (Fig. 4). Terrain roughness did not contribute significantly to model fit when 

estimating total abundance and abundance of juveniles and young reproductive (Fig. 4). 

 

Figure 4 Akaike weights for each explanatory variable used to quantify the occurrence, total abundance, and 

abundance of different life-cycle classes of Drosophyllum in S. Spain (including additive and interaction 

effects). Predictors depict distance to roads and firebreaks (m), mean percentage of bare soil, and slope (in 

degrees) variability (terrain roughness). Variables marked as n.s. did not provide a significant fit, i.e. absolute 

AICc weights < 0. 

 

The magnitude and direction of the parameter effects overall showed a strong 

positive effect of predictors approximating disturbances. Probability of occurrence of 

Drosophyllum increased with an increase in percent bare soil, while the parameter effects of 

distance to roads/firebreaks and terrain roughness were not significant (Fig. 5a). In all 

abundance models, distance to roads and firebreaks showed the strongest, negative 

parameter effect (Fig 5 b). Abundances changed positively with an increase in percent bare 

soil (Fig 5b). 
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Figure 5 Additive effects of model parameters for each explanatory variable used to quantify the occurrence 

(a) and abundance (b) of Drosophyllum populations in S. Spain. Magnitude of the effect is defined as the 

change in the log odds ratio of species presence or  increase in log abundance given a one unit increase in 

predictor value and was calculated using model-averaged (± SE) coefficient estimates weighted by AICc 

weights of models. Parameters can change the response positively or negatively, therefore increasing or 

decreasing the probability of presence/abundance, respectively. Black lines at y = 0 indicate no change in 

response variables. 

 

6.5 Discussion 

Mediterranean heathlands are biodiversity hotspots in which floristic diversity is closely 

tied to recurrent fires (Keeley et al. 2012). In the western Mediterranean Basin however, 

heathlands are managed under strict fire-suppression policies, and other types of 

anthropogenic disturbances dominate these systems (Bartolomé et al. 2005). These shifts in 

disturbances may have potentially severe consequences for the distribution, population 

structure, and future management of endemic heathland species. We show a strong, scale-
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dependent effect of anthropogenic non-fire disturbances on the occurrence and life-cycle 

class abundance of Drosophyllum lusitanicum, an endemic, fire-dependent, carnivorous 

subshrub in Mediterranean heathlands. Due to the different quality of disturbances at 

different spatial scales, local-scale anthropogenic disturbances had a stronger effect on 

species occurrence than regional-scale disturbances. Such scale-dependent effects of 

disturbances on populations have been described previously in theoretical (Opdam and 

Wascher 2004) and empirical (Wayne et al. 2006; Yasué 2006; Brunbjerg et al. 2014) 

studies. As we predicted, regional-scale anthropogenic disturbances had a negative effect 

on life-cycle class abundances of Drosophyllum. Contrary to our predictions, however, 

regional-scale disturbances did not account for the range-wide occurrence of this species. 

At the local scale though, anthropogenic disturbances had the strongest effects (highest 

AICc,absolute weight, and parameter effect) on both occurrence and life-cycle class 

abundances of Drosophyllum. This local-scale effect was positive, suggesting that, 

depending on the intensity and quality of the disturbances replacing fires, local populations 

of endemic post-fire specialists in Mediterranean heathlands can be maintained even under 

strict fire-suppression policies. 

6.5.1 Anthropogenic disturbances, spatial scale, and persistence of a post-fire specialist 

Habitat fragmentation and alteration have been identified as major sources of range decline 

for heathland species (Bartolomé et al. 2005; Fagúndez 2013), in particular rare post-fire 

specialists (Bond and Keeley 2005). We found that regional disturbances are associated 

with a decrease in population size of Drosophyllum. In particular, the strong positive effect 

of increasing distance to pine plantations highlights the threat of afforestation campaigns on 

the biodiversity of Mediterranean heathlands, of which Drosophyllum is one of the 

epitomes (Andrés and Ojeda 2002). However, it is surprising that neither of the disturbance 

sources predicted occurrence of the species at the regional scale, whereas local-scale 

anthropogenic disturbances were significant drivers of occurrence (Fig. 2; Table 2). This 

result may be an artifact of our a-priori focus on locations where Drosophyllum was 

expected to occur or of the different types and resolution of disturbance variables used at 

each scale. On the other hand, regional-scale anthropogenic disturbances were significant 

predictors of population abundance, and our surveying showed that Drosophyllum could 
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occur inside heavily disturbed pine plantations while being locally extinct in little-disturbed 

heathlands (Appendix S1; Table 2). This indicates that the overall occurrence of 

Drosophyllum and the abundance of its life-cycle classes are strongly determined by human 

disturbances at fine (local) scales. 

Table 2 Summary of mean coefficient effect size for predictors describing occurrence and 

abundance of Drosophyllum lusitanicum (L.) Link. populations at two spatial scales. The column 

headings depict occurrence (OC), total abundance (AB TOT), and abundance of juveniles and 

young reproductive (AB JYR) and old reproductive individuals (AB OR). Effect sizes are denotes 

as: ***effect size > 0.5; **effect size 0.3-0.5; *effect size < 0.3; †Highest AICc weight/absolute 

weight; n.s. absolute weight < 0 or effect size < 0.05; (+) positive effect; (-) negative effect 

Spatial 

scale 

Predictor 

category 

Predictor OC AB 

TOT 

AB JYR AB OR 

regional 

 

regional 

 

regional 

 

regional 

regional 

regional 

regional 

 

local 

 

local 

 

Human 

disturbance 

 

 

Natural 

disturbance 

Interactions 

 

 

 

 

Human 

disturbance 

 

(a) distance to needle-

leaved forests (m); 

(b) Human Influence 

Index; 

(c) terrain roughness; 

 

(a):(b) 

(a):(c) 

(b):(c) 

(a):(b):(c) 

 

(a) distance to roads and 

firebreaks (m); 

(b) bare soil (%) 

n.s. 

 

n.s. 

 

* (-)† 

 

n.s. 

n.s. 

n.s. 

n.s. 

 

* (-) 

 

*** (+)† 

 

** (+) 

 

* (-)† 

 

* (+) 

 

* (-) 

n.s. 

** (+) 

n.s. 

 

*** (-) 

 

*** (+)† 

 

** (+) 

 

** (-)† 

 

* (+) 

 

n.s. 

n.s. 

* (+) 

n.s. 

 

*** (-) 

 

** (+)† 

 

*** (+) 

 

* (-)† 

 

* (+) 

 

** (-) 

n.s. 

** (+) 

n.s. 

 

*** (-) 

 

*** (+)† 

 

local Natural 

disturbance 

 

(c) terrain roughness; ** (-) n.s. 

 

n.s. 

 

 

* (+) 

 

 

We show that pyrophytic species such as Drosophyllum, which respond to indirect 

fire-related germination cues (e.g., increase in light levels; Correia and Freitas 2002), may 

significantly benefit from local-scale disturbances providing such cues. The positive effects 

of non-fire, anthropogenic disturbances have been largely overlooked in studies examining 

the distribution of pyrophytes, although such effects are well known in other species (Farris 

et al. 2009; Amat et al. 2013). However, in a recent study in which the roles of extensive 

grazing and prescribed burning on heathland biodiversity were examined, Velle et al. 
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(2014) highlighted the positive effect of such disturbances on rates of endemism in 

heathland communities. 

In addition to a positive effect on population persistence, local-scale disturbances 

can strongly influence the population structure of a post-fire specialist.  We found that an 

increase in local-scale disturbances favored high abundances of all life-cycle classes and 

therefore the presence of mixed-aged Drosophyllum populations in disturbed habitats. Such 

disturbances do not kill adults of Drosophyllum (unlike wildfires) and/or, if maintained, 

allow for successive recruitment episodes. However, Garrido and collaborators (2003) 

argued that mixed-aged Drosophyllum populations in frequently disturbed habitats 

experience strong regeneration pressures and may be prone to local extinction.  According 

to these authors, Drosophyllum is characterized by a regional assemblage pattern in which 

massive, post-fire germination from a soil seed bank is vital for population persistence. 

Seed banks are known to buffer populations from genetic drift (Dolan et al. 2008; 

Honnay et al. 2008). Fires, in turn, provide cues for mass germination from the seed bank, 

unparalleled by the continuous, small-scale germination in permanently disturbed habitats. 

This may mean that without fires, most of the seed bank would thin out, with potentially 

serious consequences for genetic variability in populations. Moreover, a rare fire event over 

such a depleted seed bank might jeopardize the viability of that mixed-aged, longstanding 

population (Quintana-Ascencio et al. 2003). Nevertheless, Drosophyllum is disappearing 

from undisturbed heathlands under significant fire suppression (M. Paniw, pers. obs.) as it 

has been documented for other post-fire dwelling carnivorous plants (Jennings and Rohr 

2011). Stable populations in disturbed habitats (some known for at least 50 years; 

Adlassnig et al. 2006) are therefore important to prevent the extinction of the species. 

6.5.2 Synthesis and conservation perspectives 

Anthropogenic disturbances have drastically affected population structures and species 

distributions in many species of Mediterranean-type ecosystems (Bazzaz 1983; Yates and 

Ladd 2005, 2010). However, in a changing world characterized by fire suppression and 

habitat destruction, there are winners and losers associated with human-made disturbances. 

Post-fire specialists seem to lose under human pressures, such as fire suppression, at the 
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entire range of distribution. However, these species may profit from local disturbances. 

This is the case for the post-fire specialist used in our analyses, Drosophyllum, which has 

experienced high distribution declines in the past century (Correia and Freitas 2002; 

Garrido et al. 2003). We found detrimental effects of human disturbances on Drosophyllum 

at the regional scale. Nevertheless, the picture is rather different when focusing on the local 

scale; the occurrence of populations is overwhelmingly associated with open vegetation 

cover on slopes and heathlands and within open plantations (Juniper et al. 1989; Adlassnig 

et al. 2006) - all habitats not characteristic of fire-regulated heathland communities 

(Garrido et al. 2003). Our results at the local scale indeed suggest that larger populations 

may be found in habitats disturbed by humans and regardless of fire regimes. 

Consequently, while the species is considered threatened across its range, local-scale 

anthropogenic disturbances may be considered a haven in fire-less habitats as long as they 

are edaphically suitable for the species. 
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6.8 Appendix S1 - Description of sampling locations 

To model the occurrence and life-cycle class abundance of Drosophyllum lusitanicum L., 

Link (Drosophyllaceae), 74 sites across the range of the species were sampled. The table 

below provides information on the sampling sites. In the locations where populations were 

present (presence = “yes”), the number of juveniles and young and old reproductive plants 

was recorded in sixty 1 × 1 m quadrats. Habitat type was recorded for all locations. 
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ID Country Presence Area (m2) Habitat type Juveniles Young 

reproductive 

Old 

reproductive 

Month of 

sampling 

1 Spain no 0 dense heathland 0 0 0 Oct 2011 

2 Spain no 0 dense heathland 0 0 0 Oct 2011 

3 Spain no 0 dense heathland 0 0 0 Oct 2011 

4 Spain no 0 dense heathland 0 0 0 Oct 2011 

5 Spain yes 240 dense heathland 27 32 82 May 2013 

6 Spain yes 300 fire break 20 25 25 May 2013 

7 Spain no 0 dense heathland 0 0 0 Mar 2014 

8 Spain yes 60 dense heathland 35 0 0 Mar 2014 

9 Spain no 0 dense heathland 0 0 0 Oct 2011 

10 Spain yes 100 dense heathland 0 3 5 Mar 2014 

11 Spain no 0 dense heathland 0 0 0 Oct 2011 

12 Morocco yes 300 disturbed heathland 57 8 2 spring13 

13 Morocco no 0 dense heathland 0 0 0 Oct 2011 

14 Morocco no 0 disturbed heathland 0 0 0 Oct 2011 

15 Morocco no 0 pine plantation 0 0 0 Oct 2011 

16 Morocco yes 400 road-side disturbed 

patch 

50 9 19 

June 2013 

17 Morocco yes 120 pine plantation 126 4 25 June 2013 

18 Morocco no 0 disturbed heathland 0 0 0 Sept 2012 

19 Morocco yes 240 road-side, dense 

pine stand 

34 9 20 

June 2013 

20 Morocco no 0 small heathland 

patch surrounded 

by settlement 

0 0 0 

Sept 2012 

21 Morocco yes 400 disturbed heathland 47 17 40 June 2013 

22 Morocco yes 60 road-side, dense 

pine stand 

3 0 3 

June 2013 

23 Spain yes 500 heathland burned 

2009 

23 2 15 Apr 2014 

24 Spain yes 100 dense heathland 1 2 2 Apr 2014 

25 Spain yes 300 heathland burned 

2008 

3 3 2 Apr 2014 

26 Spain yes 100 dense heathland 0 4 15 Apr 2014 

 Spain no 0 sparse eucalipt 

plantation 

0 0 0 Apr 2013 

27 Spain yes 540 disturbed heathland 16 8 8 Apr 2014 

28 Spain yes 350 heathland burned 

2010 

6 20 2 Apr 2014 

29 Spain yes 640 heathland burned 52 21 35 Apr 2014 
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2009 

30 Morocco yes 850 fire break 93 76 132 June 2013 

31 Morocco yes 400 sparse pine 

plantation 

35 20 40 June 2013 

32 Morocco yes 325 disturbed heathland 7 15 28 June 2013 

33 Morocco yes 680 fire break, sparse 

pine plantation 

21 2 33 June 2013 

34 Spain yes 650 disturbed heathland 221 113 87 June 2013 

35 Spain yes 600 disturbed heathland 19 18 17 June 2013 

36 Spain yes 400 fire break 65 103 66 June 2013 

37 Portugal yes 200 road-side pine 

plantation 

13 26 43 Mar 2013 

38 Portugal yes 180 eucalipt plantation 10 51 19 Mar 2013 

39 Portugal no 0 cultivated land 0 0 0 Mar 2013 

40 Portugal yes 950 road-side eucalipt 

plantation 

52 24 46 Mar 2013 

41 Portugal yes 60 road-side distubed 

patch 

8 10 28 Mar 2013 

42 Portugal yes 60 road-side distubed 

patch 

31 28 23 Mar 2013 

43 Portugal no 0 road-side oak 

plantation 

0 0 0 Mar 2013 

44 Portugal no 0 dune 0 0 0 Mar 2013 

45 Spain yes 60 sparse pine 

plantation 

1 7 0 Apr 2013 

46 Spain yes 300 disturbed patch 

(quarry) 

196 99 83 Mar 2014 

47 Spain yes 60 pine plantation 15 0 0 Mar 2014 

48 Spain yes 120 road-side distubed 

patch 

76 16 21 Mar 2014 

49 Spain yes 100 dense heathland 126 48 129 Mar 2014 

50 Spain yes 60 road-side distubed 

patch 

6 5 5 Mar 2014 

51 Spain yes 60 road-side distubed 

patch 

30 17 42 Mar 2014 

52 Spain yes 100 pine plantation 94 11 13 Mar 2014 

53 Spain yes 60 dense heathland 8 5 1 Mar 2014 

54 Spain yes 80 pine plantation 62 5 10 Mar 2014 

55 Spain yes 1100 fire break 104 17 51 Mar 2014 

56 Spain yes 360 fire break 45 13 60 Mar 2014 

57 Spain yes 500 heathland/ strongly 32 1 39 Mar 2014 



Chapter 6 – Appendix S1 – continued 

~ 159 ~ 
 

disturbed pine 

plantation 

58 Spain yes 240 sparse cork oak & 

pine plantation 

68 80 90 Mar 2014 

59 Spain yes 900 recently plowed 

cork oak plantation 

150 58 156 Mar 2014 

60 Spain yes 60 road-side, managed 

pine stand 

12 2 18 Mar 2014 

61 Spain no 0 strongly disturbed 

pine plantation 

0 0 0 Mar 2014 

62 Portugal no 0 cultivated land 0 0 0 Mar 2014 

63 Portugal yes 400 sparse cork oak 

plantation 

194 0 6 Mar 2014 

64 Portugal no 0 dense heathland 0 0 0 Mar 2014 

65 Portugal yes 60 small heathland 

patch surrounded 

by settlement 

7 1 3 Mar 2014 

66 Portugal yes 60 recently plowed 

cork oak plantation 

56 8 4 Mar 2014 

67 Portugal no 0 sparse cork oak 

plantation 

0 0 0 Mar 2014 

 Portugal yes 60 sparse eucalipt 

plantation 

102 11 31 Mar 2014 

68 Portugal yes 0 densely vegetated 

cork oak forest 

0 0 0 Mar 2014 

69 Portugal yes 90 disturbed cork oak 

stand 

29 17 31 Mar 2014 

70 Portugal yes 150 disturbed pine 

stand/ heathland 

39 19 38 Mar 2014 

71 Portugal no 0 recently plowed 

cork oak plantation 

0 0 0 Mar 2014 

72 Portugal no 0 recently plowed 

cork oak plantation 

0 0 0 Mar 2014 

73 Portugal no 0 sparse cork oak/ 

pine stand 

0 0 0 Mar 2014 

74 Portugal no 0 recently plowed 

cork oak plantation 

0 0 0 Mar 2014 
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CHAPTER 7 

Interacting livestock and fire may both threaten and increase viability of a fire-

adapted Mediterranean carnivorous subshrub 

Maria Paniw, Pedro F. Quintana-Ascencio, Fernando Ojeda, and Roberto Salguero-Gómez 

This chapter is under review in Journal of Applied Ecology. 

 

7.1 Abstract 

Fires are widespread natural disturbances and determine population dynamics of many 

species. However, fire regimes are being increasingly modified by and interact with human 

activities, while the effect of such interactions on population dynamics of fire-adapted 

species remain poorly understood. We used demographic data of the carnivorous, post-fire 

recruiting plant Drosophyllum lusitanicum, endemic to heathlands in the southwestern 

Mediterranean Basin, to investigate whether increasing human disturbances in fire-prone 

ecosystems may pose a threat or an opportunity to improve population viability. We fit 

stochastic integral projection models and simulated population dynamics under different 

combinations of two key disturbance types affecting populations: fire and livestock 

browsing/trampling. We used perturbation analyses to determine potential long-term 

consequences of maintaining fundamentally different disturbance types. Despite most 

populations inhabiting browsed habitats, simulations showed a generally higher extinction 

risk in populations under high livestock pressure compared with ones under low or 

moderate pressure. Extinction risk decreased when fire return intervals shortened in 

populations under low/moderate livestock pressure; however, the opposite pattern emerged 

in heavily browsed populations, where short intervals between fires increased extinction. 

Elasticity analyses showed that decreases in viability under frequent disturbance 

interactions (heavy browsing and frequent fire) may be explained by selection against seed 

dormancy in populations with frequent browsing/trampling, potentially causing population 

collapse when a fire kills above-ground plants without populations being able to recover 

from a seed bank. Biodiversity patterns in the Mediterranean Basin have been shaped by 
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humans for millennia, and integrating moderate human activities into fire management may 

increase the success of species conservation. However, replacing fires by human 

disturbances, a currently widespread strategy in the southwestern Mediterranean Basin and 

elsewhere, may have severe consequences for fire-adapted species, fundamentally altering 

population dynamics and selection pressures and decreasing viability.  

Keywords: Drosophyllum lusitanicum, elasticities, fire, integral projection models (IPM), 

livestock disturbance, quasi-extinction, stochastic population growth rate (log λs) 

 

7.2 Introduction  

Natural disturbances are key drivers of population dynamics (Tuljapurkar 1990; Boyce et 

al. 2006; Turner 2010). Among the various disturbance regimes to which natural 

populations are exposed, fires are the most widespread, regularly affecting 50 % of the 

Earth’s surface (Bond and Keeley 2005; Chuvieco et al. 2008). In turn, many plant species 

in fire-prone habitats evolved strategies that link critical life-cycle transitions to fire, e.g. 

post-fire recruitment from persistent seed banks (Bond and Keeley 2005). However, human 

activities increasingly interact with natural fire regimes (Lawson et al. 2010; Keeley et al. 

2012). Beyond merely changing fire regimes through fire suppression policies or changes 

to land management (Valdecantos et al. 2008; Steel et al. 2015), humans have introduced 

small-scale disturbances, typically involving vegetation removal, harvesting of plant parts, 

or intense livestock browsing, that co-occur with fires and affect an increasing number of 

fire-adapted species (e.g., Lawson et al. 2010; Mandle et al. 2015; Tye et al. 2016). Yet, the 

demographic consequences of multiple, potentially interacting disturbance regimes remain 

poorly understood in many fire-prone ecosystems (Ehrlén et al. 2016; Tye et al. 2016).  

Population dynamics of fire-adapted species may not necessarily be negatively 

affected by human disturbances. For example, when post-fire regeneration is triggered by 

indirect cues such as increased light levels or removal of allelopathic compounds (Ooi et al. 

2014; Renne et al. 2014), disturbances that mimic the effect of fire of removing vegetation 

may allow for continuing recruitment even as fire return intervals decrease (Bond and 

Kelley 2005; Quintana-Ascencio et al. 2007). In addition, human disturbances may 
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decrease competition between plants and therefore increase survival and growth (Sánchez-

Velásquez et al. 2002; Tye et al. 2016).  

However, small-scale, chronic human disturbances are fundamentally different from 

rare fire events and can lead to lasting changes in population structure and dynamics of fire-

adapted species (Quintana-Ascencio et al. 2007; Lawson et al. 2010; Chapter 6). For 

example, by significantly increasing plant longevity or fecundity, disturbances such as 

repeated vegetation removal exert novel selection pressures on organisms (Palkovacs et al. 

2012), and their interaction with periodic high-intensity fires may severely destabilize 

populations and result in extinction (Mandle et al. 2015; Darabant et al. 2016). For 

conservation management, quantifying both the potential long-term changes in population 

dynamics under human disturbances and the demographic effects of disturbance 

interactions in fire-prone ecosystems will be critical to assess the viability of fire-adapted 

species under increasing human pressures (Ashley et al. 2003; González-Varo et al. 2015).  

Here, we use Drosophyllum lusitanicum (L.), Link (Drosophyllaceae) 

(Drosophyllum hereafter) to investigate the effects of interacting disturbances on population 

dynamics of a fire-adapted plant species. This rare carnivorous subshrub is associated with 

fire-prone, highly biodiverse heathlands in the SW Iberian Peninsula and N Morocco 

(Garrido et al. 2003). In natural heathlands, Drosophyllum has a life cycle typical of a 

short-lived seeder species (e.g. Menges and Quintana-Ascencio 2004; Fig 1a), germinating 

from a persistent seed bank after fire (Müller and Deil 2001). Seed germination is triggered 

by both heat and removal of surrounding vegetation (Correia and Freitas 2002; Chapter 5). 

However, with prevailing fire suppression policies across the species' range (Turco et al. 

2016), most populations persist in habitats where chronic human disturbances - shrub 

slashing or browsing and trampling by livestock and game - mimic the removal of shrub 

canopy by fire (Chapter 6). Populations exposed to human disturbances show a markedly 

different population structure (longer above-ground survival of adult plants and annual 

recruitment; Chapter 6) than fire-disturbed heathland populations but experience fire 

occasionally (Plan INFOCA 2012; Fig. 1). With increasing local extinctions across the 

species’ range (Correia and Freitas 2002), assessing population viability under different 

combinations of disturbances is not only important for conservation of heathland 
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biodiversity but may also shed light on the potential fate of fire-adapted seeder species in 

Mediterranean ecosystems.  

We quantified the dynamics of Drosophyllum populations exposed to variable time 

since last fire and two levels of browsing/trampling pressure by domestic ungulates (Fig 

1b). We asked (i) under what conditions disturbance interactions may cause population 

extinction vs. persistence. As population dynamics in human-disturbed habitats may differ 

from ones in natural heathlands (Chapters 5, 6), we also asked (ii) how chronic disturbances 

may change selection pressures and what consequences such changes may have for 

management of this species. To answer the questions, we parameterized integral projection 

models (IPMs) and evaluated the effect of interactions between the two disturbance types 

on the stochastic population growth rate (log λs) and probability of quasi-extinction (Pq(t)) 

using stochastic simulations while assessing parameter uncertainty under a Bayesian 

framework. Finally, we used prospective perturbations of vital rates to investigate selection 

pressures imposed by various regimes of interacting disturbances. We provide fully 

commented R scripts of our analyses, which can be adapted to quantify population-level 

effects of multiple disturbances in a wide range of systems. 
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Figure 1 The carnivorous subshrub Drosophyllum lusitanicum shows life-cycle adaptations to recurrent fires 

and occurs in a fire-prone Mediterranean biodiversity hotspot.  (a) In the integral projection models, life-cycle 

transitions (here simplified to stages) were represented by 12 vital rates (blue); Solid and dashed arrows 

represent transitions of survival [above-ground (σ) or seed bank (staySB, outSB)]/growth [above-ground (γ) or 

seedling size (φ4)] and fecundity [flowering probability (φ0), # stalks (φ1), # flowers/stalk (φ2), # seeds/flower 

(φ3), immediate germination (goCont), and seed-bank ingression (goSB) or egression (outSB)], respectively; 

σS – above-ground seed survival. (b) The study sites (different letters) in which demographic data were 

collected all had burned at least once since 1975 and differed in time-since fire (TSF) and livestock pressure, 

populations exposed to either high (squares) or low (circles) browsing and trampling of vegetation by 

domestic ungulates. 
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7.3 Materials and methods 

7.3.1 Study system and demographic data 

To quantify vital-rate transitions in Drosophyllum, we parameterized integral projection 

models (IPMs; Easterling et al. 2000) with census and experimental field and laboratory 

data. We estimated vital rates of individuals with above-ground biomass from five annual 

censuses (every April 2011-2015) of a total of 2,378 individuals in eight populations (Fig. 

1b). The populations differed with respect to (i) livestock pressure (LS) from 

browsing/trampling, experiencing either high (HLS; human-disturbed populations) or low 

(LLS; natural fire-disturbed heathlands) pressure; and (ii) time-since-fire (TSF hereafter), 

between 1 and >26 years (Fig. 1b; Table S1.1 in Appendix S1). As Mediterranean 

heathland habitats do not change significantly in species composition and structure >3 

years after fire (Ojeda et al. 1996), we transformed TSF into a categorical variable 

consisting of 1, 2, 3, or >3 years since fire.  

The above-ground vital rates obtained from the census data included survival (σ), 

growth (γ), probability of flowering (φ0), number of flowering stalks (φ1), number of 

flowers per stalk (φ2), number of seeds per flower (φ3), and seedling size distribution the 

next year (φ4) (Fig. 1a). We used plant size = log(# of leaves × length of longest leaf (cm)), 

after model selection for σ, γ, φ0 and φ1, as the continuous state variable in all IPMs (see 

below). We also quantified above-ground seed survival from the demographic census data 

as σS = 1 – flower damage (Appendix S1). We then used this parameter to modify vital rates 

describing seed production (φ0, φ1, φ2, φ3, and φ4).  

We performed two field seed-burial experiments and a greenhouse germination trial 

to quantify seed fates and thereby the discrete, size-independent component of IPMs (Table 

1). Overall, > 5,100 seeds were used in the experiments (Fig. 1a; details in Appendix S1 

and chapter 5). Both field experiments were designed to ensure that seed-bank dynamics 

were measured at the same time scale as the rest of the species’ life cycle modeled. We 

buried seeds in open (recently burned) and vegetated (long unburned) heathlands and 

estimated seed survival in the soil, i.e., seed-bank stasis (staySB), and seedling 

establishment, i.e., the probability of establishment in the spring following seed dispersal 
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(goCont) and the probability of egression from the seed bank at least two springs after 

dispersal (outSB) (Fig. 1a). We defined the proportion of seeds entering the seed bank 

(goSB) as 1- goCont - ωS, where ωS = seedling mortality prior to the census (Appendix S1). 

In greenhouse trials, we exposed seeds to heat and smoke treatments and quantified 

germination, which we used as a proxy for seed-bank egression after fires (outSB in TSF0). 

For TSF0 and TSF1, staySB was estimated from an examination of Drosophyllum seeds in 

soil samples from recently burned patches (Appendix S1). 

7.3.2 Model parameterization  

We fit all vital-rate models in a Bayesian framework (as in Chapter 5), using normal (μ = 

0; 1/θ
2
 = 1×10

-06
) or uniform uninformative priors (Appendix S1). We used MCMC 

sampling to estimate the distributions of 206 model parameters quantifying vital rates. The 

MCMC sampling was run for 2,100,000 steps using three chains, and the parameter 

distributions were obtained from the last 100,000 MCMC samples, subsampling every 500
th

 

value (see vitalRateModels.R in Appendix S2). Convergence after the burn-in of 

2,000,000 steps was assessed visually and with posterior predictive checks. 

We modeled the above-ground vital rates as functions of the continuous predictor 

size using generalized linear mixed models (GLMMs). We accounted for environmental 

variability in all the models by including TSF and LS as fixed effects, and used site as a 

random effect (Table 1). Using DIC criteria, we chose the most plausible model for each 

vital rate (Table 1; see Appendix S1 for all candidate models), testing interactions between 

size, TSF, and LS. We also described the variance (τ) of the predicted distributions of mean 

growth (γ) and seedling size (φ4) as functions of TSF and LS, which provided a better 

model fit than assuming homoscedasticity of variance (Table 1). The number of seeds per 

flower (φ3) did not differ significantly between populations, and we treated it as a constant 

= 9.8 in all models.  

Vital rates describing immediate germination (goCont) or seed-bank dynamics 

(staySB, outSB) were defined as binomial functions, i.e., proportions of total seed number 

in open and vegetated experimental patches using block as random effect (Table 1). We 

then associated predictions obtained for the seed-bank models with TSF categories in each 
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LS state, assuming that estimates from open and vegetated patches represented seed-bank 

dynamics under HLS and LLS, respectively (Table S1.2). 

Table 1 Parameterization of the models used to describe vital rates of Drosophyllum lusitanicum. 

The models shown described the data best among several candidate models. Parameter superscripts 

indicate parameter names in the R scripts (Appendix S2). TSF – time since last fire. LS – lifestock 

pressure. PFS – post-fire habitat state. The parameters modeled were: α0 - intercept; αj,  αk, αp  - 

mean response at each TSF level j, LS level k, or PFS level p compared with α0; αjk - TSF × LS 

interaction; βc - slope for size; βjc , βkc - TSF × size and LS × size interaction, respectively; αs, αb -  

random effect on α0 for each site s or block b. Distributions B, ℵ, and NB - Bernoulli, normal, and 

negative binomial distribution, respectively. ∆DIC indicate the difference in values between the 

chosen model and the second-best model with fewer parameters, indicated by superscript letters a-f 

(Appendix S1). 

Vital rate Parameters Link function Likelihood 

distribution  

∆DIC 

     

Survival (σ) μsurv =  α0 + αj[TSF] + αk[LS] + αjk[TSF × LS]  

             +(βc + βjc[TSF]  + βkc[LS]) × size + αs[site] 

logit(σ) 

 
σ ~ B(μsurv) -82.0

f
 

Growth (γ) 

 
μgr =  α0 + αj[TSF] + αk[LS] + αjk[TSF × LS]  

             +(βc + βjc[TSF] + βkc[LS]) × size + αs[site] 

log (τgr) =  α0 + αj[TSF] + αk[LS] + αjk[TSF × LS] 

 

identity 

 

 

γ ~ ℵ(μgr,  τgr ) -25.0
f 

 

 

-112.0
ii
 

Probability of 

flowering (φ0) 

 

μfl = α0 + αj[TSF] + αk[LS] + αjk[TSF × LS]  

             +(βc + βjc[TSF]  + βkc[LS]) × size + αs[site] 

logit(φ0) 

 
φ0 ~ B(μfl) -90.0

f
 

Number of 

flowering stalks 

(φ1) 

 

μfs = α0 + αj[TSF] + αk[LS] + αjk[TSF × LS]  

             +(βc + βjc[TSF]  + βkc[LS]) × size + αs[site] 

log(φ1) φ1 ~ NB( ρfs, μfs) -5.0
f
 

Number of flowers 

per stalk (φ2) 

 

μfps = α0 + αj[TSF] + αk[LS] + αjk[TSF × LS]   

            + βc × size + αs[site] 
 

log(φ2) φ2 ~ NB( ρfps,   μfps) -7.0
c
 

Seedling size (φ4) 

 
μsds =  α0 + αj[TSF] + αk[LS] + αjk[TSF × LS]   

               + αs[site] 

log (τsds) =  α0 + αj[TSF]  

identity φ4 ~ ℵ(μsds,  τsds ) -5.0
d 

 

-48.0
h
  

     

Immediate 

germination 

(goCont) 

 

μgoCont = α0 + αp[PFS] + αb[block] logit(goCont) goCont ~ B(μgoCont) -38.2
a
 

Stasis is seed bank 

(staySB) 

 

μstaySB = α0 + αp[PFS] + αb[block] logit(staySB) staySB ~ B(μstaySB) -6.8
a
 

Egression from 

seed bank (outSB) 
μoutSB = α0 + αp[PFS] + αb[block] logit(outSB) outSB ~ B(μoutSB) -206.0

a
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7.3.3 IPM construction  

In order to associate environmental states with vital rates in stochastic simulations (see 

below), we built IPMs from the 600 posterior estimates of vital rates for each combination 

of the five TSF, two LS, and eight site-effect estimates (see makeIPM.R in Appendix S2). 

The IPMs consisted of two coupled equations integrated over L = 0 and U = 9.6 sizes x at t 

to give a vector of sizes y at t+1. The lower and upper integration limits corresponded to 0.9 

× minimum observed size and 1.1 × maximum observed size, respectively. The first of the 

two equations describes seed-bank dynamics (S) at t + 1 through the contribution of seeds 

produced by above-ground individuals (goSB) and seeds remaining in the seedbank 

(staySB) at t: 

                S(t + 1) = S(t)staySB + ∫ φ0(x)

U

L

φ1(x)φ2(x)φ3σSgoSBn(x, t)dx                       (1)  

The second equation describes the dynamics of above-ground individuals through 

establishment of seedlings from the seed bank, survival of established individuals, and 

contributions of seedlings by reproductive individuals at t:  

  n(y, t + 1) = S(t)outSBφ3(y) + ∫[σ(x)γ(y, x) + φ0(x)φ1(x)φ2(x)φ3σSgoCont

U

L

φ4(y)]n(x, t)dx      (2)  

IPMs for TSF0 (burning) consisted of stasis in and germination from the seed bank, with 0 

transition probabilities elsewhere, reflecting the death of above-ground individuals by fire. 

7.3.4 Stochastic simulations  

We investigated the effects of disturbance interactions on viability and selection pressures 

of Drosophyllum by simulating population dynamics from the IPMs. Environmental 

variability in the simulations consisted of stochastic transitions between TSF and LS states. 

We simulated stochastic TSF transitions as a Markov-chain process with states 

corresponding to TSF categories: 0, 1, 2, 3, and > 3 years after fire, and transitions 

corresponding to probability of fire (ρ) = 1/fire return interval (Fig. 2). We used 10 fire-

return intervals, from 10 to 100 years at 10-year increments (Fig. 2), which characterize the 

fire-frequency range in the study region (Ojeda 2009).  
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Figure 2 Description of stochastic simulations used to model the effects of fire and livestock 

browsing/trampling on the population dynamics of Drosophyllum lusitanicum. We performed 100 simulations 

for each of 600 posterior parameter samples, by considering (a) only stochastic transitions, with probability ρ, 

in fire states but assuming fixed livestock-pressure states, and (b) stochastic transitions in fire and livestock-

pressure states (with transition probabilities defined by c1 and c2). The resulting environmental transition 

matrices produced different sequences of IPMs representing each state (examples). TSF: time since fire (0, 1, 

2, 3, or >3 years); HLS: high livestock pressure; LLS: low livestock pressure; s: random sites (1-8). 
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Stochastic transitions between HLS and LLS were based on different scenarios of 

heathland conservation. First, we explored the differences in dynamics of populations 

where high livestock pressure (HLS) is maintained (no conservation) compared with 

dynamics in natural fire-disturbed populations under low livestock pressure (LLS). We 

therefore modeled populations fixed in their respective LS state. Here, fires could occur in 

each LS state independently, and stochastic simulations varied for TSF transitions only 

(Fig. 2a; sLambdafixedLS.R in Appendix S2).  

Second, we explored the effects on population dynamics when livestock pressure, in 

addition to fire, varied in a given population, representing variable conservation efforts 

(Paniw et al., 2015). We therefore considered transitions between LS states and integrated 

TSF and LS into one Markov chain with states determined by each combination of TSF and 

LS (Fig. 2; sLambdaStochLS.R in Appendix S2). LS transitions were defined by three 

probabilities (c1) of a population experiencing HLS at t and remaining in HLS at t+1, 

depicting low to high conservation of natural heathlands: 0.99 (high Pr(HLS)), 0.5 

(moderate Pr(HLS)), or 0.2 (low Pr(HLS)) (Fig. 2b). Accordingly, populations transitioned 

from HLS to LLS with probabilities = 1 – Pr(HLS). In turn, populations experiencing LLS 

at t could face high livestock pressure at t+1 with probabilities c2: 0.5, 0.3, or 0.1 in TSF>3. 

The latter probabilities were derived from estimates of rates of human disturbance (% of 

habitat loss in the last 20 years) in mature heathlands across the range of Drosophyllum: in 

Portugal where habitat degradation is largest (0.5), in Morocco where degradation is 

moderate (0.3), and in Southern Spain where the proportion of natural heathland habitats is 

largest (0.1) (Chapter 6). In TSF3, populations under LLS transitioned to HLS with 

probabilities arbitrarily fixed at 0.1 to mimic low herbivory pressure in natural habitats.  

For each scenario of heathland conservation, we ran 100 simulations, each for 4,500 

years (Fig. 2). We included parameter uncertainty by running the 100 simulations for each 

of the 600 MCMC samples of parameters (Table 1; Chapter 5). At each of the 4,500 

iterations during a simulation, an environmental state (combination of TSF and LS) was 

picked based on the state transition probabilities given by the Markov chain. That state was 

represented by one of eight IPMs, corresponding to each of the eight estimates of the 

random site effect at a given TSF×LS combination (Fig. 2). For each simulation, we 
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calculated the stochastic population growth rate, log λs, as in Trotter et al. (2013) discarding 

the first 500 years. We also obtained the probability of quasi-extinction at t=150 years, 

Pq(150 years) where populations were considered extinct when the total number of 

individuals (including seeds in the seed bank) N<100.  

To infer differences in selection pressures on life-history strategies of populations 

exposed to different combinations of fire and livestock disturbances, we perturbed each 

vital rate used to compose the IPMs by its mean, µ, and standard deviation, σ, across all 

environmental states (Haridas and Tuljapurkar 2005; see Appendix S3 for details and R 

scripts in Appendix S2 for examples). We then used the chain rule to calculate (i) how 

these perturbations affected the IPM kernels, and (ii) how the latter in turn affected log λs. 

These calculations provided us with elasticities, Ea
µ

 and Ea
σ, of a = log λs to changes in the 

mean and variance of vital rates, respectively. These two measures quantify the strength of 

selection pressures on life-history traits in stochastic environments (Haridas and 

Tuljapurkar 2005). Here, we used a subset of four fire return-intervals and excluded 

parameter uncertainty for simplicity and computational efficiency. We calculated average 

(± 95 % non-parametric CI) Ea
µ
 and Ea

σ across the 100 stochastic simulations. 

7.4 Results 

7.4.1 Disturbance interactions and population viability  

Our simulations of the stochastic population growth rate, log λs, showed significant 

interactive effects between fire regimes and livestock pressure on Drosophyllum 

populations. In populations maintained under low livestock pressure (LLS) but 

experiencing varying fire regimes, mean log λs (across simulations and parameters) 

decreased and mean probability of quasi-extinction Pq(150 years) increased monotonically 

as the fire return interval shortened (Fig. 3 a, b). However, populations maintained under 

high browsing (HLS) showed the opposite trend with mean log λs increasing and mean 

Pq(150 years) decreasing monotonically with extended fire return interval (Fig. 3a, b). In 

populations maintained under HLS, lowest Pq(150 years) ≈ 0.5, remaining high even at a 

fire return interval of 100 years. When livestock pressure, in addition to fire, was assumed 

to vary through time in a given population, log λs and Pq(150 years) patterns in populations 
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under high and low/moderate Pr(HLS) were very similar to ones in populations maintained 

under HLS and LLS, respectively (Fig. 3c, d). However, populations under moderate 

browsing, or moderate Pr(HLS), had highest log λs across all fire return intervals, ranging 

from 0.15 (10 year return interval) to 0.05 (100 year interval) - much higher compared with 

populations maintained under LLS, ranging from 0.13 (10 year interval) to -0.05 (100 year 

interval) (Fig 3 a, c). Consequently, Pq(150 years) were lowest (< 0.10) under moderate 

browsing at a fire return interval of 10 years. 

 

Figure 3 Stochastic population growth rate, log λs (a, c) and probability of quasi-extinction after 150 years, 

Pq(150 years) (b, d), across stochastic simulations of interactions of 10 fire return intervals and livestock (LS) 

pressure, high (HLS) or low (LLS). For each fire return interval, LS states were either fixed (a, b) or 

fluctuated stochastically (c, d). In the latter, probabilities to change LS states were determined by high, 

intermediate, and low probability of HLS in time t. Values at each fire return × LS combination depict mean 

of 60,000 log λs from 600 samples of the posterior parameter distributions and 100 stochastic simulations of 

log λs obtained for each parameter value. Error bars depict variance attributed to parameter uncertainty. σ
2 

 = 

proportion of log λs variance explained by parameter uncertainty for simulations using HLS and LLS. Bars of 

log λs crossing horizontal dotted line correspond to constant population sizes through time. 
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A great deal of uncertainty, largely due to vital-rate parameter estimation (Fig. 1), 

was associated with the mean estimates of log λs across simulations (Fig 3a, c; Fig. S3.1a, c 

in Appendix S3). High parameter uncertainty resulted in the 95 % CI of log λs estimates 

always including 0 values, implying little certainty in effect of both disturbances on long-

term stochastic dynamics (Fig. S3.1a, c in Appendix S3). However, parameter uncertainty 

did not change the general trend in the response of log λs and Pq(150 years) to varying fire 

and livestock disturbances. 

7.4.2 Selection of life-history strategies under different disturbance regimes 

Selection pressures, quantified by elasticities Ea
µ

 and Ea
σ, differed starkly in populations 

maintained under HLS compared to ones exposed to LLS and largely disturbed by fire. 

Whereas under LLS, mean increases in seed-bank stasis (staySB) and egression (outSB) 

were critical in increasing log λs, vital rates describing survival (σ), growth (γ), flowering 

(φ0), and immediate germination (goCont) were under much stronger selection relative to 

other vital rates under HLS (Fig. 4).  The importance of σ, γ, φ0 as well as goCont and 

outSB increased with extending fire return interval in populations maintained under HLS 

(Fig. 4a). The same occurred for staySB and outSB in populations under LLS. 

Our simulations showed that vital-rate variation was largely selected for and against 

in populations under HLS and LLS, respectively. In HLS populations, increases in the 

standard deviation of above-ground vital rates were favored across fire return intervals, 

although Ea
σ were small compared to LLS populations (Fig. 4b). In LLS populations, 

variability in above-ground vital rates (Table 1) as well as staySB and outSB would 

potentially threaten populations, while variability in the remaining vital rates had negligible 

effects log λs (Fig. 4b; Appendix S3).  

Ea
µ

 and Ea
σ for vital rates in populations exposed to varying livestock pressures 

under high probability of HLS were similar to the ones maintained under HLS while those 

with low probability of HLS were similar to ones maintained under LLS. When 

probabilities of changing from LS states were intermediate, increases in above-ground vital 

rates and seed-bank stasis resulted in high Ea
µ

 and Ea
σwith increasing fire return interval 

(Fig. S3.3). 
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Figure 4 Elasticities of log λs to changes in (a) the average (Ea
µ
) and (b) standard deviation (Ea

σ)  of 10 vital 

rates obtained from stochastic simulations of four fire return intervals using vital rates from populations 

exposed to high (HLS) and low (LLS) livestock pressure. See Appendix S3 for details on calculations. Vital 

rates denoted by green and orange colors represent above-ground processes [survival (σ), growth (γ, φ4), and 

reproduction (φ0, φ1, φ2)] and seed fates [immediate germination (goCont) and seed-bank ingression (goSB), 

stasis (staySB) and egression (outSB)], respectively. Error bars show a 95 % non-parametric CI calculated 

from 100 simulations at each fire return. 

 

7.5 Discussion 

In Mediterranean and other fire-prone ecosystems, human disturbances have been 

increasingly replacing or interacting with natural fire disturbances in the last century 

(Turner 2010; Duwyn and MacDougall 2015; Tye et al. 2016). Our study suggests that 

combining different disturbance regimes, rather than substituting human disturbances for 

fire, may enhance the conservation of fire-adapted seeder species (Fuhlendorf et al. 2009; 

Fernandes et al. 2013). On the other hand, fire management aimed at chronic removal of 
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potential fuel to decrease the probability of burning (Valdecantos et al. 2008) may 

compromise the viability of species and may therefore decrease local biodiversity. This is 

in part because chronic small-scale disturbances may select against life-history adaptations 

to severe disturbance events and compromise populations when such disturbances 

inevitably occur. By assessing differences in selection pressures exerted by fundamentally 

different disturbances, this study highlights emerging issues for the management of fire-

adapted species increasingly found in human-disturbed habitats (Bonebrake et al. 2014). 

Due to the high parameter uncertainty associated with vital-rate estimates in our 

analyses, which has been demonstrated in stochastic population models for other fire-

adapted species (Evans et al. 2010), we cannot reliably predict the exact long-term fates of 

our studied populations. However, our results allow us to compare potential selection 

pressures and population dynamics under different combinations of disturbance regimes 

and infer management strategies (e.g., Mandle et al. 2015).  

7.5.1 Human-fire interactions are opportunity and threat to conservation 

Many species with flexible strategies to buffer environmental variability may have the 

potential to adapt to human disturbances (McKinney and Lockwood 1999; Hendry et al. 

2008). Some species even show higher growth rates in human-disturbed habitats compared 

to naturally-disturbed ones (e.g., Vieira-Neto et al. 2016; Tye et al. 2016). Our simulations 

showed that growth rates were consistently higher and risk of extinction lower in 

Drosophyllum populations under varying livestock pressures compared with ones 

maintained under low pressures. The positive effects of browsing may be explained by the 

fact that for a large number of species, including Drosophyllum, moderate levels of 

livestock browsing and trampling may be typical of prehistoric conditions where ungulates 

were abundant and created open space for periodic recruitment in between large-scale 

disturbance events (Pykälä 2000; Velle et al. 2014). Such periodic recruitment and 

subsequent seed input into the seed bank has been shown to ensure population viability 

under a wide range of natural disturbance regimes for threatened (Pardini et al. 2015) and 

invasive (Renne and Tracy 2007) species alike. In the southwestern Mediterranean Basin, 

where fire suppression remains a management goal (Andrés and Ojeda 2002; Valdecantos 
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et al. 2008), our study shows that recurrent fires, in combination with browsing, are instead 

needed to conserve heathland biodiversity (Baeza et al. 2007; Fernandes et al. 2013). 

Despite human activities potentially playing a positive role in the conservation of 

fire-adapted species, our simulations suggest that substituting fires by human disturbances 

may compromise population viability. For Drosophyllum, populations maintained under 

high browsing pressure showed consistently high Pq(150 years) ≈ 0.5, even when fire return 

intervals extended (Fig. 3). When also burned frequently, as is likely to occur despite fire 

suppression (Syphard et al. 2009), such populations are not viable (Fig. 3). Frequent 

disturbance interactions have been shown to reduce population viability of a number of 

species (e.g., Lawson et al. 2010; Mandle et al. 2015; Darabant et al. 2016). In this sense, 

the apparent persistence of Drosophyllum populations in human-disturbed habitats (Chapter 

6) may constitute an extinction debt by which true extinction will inevitably follows a time 

lag inversely proportional to rates of population turnover – in our case slowed by the seed 

bank (Tilman et al. 1994; González-Varo et al. 2015).   

7.5.2 Understanding selection pressures under different disturbances to improve 

management 

In this study, we aimed to understand the demographic processes that may lead to 

population collapse under frequent human and fire disturbances. Elasticity analyses showed 

that human disturbance favored survival and growth of established Drosophyllum 

individuals and yearly germination over seed-bank stasis, which was selected for in fire-

disturbed populations. As immediate germination vs. ingression into the seed bank 

constitutes a direct trade-off (Cohen 1966), a depleted soil seed bank may be expected in 

human-disturbed populations. In such populations, higher fitness (and viability) may be 

achieved through increases in survival of reproductive individuals, which may confer more 

tolerance to year-to-year environmental variation and high seedling mortality caused by the 

nature of human disturbances (Morris et al. 2008). The fact that elasticities of log λs to 

increases in vital-rate variability are almost negligible for critical above-ground vital rates 

(Fig. 4b) may indicate that increased longevity in human-disturbed populations is buffering 

against variability in vital rates (Morris et al. 2008).  At the same time, high levels of 

browsing/trampling may increase damage to reproductive structures and mortality of plants, 
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either directly or indirectly via exposure to adverse microhabitat conditions (e.g., solar 

radiation or wind; Peñuelas et al. 2007; M. Paniw, unpbl. data). Therefore, when human 

disturbances occur frequently or co-occur with fires, the increased environmental 

variability leads to higher mortality of aboveground individuals, which cannot be 

compensated by germination from a diminished seed bank. This phenomenon may explain 

the frequent population collapse in human-disturbed habitats of Drosophyllum (Garrido et 

al. 2003) as well as other fire-dependent species (Quintana-Ascencio et al. 2007).  

It is alarming then that most natural populations of Drosophyllum are found in 

human-disturbed habitats, some persisting even >50 years after fire (chapter 6). 

Conservation of Drosophyllum populations under high livestock pressure must differ to 

conservation in fire-disturbed, natural heathlands. Whereas in the latter, introduction of 

moderate browsing disturbances while preserving the seed bank is important, the former 

must protect large above-ground individuals and attempt to reestablish a seed bank before 

fire management can be introduced. Considering selection pressures exerted by different 

disturbance types is therefore crucial for a proper management of populations. At the same 

time, a full analysis of life-history evolution and its application to management - beyond 

the scope of this study - would need to consider vital-rate trade-offs. In human-disturbed 

populations of Drosophyllum, where several above-ground vital rates are under strong 

selection (Fig. 4), such tradeoffs and plant physiology will likely constrain potential 

adaptations and population dynamics in the absence of fires (Benton et al. 2006).  

Overall, our analyses emphasize that detailed analyses of various environmental 

drivers are needed in a world where human activities increasingly affect natural ecosystems 

(Turner 2010). We encourage ecologists to explore on interactions of environmental drivers 

while assessing uncertainty in analyses, which allows for more robust interpretations of 

patterns (Evans et al. 2010; Elderd and Miller 2016). 
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7.8 Appendix S1 - Details on study design and parameterization of vital-rate models 

Here, we provide details on (A) the biology of the study species Drosophyllum lusitanicum 

(L.) Link. (Drosophyllaceae; Drosophyllum hereafter) and experiments performed to 

obtained seed related vital rates; (B) the parameterization of the Bayesian model to quantify 

vital rates and construct IPMs; and (C) diagnostic checks for convergence of the MCMC 

chains.    

7.8.1 Study sites and censuses/experiments 

The eight sites with Drosophyllum populations censused in this study differed in two 

disturbance types: fires (from 1 to > 20 years since last fire - TSF) and browsing by large 

mammalian herbivores (high or low livestock pressure, LS).  Figure S1.1 shows examples 

of sited affected by different disturbances while Table S1.1 shows all combinations of TSF 

× LS by site and year. 

 

Figure S1.1 Fire-disturbed (red) and human-disturbed (green) habitats in different time-since-fire (TSF) 

states. In fire-disturbed habitats, Drosophyllum plants (circled) germinate, stimulated by heat, and reproduce, 

replenishing the seed bank, in the first years after fires. Germination events are large. The upper-left photo 

shows M. Paniw censusing > 200 individuals in 1 m
2
. As soon as four years after fires, above-ground 

Drosophyllum individual are outcompeted by shrubs. In human disturbed habitats, open space for recruitment 

is maintained, and plants germinate into these open microhabitats annually, regardless of TSF.  
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Table S1.1 Time-since-fire (TSF, different colors) and livestock pressure [LS; either high (white 

background) or low (grey background) pressure] of the 8 populations monitored at each site-year 

combination. Populations that burned in a given year (September), were censused the following 

April at TSF1 

 Site A Site B Site C Site D Site E Site F Site G Site H 

2011 TSF>3 TSF>3 burned TSF2 TSF1 NA TSF3/ TSF>3 TSF2 

2012 TSF>3 TSF>3 TSF1 TSF3 TSF2 NA TSF>3 TSF3 

2013 TSF>3 TSF>3 TSF2 TSF>3 TSF3 burned TSF>3 TSF>3 

2014 TSF>3 TSF>3 TSF3 TSF>3 TSF>3 TSF1 TSF>3 TSF>3 

2015 TSF>3 TSF>3 TSF>3 TSF>3 TSF>3 TSF2 TSF>3 TSF>3 

 

We positioned HOBO data loggers (Onset Computer Corporation, 2013) 1 m above 

ground within each population to record temperature (
°
C) and relative humidity (%) in 

hourly intervals from January 2013-December 2015. The data loggers confirmed lack of 

microclimate differences among sites and years with the exception of summer relative 

humidity, which was higher at two sites in 2013 (Fig. S1.2). However, no climatic 

differences between sites occurred in the critical spring growing season (March-May). 

 

Figure S1.2 Mean (± S.E.) of seasonal temperature (a) and relative humidity (b) measured with HOBO data 

loggers at the eight study sites (site G is pooled across two populations) in 2013(dark blue), 2014 (medium 

blue) and 2015 (light blue).  The two populations pooled in G were measured with the same HOBO. Sites E 

and F were also measured with the same HOBO. 
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7.8.2 Demographic censuses  

We collected individual-level data in annual censuses between April 2011 and April 2015. 

Details of the design of the censuses can be found in Chapter 5 (Appendix S2). We 

quantified the size of all tagged individuals by measuring the sum of rosettes, number of 

leaves per rosette, and the length of the longest leaf. Individuals range in size between 1-17 

rosettes, and each rosette contains ~ 14 leaves (11.8 ± 5.6 cm in leaf length) but can contain 

up to 45 leaves. Rosettes are produced each growing season, at the onset of the rainy season 

(Adlassnig et al. 2006).  

We estimate the production of viable seeds per flower from randomly collected fruits of 

reproductive Drosophyllum individuals across all populations in which plants flowered in 

August 2012 and July 2014. We also quantified the number of damaged flower heads 

(mainly from herbivory or wind) in each population and year and averaged flower damage 

across time-since-fire (TSF) and livestock pressure (LS) categories (Fig. S1.3). 

 

Figure S1.3 Mean (± S.E.) percentage of flowers damaged on Drosophyllum individuals. HLS: high livestock 

pressure; LLS: low livestock pressure; TSF: time since last fire (years).  
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7.8.3 Seed-addition experiment – immediate and seed-bank germination 

We quantified immediate germination/seedling recruitment (goCont in the main text) and 

recruitment from the seed bank (outSB in the main text) from an in-situ experiment initially 

conducted at a natural-heathland site (close to site C; 36° 12' 16'' N, 5° 21' 39'' W) in 

August 2012 and repeated in August 2013. The experimental design is described in detail in 

Appendix S2 of Chapter 5. Briefly, we established seven randomized paired blocks with 

two treatments in each: burned/open (last fire in the summer of 2011; 15-30 % vegetation 

cover) and unburned/covered (last fire in the summer of 2005; > 75 % vegetation cover) 

patches. We sowed seeds in each patch type and recorded the number of seedlings in the 

spring (April) following sowing. Seeds that did not germinate in the following growing 

season, eight months after sowing, were considered the input into the seed bank. Seeds that 

germinated in the second growing season, 20 months after sowing, were considered 

germination out of the seed bank. In 2014 and 2015, we recorded seedling emergence in 

winter (February), in order to estimate the mortality of newly emerged seedlings from 

emergence to establishment in April (Fig. S1.4). 

7.8.4 Estimating correction parameters for seed and seedling survival between two 

censuses 

We used the information on flower damage (Fig. S1.3) to estimate the parameter σS = (1 – 

flower damage) depicting proportion of seeds surviving above ground. The σS  parameters 

in HLS habitats were estimated to be  σS = 0.35, 0.35, and 0.37 in TSF 2, 3, and >3, 

respectively. The equivalent estimates in LLS habitats were σS = 0.18, 0.20, and 0.18 (Table 

S.1.3 below). We used our estimates of seedling mortality before establishment to define 

seed-bank ingression as 1- goCont - ωS, where ωS = mortality in the seedling stage (Fig. 

S1.4). We averaged ωS across all treatments so that this rate corresponded to 0.03 in all 

models.   
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Figure S1.4 Mean (± S.E.) mortality of 50 sowed seeds as seedlings (before establishment as recruits) as 

function of burned and unburned habitat patches and two years in which mortality was measured. 

 

During our censuses, we likely overestimated seedling germination in long-

unburned populations under low livestock pressure due to a biased effort to find census 

locations of Drosophyllum populations. That is, we censused long-unburned heathlands 

where we spotted Drosophyllum plants, even if few and in declining populations. These 

plants likely persisted due to favorable microhabitat conditions that allowed for 

germination in the absence of fire; but these conditions are not presentative of the majority 

of long-unburned habitats, where populations persist only in the seed bank (M. Paniw, pers. 

obs.). As a consequence, we multiplied goCont and outSB by 0.2 in TSF>3 to approximate 

the lowest germination rates we observed in the seed burial experiments, i.e., mean(0.02, 

0.00)=0.1   

7.8.5 Growth-chamber experiment – seedling germination in response to fire cues 

We estimated germination from the seed bank after fire in a growth-chamber experiments 

as we did not have permission to perform in-situ burning experiments. We applied three 

fire treatments to Drosophyllum seeds: (a) heating seeds at 100 ºC for 5 minutes; (b) 

incubating seeds in a smoke solution (see Jaeger et al. 1996; Moreira et al. 2010) for 24 h; 
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and (c) combining treatments (a) and (b). Treated seeds along with dry (unmanipulated) and 

wet (incubation in distilled water) controls were placed in 10 petri dishes on moist filter 

paper (25 seeds per dish) and incubated for 3 months at 20 (± 2) ºC in darkness. 

Germination was checked every 2-3 days the first 1.5 months and twice a week thereafter. 

We quantified germination from the seed bank after fire (TSF0, see main text) as 0.81 

which corresponded to germination results from the fire × heat treatment, multiplied by the 

probability of seedling establishment, which we quantified as 0.84 and 0.45 corresponding 

to the proportion of emerged seedlings in February that survived to April in covered and 

open habitat patches, respectively, from the experiment detailed above (data not shown).  

7.8.6 Seed-burial experiment – survival in the seed bank 

Lastly, we estimated long-term seed-bank survival or stasis (staySB in main text) from an 

in-situ experiment identical to the germination experiment in design and location (see 

Appendix S2 in Chapter 5). Seed-bank survival was measured from bags buried for 1.5 

years in the soil, i.e., bags buried in September 2012 and 2013 and retrieved in April 2013 

and 2015, respectively. We pooled the data across the two years since we did not have 

enough data to model year as a random effect. 

7.8.7 Soil samples – density of seeds in soil in distinct post-fire habitats 

Additional seed-bank analyses conducted in the spring of 2012, in which we collected 20 

random soil samples from the eight study populations and counted viable Drosophyllum 

seeds in the samples, indicated depleted seed banks in early post-fire habitats (Fig. S1.5). 

We therefore assumed that only a small proportion of seeds (0.05-0.1) survives in the seed 

bank after fire (Table S1.3)  

7.8.8 Vital rates, model parameterization, and IPM construction  

As the seed-addition and seed-burial experiments were performed in burned and unburned 

patches and not in continuous time-since fire (TSF) habitats as was the case for above-

ground vital-rate transitions, we linked the results of the experiments to TSF by assigning 

seed dynamics from burned patches (B) to TSF1/TSF2 in LLS and TSF>3 in HLS habitats, 

since the browsing disturbance in populations experiencing HLS mimics the effect of fire 

of opening space. Similarly, results from unburned patches (U) were generally assigned to 
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TSF3/TSF>3 in populations experiencing LLS (Table S1.3). The approach of linking 

experimental data of seed dynamics to different post-fire states of populations is common 

(e.g., Quintana-Ascencio et al. 2003) but it downscales parameter estimates. However, as 

we only defined five TSF levels, an interpolation of experimental results was rather 

straightforward. In addition, actual germination rates in HLS and LLS populations across 

TSF levels agreed with the experimental data. For example, in populations experiencing 

HLS, actual germination = (# recruits at t+1)/(estimated # seeds at t) calculated from 

demographic data was 0.02 and 0.07 in TSF3 and TSF>3, respectively. Similarly, in 

populations experiencing LLS, actual germination was 0.06 and 0.004 in TSF3 and TSF>3, 

respectively. This does not deviate too much from experimental values for goCont + outSB. 

Using our estimates of seed dynamics (Table S1.3), we also simulated the number of 

seedlings produced at each TSF category assuming different initial numbers of seeds in the 

seed bank. Our simulations agreed with the range of seedling numbers observed during 

demographic censuses (Fig. S1.6).   

 

 

Figure S1.5 Number of seeds per m
2
 (extrapolated from 20 samples in 4 × 4 cm cores) in Drosophyllum 

populations (letters) characterized by different time since fire and livestock pressure (green: high pressure; 

orange: low pressure). Note that parts of site G burned in 2010, and this site therefore consists of two time-

since-fire states. 
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 Table S1.2 Summary statistics of demographic data based on five years of censuses of the carnivorous plant Drosophyllum lusitanicum at eight 

sites. The mean (± S.E.) vital rates of continuous stages (above-ground biomass) are provided for habitats experiencing high (HLS; white 

background) and low (LLS; grey background) livestock pressure N is the total number of individuals available to estimate a given vital rate. 

 

 TSF0 TSF1 TSF2 TSF3 TSF>3 

Survival (σ) HLS 0 0.73 (0.04) 

N = 103 

0.42 (0.03) 

N = 357 

0.28 (0.03) 

N = 170 

0.38 (0.02) 

N = 576 

LLS 0 0.63 (0.02) 

N = 852 

0.79 (0.02) 

N = 558 

0.20 (0.06) 

N = 514 

0.38 (0.02) 

N = 349 

Growth  (γ) HLS 0 0.50 (0.06) 

N = 75 

-0.33 (0.11) 

N = 150 

0.49 (0.14) 

N = 47 

0.50 (0.05) 

N = 225 

LLS 0 2.0 (0.03)  

N = 541 

-0.01 (0.03) 

N = 442 

0.2 (0.06) 

N = 104 

0.2 (0.05) 

N = 147 

Flowering probability (φ0) HLS 0 0 

 

0.24 (0.01)  

N = 357 

0.37 (0.02) 

N = 170 

0.12 (0.02) 

N= 648 

LLS 0 0 

 

0.12 (0.01) 

N = 602 

0.49 (0.02) 

N = 514 

0.44 (0.02) 

N= 491 

# flowering stalks (φ1)    HLS 0 

 

0 

 

1.0 (0.01) 

N = 87 

1.2 (0.06) 

N = 63 

1.2 (0.06) 

N = 94 

LLS 0 

 

0 

 

1.5 (0.23) 

N = 71 

1.8 (0.14) 

N = 254 

1.8 (0.11) 

N = 205 

# flowers/stalk (φ2) HLS 

 

LLS 

0 0 4.3 (0.29) 

N = 85 

2.9 (0.32) 

N = 63 

4.0 (0.20) 

N = 94 

0 0 6.1 (0.36) 

N = 71 

3.4 (0.1) 

N = 254 

2.9 (0.1) 

N = 205 

# seeds/flower (φ3) HLS 0 0 9.8 9.8 9.8 

LLS 0 0 9.8 9.8 9.8 

Seedling size (φ4) HLS 4.5 (0.02) 

N = 103 

4.5 (0.02) 

N = 103 

3.7 (0.16) 

N = 20 

3.4 (0.08) 

N = 18 

3.6 (0.03) 

N = 432 

LLS 3.04 (0.02) 

N = 849 

3.04 (0.02) 

N = 849 

4.03 (0.16) 

N = 13 

3.76 (0.08) 

N = 37 

3.72 (0.03) 

N = 203 
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Table S1.3 Extrapolation of seed-related vital rates calculated from field experiments to time since fire (TSF) categories and high (HLS) or low 

(LLS) livestock browsing pressure used to build integral projection models (IPMs) for Drosophyllum lusitanicum. The four vital rates estimated in 

burned/open (B) and unburned/covered (U) heathland patches (see methods) were modeled as binomial functions (Table 1); Constant values (†) of 

vital rates were obtained from soil seed bank cencuses (staySB in TSF0,1), a greenhouse germination trial (outSB in TSF0), measurements of 

seedling mortality (goSB in TSF2,3,>3), or censuses of actual field germination (c; see Appendix S1 for details); σS is seed survival in TSF2,3,>3 and 

high (H) and low (L) livestock pressure (see main text). 

     TSF0 TSF1  TSF2 TSF3 TSF>3 

Immediate 

germination (goCont) 

 

HLS 0 0 σS2H × goCont_U σS3H × goCont_B σS>3H × goCont_B  

LLS 0 0 σS2L × goCont_U 

R=14 

σS3L × goCont_U 

R=14 

σS>3L × goCont_U × c† 

R=14 

 

Ingression into seed 

bank (goSB) 

HLS 0 0 σS2H ×                            

(1-goCont_U-0.03†) 

σS3H ×                         

(1-goCont_B-0.03†) 

σS>3H ×  

(1-goCont_B-0.03†)  

LLS 0 0 σS2L ×                            

(1-goCont_U-0.03†) 

 

σS3L ×                         

(1-goCont_U-0.03†) 

σS>3L ×  

(1-goCont_U-0.03†)  

Stasis in seed bank 

(staySB) 

 

HLS 0.1† 0.05† staySB_B  staySB_B  staySB_B 

LLS 0.1† 0.05† staySB_B  

R=49 

staySB_U  

R=105 

staySB_U 

R=105 

 

Egression from seed 

bank (outSB) 

HLS 0.36† outSB_B× 0.45 outSB_U  outSB_B  outSB_B 

LLS 0.68† outSB_B× 0.84 

R=21 
outSB_U  

R=21 

outSB_U 

R=21  

outSB_U × c† 

R=21 
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Figure S1.6 Observed (red) and simulated (grey) range of number of seedlings as a function of time-since-fire 

(TSF) and livestock pressure (LS; two panels, high pressure, HLS, and little pressure, LLS) categories. 

Simulations began with a vector of seeds in the seed bank (100-700, in intervals of 100) at TSF0. The seeds 

progressed through TSF states. In each state, seed fate was determined by multiplying the seeds numbers by 

the rates of goCont, goSB, staySB, and outSB corresponding to each TSF (see Table S1.1).   

 

We fitted all vital-rate models in a Bayesian framework, comparing model fit using 

DIC, which is a Bayesian modeling equivalent of the AIC measure used in frequentist 

statistics (Spiegelhalter et al. 2002). Differences of ≥ -5 in DIC suggest substantially better 

fit of the best model compared to the second best model with fewer parameters. With the 

exception of number of seeds per flower (φ3), which was treated as a constant as it was not 

predicted by size of reproductive individuals (Likelihood ratio test, D = 1.4, d.f. = 1), we 

defined several candidate models for the remaining above-ground vital rates (σ, γ, φ0, φ1, 

φ2, and φ4; Table S1.2; Fig. 1 in main text): 

(a) intercept-only model,  

(b) including only size as predictor,  

(c) including size + TSF as predictors,  

(d) including size + TSF + LS as predictors,  

(e) including size + TSF + LS + TSF × LS as predictors, 
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(f) including size + TSF + LS + TSF × LS + size × TSF as predictors,  

(g) including size + TSF + LS + TSF × LS + size × TSF + size × LS as predictors. 

No data were available to link seedling size (φ4) in time t+1 to parent size in t, and we 

therefore excluded the size variable from all candidate models for this vital rate. Growth 

and seedling size were assumed to be normally distributed (Table S1.2). We tested the 

homoscedasticity (h) assumption of the variance component (τ) of these normal 

distributions by fitting log(τ) as functions of (i) TSF, (ii) TSF + LS, and (iii) TSF × LS.  

For below-ground, seed-related vital rates, candidate models were an intercept-only 

model and a model including the post-fire status of experimental patches, PFS, as predictor. 

The random site and block effects were included in all candidate models describing above- 

and below-ground vital rates, respectively. Ideally, both random temporal and spatial 

variation should have been included, but our data did not offer enough degrees of freedom, 

as year × site interactions already depicted variation in TSF. 

The parameterization of the vital-rate models within the Bayesian framework using 

OpenBUGS (i.e., vitalRateModels.R) followed a standard form. For example, the 

likelihood function of survival was described as:  

for ( j in 1:NtotalSURV ) { 

surv[j] ~ dbern( mu.surv[j] ) 

mu.surv[j] <- 1/(1+exp(-( a0.surv + a1.surv[TSF.surv[j]] + 

a2.surv[LS.surv[j]] + a1a2.surv[TSF.surv[j],LS.surv[j]] + 

(bc.surv + bcTSF.surv[TSF.surv[j]] + bcLS.surv[LS.surv[j]]) * 

size.surv[j] + aS.surv[site.surv[j]]))) 

} 

This means that for each data record, j, where survival (either 0 or 1) is known for 

NtotalSURV individuals, probability of survival, surv[j], is estimated as a Bernoulli 

distribution, dbern. The parameter describing the shape of the distribution, 

mu.surv[j], is a function, with associated parameters, of the categorical variables time 
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since fire, a1.surv[TSF.surv[j]], livestock pressure , a2.surv[LS.surv[j]], 

their interaction, a1a2.surv[TSF.surv[j],LS.surv[j]], and site, 

aS.surv[site.surv[j]]. Each individual j is associated with one level of TSF 

(TSF.surv[j]), LS (LS.surv[j]), and site (site.surv[j]). In addition, survival 

is described by a slope, bc.surv, associated with the continuous variable size, 

size.surv[j], the interaction of TSF and size, bcTSF.surv[TSF.surv[j]] * 

size.surv[j], and the interaction of LS and size, bcLS.surv[LS.surv[j]] * 

size.surv[j]. The parameter a0.surv describes the overall mean of the survival 

data.    

To make the models identifiable, we used the sum-to-zero constraint (Kaufman and 

Sain 2010) on all categorical variables. This constrains the difference between the model 

mean, α0, and the parameters at each level of a categorical variable, e.g., α1[TSF], to sum to 

zero. In addition, we z-transformed the continuous state variable size (μ = 0; θ = 1) in the 

likelihood functions describing survival (σ) and probability of flowering (φ0) to facilitate 

convergence of the three chains (Kruschke 2010). 

We used normal uninformative priors (μ = 0; 1/θ
2
 = 1×10

-6
) for most fixed factors 

and for the Gamma-distributed rate parameters, ρ, of the Poisson-Gamma mixture models 

for the number of flowering stalks (φ1) and number of flowers per stalk (φ2). The τ 

parameters describing the standard deviation in the growth (γ) and seedling-size (φ3) 

likelihood functions were modeled as functions of TSF× LS and TSF only, respectively. 

We used hyperpriors for the random site and block effects. The hyperpriors were defined as 

a normal distribution N(0, τ) in which the precision, τ to be estimated using the prior 

σ ~ unif(0, 100) for the linear and σ ~ unif(0, 10) for the logistic regressions, 

respectively. 
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7.8.9 Bayesian diagnostics   

The best-fit models showed a good fit to the data (Figs. S1.7 & S1.8). 

 

Figure S1.7 Predictions of vital rates (lines; points for seedling size) describing population dynamics of the 

continuous state (above-ground individuals) in the life cycle of the carnivorous plant Drosophyllum as a 

function of time-since-fire (TSF; different colors of lines/points) and livestock pressure (LS; two panels, high 

pressure, HLS, and little pressure, LLS) categories. Predictions were obtained with a Bayesian model. The 

points (bars for seedling size) represent mean observed values (± S.E.) of the response variables for each TSF 

category within certain size ranges (0.1–9.0 at interval of 0.1) at t for display purposes.  

 

Figure S1.8 Predictions of vital rates (black hollow points) describing seed-bank dynamics in burned (open) 

and unburned (covered) patches where seed-addition and seed-burial experiments were performed. 

Predictions were obtained with a Bayesian model. The filled covered points represent observed values (± 

S.E.). The parameters depict ingression into (goSB = 1 - goCont), stasis in (staySB), and egression from the 

seed bank (outSB). 
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We assessed convergence of the chains within the Bayesian framework in several 

ways: using trace plots and the Gelman-Rubin-Brooks diagnostic of convergence (Brooks 

and Gelman 1998), plotting priors vs. posteriors, and performing posterior predictive 

checks as described in Kéry (2010, p. 247).  Fig. S1.9 shows an example plot of a 

predictive check for survival (σ). Bayesian p-values ≈ 0.5 indicate good model performance 

(Kéry 2010). 

  

Figure S1.9 Graphical posterior predictive check of the model adequacy for the vital rate survival (σ). The 

Bayesian p-value is equal to the proportion of symbols above the 1:1 line. 
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7.9 Appendix S2 - Overview of the R code provided in the manuscript 

Here, we provide an overview of the R scripts and data files to accompany the main text. 

The .R files should be opened with an R editor (e.g., R Studio). The R code is fully 

commented and intended to replicate the analyses used in the manuscript. To understand 

variable names, the reader is referred to the main text itself. Please note that the R code 

focuses largely on the analyses of stochastic elasticity and therefore uses the average values 

of the posterior samples of vital-rate parameters. For code to simulate population dynamics 

for each parameter sample separately and calculate contribution of parameter uncertainty to 

the variance in the stochastic population growth rate, the reader may consult the appendices 

in Chapter 5. All files can be found on a CD attached to the back cover and at 

https://github.com/MariaPaniw/Drosophyllum-Population-Models.  

Data files:  

dataDroso.csv: Demographic transitions of Drosophyllum lusitanicum populations 

recorded in five annual censuses (from 2011to 2015) in eight populations differing in time-

since-fire (TSF) and livestock browsing (LS) in their habitats. These data are used to 

quantify vital rates of above-ground individuals.  

dataDrosoSB.csv: Seed fates (in a binary format) inferred from two experiments. These 

data are used to quantify the transitions related to the seedbank. 

In case the reader wishes to forego the step of fitting the Bayesian models, which can be 

very time consuming (> 24 h on 3.40 GHz processor), we provided a mcmcOUT.csv file 

with 600 posterior parameter values for each of the parameters estimated with Bayesian 

models using uninformative priors. 

https://github.com/MariaPaniw/Drosophyllum-Population-Models
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R code: 

vitalRateModels.R:  Executes and saves the results of a Bayesian model quantifying 

all vital rates using uniformed priors; illustrates basic diagnostics that can be run on the 

results of an MCMC run (i.e., the posterior parameter distribution) to check for model 

convergence and autocorrelation of the posterior samples. 

makeIPM.R: Demonstrates how to construct IPMs including continuous (above-ground) 

and discrete (seedbank) transitions for parameter means of the Bayesian models; saves 

IPMs for each combination of TSF (n =5) × LS (n = 2) × site (n = 8) (Part A). The code 

also saves IPMs for each TSF × LS averaged over sites (Part B). Site-specific and average 

kernel transitions for the vital rate growth (γ in main text) are also saved. The IPMs in Part 

A are used to calculate the stochastic population growth rate log λs, and extinction 

probability, Pq(t) by t = 300 years. The IPMs in parts A and B are used to calculate 

elasticities of log λs to changes in mean transitions (Ea
Sµ

) across environmental states (TSF 

and LS) and in the standard deviation of transitions (Ea
Sσ). The script is based on the 

supporting material in Ellner and Rees (2006), Am. Nat., 167, 410-428.     

sLambdaFixedLS.R: Runs and plots results of simulations of log λs and elasticities 

using IPMs constructed for mean parameter values. The simulations consider fire as a 

stochastic process in which transitions between TSF states are based on fire return interval. 

Transitions between LS are not considered.  

sLambdaStochLS.R: Runs and plots results of simulations of log λs and elasticities 

using IPMs constructed for mean parameter values. Here, the growth kernel transitions are 

also included alongside the full IPMs. The simulations consider both fire and livestock 

browsing as an integrated stochastic process in which transitions between combinations of 

TSF × LS states are based on fire return interval and browsing management efforts.  

The simulations in sLambdaFixedLS.R and sLambdaStochLS.R are based on 

Tuljapurkar et al. (2003), Amer. Naturalist, 162, 489-502. 

elastVR.R: Runs and plots results of simulations of log λs and elasticities using IPMs 

constructed for lower vital rate survival (σ). The simulations consider fire as a stochastic 



Chapter 7 – Appendix S3 

~ 200 ~ 
 

process in which transitions between TSF states are based on fire return interval. 

Transitions between LS are not considered.  

 

7.10 Appendix S3 - Additional modeling results  

Here, we present box plots showing the distributions of log λs when stochastic simulations 

of time-since-fire (TSF) and livestock pressure (LS) habitat states included parameter 

uncertainty or when simulations were performed using mean parameter estimates (that is, 

variance of log λs was only due to process variability in the stochastic simulations). By 

fitting vital-rate regressions in a Bayesian framework, we obtained parameter uncertainty 

from MCMC posterior parameter samples. Contribution of parameter uncertainty to overall 

variance of log λs was calculated as described in Evans et al. (2010) and Chapter 5. That is, 

we were able to partition the variation in log λs estimates according to parameter 

uncertainty and process variability by fitting a GLMM to the estimates of log λs treating the 

posterior parameters as a random effect. To test whether log λs estimates differed 

significantly from 0, confidence intervals around all simulated distributions were obtained 

from the 2.5 and 97.5 quantiles of the raw distributions.   

We also explain how elasticities of log λs to changes in vital rates were calculated. We then 

show plots of summed elasticities of log λs to changes in the mean (Ea
µ
) and standard 

deviation (Ea
σ) of lower-level vital rates when stochastic simulations assumed transition 

probabilities between LS states.   
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Figure S3.1 Variation in simulated stochastic population growth rate estimates (log λs). Box-and-whisker plots show the distribution of log λs as function of fire 

return interval (x-axis) and different assumptions of LS transitions: fixed high (HLS) and low (LLS) livestock pressures in habitats (1
st
 box) or decreasing 

probability (Pr) of HLS (2
nd

 box). At each fire return interval, log λs consist either of 60,000 estimates based on 100 stochastic simulations run using IPMs 

constructed from each of 600 posterior parameter samples (a, c); or 100 estimates based on stochastic simulations using mean parameter values (b, d). Diamonds 

indicate the mean estimate of log λs. The black horizontal dashed lines indicate stable population sizes. “*” indicate the 95 % non-parametric CI around the mean 

of log λs < 0.  
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7.10.1 Elasticities calculations for lower-level vital rates 

Elasticities of a = log λs to IPM kernel transitions ij can be calculated using the formula 

derived by Tuljapurkar (1990) and Tuljapurkar et al. (2003): 

                               Eaij =  limT→∞ (
1

T
) ∑

Vi(t)'Cij(t)Uj(t-1)

λ(t)〈V(t)'U(t)〉

T-1
t=1                 (F.1) 

where V and U are the left and right eigenvectors associated with λ at each iteration t and t-

1, respectively, and Cij(t) denotes the IPM of proportional changes in entries ij. Elasticities 

to changes in mean transitions can be calculated by defining Cij(t) =  μij, where μij is the 

average transition ij across a sequence of environmental states during simulations. 

Similarly, elasticities to changes in the standard deviation of transitions can be calculated 

by defining Cij(t) = Kij(t)-μij, where Kij (t) is the IPM kernel values for transition ij at time 

t.  

The perturbation kernel C(t) can be derived from lower-level vital rates using the 

chain rule (Haridas and Tuljapurkar 2005). At each iteration t, elasticities of log λs to 

changes in the mean of vital rates were calculated by perturbing the predicted values of 

each vital-rate model VRj(t) to VRj(t) +  VRj ̅̅ ̅̅ ̅, where VRj ̅̅ ̅̅ ̅ are the predicted values of the 

average model describing VRj across environmental states. The resulting changes in the 

kernel C(t) were substituted into equation F1. For elasticities of log λs to changes in the 

standard deviation of a vital rate, the vital rate VRj(t)  would be perturbed from VRj(t) to 

VRj(t) + VRj(t) -  VRj(t) ̅̅ ̅̅ ̅̅ ̅̅ ̅. The script elastVR.R in Appendix S2 shows how to perform 

the elasticity calculations for survival (σ). Figure S3.2 shows the elasticity results for 

simulations including transitions in LS states (see main text). Note that in the main text 

(Figure 4) and the figure below, Ea
µ
 and Ea

σ were summed across all IPM kernel entries 

containing a given vital rate.   
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Figure S3.2 Elasticities of log λs to changes in (a) the average (Ea
µ
) and (b) standard deviation (Ea

σ) of 10 vital rates obtained from stochastic simulations that 

assumed stochastic transitions of time-since-fire and livestock pressure. Stochastic transitions were based on four fire return intervals and different probabilities of 

high livestock pressure (HLS). Vital rates denoted by green and blue colors represent above-ground processes [survival (σ), growth (γ, φ4), and reproduction (φ0, 

φ1, φ2)] and seed fates [immediate germination (goCont) and seed-bank ingression (goSB), stasis (staySB) and egression (outSB)], respectively. Error bars show a 

95 % non-parametric CI calculated from 100 simulations at each fire return.  
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CHAPTER 8 

Transient facilitation of resprouting shrubs in fire-prone 

habitats  

Maria Paniw, Roberto Salguero-Gómez, and Fernando Ojeda 

This chapter is under review in Journal of Plant Ecology. 

 

8.1 Abstract 

Fires play a crucial role mediating species interactions in the Mediterranean Basin, with one 

prominent example being the nursing effect of post-fire resprouting shrubs on tree recruits, 

which then outcompete their benefactors throughout succession. Yet, the community 

structuring role of resprouting shrubs as potential facilitators of post-fire recruiting 

subshrub species, which are commonly outcompeted in late post-fire stages, has been 

overlooked. The aims of this work were to investigate (i) whether proximity to resprouting 

shrubs increased the demographic performance of a fire-adapted carnivorous subshrub and 

(ii) whether mature shrubs negatively affected the performance of established plants 

through interference with prey capture. To evaluate the facilitative effects of resprouting 

shrubs, we sowed seeds of Drosophyllum lusitanicum, a carnivorous, seeder pyrophyte, into 

two microhabitats in recently burned heathland patches defined by proximity to resprouting 

shrubs. We monitored key demographic rates of emerged seedlings for two years. To test 

for competitive effects of mature shrubs on plant performance, we placed greenhouse-

reared, potted plants into distinct microhabitats in neighboring burned and unburned 

heathland patches, the latter dominated by mature shrubs, and monitored prey capture. Both 

experiments were performed in the Aljibe Mountains at the Northern Strait of Gibraltar and 

were replicated in two years. Resprouting shrubs significantly improved survival, juvenile 

size, and flowering probability compared with open microhabitats, and had no significantly 

negative effects on the growth of recruits. Prey capture was significantly lower in unburned 

heathland patches compared with burned ones. However, microhabitat did not affect prey 

capture. Our findings suggest that not only periodic fires, removing biomass in mature 
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stands, but also resprouting neighbors, increasing establishment success after fires, may be 

important for the viability of early successional pyrophytes. 

Keywords: competition, Drosophyllum lusitanicum, early successional species, habitat 

succession, Mediterranean heathlands, pyrophyte 

8.2 Introduction 

Species interactions such as facilitation and competition drive biodiversity and community 

composition (Bertness and Callaway 1994; Holmgren et al. 1997; Wright et al. 2014). The 

prevalence and importance of facilitation over competition in natural communities, 

meanwhile, have been linked to increases in abiotic stress such as drought or frost (Bertness 

and Callaway1994; but see Holmgren and Scheffer 2010), where facilitation has been 

shown to increase biodiversity (He et al. 2013; Soliveres et al. 2015). Mediterranean 

shrublands are diverse ecosystems where seasonal drought typically constitutes a severe, 

periodic stress (Lloret et al. 2004; Moreno et al. 2011). In the Mediterranean Basin, shrub 

species resilient to droughts (Zeppel et al. 2015) may increase the survival of tree and shrub 

seedlings recruiting under or nearby them (Raffaele and Veblen 1998; Gómez-Aparicio et 

al. 2004). Facilitation in this setting happens via the increased soil moisture and/or nutrient 

content, low evapotranspiration, protection from ultraviolet radiation or herbivory, and/or 

buffering against high temperatures and winds provided by the nursing plant (Callaway 

1995; Baraza et al. 2006; He et al. 2013). 

Fires play a key role in mediating facilitative plant interactions in Mediterranean 

heathlands (Keeley et al. 2012). In early post-fire stages, where the effects of drought stress 

are most pronounced (Peñuelas et al. 2007), plant diversity is also highest (Ojeda et al. 

1996; Keeley et al., 2012). This diversity is largely driven by a high abundance of post-fire 

recruiting plant species, usually short-lived herbs and subshrubs, which disappear as shrub 

cover increases with time since fire (Ojeda et al. 1996; Calvo et al. 2002; Yates and Ladd 

2010). It has been assumed that, after fire, resprouting, drought-resilient shrubs may act as 

nurse plants for seedlings of short-lived, post-fire dwelling subshrub species (Verdú et al. 

2009), but this assumption has rarely been investigated experimentally (He et al. 2013). 
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The question of whether growing under or in close proximity to resprouting shrubs 

improves the performance of a short-lived, post-fire dweller is complicated by the fact that 

such facilitative interactions change with habitat succession. With shrub maturing typically 

within 3-4 years after fires in Mediterranean heathlands (Calvo et al. 2002; Céspedes et al. 

2014), facilitation by resprouting shrubs may eventually turn into competition for light and 

resources against smaller post-fire recruiting subshrubs (Vilà and Sardans 1999). They may 

thus be preferentially found in open patches, risking higher mortality due to adverse 

environmental conditions (e.g., solar radiation, wind, or drought) in early post-fire habitats 

but avoiding competition for longer during habitat succession. The presence of post-fire 

recruiting species close to resprouting shrubs may then simply be the result of propagule 

concentration by shrubs (Callaway 1995). To investigate the net effects of facilitation vs. 

competition, a study must span a reasonable time interval to capture habitat succession (He 

et al. 2013). 

In addition, it has been repeatedly demonstrated that the choice of demographic 

performance estimator (e.g., survival, growth, and reproduction) by which the effects of 

facilitation or competition are measured may strongly affect results (Maestre et al. 2005; 

He et al. 2013). For example, several studies investigating facilitation under high abiotic 

stress in arid ecosystems have found no effect of neighbors on plants survival and growth 

but a strong facilitative effect on fecundity of target plants (Donovan and Richards 2000; 

Maestre et al. 2005). Therefore, studies must consider several performance estimators to 

gain a full picture of the effects of neighbors on the performance of a target species.   

Disentangling the roles of facilitation and competition along ecological succession 

will shed light on the dependence of early successional species on the presence of 

community structuring species (Dickie et al. 2005). For example, selective removal of 

resprouting shrubs for lignotuber harvesting (Ojeda et al. 1996) or heathland afforestation 

with pines (Andrés and Ojeda 2002) may subsequently affect the success of post-fire 

dwelling species in fire-prone Mediterranean heathlands if resprouting shrubs act as nursing 

plants in early post-fire regeneration stages. To test the hypothesis that resprouting shrubs 

provide key facilitative services to short-lived, post-fire subshrub species, we quantified the 

effects of shrub neighbors on the demographic performance of the Mediterranean heathland 
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endemic Drosophyllum lusitanicum (Drosophyllaceae), a short-lived, carnivorous 

pyrophyte (chapter 6). In order to base our results on several performance measures, we 

estimated seed germination as well as survival, growth, and reproduction in two 

microhabitats, close to shrubs and open, from a recently burned heathland patch. To 

account for habitat succession, we monitored the performance of emerged seedlings for two 

consecutive years. We also recorded trapped insects on the sticky leaves of greenhouse 

reared, potted young individuals placed in recently burned and neighboring unburned sites 

in order to test for negative effects of fully developed shrubs in mature communities via 

interference with nutrient acquisition (i.e. insect capture). In addition, we noted leaf damage 

on the potted plants in order to test whether shrubs protect individuals from solar radiation 

and/or wind. 

8.3 Materials and methods 

8.3.1 Study species and sites 

Drosophyllum lusitanicum (L.) Link (Drosophyllaceae; Drosophyllum hereafter) is a short-

lived, carnivorous perennial subshrub endemic to the Western Mediterranean Basin 

(Garrido et al. 2003) and tightly associated with fire-prone Mediterranean heathlands 

(Müller and Deil 2001). These heathland habitats are characterized by a Mediterranean 

climate regime and occur on highly acidic, infertile, siliceous soils (Ojeda et al. 2010). 

Their dominant vegetation consists of shrubs in the Ericaceae (Calluna vulgaris, Erica 

australis, E. umbellata, and E. scoparia) and Fabaceae families (e.g. Stauracanthus boivini, 

Pterospartum tridentatum, Genista tridens). Drosophyllum populations are threatened by 

habitat degradation (Correia and Freitas 2002; Garrido et al. 2003). In natural heathlands, 

population dynamics of this species are linked to recurrent fires, since its seed germination 

is stimulated by both direct (heat and smoke; chapter 5) and indirect (opening of vegetation; 

chapter 6) fire-related cues. Consequently, Drosophyllum’s highest population densities are 

attained during early post-fire stages, typically 1-3 years after fires (chapter 6). During such 

stages, emerging seedlings are typically exposed to high levels of seasonal (summer) 

drought stress (Adlassnig et al. 2006), and resprouting shrubs may thus act as nursing 

plants. However, germination is increasingly inhibited by mature shrubs and accumulation 

of ground litter in heathlands ≥ 4 years after fires; chapter 5). In addition, shrubs may 
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interfere with insect capture as has been shown for other carnivorous plant species (Schulze 

et al. 2001), but this has not been investigated for Drosophyllum. 

To quantify the extent of facilitation and/or competition by shrubs during post-fire 

habitat succession, we carried out two experiments replicated at two Mediterranean 

heathland sites within the Aljibe Mountains, at the northern side of the Strait of Gibraltar 

(Fig. 1). Parts of the two study sites burned by wildfires (see below). Natural Drosophyllum 

populations occur at both sites, but were located > 200 m away from the experimental 

settings. 

 

Figure 1 Location of the two sites within the Aljibe Mountains at the Northern Straits of Gibraltar (red box) 

used in this study and experimental design at each study site. At Sierra Carbonera, the seed-sowing 

experiment was designed as random plots (P) in a burned heathland patch adjacent to an unburned one. 

Within each plot, two microhabitats (open and close to shrub) were used. At Retin, the prey-capture 

experiment was designed at two sites as paired plots in adjacent burned and unburned heathland patches. 
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8.3.2 Seed-sowing experiment 

To test the interspecific effects of resprouting shrubs on the vital rates germination, 

survival, growth, and reproduction of Drosophyllum individuals, we conducted a seed-

sowing experiment at a burned heathland site (Sierra Carbonera; fire in August 2011). We 

established seven paired plots perpendicular to the main elevation gradient (Fig. 1) and 

sowed two cohorts of seeds, in August 2012 and in 2013, to track the aforementioned vital 

rates. The experiment did not assess germination in response to direct fire cues but rather 

relative germination in response to indirect cues (chapter 6) in distinct microhabitats during 

early stages of habitat succession. We therefore did not pretreat seeds, e.g., exposing them 

to heat. 

In each of the seven plots, we distinguished two types of microhabitats: open and 

shrub (Fig. 1). We chose the most abundant shrub species in each plot as shrub 

microhabitat, which were either Erica scoparia or Stauracanthus boivini. Both species had 

similar, rounded/conical crowns and show similar growth rates after fire (M. Paniw, 

unpubl.), and we assumed that neighbor identity would not significantly affect our results 

(Correia and Freitas 2002).We chose exemplars of ≥ 20 cm crown diameter as neighbors to 

ensure that neighbors were large enough to potentially affect the performance of 

Drosophyllum seedlings. In each microhabitat, we sowed 50 seeds, randomly collected 

from >80 individuals across five Drosophyllum populations, in squares (20 × 20 cm
2
, 0.5-1 

cm deep), using one and two squares per microhabitat treatment for the 2012 and 2013 

cohort, respectively. The centers of the squares were randomly positioned > 30 cm and < 20 

cm away from the edge of resprouting shrubs for the open and shrub microhabitats, 

respectively.  

In three of the seven plots, we created a control treatment by digging up soil in three 

20 × 20 cm
2
 squares in open and shrub microhabitats, respectively, without seed sowing so 

as to control for potential germination of naturally occurring Drosophyllum seeds after 

mechanical disturbance. In this control treatment, the open microhabitats were picked 

randomly, while shrub microhabitats consisted of the same shrub that was used as a 

neighbor for a sowing treatment (see above). We only used three plots because active seed 

dispersal does not occur in Drosophyllum, and we therefore did not expect to find naturally 
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occurring seeds in our experimental plots (Ortega-Olivencia et al. 1995). We recorded the 

proportion of seeds that germinated and their consequent number and length (cm) of leaves 

in each square in April 2013 and 2014, eight months after sowing when germination rates 

in natural Drosophyllum populations are highest (chapter 6). We tagged all emerged plants 

and followed their fate in 6-month intervals until April of 2014 and 2015, or twenty months 

after sowing, for the 2012 and 2013 cohort, respectively.  

8.3.3 Prey capture experiments 

In order to test for any negative effects of shrub cover on established Drosophyllum 

individuals, we quantified prey-capture rates in nine-month-old potted plants placed in 

burned and unburned habitat patches. Drosophyllum individuals in this experiment were 

grown in clay pots under greenhouse conditions (20 ºC, 85 % humidity, and daily 50mL 

watering with decalcified water) at the University of Cadiz from seeds collected randomly 

in five natural populations from southern Spain (Fig. 1). We initially performed this 

experiment in early May 2013, within the growing season of natural Drosophyllum 

populations, at a heathland site in Sierra Retin (Fig. 1). The last fire occurred in August 

2010 at this site. We established seven paired plots perpendicular to the main elevation 

gradient, each plot consisting of burned and unburned (>30 years after last fire) subplots. 

After another fire occurred at a different site in Sierra Retin in August 2013, we 

implemented the same experimental design in early May 2014 at the newly burned and an 

adjacent unburned (>30 years after last fire) patch (Fig. 1). Although the burned patches in 

2013 and 2014 were not in the same post-fire successional stage, we grouped them into the 

“burned” treatment as both were in an early post-fire stage (< 3 years since fire).  

Within each burned and unburned subplot for 2013 and 2014, we distinguished two 

microhabitats, open and shrub, using the aforementioned criteria for Sierra Carbonera. We 

placed two potted individuals of Drosophyllum free of insect prey at each microhabitat 

within each subplot across the 14 plots (seven per year/site). Shrub neighbors consisted of 

Erica scoparia, Calluna vulgaris, Quercus lusitanica, or Stauracanthus boivini. The potted 

Drosophyllum individuals were watered daily with 100 mL of decalcified water during 

seven days to prevent desiccation. We then took the individuals to the laboratory for 

quantification, size estimation and identification to at least the taxonomic order of every 
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trapped insects per individual. To assess whether shrubs protect Drosophyllum individuals 

from physical damage, we also examined all mature leaves for visual damage such as 

desiccation or broken-off parts (Online Resource 1). 

8.3.4 Statistical analyses 

For the seed-sowing experiment, we fitted generalized mixed effect models (GLMMs) to 

describe each vital rate separately (seedling recruitment, seedling and juvenile survival 

probability, and flowering probability) as a function of microhabitat (open vs. shrub). We 

fitted GLMMs with a binomial error distribution for germination, survival, and flowering, 

and used a normal error distribution to model size, measured as leaf number × length of 

longest leaf (cm) on the logarithmic scale. Models were fitted separately for each year 

because we did not have enough temporal replicates to include year as a random effect.  

For the prey-capture experiment, we fitted GLMMs describing number of insects 

and number of visibly damaged leaves as functions of post-fire habitat state (burned vs. 

unburned), microhabitat (open vs. shrub), and their interaction. Here, analyses were 

performed separately for each of the two replicates of the experiment because we could not 

separate the effect of year vs. site. We used number of leaves per plant as an offset in the 

models, thereby treating the two responses as proportions but allowing the models to be fit 

as count data in a GLMM framework. We fitted the two models using a negative binomial 

error distribution as simple Poisson models showed overdispersion, i.e., the ratio of squared 

Pearson residuals and residual degrees of freedom was >1 (χ
2
,  p  < 0.01; Ver Hoef and 

Boveng 2007).  

All analyses were performed with the lme4 package in R (Bates et al. 2014). In all 

models, we used plot as a random effect on the model mean. We used likelihood ratio tests 

to determine significant differences between treatments (Vuong 1989). These tests compare 

increasingly complex, or nested, models to simpler ones (starting with intercept-only 

models). When significant effect of microhabitat or post-fire state, we applied a post-hoc 

Tukey’s honestly significant difference (HSD) test to the linear predictors using the R 

package multcomp (Hothorn et al. 2008) to detect significant pairwise differences between 

treatment levels. 
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8.4 Results 

8.4.1 Seed-sowing experiment 

The microhabitat (open vs. shrub) in burned plots markedly, positively affected several vital 

rates Drosophyllum individuals, although only for seeds sowed in 2012, one year after fire 

(Figs. 2 and 3). Seedling survival was significantly higher when seeds were sowed close to 

resprouting shrubs than in the open for the 2012 cohort (χ
2
 deviance = 4.6, df = 1; p < 0.05; 

Fig. 2b). On the other hand, none of the three recruitment vital rates (germination, seedling 

size, and seedling survival) differed significantly between open and shrub microhabitats for 

the 2013 cohort (Fig. 2). For the 2012 cohort, juvenile size was also significantly higher in 

shrub microhabitat (χ
2
 deviance = 5.1, df = 1; p < 0.05; Fig. 3b); and recruiting plants in the 

shrub microhabitat had a significantly higher probability of flowering after 20 months than 

recruiting plants in the open (χ
2
 deviance = 4.7, df = 1; p < 0.05; Fig. 3c). No recruiting 

plant from the 2013 cohort flowered 20 months after emergence, so that statistical 

comparison of flowering were not possible (Fig. 3c). No germination occurred in the 

control treatment, and we therefore excluded it from statistical analyses. 
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Figure 2 Effects of microhabitat (open and 

close to shrubs) in burned heathland patches on 

(a) germination rate, (b) seedling size (cm), and 

(c) seedling survival probability eight months 

following sowing of Drosophyllum lusitanicum 

seeds sown in September 2012 and 2013. Error 

bars indicate ± 1 SE. Different small (large) 

letters indicate significant differences (Tukey´s 

HSD, p < 0.05) of group means between 

microhabitat for the treatment in 2012 (2013, 

respectively). 

Figure 3 Effects of microhabitat (open and close 

to shrubs) in burned heathland patches on (a) 

survival probability,  (b) size (cm), and (c) 

flowering probability of individuals 20 months 

following sowing of Drosophyllum lusitanicum 

seeds in September 2012 and September 2013. 

Error bars indicate ± 1 SE. Different small 

(large) letters indicate significant differences 

(Tukey´s HSD, p < 0.05) of group means 

between microhabitat for the treatment in 2012 

(2013, respectively). Note that none of the 

individuals in the 2013 cohort flowered. 

 

 

 

 

 

 

 

8.4.2 Prey capture experiments 

Overall, insect capture was significantly higher in potted individuals placed in the burned 

subplots than in neighboring unburned ones in both years/sites in the study (2013: χ
2
 

deviance = 37.0, df = 1, p < 0.01; 2014: χ
2
 deviance = 14.9, df = 1, p < 0.01), regardless of 

shrub/open microhabitat (Fig. 4a). The majority of prey consisted of flies (Diptera) of 

various sizes, and we did not detect a difference in prey diversity between post-fire state or 

microhabitat (Online Resource 2). Potted individuals showed a significant higher 
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proportion of damaged leaves in burned subplots (2013: χ
2
 deviance = 13.1, df = 1, p < 

0.01; 2014: χ
2
 deviance = 50.3, df = 1, p < 0.01) and, within burned subplots, in open 

microhabitats (2013: χ
2
 deviance = 10.2, df = 1, p < 0.01; 2014: χ

2
 deviance = 4.2, df = 1, p 

< 0.05) (Fig. 4). 

 

Figure 4 Effects of fire state of the habitat (burned and unburned) and microhabitat (open and close to 

shrubs) on (a) general insect capture and (b) proportion damaged leaves of Drosophyllum lusitanicum (L.) 

plants. Error bars indicate ± 1 SE. All tests were performed separately for both years/sites. Different small 

(large) letters indicate significant differences (Tukey´s HSD, p < 0.05) of group means between microhabitat 

for the treatment in 2012 (2013, respectively). 

 

8.5 Discussion 

Community structure is a driver of interactions among species that often determines their 

coexistence (Amarasekare 2003; Dickie et al. 2005; Callaway 2007) as well as the overall 

resistance of the community to climatic extremes (Cavieres et al. 2013). Fires in 

Mediterranean heathlands remove biomass and, while this provides post-fire recruiting 

species with the opportunity to colonize otherwise rather competitive habitats, it also 

exposes them to harsh environmental conditions typical of Mediterranean summers. Our 
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results showed a strong yet transient facilitative effect of resprouting shrubs on the 

demographic performance of a short-lived, post-fire dwelling, subshrub species. We 

therefore provide novel evidence for the importance of resprouting shrubs on the post-fire 

recovery of heathland biodiversity (Sedláková and Chytrý 1999; Soliveres et al. 2015). 

Given the role of resprouting shrubs as ecosystem engineers, it is alarming that these shrub 

communities are being increasingly altered by habitat degradation such as active 

afforestation campaigns, which permanently change heathland community structure and 

composition by replacing shrub vegetation with trees (Andrés and Ojeda 2002). 

Recruits as well as established individuals of Drosophyllum, the epitome of short-

lived, post-fire recruiting species in Mediterranean heathlands (Andrés and Ojeda 2002; 

Paniw et al. 2015), benefit from a nursing effect of resprouting shrubs in early post-fire 

stages (Figs. 2 and 3). In Mediterranean ecosystems, facilitation occurs typically when the 

abiotic stress, which the benefactor species alleviates, constitutes a non-resource stress for 

interacting species, such as temperature (Maestre et al. 2003). If a resource stress, e.g. 

water or nutrients, is the main abiotic stress and the niches of interacting species overlap, a 

shift to facilitation is not likely (Maestre et al. 2003, 2009). In our case, resprouting 

heathland shrubs and Drosophyllum plants do not compete for resources since the 

carnivorous Drosophyllum obtains nutrients from prey capture and a substantial amount of 

water in form of dew and mist absorbed by the mucilage droplets on stalked leaf glands 

(Adlassning et al. 2006; Adamec 2009; chapter 4). In early post-fire habitats therefore, 

where summer drought may otherwise prove detrimental to seedling establishment and 

growth to reproduction, resprouting shrubs may create a favorable microhabitat for 

individuals by decreasing exposure to solar radiation and wind (Goméz-Aparicio et al. 

2004; Adlassnig et al. 2006) and thereby preventing Drosophyllum leaf damage and 

dessication (Fig. 4). As Drosophyllum relies on the production of sticky mucilage on leaf 

trichomes for prey capture and nutrient absorption, favorable microhabitat conditions in 

close proximity to shrubs that allow for the maintenance of healthy leaf structures are key 

for the performance of individuals (Adlassnig et al. 2006; Bertol et al. 2015). These key 

facilitative effects were however transient. 
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With increasing time-since fire and vegetation recovery, our study showed that 

facilitative effects of resprouting shrubs diminish dramatically. A close proximity to 

resprouting shrub neighbors benefited recruitment only in the 2012 seed cohort, where 

seeds were sowed in a patch that burned just one year before. By 2014, when the 2013 

cohort emerged from the soil, the differences in vital rates between the open and shrub 

microhabitat vanished. As the experiment was only performed in two years, we cannot 

discard that facilitation may have been an effect of year. However, another explanation for 

the overall lower germination, survival, and size in the 2013 cohort may be that post-fire 

succession occurs relatively rapidly in burned heathlands (Ojeda et al. 1996; Calvo et al. 

2002), and the increase in vegetation cover negatively affects the germination and seedling 

size and survival of a post-fire dweller (Verdú et al. 2009). When we quantified seedling 

emergence in spring 2014, woody vegetation cover in some of our burned subplots had 

increased two-fold since the spring of 2013, from 30 % to 60 %. As a result, germination 

and survival of Drosophyllum may have been impeded. This conclusion seems reasonable 

when we consider that the temperature and relative humidity, measured daily with HOBO 

data loggers, remained stable across the two years of the experiment (Online Resource 3). 

Other studies in fire-prone systems have also shown that post-fire facilitative species 

interactions are transient and change throughout succession (Vilà and Terradas 1995; 

Bullock 2009). 

It is notable however that, although our study detected facilitation only in the first 

year after fire and primarily acting on seedling survival, juvenile size, and subsequent 

probability of flowering of established individuals, none of the measured vital rates in 

either the 2012 or 2013 cohort were significantly negatively affected by shrub cover in the 

first two-three years of post-fire succession. These results are in accordance with several 

other studies in burned Mediterranean ecosystems where competition between resprouting 

shrubs and post-fire seeder species was reported to be low (Vilà and Sardans 1999; Calvo et 

al. 2002). 

In long-unburned, mature heathland patches, the negative effects of biomass 

accumulation on post-fire dwellers appear predominant. In the case of Drosophyllum, 

individuals trapped fewer insects under mature shrubs compared with resprouting ones. At 
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the same time, prey capture was not affected by microhabitat in unburned patches, with 

plants catching few insects regardless of whether they were located close to shrubs or in 

open microhabitats (Fig. 4a). Our results therefore suggest that a high density of mature 

heathland shrubs may both directly and indirectly interfere with prey capture and therefore 

survival of Drosophyllum individuals. For carnivorous plants, the direct interference of 

mature shrubs with light and prey capture has been identified as one important reason why 

some taxa cannot survive in late post-disturbance habitat states (Schulze et al. 2001). At the 

same time, along with decreasing plant species diversity (Ojeda et al. 1996), insect 

diversity and abundance has also been shown to decrease with time-since fire in 

Mediterranean ecosystems (Potts et al. 2003; Mateos et al. 2011). Marure heathlands may 

therefore indirectly affect prey capture rates of Drosophyllum by decreasing the overall 

availability of prey. Drosophyllum efficiently attracts prey (chapter 3), and one may 

hypothesize that low numbers of prey insects caught in unburned heathland patches (even 

in open microhabitats within these patches) indicate low availability of prey. However, 

detailed studies on insect (prey) abundance and diversity in distinct heathland habitat 

patches are required to corroborate this hypothesis. 

The ecological niche of Drosophyllum as a short-lived, post-fire dweller in 

Mediterranean heathlands may directly affect the role of facilitation in the demography of 

this rare carnivorous species (Maestre et al. 2009). Demographic census data of 

Drosophyllum populations show that most individuals in natural heathlands perish after one 

or two reproductive events, and that populations persist mostly in the seed bank after the 

third year after fire (chapter 5). Such a “weedy” life-history strategy, typical of an early 

successional species, may avoid severe effects of (apparent) competition with growing 

shrub neighbors (Bazzaz 1979). Because seed input into the seed bank, ensuring mass 

germination after fires, is a key life history strategy for many post-fire dwelling species 

(Quintana-Ascencio et al. 2003; Menges and Quintana-Ascencio 2004), including 

Drosophyllum (chapter 2), shrub facilitation of reproduction in early post-fire stages when 

the majority of individuals reproduce is likely to significantly affect viability of 

populations. With post-fire succession, reproductive Drosophyllum individuals may show 

plastic responses to the interference with prey capture exercised by shrubs, such as reduced 

leaf size and reproductive structures, as has been demonstrated for pitcher plants (Brewer 
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2003; M. Paniw, pers. obs.). Indirect competition via interference with nutrient acquisition 

through prey capture may therefore be a price worth paying because the facilitative effects 

of the surrounding community in initial post-disturbance stages can outweigh these future 

costs. 

Despite the novelty of our results, we must emphasize that they should be expanded 

on by future studies across the range of Drosophyllum. Working with a threatened species, 

our study was limited by the amount of seeds we could collect in any given year. This, in 

turn, limited the number of treatments we could perform. For example, the assumption that 

the identity of the resprouting neighbor did not affect demographic parameters may not 

hold if different neighboring species are considered and should be tested by including plant 

neighbor as a fixed effect in future studies. In addition, more exhaustive in-situ seed sowing 

experiments in unburned in addition to burned patches will be able to dientanlge the role of 

direct vs. indirect fire-related germination cues in natural populations.   
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8.8 Appendix S1 

 

 

Figure S1 Typical plant damage (red, desiccated, and/or broken leaves) encountered on potted juvenile plants 

of Drosophyllum lusitanicum used in the prey-capture experiment described in the main text. 
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8.9 Appendix S2 

Table S2 Diversity of prey insects shown as mean (± 1 SE) number of insect taxa per individual of 

Drosophylum lusitanicum in distinct post-fire habitat states in the prey-capture experiment 

performed during two years at Sierra Retin. A Chao-Jaccard diversity index, quantifying differences 

in species composition between burned and unburned sites, was calculated for each year separately 

(Chao et al. 2006, Biometrics 62: 361-371). Index values > 0.98 indicated a strong overlap of prey 

fauna between post-fire habitat states in both years. 

 

 Post-fire habitat state 

Order Year Burned Unburned 

Diptera 

   

2013 29.00 (2.20) 16.00 (1.20) 

2014 21.00 (2.50) 13.00 (0.90) 

Lepidoptera 

   

2013 1.50 (0.30) 0.20 (0.07) 

2014 2.00 (0.90) 0.80 (0.03) 

Aranaea 

   

2013 0.10 (0.05) 0.10 (0.05) 

2014 0.00 0.00 

Orthoptera 

   

2013 0.00 0.10 (0.07) 

2014 0.00 0.00 

Hymenoptera 

   

2013 0.03 (0.03) 0.00 

2014 0.01 (0.01) 0.02 (0.01) 

Coleoptera 

   

2013 0.03 (0.03) 0.10 (0.05) 

2014 0.00 0.00 
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8.10 Appendix S3 

 

Figure S3 Average daily relative humidity and temperature values measured during the months of seedling 

emergence in two years at Sierra Carbonera (Figure 1) where the seed-sowing experiment was performed. 

Measurements were obtained with HOBO data loggers (Onset Corporation, 2013) positioned at the site 1 m 

above ground.  
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CHAPTER 9 

Discussion and Conclusions 

9.1 Discussion 

Natural disturbances regularly affect a large part of the globe (CHRR 2005) and have 

contributed to life-cycle adaptations in numerous species to cope and even profit from 

disturbance regimes such as fires, floods, or windstroms (Benton and Grant 1996; 

Smallegange and Coulson 2013; Cayuela et al. 2016). However, human activities 

increasingly interact with natural disturbance regimes, with potentially severe consequences 

for disturbance-adapted species (Paine et al. 1998; Duwyn and MacDougall 2015). At the 

same time, information on consequences of disturbance interaction on population dynamics 

of disturbance-adapted species remains scarce (Ehrlén et al. 2016). This is worrisome 

because the viability of species that reach highest population densities after disturbance 

events may be seriously jeopardized if such regimes are changed, as this thesis has 

highlighted from various angles.   

This doctoral thesis focused largely on life-cycle dynamics of the fire-adapted 

carnivorous plant species Drosophyllum lusitanicum (Drosophyllaceae) increasingly 

affected by human activities. Field censuses across the species’ range demonstrated that 

most extanct populations persist in habitats where small-scale human disturbances have 

replaced the role of fires of vegetation clearance (chapter 6). These habitat associations 

have resulted in the omission of the role of fires in the ecology of the species (Garrido et al. 

2003; Adlassnig et al. 2006; but see Correia and Freitas 2002). However, much of the 

biological and ecological characteristics quantified in this work through in-situ and 

greenhouse experiments (chapters 2-4) can best be described in the light of population 

dynamics cued to recurrent fires. The costly maintenance of large flowers in Drosophyllum 

despite high autogamy and relatively modest increases in seed set due to pollinating insect 

attraction may be explained as a life-cycle adaptation to early-succesional habitats (chapter 

2). That is, for an early-successional fire-adapted species, reproduction largely occurs in a 

short post-fire window, in which producing seeds to replenish the seed bank is critical 

(Quintana-Ascencio et al. 2003; Menges and Quintana-Ascencio 2004). Similarly, despite 
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being strongly carnivorous, roots of Drosophyllum are able to uptake soil nutrients (chapter 

4), which may allow individuals to profit from soil nutrient flushes after fires. The nutrients 

are however rapidly leached from the soil (Keeley et al. 2012), and both the strong 

carnivorous syndrome and ecological rarity of Drosophyllum (chapter 4) are adaptatitions 

to largely nutrient-poor soils combined with seasonal drought in natural heathland habitats 

(Adlassnig et al. 2006). Lastly, and perhaps most importantly, the stochastic integral 

projection models developed here demonstrate (chapter 5) that the persistent seed bank 

strongly affects population growth in natural heathland habitats – typical of fire-adapted 

species (Adams et al. 2005).  

Adaptations to fire regimes do not necessarily mean extinction when such regimes 

change, particularly not in the Mediterrean Basin, where humans have for millennia shaped 

landscapes and species’ responses to disturbances (Keeley et al. 2012). Drosophyllum is 

one in a number of documented case studies demonstrating that populations of a fire-

adapted plant species can persist under human disturbance regimes (Bartolomé et al. 2005; 

Quintana-Ascencio et al. 2007; Velle et al. 2014; Tye et al. 2016). It has been shown that 

large-scale habitat degradation by human activity negatively affects viability of many 

species (Wayne et al. 2006; Yasué 2006; Brunbjerg et al. 2014). However, small-scale 

human disturbances that do not fundamentally change the habitat requirements of 

disturbance-adapted species can indeed prevent the local extinction of populations where 

natural disturbance regimes are not maintained. This is not only true for Drosophyllum, but 

for many other plant and animal species that may positively respond to various sources of 

disturbances (McKinney and Lockwood 1999; Quintana-Ascencio et al. 2007; Hendry et 

al., 2008).   

Maintaining populations of disturbance-adapted species in human-disturbed habits, 

however, does not equate to long-term viability and may simply reflect a slow progression 

to local extinction (González-Varo et al. 2015). Human disturbances not only alter and 

replace but increasingly interact with natural disturbance regimes, and this thesis 

demonstrates that such interactions, if occurring at high frequencies, may pose serious risk 

to population viability of Drosophyllum (chapter 7). This is fundamentally due to 

incompatible selection pressures posed by fires vs. chronic small-scale vegetation removal, 
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selecting for seed-bank dynamics vs. continuous recruitment, respectively. When 

disturbance interactions are moderate, viability of populations may be achieved even under 

lengthening fire return intervals because vegetation removal can increase plant survival and 

create suitable patches for recruitment (Vilà and Terradas 1995; Sánchez-Velásquez et al. 

2002). In turn, moderate interacting disturbances may increase local biodiversity (Solar et 

al. 2015). However, high frequencies of both fires and repeated vegetation removal, 

common across the range of Drosophyllum and other species (Lawson et al. 2010; Mandle 

et al. 2015) will put populations at serious risk of extinction. This is an important finding 

because it implies that the conservation of disturbance-adapted species must consider the 

detailed disturbace history populations have been exposed to (Bonebrake et al. 2014). 

Precisely, fires may be detrimental to a fire-adapted species if populations have persisted 

under different disturbance regimes (chapter 7).  

Another critical finding of this thesis is that frequent human disturbances do not 

promote increases in population sizes, and that may exacerbate the effects of environmental 

variability leading to local extinction, despite some populations thriving in such habitats. 

Chronic human disturbances have been known to cause local extinctions and impoverish 

ecoystems (Turner 2010; Ribeiro et al. 2015). In the case of Drosophyllum, chronic 

vegetation removal increases the risk of plants being trampled or exposes them to adverse 

microhabitat conditions such as increased solar radiation (chapter 7). Such adverse habitat 

conditions may result in plants not being able to maintain the water balance in their 

trapping structures (Adlassnig et al. 2006). Vegetation removal may also increase seedling 

mortality as shrubs showed nurturing effects on several vital rates of Drosophyllum 

(chapter 8). Increased variability in survival and reproduction in human-disturbed habitats 

has been documented for numerous plant and animal species (Vieira-Neto et al. 2016; Tye 

et al. 2016) and decreases population growth if this variability is assumed to be random 

(Tuljapurkar 1990).   

 This thesis contributes with critical findings to previous studies assessing vital-rate 

variability and population vability by showcasing potentially detrimental effects of chronic 

vegetation removal on a rare plant species found in one of the most biodiverse ecosystems 

in Europe. Current management practices that replace fire by small-scale, chronic 
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vegetation removal – widely applied across Spain (Valdecantos et al. 2008) – are therefore 

not appropriate for the conservation of the study species and likely many other post-fire 

recruiting seeder species. Ultimately, the ongoing loss of Drosophyllum populations from 

Mediterranean heathland habitats can be seen as a warning sign for biodiversity loss across 

other disturbance-adapted systems. Mediterranean heathlands in southwestern Spain and 

northern Morocco are biodiversity hotspots in which floristic diversity is closely tied to 

recurrent fires (Ojeda et al. 1996, 2000). However, strict fire-suppression policies have 

resulted in other types of disturbances dominating these systems (Bartolomé et al. 2005). 

Such shifts are not unique to these systems and must be quantified wherever they occur 

because they are likely to have significant – negative – effects on biodiversity. 

 Lastly, this doctoral work demonstrates that any assessment of changes in 

population dynamics and viability due to changes in disturbance regimes must consider 

uncertainty in the estimates of model parameters (chapter 5). This is particularly true for 

rare or threatened species where data on certain vital rates may be limited, therefore 

increasing the uncertainty in the estimates of vital-rate responses to environmental drivers 

(Elderd and Miller 2016). In the case of Drosophyllum, only limited experimental data 

could be obtained on seed-bank dynamics (chapter 5). At the same time, sample sizes of 

above-ground individuals in human-disturbed habitats, for which demographic data were 

particularly variable, were also limited given the small sizes of most populations and the 

limited number of populations overall (chapter 7). These data limitations and resulting 

uncertainty around estimates of vital-rate parameters translated into high uncertainty in the 

inference on the effect of disturbance interactions on population dynamics (chapters 5 and 

7). Increasingly sophisticated ecological models, reflecting complex interactions of 

environmental drivers, combined with decreasing population sizes of many species will 

require researchers to include detailed accounts of uncertainties implicit in their models for 

a more robust interpretation of results (Evans et al. 2010; Hunter et al. 2010).       

9.2 Conlusions  

1. Several biological and ecological characteristics of Drosophyllum were investigated in 

using greenhouse and in-situ experiments. The results not only add to the research on 

carnivorous plant biology but also indicate that fire regimes shaped the evolution of the 
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species. The production of large, showy flowers despite high autogamy rates may be linked 

to life-history adaptations of an early-successional species, which uses a short post-

disturbance (here fire) window to maximize input into the seed bank and, in turn, benefits 

from the seed bank for an effective post-fire colonization.  

2. The reliance on insects to increase seed set (likely by assisting self-pollination) is further 

supported by the separation of prey and pollinator fauna in the species. This separation in 

ensured by complex carnivorous structures, an adaptation to the extreme nutrient poverty in 

Mediterranean heathlands. The unique habitat characteristics have also contributed to the 

ecological uniquess of Drosophyllum, which is one of a handful species to have evolved a 

strong carnivorous character in seasonally dry habitats.  

3. Likely, the most important adaptation to recurrent fire regimes is seed dormancy. 

Drosophyllum produces a persistent seed bank, critical for population dynamics in fire-

disturbed habitats as assessed by stochastic integral projection models in this thesis. The 

models showed that populations may persists, largely in the seed bank, for > 40 years after 

fires. Including uncertainty in the estimates of seed-bank related vital rates, e.g. seed-bank 

stasis, can give robust information on the certainty of estimates of population viability at 

various fire return intervals.  

4. Despite adaptations to recurrent fires, most extant populations of Drosophyllum are 

found in human-disturbed habitats. While large-scale human disturbances such as the 

conversion of heathlands to pine and eucalypt plantations may pose serious threats to 

populations, the effect of human disturbances is much stronger, and positive, at a local 

spatial scale. Small-scale vegetation removal mimics fires and may significantly positively 

affect species occurrence and abundance of several life-cycle stages. 

5. Although large populations of Drosophyllum can be found in human-disturbed habitats, 

local extinctions across the species’ range are frequent. Stochastic integral projection 

models showed that such extintions may be explained by negative interactions of fire and 

human disutrbances. Such interactions may prove fatal for population viability because the 

the two different disturbance types pose opposing selection pressures – fires and small-

scale, chronic vegetation removal selecting for traits ensuring seed-bank stasis and 
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continuous reproduction, respectively. In addition, frequent human disturbances, even in 

the absence of fire, do not favor population increases and may pose servere theats to the 

viability of existing populations by exacerbating the effects of variability in vital rates 

(survival, growth, and reproduction) and thereby decreasing population growth rates.  

6. One major way in which human disturbances may negatively affect vital rates is by 

increasing plant mortality due to fundamental changes to community structure. In habitats 

marked by chronic vegetation removal, Drosophyllum populations are found in less diverse 

communities, with fewer if any shrub neighbors. This work showed that shrub neighbors in 

post-fire heathland habitats may positively affect several vital rates of Drosophyllum 

throughout post-fire habitat succession. The absence of such nursing effects in human-

disturbed habitats may explain the higher seedling and adult mortality of Drosophyllum 

individuals. 

9.3 Conclusiones  

1. Se han estudiado varias características biológicas y ecológicas de Drosophyllum 

mediante experimentos in-situ y en invernadero. Los resultados constituyen un avance en el 

conocimiento sobre plantas carnívoras e indican que los regímenes de fuego moldean la 

evolución de las especies. La producción de flores grandes y vistosas, a pesar de las altas 

tasas de autogamia, puede estar relacionada con adaptaciones del ciclo vital de la especie a 

etapas tempranas de la sucesión, restringida a una corta ventana temporal tras las 

perturbaciones (fuego) para maximizar su contribución al banco de semillas: De esta forma, 

se beneficia del banco de semillas para una regeneración por reclutamiento más eficiente 

tras el fuego. 

2. La dependencia de las plantas sobre los insectos para incrementar la cantidad de semillas 

(mayormente mediante autopolinización asistida) se confirma debido a la separación entre 

las presas y los polinizadores en esta especie. Esta separación está asegurada por la 

complejas estructuras carnívoras que probablemente han evolucionado en Drosophyllum 

debido a las características únicas de los brezales, tales como extrema escasez de nutrientes 

y condiciones microclimáticas que permiten que se mantenga su capa mucilaginosa incluso 

en veranos secos. Las características únicas de este hábitat también contribuyen a la 
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singularidad ecológica de Drosophyllum, una de las pocas especies carnívoras sobre suelos 

secos. 

3. Probablemente la adaptación más importante a los regímenes de fuego recurrente es la 

latencia de las semillas. Drosophyllum produce un banco de semillas persistente, el cual es 

crítico para la dinámica de sus poblaciones en hábitats perturbados por el fuego según los 

modelos estocásticos de proyección integral usados en esta tesis. Los modelos muestran 

que las poblaciones pueden persistir, en gran parte en forma de banco de semillas, hasta 

más de 40 años tras episodios de fuego. La incorporación de la incertidumbre en la 

estimación de las tasas vitales de los bancos de semillas (ej.: estasis de los bancos de 

semillas) permite dar información más robusta sobre la viabilidad de las poblaciones en 

relación a distintos intervalos temporales de episodios de fuego. 

4. A pesar de las adaptaciones a fuegos recurrentes, la mayoría de las poblaciones de 

Drosophyllum existentes se encuentran en hábitats perturbados por el hombre. Aunque las 

perturbaciones antropogénicas a gran escala como la transformación de brezales en 

plantaciones de pinos y eucaliptos puedan suponer una seria amenaza para las poblaciones, 

los efectos de estas perturbaciones son mucho más fuertes y positivos a una escala espacial 

local. La eliminación de vegetación a pequeña escala simula el efecto del fuego de 

eliminación de biomasa vegetal y puede afectar de forma significativamente positiva a la 

presencia y abundancia de la especie en varias etapas de su ciclo vital. 

5. Aunque se pueden encontrar grandes poblaciones de Drosophyllum en hábitats 

perturbados por el hombre, las extinciones locales de esta especie son frecuentes. Los 

modelos estocásticos de proyección integral muestran que estas extinciones pueden 

explicarse por interacciones negativas entre el fuego y las perturbaciones antropogénicas. 

Estas interacciones pueden ser fatales para la viabilidad de las poblaciones debido a que los 

dos tipos diferentes de perturbaciones ejercen presiones selectivas opuestas (los fuegos y 

eliminación recurrente de la vegetación a pequeña escala favorecen el estasis de los bancos 

de semillas y la reproducción continua, respectivamente). Además, las perturbaciones 

antropogénicas frecuentes, aunque no haya fuego, no favorecen que se incrementen las 

poblaciones y pueden suponer una amenaza severa a la viabilidad de las poblaciones 

existentes ya que agravan los efectos de la variabilidad en las tasas vitales (supervivencia, 
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crecimiento y reproducción) y, por tanto, hacen disminuir las tasas de crecimiento de las 

poblaciones. 

6. Una de las principales formas en la que las perturbaciones antropogénicas pueden afectar 

negativamente a las tasas vitales es incrementando la mortalidad de las plantas debido a 

cambios fundamentales en la estructura de la comunidad. En hábitats donde la eliminación 

de la vegetación es crónica, las poblaciones de Drosophyllum se hallan en comunidades 

menos diversas, con pocos o ningún arbusto vecino. Este trabajo muestra que los arbustos 

vecinos en brezales previamente afectados por el fuego pueden afectar de forma positiva a 

varias tasas vitales de Drosophyllum a través de la sucesión que tenga lugar en esos hábitats 

tras los fuegos. La ausencia de estos efectos positivos en hábitats perturbados por el hombre 

se puede explicar por la mayor mortalidad de las plántulas e individuos adultos de 

Drosophyllum. 
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