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Abstract

Attribute reduction is an important step in order to
decrease the computational complexity to derive in-
formation from databases. In this paper, we extend
the notions of reducts and bireducts introduced in
rough set theory for attribute reduction purposes
and let them work with similarity relations defined
on attribute values. Hence, the related mathemat-
ical concepts will be introduced and the character-
izations of the new reducts and bireducts will be
given in terms of the corresponding generalizations
of the discernibility function.
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tem; reduct; bireduct; discernibility function.

1. Introduction

Rough set theory was proposed by Pawlak [16] as
a tool for modelling and processing incomplete in-
formation in information systems. In principle, it
uses subsets of attributes to approximate subsets of
objects. However, one can also extend it to achieve
deeper duality between objects and attributes [4].
This kind of generalization of rough set theory refers
also to property-oriented concept lattices discussed
in [2].
Another important direction was to integrate

fuzzy sets. A first definition, the rough fuzzy sets,
was given by Fariñas del Cerro and Prade in the
eighties [5], and after that one, numerous hybrid
models have been introduced [13, 14, 15, 17]. Such
mathematical techniques are important in the ex-
traction and manipulation of information in rela-
tional databases with inaccurate, missing or lost
data.

Attribute reduction in such frameworks is a
step in decreasing the computational complexity
of knowledge discovery. The main idea is to re-
duce the size of the database, without losing in-
formation about analyzed elements. To this end
the reducts were studied in a number of papers,
e.g. [3, 9, 10, 12, 23, 25].

However, this kind of reduction is not enough
sometimes. In order to provide more flexibility, we
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can further reduce attributes so they do not keep the
complete information about objects, and, in paral-
lel, we can register objects for which information is
lost. This is a new kind of duality between subsets
of attributes and subsets of objects in the attribute
reduction process. The pairs of these searched sub-
sets are called bireducts and have recently become
important in rough set theory [7, 11, 20, 21].

Computing the bireducts is more complex but it
also provides more powerful tools for representation
of data dependencies. In order to further extend ex-
pressive power of bireducts, in this paper, we study
them within an environment where the notion of
equality is replaced by the notion of similarity be-
tween attribute values. This similarity, in the case
of numeric database, can be obtained from a classic
distance.

Similarity relations give us a comparison between
attributes, letting create a gradual hierarchy of val-
ues for each attribute [8, 19, 22]. These relationships
allow us to adapt our study to different situations
depending on our needs.

Consequently, we introduce the notions of δ-
information reduct and bireduct in a similarity en-
vironment where the corresponding reducts and
bireducts are characterized by cubes of discernibil-
ity functions. This may be useful in cases with com-
plex information system. Complex attribute values
occur often in the medical domain like data repre-
senting medical treatment of patiens with the head
and neck cancer cases presented in [1]. Complex
attribute values can also appear in other medical
studies, as well as, multimedia or robotics problems.

The organization of the paper is the following.
Some basic concepts related to classical theory of
propositional logic and the notion of similarity rela-
tion are recalled in Section 2. Section 3 presents the
basic definitions in rough set theory, the notions of
δ-similar and δ-discordant, the corresponding defi-
nition of δ-information reduct and its characteriza-
tion by the extended discernibility function. The
bireducts in the new similarity environment are in-
troduced in Section 4. Conclusions and prospects
for future work are given in Section 5.

2. Preliminaries

In this paper the classical theory of propositional
logic will be considered in order to interpret the ex-
pression of the discernibility function. Hence, sev-
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eral basic notions of propositional logic will be re-
called.
An alphabet A is formed by a numerable set of

symbols or propositional variables

V = {p1, q1, r1 . . . , p2, q2, r2, . . . , pn, qn, rn, . . . }

the constant symbols > and ⊥, the symbols
¬,∧,∨,→ and ↔, called connectives or logical op-
erators, and the punction symbols “(”, “)”.
The language L is the free generated inductive

closing of the base set V ∪ {>,⊥} for the construc-
tors C¬, C∧, C∨, C→ and C↔ defined as follows: For
whichever two chains X and Y of the alphabet A,
we define:

C¬(X) = ¬X
C∧(X,Y ) = (X ∧ Y )
C∨(X,Y ) = (X ∨ Y )
C→(X) = (X → Y )
C↔(X) = (X ↔ Y )

> is read as “true” and ⊥ is read as “false” and,
if A and B are well-formed formulas (WFF),

• ¬A is read as “no A” and is called the negation
of A.
• A ∧ B is read as “A and B” and is called con-
junction of A and B.
• A∨B is read as “A or B” and is called disjunc-
tion of A and B.
• A → B is read as “If A then B” and is called
implication with antecedent A and consequent
B.
• A ↔ B is read as “A if and only if B” and is
called biimplication of A and B.

Therefore the language of the propositional logic
is formed by the alphabet and the set of WFFs.

Definition 1 The propositional symbols, with
their negations are called literals. We say that the
literals p and ¬p are complementary literals.

If l is a literal, we are going to denote its comple-
mentary as l̄.

Definition 2 A WFF is a cube if it is >, ⊥, a
literal or a conjunction (possibly empty) of literals.
We say that it is a restricted cube if it does not con-
tain repeated literals neither pairs of complementary
literals.

Definition 3 A WFF is a clause if it is >, ⊥, a
literal or a disjunction (possibly empty) of literals.
We say that it is a restricted clause if it does not
contain repeated literals neither pairs of complemen-
tary literals.

Definition 4 A WFF is said to be in disjunctive
normal form (DNF) if it is: >, ⊥, a cube or a dis-
junction (possibly empty) of cubes.
A WFF is said to be in conjunctive normal form

(CNF) if it is: >, ⊥, a clause or conjunction (pos-
sibly empty) of clause.

Disjunctive and conjunctive normal forms may
be reduced using absorption laws until none of
them can be further reduced, obtaining the reduced
forms:

Definition 5 A DNF is said to be restricted
(briefly, RDNF), if it satisfies that any cube con-
tains a literal or its complementary, and it does not
contain repeated literals and other cubes.
A CNF is said to be restricted (briefly, RCNF),

if it satisfies that any clause contains a literal or
its complementary, and it does not contain repeated
literals and other clauses.

Example 6 The following example illustrate the
the previous concepts:

• The formula (a∧ b)∨ (d∧ e)∨ e is a DNF, but
it is not a RDNF, since the absorption law can
be applied and a the new formula is obtained:
(a ∧ b) ∨ e, which is just a RDNF.

• The CNF (a ∨ b) ∧ a ∧ (b ∨ d) is not restricted
(RCNF). Applying the absorption law we ob-
tain the equivalent formula: a ∧ (b ∨ d), which
already is a RCNF.

The notion of RDNF is important in order to in-
troduce and manage discernibility functions used in
rough set theory. It will be also used to generalize
our framework to consider similarity relations.

Hence, we will continue recalling the definition
of similarity relation, which extends the notion of
equivalence relation and therefore the concept of
equality.

Definition 7 Given an arbitrary set V , the map-
ping EV : V × V → [0, 1], is called fuzzy similarity
relation if the following properties hold:

1. E is reflexive.
2. E is symmetric.
3. E is transitive, that is, E(v1, v2) ∧ E(v2, v3) ≤

E(v1, v2), for all v1, v2, v3 ∈ V .

In theory, one can define a similarity relation over
the set of objects in an arbitrary way. However, in
practice it is indeed reasonable to refer to values of
objects for available attributes.

3. Generalization of reducts by similarities:
δ-information reducts

First of all, we will recall the basic definitions of
Rough Set Theory and the use of a similarity re-
lation will provide the notions of δ-similar and δ-
discordant objects, with respect to a threshold δ.

Definition 8 An information system (U,A),
where U = {1, . . . , n} and A = {a1, . . . , am} are
finite, non-empty sets of objects and attributes,
respectively. Each a in A corresponds to a mapping
ā : U → Va, where Va is the value set of a over U .
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Next, an example of information system is intro-
duced.

Example 9 Let be the information system
A = (U,A), where the set of objects is U =
{1, 2, 3, 4, 5, 6}, the set of attributes is A =
{Outlook, Temp., Humid., Wind} and the following
table shows the relationship between them:

Outlook Temp. Humid. Wind
1 sunny hot high weak
2 sunny hot high strong
3 overcast hot high weak
4 rain mild high weak
5 rain cool normal weak
6 rain cool normal strong

Thus, we obtain four functions associated with each
of the attributes whose domains are:

VO = {sunny, overcast, rain} VT = {hot, mild, cool}
VH = {high, normal} VW = {weak, strong}

An important relationship among the object is
needed.

Definition 10 For every subset B of A, the B-
indiscernibility relation1 IB is defined as the equiv-
alence relation given by the following set of pairs:

{(i, j) ∈ U × U | for all a ∈ B, ā(i) = ā(j)}

Then, IB is an equivalence relation, where each
class can be written as [i]B = {j | (i, j) ∈ IB}
and produces a partition on U denoted as: U/IB =
{[i]B | i ∈ U}.
In rough set theory, data is represented as an in-

formation system. Given X ⊆ U , its lower and
upper approximation w.r.t. B are defined by

IB↓X = {i ∈ U | [i]B ⊆ X} (1)
IB↑X = {i ∈ U | [i]B ∩X 6= ∅} (2)

The following example shows the classes of the
previous particular information system.

Example 11 From the information system in Ex-
ample 9, the A-indiscernibility relation is defined in
the following table.

IA 1 2 3 4 5 6
1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1

Therefore, trivial equivalence classes are ob-
tained: [i]A = {i}, for all i ∈ U . Hence, in this
case, IA↓X = IA↑X for all X ⊆ U .
Another example is given from the information

system (X,A) where X, A and the mappings

Temperature Headache
x1 Hight Yes
x2 Normal Yes
x3 Hight Yes
x4 Normal No

Table 1: Data of the information system

ā : X → Va, where Va is the value set of a over
X, for all a ∈ A are shown in Table 11. The A-
indiscernibility relation of this information system
is given in Table 2. From this equivalence relation,

IA x1 x2 x3 x4
x1 1 0 1 0
x2 0 1 0 0
x3 1 0 1 0
x4 0 0 0 1

Table 2: A-indiscernibility relation

the non-trivial obtained classes are:

• [x1]A = {x1, x3} = [x3]A
• [x2]A = {x2}
• [x4]A = {x4}

Given A1 = {x2, x3}, we have that

IA↓A1 = {x2}
IA↑A1 = {x1, x2, x3}

If A2 = {x1, x3}, then

IA↓A1 = {x1, x3}
IA↑A1 = {x1, x3}

The notion of reduct is fundamental in this paper.

Definition 12 Given an information system A =
(U,A), the set B ⊆ A is called information reduct
if and only it satisfies IB = IA and IB\{a} 6= IA,
for all a ∈ B.

A well-known approach to generate all reducts of
an information system is based on its discernibility
matrix and function [18]. The discernibility matrix
of (U, A) is the n × n matrix O, defined by, for i
and j in {1, ..., n},

Oij = {a ∈ A | ā(i) 6= ā(j)} (3)

The discernibility function of (U, A) is the map
f : {0, 1}m → {0, 1}, defined by

f(a∗1, ..., a∗m) =

=
∧ {∨

O∗ij | 1 ≤ i < j ≤ n and Oij 6= ∅
}

1When B = {a}, i.e., B is a singleton, we will write Ia

instead of I{a}.
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in which O∗ij = {a∗ | a ∈ Oij}. The Boolean vari-
ables a∗1, . . . , a∗m correspond to the attributes from
A. It can be shown that the prime implicants of f
constitute exactly all decision reducts of (U,A).
There are several possibilities to define a similar-

ity relation on the set of objects U , EU : U × U →
[0, 1]. One of the most popular ways is from a fam-
ily of similarity relations E = {Ea : Va×Va → [0, 1] |
a ∈ A} as follows:

EU (i, j) =
∧
a∈A

(Ea(a(i), a(j))) (4)

Definition 13 Given an information system A =
(U,A), a pair i, j ∈ U and a similarity relation fam-
ily E = {Ea : Va × Va → [0, 1] | a ∈ A}, a pair of
objects i, j ∈ U is called δ-similar if for all a ∈ A
we have:

δ ≤ Ea(a(i), a(j))

with δ ∈ [0, 1]. Otherwise, we say that objects i, j ∈
U are δ-discordant, that is, the following holds:

{a ∈ A | Ea(a(i), a(j)) < δ} 6= ∅

An equivalence relation can be defined associated
with the notion of δ-similar.

Definition 14 Given an information system A =
(U,A), a similarity relation family E = {Ea : Va ×
Va → [0, 1] | a ∈ A} and a threshold δ,
a relation SE,δ = {(i, j) ∈ U × U | δ ≤
Ea(a(i), a(j)), for all a ∈ A} is defined.

Lemma 15 The relation SE,δ is an equivalence re-
lation.

As a consequence, a quotient set is defined on
the set of objects U , which will be denoted as U =
U/SE,δ. The equivalence classes of this quotient set
will play an important role in the generalizations of
the discernibility functions introduced in the next
section.

In this section a threshold δ ∈ [0, 1] is fixed, from
which we will use the notions of δ-similar and δ-
discordant to define the generalization of the dis-
cernibility function using similarity relations.
Hence, an information system A = (U,A) and

a similarity relation family E = {Ea : Va × Va →
[0, 1] | a ∈ A} will also be fixed. Moreover, a linear
ordering ≤ will also be fixed in U . Since the specific
definition of the ordering is not important, any one
can be considered. Given i, j ∈ U , we will say that
i < j, if i ≤ j and they are not the same object.
Below, the definitions of information reducts and

bireducts based on a threshold δ ∈ [0, 1] are intro-
duced.

Definition 16 The set B ⊆ A is called δ-
information reduct if and only if it is an irreducible
subset such that every pair i, j ∈ U , which is δ-
discordant by A, is also δ-discordant by B.

Definition 17 The pair (B,X), where B ⊆ A and
X ⊆ U , is called δ-information bireduct if and only
if all pair i, j of X are δ-discordant by B and the
following properties hold:

1. There is no C ( B such that all pair i, j ∈ X
are δ-discordant by C.

2. There is no X ( Y such that all pair i, j ∈ Y
are δ-discordant by B.

Now, we are going to introduce the discernibil-
ity function in this general framework in order to
obtain both δ-information reducts. Since for δ-
information reducts only the attributes are needed
we will call it unidimensional δ-discernibility func-
tion (uni δ-d function) and, in the next section, for
δ-information bireducts, both attributes and objects
are considered and so, we will call it bidimensional
δ-discernibility function (bi δ-d function).

Definition 18 Let A = (U,A) be a information
system, the unidimensional δ-discernibility function
of A, is defined as the following conjunctive normal
form (CNF):

τuniA =
∧ {∨

{a ∈ A | Ea(a(i), a(j)) < δ} | i, j ∈ U
}

where the elements of A are the propositional sym-
bols of the language.

In order to compute this formula, a generalization
of the discernibility matrix will be useful.

Definition 19 Given an information system A =
(U,A) and a threshold δ ∈ [0, 1], the symmetric ma-
trix Oδ obtained from

(Oδ)ij = {a ∈ A | Ea(a(i), a(j)) < δ} (5)

for i and j in {1, ..., n}, is called the δ-discernibility
matrix associated with A.

The following example shows a δ-discernibility
matrix associated with the information system in
Example 9 from a similarity relation.

Example 20 First of all, we introduce a similar-
ity relation for each attribute of the information sys-
tem in Example 9 , which form the similarity rela-
tion family E:

EO : VO × VO → [0, 1] ET : VT × VT → [0, 1]
EO(s, o) = 0 ET (h,m) = 0
EO(s, r) = 0 ET (h, c) = 0

EO(o, r) = 0.5 ET (m, c) = 0.5

EH : VH × VH → [0, 1] EW : VW × VW → [0, 1]
EH(h, n) = 0.25 EW (w, s) = 0

The threshold of the δ-discernibility matrix will
be fixed to δ = 0.3. To build the 0.3-discernibility
matrix, O0.3 we must consider that it is a symmetric
matrix and we can obtain the element ∅ for Oδ(i, j)
in different ways:
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a) i and j are the same element;
b) There is no attribute satisfying the strict in-

equality Ea(a(i), a(j)) < δ:

 ∅
{W } ∅
{O} {O, W } ∅

{O, T } {O, T, W } {T } ∅
{O, T, H} {O, T, H, W } {T, H} {H} ∅

{O, T, H, W } {O, T, H} {T, H, W } {H, W } {W } ∅



Next, the characterization of the δ-information
reducts is given.

Theorem 21 Given a Boolean information system
A = (U,A). An arbitrary set B, where B ⊆ A, is
a δ-information reduct of A if and only if the cube∧
b∈B b is a cube in the RDNF of τuniA .

This characterization is considered in the follow-
ing example.

Example 22 From the information system of
Example 22, the 0.3-discernibility matrix in Ex-
ample 20, Definition 18 the unidimensional 0.3-
discernibility function is:

τuni = {W} ∧ {O} ∧ {O ∨ T} ∧ {O ∨ T ∨H}
∧{O ∨ T ∨H ∨W} ∧ {O ∨W}
∧{O ∨ T ∨W} ∧ {T} ∧ {T ∨H}
∧{T ∨H ∨W} ∧ {H} ∧ {H ∨W}

= {O ∧ T ∧H ∧W}

Therefore, by Theorem 21, only one 0.3-decision
reduct is obtained: B = {O, T,H,W}.
Now, we will perform the same calculations but

with δ = 0.2. In this case, the 0.2-discernibility
matrix O0.2 is:


∅
{W} ∅
{O} {O,W} ∅
{O, T} {O, T,W} {T} ∅
{O, T} {O, T,W} {T} ∅ ∅
{O, T,W} {O, T} {T,W} {W} {W} ∅


Hence, the unidimensional 0.2-discernibility func-

tion is

τuni = {W} ∧ {O} ∧ {O ∨ T} ∧ {O ∨W}
∧{O ∨ T ∨W} ∧ {T ∨W} ∧ {T}

= {O ∧ T ∧W}

Hence, only one 0.2-decision reduct is obtained:
B = {O, T,W}.

4. δ-information bireducts

This section is focused on introducing and charac-
terizing the bireducts considering the new frame-
work with similarities.

The following definition is the natural exten-
sion of the discernibility function expression to δ-
information bireducts.

Definition 23 Let A = (U,A) be a information
system, the conjunctive normal form

∧
{i∨j

∨
{a ∈ A | Ea(a(i), a(j)) < δ} | i, j ∈ U}

where the elements of U and A are the propositional
symbols of the language, is called the bidimensional
δ-discernibility function and it is denoted as τ biA .

The following theorem characterizes the δ-
information bireducts.

Theorem 24 Given an information system A =
(U,A), an arbitrary pair (B,X), B ⊆ A, X ⊆ U ,
is a δ-information bireduct if and only if the cube∧
b∈B b ∧

∧
i/∈X i is a cube in the RDNF of τ birA .

Theorem 24 will be applied in the following ex-
ample to the weather information system given in
the previous section.

Example 25 From the information system given
in Example 9, we will consider the thresholds δ =
0.3 and δ = 0.2 in order to obtain the corresponding
δ-information bireducts.
First of all, we compute the bidimensional 0.3-

discernibility function, by Definition 23, adding the
corresponding attributes to the 0.3-discernibility ma-
trix O0.3:

τ bi = {1 ∨ 2 ∨W} ∧ {1 ∨ 3 ∨O} ∧ {1 ∨ 4 ∨O ∨ T}
∧{1 ∨ 5 ∨O ∨ T ∨H}
∧{1 ∨ 6 ∨O ∨ T ∨H ∨W}
∧{2 ∨ 3 ∨O ∨W} ∧ {2 ∨ 4 ∨O ∨ T ∨W}
∧{2 ∨ 5 ∨O ∨ T ∨H ∨W}
∧{2 ∨ 6 ∨O ∨ T ∨H}
∧{3 ∨ 4 ∨ T} ∧ {3 ∨ 5 ∨ T ∨H}
∧{3 ∨ 6 ∨ T ∨H ∨W} ∧ {4 ∨ 5 ∨H}
∧{4 ∨ 6 ∨H ∨W} ∧ {5 ∨ 6 ∨W}

From this CNF we compute the RDNF. After
that, 80 cubes are obtained, which provides 80 bidi-
mensional 0.3-information bireducts. For example,
some of them are:
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(B1, X1) = ({H,W}, {1, 3})
(B2, X2) = ({O,W}, {3, 5})
(B3, X3) = ({O, T,H,W}, {})
(B4, X4) = ({O, T,W}, {4})
(B5, X5) = ({W}, {1, 2, 3, 4})
(B6, X6) = ({T,W}, {2, 3, 5})
(B7, X7) = ({O, T,H}, {2, 5})
(B8, X8) = ({}, {1, 2, 3, 4, 6})

Taken into account the threshold δ = 0.2 and
the 0.2-discernibility matrix =0.2, the bidimensional
0.2-discernibility function is

τ bi = {1 ∨ 2 ∨W} ∧ {1 ∨ 3 ∨W} ∧ {1 ∨ 4 ∨O ∨ T}
∧{1 ∨ 5 ∨O ∨ T} ∧ {1 ∨ 6 ∨O ∨ T ∨W}
∧{2 ∨ 3 ∨O ∨W} ∧ {2 ∨ 4 ∨O ∨ T ∨W}
∧{2 ∨ 5 ∨O ∨ T ∨W} ∧ {2 ∨ 6 ∨O ∨ T}
∧{3 ∨ 4 ∨ T} ∧ {3 ∨ 5 ∨ T} ∧ {3 ∨ 6 ∨ T ∨W}
∧{4 ∨ 6 ∨W} ∧ {5 ∨ 6 ∨W}

The RDNF has 23 cubes, which provides the cor-
responding 23 bidimensional 0.2-decision bireducts,
such as:

(B1, X1) = ({T,W}, {})
(B2, X2) = ({O,W}, {3})
(B3, X3) = ({}, {1, 2, 3, 6})
(B4, X4) = ({W}, {1, 2, 3})
(B5, X5) = ({O}, {2, 3, 6})
(B6, X6) = ({O, T}, {1, 6})
(B7, X7) = ({O,W}, {4, 5})
(B8, X8) = ({}, {1, 3, 4, 6})

5. Conclusions and future work

We have studied the reducts and bireducts in the
classic environment of rough set theory and con-
sidering similarity relations. We have generalized
the discernibility function, from which we could get
the reducts and bireducts in these environments.
The inclusion of the similarity relations in theory
provides a greater flexibility in these environments,
dramatically increasing the range of possible appli-
cations.
As future work, we will extend the theory to ob-

tain bireducts in FCA and fuzzy environments, such
as in fuzzy rough sets. Moreover, we will study in
depth in the relation between concept lattice reduc-
tion and rough set reduction considering similarity
relations and in the general fuzzy case, considering
the ideas given in [6, 10, 12, 24]. Furthermore, we
apply the theory developed in both theories to prac-
tical cases.
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[20] D. Ślȩzak and A. Janusz. Ensembles of
bireducts: Towards robust classification and
simple representation. In T.-h. Kim, H. Adeli,
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