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The present work aimed to evaluate the auto/mixotrophic growth of microalgae using domestic waste-
water (WW) amended with glycerol aiming biofuels production. The best results were obtained with
the highest glycerol supplementation (50 mM). In such condition, Chlorella vulgaris and Botryococcus ter-
ribilis showed a biomass productivity of 118 and 282 mg l�1 d�1, which produced about 18 and
35 mg l�1 d�1 of lipids, respectively. Thus, if scaled-up (200 m3 d�1 of WW, 240 working days y�1) bio-
mass and lipid yields may be about 5.6 tons y�1 and 894.2 kg y�1 or 13.5 tons y�1 and 1.6 tons y�1 for
C. vulgaris and B. terribilis, respectively. The mixotrophic production of lipids can generate high quality
biodiesel according to estimations using their fatty acids profiles. The whole process can be advanta-
geously combined with the production of other biofuels (e.g. methane and bio-ethanol) in a biorefinery
scenario. This combination of algal biomass production with waste treatment (WW amended with glyc-
erol) can have a significant impact in the water treatment sector and local markets.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

It is estimated that the volume of domestic effluents generated
by North America, Europe and Latin America is of approximately
70, 63 and 47 km3 y�1, respectively [1]. Thus, the current main
challenge of a Wastewater Treatment Plant (WWTP) is not only
to produce reusable clean water, but it is also to find new technol-
ogies for supporting such an activity [2]. Conventional techniques
can remove only a fraction of the total nitrogen (40%) and phos-
phorous (12%) present in the effluent. In order to improve the pro-
cess new methods (tertiary steps) and, consequently, additional
costs are required [3]. The European Directive 98/15/EC establishes
a threshold of 10 and 1 mg per liter for total N and P. WWTP efflu-
ents commonly show N and P values around 20–70 and 4–12,
respectively [3]. Therefore, there is still a clear need for new devel-
opments and biological systems are often considered to be the
ideal means for responding to such a demand [4]. The economic
costs are, however, a primary concern once improved nutrients re-
moval would require an overall increase in energy consumption of
about 60–80% [5]. Therefore, in order to reduce costs, new systems
should explore the combination of wastewater treatment with the
production of renewable energy in order to offset final costs [6,7].

Microalgae based systems have shown a high potential to assist
with nutrient removal [8–10]. On the other hand, such a process
can be improved if treatment is associated with generation of valu-
able co-products [7]. Biofuels have been advocated as a suitable
option to replace fossil fuels [11,12]. However, several social and
environmental issues are associated with increasing land crops
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based biodiesel and microalgae based systems were identified as
capable of overcoming both economic and ecological problems
[12–14]. In addition, microalgae systems can generate further
commodities such as bio-ethanol, bio-kerosene, bio-plastics, bio-
hydrogen, biogas, and other chemicals derivatives [15–17].

Although microalgae systems show high potential, the main
bottleneck toward an effective application in the energy sector is
the cost associated with both upstream and downstream process-
ing [45,12]. In complement to the commonly explored autotrophic
activity, mixotrophic algae systems have also been considered as a
viable alternative for supporting innovative bioprocesses
[18,19,11,10]. Mixotrophic based systems have been previously
positively tested for Chlorella and Botryococcus [20–23]. These mic-
roalgae genera have been shown to have a high potential for the
production of bioenergy and they also have been used for waste-
water treatment. However, since the metabolic response may be
strain specific, it is still necessary to evaluate their performance
and, most importantly, assess their potential lipid yields at such
condition.

Finding cheap supplemental carbon sources for algae cultiva-
tion is important for minimizing the economic impact. Glycerol,
for instance, is currently being produced at significant amounts
as the by-product of biodiesel transesterification [24] and, in
2010; the worldwide production was of about 1.8 billion liters
[25] with a commercial demand of only 0.8 million per year [24].
Thus, currently, glycerol is cheaply available and with very poor
commercial perspectives. Some algae mixotrophic systems have
been reported using glycerol as carbon source [11,23,26], but their
results regarding biomass and lipid yields are in need of
complementation.

Therefore, the use of glycerol as organic supplementation for al-
gal growth is an innovative suggestion and it may significantly
contribute to environmental and economic advantages for WWTP
worldwide. Thus, the aim of the present work was to evaluate
the potential of using glycerol as carbon supplementation to
WWTP effluent and its effects on supporting the mixotrophic
growth of lipid producing microalgae.
2. Materials and methods

2.1. Microorganism and culture conditions

Chlorella vulgaris Beijerick 1890 (IBL-C105) and B. terribilis Ko-
maréck 1990 (IBL-C115), which were kept on the Microalgae Bank
[13] of the Marine Biology Lab (LABIOMAR) of Federal University of
Bahia, Brazil, were prepared using sterilized CHU-13 medium [27].
Trials were operated in 1-l Erlenmeyer flasks. Seed concentration
of 0.2 g l�1 was used for both strains and operational conditions
were as follows: constant shaking (90 bpm), aeration (with 2.5%
CO2 supplementation), photoperiod of 12:12 light/dark cycles,
luminance of 174 lE/m2/s and incubation at constant temperature
of 25 ± 1 �C.
2.2. Experimental set-up

The domestic effluent was collected after the pretreatment
stage (physical removal of large particles and fat materials) at
the ‘‘Moriçoca’’ Wastewater Treatment Plant (WWTP) Salvador,
Bahia, Brazil. Glycerol (C3H8O3) was purchased from Synth�. The
experiments were carried out in triplicates. Glycerol was tested
in the following concentrations: 6.25 mM, 12.5 mM, 25.0 mM and
50 mM. Higher concentrations were not tested once it has been ob-
served an increase of over two-folds in the viscosity of the medium
(data not shown). Such an effect affected negatively the cultivation.
Such increase made both growth and harvesting difficult and
would mean the inclusion of a confusing variable in the test.
2.3. Analytical methods

Microalgae growth was daily monitored by optical density
(OD680nm), pH, temperature (�C), turbidity (NTU) and total sus-
pended solids (g/L) [32]. Biomass was recovered by centrifugation
(4500 g) followed by freezing and lyophilization. Algal biomass
was also analyzed for (% dry weight): carbohydrates [28], total lip-
ids [29], chlorophyll a [18], total carotenoids [18] and protein con-
tents [30]

Fatty-acids profile was determined by the capillary column gas
chromatographic method applied to the oil methyl esters [31]. The
amount of total fatty acids was obtained by transesterification into
the corresponding methyl esters (FAME), through saponification
with NaOH in methanol, followed by methylation with BF3 catalyst
(12% in methanol). The FA methyl esters (FAME) were extracted
with iso-octane and stored in an inert atmosphere (N2) in freezer
at �18 �C. The FAME separation was performed on a gas chromato-
graph (Varian� 3800) equipped with a flame ionization detector
(GC-FID) and a fused silica capillary column Elite-WAX
(30 m � 0.32 mm � 0.25 mm). The analysis parameters were as
described by [33]. The injections were performed in duplicate for
each extraction in volume of 1 ll. FAME’s were identified by com-
paring their retention times with those of authentic standards
(189-19, Sigma–Aldrich�, USA). The quantification of fatty acids,
expressed in mg g�1 of the samples, was performed with internal
standard (C23:0 Sigma�, USA). Samples of the wastewater effluents
were analyzed (Table 1) for ammonium (N-NH4), nitrate (N-NO3),
nitrite (N-NO2), total nitrogen (TN), phosphate (P-PO4), chemical
oxygen demand (COD), pH, conductivity, turbidity and total sus-
pended solids (TSS) according to [32]. Viscosity was assessed by
the method of Stokes [33].
2.4. Data analysis

Kinetic parameters were estimated using a sigmoid model (Sig-
ma Plot� v.12) as described by Chinalia and Killham [34]. The soft-
ware is equipped with a statistical package for testing the fitness of
the model in describing the biological response. The results are ex-
pressed as probability (p < 0.05). The kinetic parameters were also
crosschecked using linear regression of the exponential phases.
Such an approach was applied on the experimental data and their
Ln transformed values, respectively.

A parametric analysis of variance (ANOVA) was carried out in
order to assess the differences among tested groups. As post hoc
test, it was used the Tukey’s multiple comparison test (MCT). All
analysis were carried out using Graph Pad Instat� software (v. 3,
2008), at the significance level of 5% (p < 0.05). Linear regression
approach was carried out to assess the correlation between vari-
ables (with at least 5 points, R2 results are shown in the text).

The year round productivities were calculated based on the re-
sults obtained in this research which were scaled-up in order to
contemplate a full-scale scenario. Further details of this approach
are described by [35,36]. The nutrient removal rates were calcu-
lated considering the total amounts removed during the incubation
period (days). Therefore results are expressed as mg of nutrient re-
moved per day. The assessment of biodiesel quality was carried out
based on algal FAMEs profiling as described by Nascimento et al.
[13].
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3. Results and discussion

3.1. Biomass production

Growth kinetic parameters for C. vulgaris on wastewater efflu-
ent and with distinct glycerol supplementations are shown in Fig-
ure 1A and Table 2. Higher values of biomass productivity were
observed in the trials with 25 and 50 mM of glycerol (107 and
118 mg l�1 d�1). Liang et al. [21] reported that the glycerol concen-
tration of 100 mM increased C. vulgaris biomass productivity in 10-
folds (from 10 to 102 mg l�1 d�1). The results from the present re-
search, however, showed that glycerol at lower concentrations
(6.25 and 12.5 mM) affected negatively algal productivity when
compared to the control (54.2 and 46.4 mg l�1 d�1, respectively).
Low glycerol concentrations (12.5 mM) may trigger mixotrophic
metabolism, but it is not enough for supporting an enhanced pro-
duction of algal biomass. On the other hand, productivity was high-
er at glycerol concentrations of 25 and 50 mM.

Growth kinetics parameters for B. terribilis on wastewater
amended with glycerol are shown in Figure 1B and Table 2. Differ-
ent from C. vulgaris, the ability of this former species to support
biological processes has not yet been comprehensively tested. Sim-
ilarly to C. vulgaris, growth was negatively affected at low glycerol
concentrations. Recently, Nascimento et al. [13] have reported rel-
atively higher biomass productivity grown autotrophically
(200 mg l�1 d�1). In the present study, B. terribilis showed a bio-
mass productivity of about 224 and 282 mg l�1 d�1 with wastewa-
Fig. 1. Growth curves of the strains at all tested conditions: Chlorella vulgaris in
wastewater (WW) ., with glycerol addition of 6.1 mM s, 12.5 mM d, 25 mM 4
and 50 mM j (A) and Botryococcus terribilis in wastewater (WW) d, with glycerol
addition of 6.1 mM s, 12.5 mM ., 25 mM 4 and 50 mM j (B).
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ter effluent (WW) supplemented with glycerol (WW + 50 mM).
Biomass production of the Botryococcus genus is among the highest
reported in the literature [38]. It has been shown that Botryococcus
biomass productivity may vary from 19 to 195 mg l�1 d�1 under
autotrophic or heterotrophic conditions [39,20,39]. In the present
work, biomass production of B. terribilis was over 200 mg l�1 d�1

in either autotrophic or mixotrophic conditions supplemented
with 50 mM glycerol.

3.2. Nutrient removal

COD removal ratios were higher than 70% (Table 2). There is
clear linear correlation between glycerol concentrations and COD
removal rates (R2 = 0.98), a product of the mixotrophic growth.
Similar COD removal ratios have been observed previously
[35,40,41]. However, the values reported by this research are sig-
nificantly higher than what has been found elsewhere [42,43]. It
is worth noticing that COD removal rates at high glycerol concen-
trations reached efficiencies of about 73% at a starting point of
3500 and 6000 mg l�1 O2 (Table 2). In some cases, COD effluent val-
ues generated by the mixotrophic system (25 and 50 mM) were
above the legal thresholds regulated by the European Directive.
The common WWTP response in such cases is to recirculate the
effluent through the aerobic treatment stage. It should be high-
lighted, however, that the supplementation of glycerol has also in-
creased COD removal rates and the production of a valuable
product, oil-rich algae biomass. In addition, it was observed almost
complete removal of N and P. Therefore the gains with this process
are very advantageous.

B. terribilis and C. vulgaris showed very similar nitrogen removal
rates, about 3.4 mg l�1 d�1, with final concentrations below
10 mg l�1 (Table 2). This value corresponds to the accepted thresh-
old regulated by the European directive 98/15/EC. Phosphorus is
rarely a limiting factor when wastewater effluents are used for cul-
tivating algae [4]. Phosphorus removal rates by C. vulgaris varied
from 0.5 to 0.7 mg l�1 d�1. B. terribilis showed a lower efficiency
in removing phosphorus when compared to C. vulgaris (Table 2).
The aim is to reach close the target of 1 mg l�1, which is the thresh-
old of the cited European directive. At higher glycerol concentra-
tions (12.5–50 mM) phosphorus removal rate was of
0.6 mg l�1 d�1, approximately. This is very promising to support
strategies for phosphorus removal at tertiary treatment stages. In
addition, such a process can also be useful for recovering P [44].

3.3. Biorefinery possibilities

Apart from lipids and proteins, full-scale systems based on mic-
roalgae can produce other valuable substances [12]. Often, these
substances can be produced simultaneously and recovered sepa-
rately during the production line. In this context several authors
suggested an integrating concept which has been defined as algal
biorefinery systems [12,45]. Such strategy would allow a more effi-
cient exploitation of microalgae-based systems. The main chemical
fractions that support the refinery of the algal biomass can be
found in Table 3. Both strains have shown high protein content
(60–70%), but their production did not correlate with increasing
glycerol concentrations (R2 of 0.34 and 0.00 for Chlorella and Bot-
ryococcus, respectively). C. vulgaris showed a significant correlation
between glycerol removal rates and the carbohydrates contents
(R2 = 0.80). Despite the fact that such response was not observed
with Botryococcus terribillis (R2 = 0.00), the total amount of carbo-
hydrates where higher for the former than the values observed
for the latter (Table 3).

If algal carbohydrates were to be used for ethanol production,
for instance, 5.6 and 13.5 tons of algal biomass y�1 could generate
196 and 506 l of ethanol, for Chlorella and Botryococcus, respec-



Table 3
Biochemical composition of the microalgae strains as percentage of dry weight (%) and concentration in dry weight (lg/mg).

Strain/condition Biomass composition

Carbohydrates (%) Total lipids (%) Protein (%) Chlorophyll a (lg/mg) Total carotenoids (lg/mg)

C. vulgaris
WW 3.9a 27.3a 65.0a 4.71a 1.81a
WW + 6.12 mM 5.2ab 21.7b 70.0b 2.53b 0.86b
WW + 12.5 mM 5.9ab 24.3a 69.0c 2.25b 0.84b
WW + 25.0 mM 6.8b 13.4c 69.0c 0.20c 0.04c
WW + 50.0 mM 7.3b 15.7c 70.0b 0.25c 0.04c

B. terribilis
WW 7.8a 25.0a 67.0a 3.76a 0.84a
WW + 6.12 mM 7.lab 9.5b 73.0b 2.66b 0.74b
WW + 12.5 mM 6.2ab 26.0a 67.0a 1.38c 0.52c
WW + 25.0 mM 4.9b 16.7c 75.0c 0.36d 0.05d
WW + 50.0 mM 7.9a 12.4d 68.0a 0.19e 0.00d

Different letters show statistical significance (p < 0.05) by ANOVA test. Test carried out to compare each biochemical fraction, among the treatments within each strain. Data
showed are the mean of two replicates. Standard deviations not present because were lower than 10% for all treatments.
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tively (table 5). The algal biomass waste, which is commonly pro-
duced during the process of lipid extraction for biodiesel produc-
tion, can also be used for the co-generation of methane. Table 5
shows that the potential year round production of methane may
vary between 1346 and 3258 m3 y�1, for Chlorella and Botryococcus,
respectively. It was also observed that glycerol supplementation
decreased pigment production for favoring mixotrophic growth.
This observation correlates with the obtained values for chloro-
phyll and carotenoids (Table 3).

In this experiment, the accumulation of lipids by C. vulgaris var-
ied from 13% to 27% of dry weight; and the respective range shown
by B. terribilis are of 9.5–25% (Table 3). Although higher lipid con-
tents may have been reported for the Botryococcus genus, it should
be highlighted that microalgae accumulation of lipids is a response
to environmental and nutritional conditions, none of which have
been imposed in the present work. Biodiesel production from mic-
roalgae lipids has been the focus of considerable attention in recent
years [16,12]. Although high glycerol concentration has negatively
affected total lipid content per cell for both species, biomass pro-
ductivity was higher (25 and 50 mM). Thus, as a result, the final to-
tal amount of lipid increased in both cases (Table 2). Estimation
shows that for treating 200 m3 d�1 of wastewater it would be nec-
essary 163 kg of glycerol in a year round treatment strategy (for
both strains, Table 5). This represents an attractive solution for a
cheap and unappreciated product.

The conversion of lipids into biodiesel is mostly carried out
through alcoholic transesterification, and a well-established tech-
nology [46]. Therefore, several authors developed a strategy based
on the assessment of fatty acids profiling for estimating final bio-
diesel quality [13,37,47]. Base on such an approach, it has been ob-
served that C. vulgaris produced significant amounts of long chain
isomeric formed FAs (C16 > C18 > C17, Table 4). The percentage of
FA in the C. vulgaris profile was similar to the values reported else-
where [6,4], with minor differences in the abundance of C18 iso-
mers. Table 4 also shows the qualitative analyses of FAs
(percentages of monounsaturated (MUFA), polyunsaturated (PUFA)
and saturated fatty acids (SFA)). Glycerol at low concentrations fa-
voured the synthesis of SFAs. At higher glycerol concentrations (25
and 50 mM) it was observed a considerable (205 and 122 kg y�1,
Table 5) shift in the FAs profile toward the synthesis of monounsat-
urated fatty acids (MUFA).

B. terribilis showed the highest ratio of lipid accumulation per
biomass (25%), and, in average, productivity is comparable to that
described elsewhere [48]. Other authors have registered similar re-
sults, with major differences in the amounts of FAs isomers of C16
to C18 [13,20,39]. At lower concentrations, glycerol did not signif-
icantly change the FAs-profiles. Mixotrophic condition at high glyc-
erol concentration (50 mM) has increased FAs productivity
(420 kg y�1, Table 5) and the ratio of MUFA.

The biodiesel fuel quality depends on the results of the overall
fatty acids composition present in the oil [13]. Several countries
have already issued basic quality standards for biodiesel produc-
tion and commercialization based on critical parameters such as:
(i) Cetane Number (CN), (ii) Iodine Value (IV), (iii) Cold Filter Plug-
ging Point (CFPP) and (iv) Oxidation Stability (OS). These parame-
ters are a direct assessment of several important biodiesel
properties such as ignition readiness, combustion performance,
temperature of plugging fuel lines and biological stability during
storage. A higher amount of long-chain-SFAs would lead to a bio-
diesel with elevated cetane number (CN). Biodiesel with higher
CN values show a shorter ignition delay or a better combustion
quality. Another parameter, which is also higher in oils rich in
SFA, is the saponification values (SV). This refers to the average
molecular weight of all FAs, which is measured by the quantity
(mg) of potassium hydroxide required to saponify 1 g of fat. The
saponification value varies with the chains-size, the longer the
SFAs-chains are, the lower the SV. It is mostly associated with
the presence of SFAs (C16, C17 and C18), but in this research
saponification values increased for both strains at WW effluent
amended with lower glycerol concentrations.

In this study the supplementation of glycerol into the microal-
gae growth medium has caused an increase in FAs saturation,
which consequently resulted in positive alterations on CN, IV, OS.
CN values (data not shown) variations were from 56 to 62 for C.
vulgaris and from 58 to 67 for B. terribilis, respectively. All treat-
ments are in compliance with the EN 14214 CN (minimum 51, Eur-
ope), ASTM D6751-10 (minimum of 47, USA) and RANP-2008 for
CN (minimum of 45, Brazil). However the best (highest) CN values
for C vulgaris was obtained in the condition of low glycerol concen-
trations (6.1 and 12.5 mM). In the case of B. terribilis, the best value
was observed at 25 mM of glycerol supplementation. The calcu-
lated CFPP values were positive and showed to be similar to what
has been previously reported for these strains [13]. Therefore, the
increase in glycerol concentrations may result in a biodiesel with
poorer low-temperature flow properties for both species, due to
an increase in saturation of long-carbon-chains FAs. These FAs
are the first to precipitate if liquid biodiesel is cooled down [13].
Yet, at 50 mM of glycerol supplementation the stearic FA concen-
tration reduced significantly for both species (Table 4). Such results
points toward an possible application of this treatment (50 mM
glycerol) for the production of lipids with suitable quality to gener-
ate biodiesel for use at moderate temperature locations. It should
be highlighted that there are several alternatives yet to be explored
for improving the final FAs profiles and, therefore, change the po-



Table 5
Estimates of productivities for both strains in a scenario of WWTP effluent production of 200 m3 d�1 and with 240 working days per year. The values were estimated from the values empirically observed in the present research (values
in the table) and the biofuels production options were estimated according with specialized literature (reference given below the table).

Estimates Chlorella vulgaris Botryococcus terribilis

WW WW + 6.1 mM WW + 12.5 mM WW + 25 mM WW + 50 mM WW WW + 6.1 mM WW + 12.5 mM WW + 25 mM WW + 50 mM

Biomass productivity (ton y�l) 2.77 2.60 2.23 5.17 5.69 10.79 4.92 4.96 8.84 13.58
Glycerol required (kg y�1) – 20.2 40.9 81.8 163.6 – 20.2 40.9 81.8 163.6
Lipid productivity (kg y�1) 755.5 566.4 541.4 692.6 894.2 2697.6 469.4 1290.7 1472.6 1683.4
Total FA (kg y�1) 139.9 20.1 28.8 205.7 122.2 345.3 69.3 104.3 291.0 420.9
Total carbohydrates (kg y-l) 108.0 135.4 131.6 351.5 415.0 841.7 349.0 307.8 433.4 1072.6
Biodiesel from TL (kg y�1)a 755.5 566.4 541.4 692.6 894.2 2697.6 469.4 1290.7 1472.6 1683.4
Biodiesel from FA (kg y�1)b 139.9 20.1 28.8 205.7 122.2 345.3 69.3 104.3 291.0 420.9
Residual glycerolfrom TL (kg y�1)c 75.5 56.6 54.1 69.2 89.4 269.7 46.9 129.0 147.2 168.3
Residual glycerolfrom FA (kg y�1)d 13.9 2.01 2.88 20.5 12.2 34.5 6.93 10.4 29.1 42.0
Bio-ethanol (l y�1) e 51.0 64.0 62.2 166.1 196.1 397.6 164.9 145.4 204.8 506.7
Methane (m3 l y�1) f 664.7 625.0 535.4 1240.6 1364.5 2589.8 1179.9 1191.5 2122.8 3258.5
Fertilizer (N kg y�1)g 277.0 260.4 223.1 516.9 568.6 1079.1 491.6 496.5 884.5 1357.7
Fertilizer (P kg y�1) h 27.7 26.0 22.3 51.7 56.9 107.9 49.2 49.6 88.4 135.8

a Biodiesel production of 1 kg per kg of oil [16]. Here estimated based on full lipids conversion to methyl esters.
b Same reference as before. Here estimated based only in the conversion of free fatty acids.
c Glycerol generated in the biodiesel production from total lipids extracted from biomass (conversion rate of 0.1 kg per kg of oil feedstock).
d Glycerol generated in the biodiesel production from Fatty acids (FA) extracted from biomass (conversion rate of 0.1 kg per kg of oil feedstock).
e Ethanol conversion rate of 0.6 l per kg of total carbohydrates.
f Methane production rate of 240 l per kg of biomass [49].
g Accounted as 10% of average biomass dry weight [50].
h Accounted as 1% of average biomass dry weight [50].

Table 4
Fatty acid (FA) profile of both strains at all treatments. Also shown the fatty acid qualitative distribution, total amount of FA in total lipids (TL) and FA percentage in the biomass (g per l00 g of biomass).

Fatty acids (%) Chlorella vulgaris Botryococcus terribilis

WW WW + 6.1 mM WW + 12.5 mM WW + 25 mM WW + 50 mM WW WW + 6.1 mM WW + 12.5 mM WW + 25 mM WW + 50 mM

Butyric C4:0 – 2.29 – – – 2.45 – – – –
Caprylic C8:0 1.41 – – – – 1.92 – – – –
Capric C10:0 – – – – 2,45 – – – –
Undecanoic Cll:0 0.87 – – – – – – – – –
Myristic C14:0 2.06 – – – – 2.60 – – – 1.70
Palmitic C16:0 29.48 45.85 32.67 30.07 32.78 30.57 23.90 37.60 34.49 26.42
Palmitoleic C16:l 1.96 – – 17.06 5.73 4.07 5.89 2.46
Margaric/heptadecanoic C17:0 7.04 24.84 25.34 2.73 8.16 9.95 15.46 16.62 11.44
Heptadecenoic C17:l 5.65 – – 4.31 – 3.04 – – – –
Stearic C18:0 12.24 29.31 22.29 14.98 16.15 12.66 14.71 6.96 20.70 13.51
Oleic C18:l c 11.68 – 9.66 17.59 14.85 18.37 18.00 23.12 28.19 29.21
Elaidic/octadecenoic C18:lt 1.39 – – 4.67 4.21 – – – – 4.42
Linoleic C18:2n6 13.22 – 10.04 17.24 14.95 9.28 7.32 11.51 – 10.84
a-linolenic C18:3n3 10.24 – – 8.42 – – 7.44 – – –
Eicosapentaenoic C20:5 n3 – – – – 2.04 – – –
Tetracosenoic C24:ln9 2.76 – – – – 3.17 14.60 – – –

Fatty acids concentration
Saturated (% FA/TL) 53.10 100.0 80.30 47.77 48.93 59.36 48.56 59.48 71.81 53.07
Monounsaturated (% FA/TL) 23.44 0.00 9.66 26.57 36.13 26.49 36.68 29.01 28.19 36.09
Polyunsaturated (% FA/TL) 23.46 0.00 10.04 25.66 14.95 14.15 14.76 11.51 0.00 10.84
FA total (mg/TL) 2.52 0.31 0.64 1.99 1.07 1.56 0.70 1.06 1.64 1.55
FA total (% biomass DW) 5.05 0.77 1.29 3.98 2.15 3.20 1.41 2.10 3.29 3.10
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tential biodiesel quality generated by such strains. This prelimin-
ary biodiesel quality estimation is only helpful as a means to im-
prove culturing conditions and guarantee commercial
application. Overall, this research has shown that mixotrophically
grown C. vulgaris and B. terribilis can generate fatty acids that will
produce a biodiesel with good quality.

For both strains, the condition that produced at the same time
the highest FA productivity and MUFA concentration was the treat-
ment with 50 mM of glycerol. Such results when applied to the
production system show a very promising outcome, in which
quantity and quality of biodiesel can be achieved simultaneously.
This research has shown that mixotrophically produced fatty acids
can generate a biodiesel with good quality for both strains. The
estimation shows a production of lipids (FA) of about 122 or
420 kg per year. Although such values may not sound significant
at first glance, this is the potential production of a small-scale
operating plant.
4. Conclusion

This research shows the positive effect of coupling a WWTP
effluent with glycerol for supporting mixotrophic production of
C. vulgaris and B. terribillis. The best performances, assessed as bio-
mass and fatty acid productivities, were achieved using mixo-
trophic growth at glycerol concentration of 50 mM. Likewise, the
total composition of fatty acids in each strain at glycerol supple-
mentation of 50 mM showed to be the best profile for the genera-
tion of a good quality biodiesel. These findings identify this
biological process as a very good alternative for combining waste-
water treatment to algal biomass derived energy production. An-
other important advantage of such a process is a clear
improvement on nutrient removal (N and P) to concentration lev-
els below the threshold suggested by the EU directive. A year round
productivity was estimated, showing that such a mixotrophic sys-
tem can generate biomass yields of 5.6 and 13.5 tons y�1, for C. vul-
garis and B. terribilis, respectively. The volume of glycerol required
for sustaining such a production is of about 163 kg y�1. Several
biorefinery options are available for microalgae biomass, but the
biodiesel production is being considered as the most suitable for
C. vulgaris and B. terribilis, respectively. Therefore, this research
suggests that enhanced performance and profitability of a WWTP
can be achieved coupling algal biomass production as energy feed-
stock with effluent post-treatment.
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