Tesis Doctoral

Event-driven Principles and Complex Event Processing for Self-adaptive Network Analysis and Surveillance Systems

Defense

Rüdiger Gad

Universidad de Cádiz

2015-07-29

- Introduction
- Thesis Overview
- Two Highlights
- Summary and Conclusion

Outline

- 1 Introduction
- 2 Thesis Overview
- 3 Two Highlights
- 4 Summary and Conclusion

- IT is used ubiquitously.
 - Non-operational IT?
 - \rightarrow Severe Consequences!
 - Importance of IT: Critical
- Computer Networks
 - Fundamental for IT Operation
 - lacksquare Non-operational Networks? ightarrow Non-operational IT!
 - Importance of Networks: **Critical**

Assure Operational Computer Networks

- Basis
 - Information
 - Detailed
 - Accurate
 - Up-to-date
 -
 - Network Analysis and Surveillance ("Network Reconnaissance" or "Network Monitoring")

Challenging

- Distribution
- Size
- Change
- Timeliness
- Data Volume
-

Introduction

00000

Event-driven Principles and Complex Event Processing (CEP) for NAaS

Introduction

00000

Event-driven Principles and Complex Event Processing (CEP) for NAaS

Introduction

00000

Event-driven Principles and Complex Event Processing (CEP) for NAaS

Event-driven Architecture (EDA) and CEP for NAaS

Two Highlights

- Powerful Capabilities
- Existing Related Work
- Related Work, Limitations
 - Focused on Specific Use Cases
 - Conceptual/Architectural Focus
 - Real-world Applicability?

- 1 Introduction
- 2 Thesis Overview
- 3 Two Highlights
- 4 Summary and Conclusion

- Overarching Approach
- Convergence of Heterogeneous Data Sources
- Flexible
- Applicability
- Performance
- Complexity vs. Usability

Thesis Outline

- Analysis of Important Properties and Requirements
- Architecture for Overarching Event-driven NAaS
- Evaluation Prototype
 - Flexibility and Convergence of Data Sources
 - Performance
- Improvements in Distributed Contexts
- Coalescence Problems, Analysis and Solutions
- Improvements for Individual Components
- Threats to Validity

Thesis Outline

- Analysis of Important Properties and Requirements
- Architecture for Overarching Event-driven NAaS
- Evaluation Prototype
 - Flexibility and Convergence of Data Sources
 - Performance
- Improvements in Distributed Contexts

0000

- Coalescence Problems, Analysis and Solutions
- Improvements for Individual Components
- Threats to Validity

■ Important Properties and Requirements

General Architecture

- Important Properties and Requirements
- Event-driven Architecture
- Focus on the Essentials
- Unified Internal Event Representation
- Components
 - Sensors (S)
 - Event Transformer (ET)
 - **.** . . .

Two Highlights

■ Prototype Based on Architecture

Figure: Evaluation Prototype

- Prototype Based on Architecture
- Evaluation of Flexibility and Convergence of Data Sources
- Step-wise Defined Goals
 - Basic System

Figure: Evaluation Prototype

- Prototype Based on Architecture
- Evaluation of Flexibility and Convergence of Data Sources
- Step-wise Defined Goals
 - Basic System
 - Relocating Functionality

Figure: Evaluation Prototype

Two Highlights

- Prototype Based on Architecture
- Evaluation of Flexibility and Convergence of Data Sources
- Step-wise Defined Goals
 - Basic System
 - Relocating Functionality
 - Convergence of Sensors

Figure: Evaluation Prototype

- Prototype Based on Architecture
- Evaluation of Flexibility and Convergence of Data Sources
- Step-wise Defined Goals
 - Basic System
 - Relocating Functionality
 - Convergence of Sensors
 - **.** . . .
- Results
 - Flexible NAaS
 - Convergence of Sensors for NAaS

Figure: Evaluation Prototype

Performance Evaluation

- **■** Evaluation Setup
- Packet Capturing as "Worst Case" Scenario

Performance Evaluation

- Evaluation Setup
- Packet Capturing as "Worst Case" Scenario
- Results
 - **■** Example Results

- Evaluation Setup
- Packet Capturing as "Worst Case" Scenario
- Results
 - Example Results
 - It works!
 - Most Critical: Sensor

Outline

- Two Highlights
- 4 Summary and Conclusion

Two Highlights

•000000

Two Highlights

•000000

Two Highlights

•000000

•000000

Two Highlights

•000000

Cooperative Sensors, Architecture and Application

- Sensors: Hosts A to D
- Controller: Host E
 - Logic
 - Data Merging
 - Data Consumer
- Traffic Generation
 - $\blacksquare \; \mathsf{Host} \; \mathsf{A} \to \mathsf{Host} \; \mathsf{D}$
- Paper: IEEE ICC 2015

Cooperative Sensors: Performance, Scalability, and Traffic Load

Cooperative Sensors: Improving Operation and Usability via Self-adaptivity

- Problem
 - Complexity of Operation & Usability
- Solution
 - Self-adaptation
- Example
 - On-demand Cooperation
- Aims
 - Capture as much as possible.
 - Avoid overload.
 - Reduce # of sensors.
- Apply cooperation as necessary.

Figure: Detailed Results of an Example Experiment

0000000

Improvements for Individual Components

- Example: Sensor
- Packet Capturing with Java & Clojure
- Analyze the optimization potential in various areas.
- Paper: 20th IEEE ISCC 2015

Raw Data Acquisition: Improved Method vs. Old Method

Th.Pkt.Rt. 1 Gbps [kpps] Cap.Rt. (Dbl.Buf.) [kpps] CR Rel.SD (Dbl.Buf.) [%]

Th.Pkt.Rt. 10 Gbps [kpps] Cap.Rt. (Non-B.) [kpps] CR Rel.SD (Non-B.) [%]

Example Results of Self-adaptive Performance-based Adjustment

- 1 Introduction
- 2 Thesis Overview
- 3 Two Highlights
- 4 Summary and Conclusion

- Computer Networks: **Critical Importance**
- lacktriangle Assuring Operating Networks ightarrow Information
- Network Analysis and Surveillance (Network Reconnaissance, Network Monitoring)
- "Good" Information → challenging.
- (Contradicting) Requirements and Properties
- EDA and CEP to the Rescue
- Related Work: Too Focused, Real World Applicability?
- Thesis Aims: Overarching and Applicable NAaS

Answered Research Questions (I)

- What are important properties and requirements for overarching and flexible NAaS?
 - → Enumeration and Discussion of Properties and Requirements
- 2 Does our NAaS approach offer convergence of data sources and is it flexible?
 - → Convergence works.
 - → The architecture is flexible

Answered Research Questions (I)

- What are important properties and requirements for overarching and flexible NAaS?
 - → Enumeration and Discussion of Properties and Requirements
- Does our NAaS approach offer convergence of data sources and is it flexible?
 - → Convergence works.
 - → The architecture is flexible.

Answered Research Questions (II)

- What are the performance limits and what is the most relevant bottleneck?
 - → Detailed Performance Analysis
 - → CEP and EDA for NAaS works.
 - → Most Important Bottleneck: Sensors
- 4 Can the most relevant performance bottleneck be addressed by leveraging distributed approaches?
 - → Cooperative Sensors
- 5 Can the increased complexity of distributed approaches be addressed?
 - → Self-adaptive On-demand Cooperation

Two Highlights

Answered Research Questions (II)

- 3 What are the performance limits and what is the most relevant bottleneck?
 - → Detailed Performance Analysis
 - → CEP and EDA for NAaS works.
 - → Most Important Bottleneck: Sensors
- 4 Can the most relevant performance bottleneck be addressed by leveraging distributed approaches?
 - \rightarrow Cooperative Sensors
- 5 Can the increased complexity of distributed approaches be addressed?
 - → Self-adaptive On-demand Cooperation

Answered Research Questions (II)

- 3 What are the performance limits and what is the most relevant hottleneck?
 - → Detailed Performance Analysis
 - → CEP and EDA for NAaS works.
 - → Most Important Bottleneck: Sensors
- 4 Can the most relevant performance bottleneck be addressed by leveraging distributed approaches?
 - → Cooperative Sensors
- 5 Can the increased complexity of distributed approaches be addressed?
 - → Self-adaptive On-demand Cooperation

Two Highlights

Answered Research Questions (III)

- May the distributed nature of our approach cause additional performance issues and how can these be addressed?
 - → Problem: Accumulating Data
 - → Hierarchical Event Patterns, Multi-tiered Setups
- 7 What is the most relevant performance limit of our approach in a non-distributed scenario and how can it be addressed?
 - → Sensor
 - → Example: Packet Capturing
 - → Various Improvements

Two Highlights

Answered Research Questions (III)

- May the distributed nature of our approach cause additional performance issues and how can these be addressed?
 - → Problem: Accumulating Data
 - → Hierarchical Event Patterns, Multi-tiered Setups
- 7 What is the most relevant performance limit of our approach in a non-distributed scenario and how can it he addressed?
 - → Sensor
 - → Example: Packet Capturing
 - → Various Improvements

Publications

■ Improving Network Traffic Acquisition and Processing with the Java Virtual Machine, R. Gad, M. Kappes, and I. Medina-Bulo, 20th IEEE ISCC 2015, in press

Two Highlights

- Monitoring Traffic in Computer Networks with Dynamic Distributed Remote Packet Capturing, R. Gad, M. Kappes, and I. Medina-Bulo, IEEE ICC 2015, in press
- Analysis of the Feasibility to Combine CEP and EDA with Machine Learning using the Example of Network Analysis and Surveillance, R. Gad, M. Kappes, and I. Medina-Bulo, JCIS – SISTEDES 2014
- Bridging the Gap between Low-level Network Traffic Data Acquisition and Higher-level Frameworks, R. Gad, M. Kappes, and I. Medina-Bulo, IEEE COMPSACW 2014
- Header Field Based Partitioning of Network Traffic for Distributed Packet Capturing and Processing, R. Gad, R. Mueller-Bady, M. Kappes, and I. Medina-Bulo, 28th IEEE AINA 2014
- Employing the CEP Paradigm for Network Analysis and Surveillance, R. Gad, M. Kappes, J. Boubeta-Puig, and I. Medina-Bulo, AICT 2013
- Leveraging EDA and CEP for Integrating Low-level Network Analysis Methods into Modern. Distributed IT Architectures, R. Gad, M. Kappes, J. Boubeta-Puig, and I. Medina-Bulo, JCIS - SISTEDES 2012
- Hierarchical events for efficient distributed network analysis and surveillance, R. Gad, M. Kappes, J. Boubeta-Puig, and I. Medina-Bulo, WAS4FI 2012

Open Source Software Contributions

- Clojure and Java Packet Capturing Library https://github.com/ruedigergad/clj-net-pcap
- Distributed Remote Packet Capturing (DRePCap) https://github.com/fg-netzwerksicherheit/drepcap
 - clj-jms-activemg-toolkit https://github.com/fg-netzwerksicherheit/clj-jms-activemq-toolkit

Two Highlights

- drepcap-sensor https://github.com/fg-netzwerksicherheit/drepcap-sensor
- drepcap-merger https://github.com/fg-netzwerksicherheit/drepcap-merger
- drepcap-frontend https://github.com/fg-netzwerksicherheit/drepcap-frontend
- Patches for iNetPcap

- EDA and CEP for Overarching NAaS
- It works!
- Improved the state of the art.

Thank you for your attention!

Questions?

Rüdiger Gad rgad@fb2.fra-uas.de r.c.g@gmx.de

