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C*-ALGEBRAS ASSOCIATED TO BOOLEAN DYNAMICAL SYSTEMS

TOKE MEIER CARLSEN, EDUARD ORTEGA, AND ENRIQUE PARDO

Dedicated to the memory of Uffe Haagerup

ABSTRACT. The goal of these notes is to present the C*-algebra C*(B, L,0) of a Boolean
dynamical system (B, L,0)), that generalizes the C*-algebra associated to Labelled graphs
introduced by Bates and Pask, and to determine its simplicity, its gauge invariant ideals, as
well as compute its K-Theory.

1. INTRODUCTION

In 1980 Cuntz and Krieger [9] associated a C*-algebra O4 to a shift of finite type with
transition matrix A. Various authors —including Bates, Fowler, Kumjian, Laca, Pask and
Raeburn— extended the original construction to more general subshifts associated to oriented
graphs, giving origin to the graph C*-algebra C*(E) associated to E (see e.g. [17,[24]). Using
a different approach, Exel and Laca [14] generalize Cuntz-Krieger algebras, by associating a
C*-algebra to an infinite matrix which 0 and 1 entries. After that, with the goal of unifying
Exel-Laca algebras and graph C*-algebras, Tomforde [30] introduced the class of ultragraph
algebras. Also, motivated by Cuntz-Krieger construction, Matsumoto [27] introduced a C*-
algebra associated to a general two-sided subshift over a finite alphabet. Later, the first
named author [7] extended Matsumoto’s construction, by constructing the C*-algebra Oy
associated to a general one-sided subshift A over a finite alphabet.

The underlying idea of associating a C*-algebra to a dynamical system comes from the
Franks classification of irreducible shifts of finite type up to flow equivalence [16]. This
classification use the Bowen-Franks group of the shift space, that turns out to be the Ky group
of the associated Cuntz-Krieger algebra [9]. Therefore, the point was to state a connection
between classification of shift spaces and classification of C*-algebras. In this line, the recent
results of Matsumoto and Matui [28] characterize continuous orbit equivalence of shifts of
finite type by using K-theoretical invariants of the associated C*-algebra. Next step was
to extend the scope of this strategy to classify shift space over a countable alphabet. By
adapting the left-Krieger cover construction given in [25], any shift space over a countable
alphabet may be presented by a left-resolving labelled graph. Thus, in the same spirit of the
previous constructions, labelled graph algebras, introduced by Bates and Pask in [I], provided
a method for associating a C*-algebra to a shift space over a countable alphabet. The class of
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labelled graph C*-algebras contains, in particular, all the above C*-algebra classes. Properties
like simplicity, ideal structure and purely infinity was studied in [2} 20] and the computation
of the K-theory was achieved in [3].

The original goal of the present paper was to continue the study of the labelled graph
C*-algebras, by characterizing them as 0-dimensional topological graphs [2I]. However, the
topological graph E associated to the data of the labelled graph is just a realization as a
Boolean algebra of a family of subsets of vertices of F, plus some partial actions given by
the arrows of E. Thus, we adapt the labelled graph C*-algebra construction, as well as
our topological graph characterization, to the context of a C*-algebra associated to a general
family of partial actions over a fixed Boolean algebra (we call it a Boolean dynamical system).
This class of C*-algebras, that we call Boolean Cuntz-Krieger algebras associated to Boolean
dynamical systems, includes labelled graph C*-algebras, homeomorphism C*-algebras over
0-dimensional compact spaces, and graph C*-algebras, among others. Essentially, it is not
a new class of C*-algebras, since they are (0-dimensional) algebras over topological graphs,
a class deeply studied by Katsura [21] 22]. However, the advantage of our approach is that
we can skip to deal with the topology of the graph, and concentrate only in combinatorial
properties of actions over a Boolean algebra. In particular, we can benefit of a different
picture when studying C*-algebras associated to combinatorial objects, by using groupoid
C*-algebras. This is a classical approach, as shown by Kumjian, Pask, Raeburn and Renault
[24] when studying graph C*-algebras. This approach attained a new level of efficiency when
Exel [11] developed a huge machinery that helps to represent any “combinatorial” C*-algebra
as a full groupoid C*-algebra. The strategy is to associate to the C*-algebra an x-inverse
semigroup (see e.g. [26]) and a “tight” representation (i.e. a representations preserving
additive identities on pairwise orthogonal idempotents). When this situation holds, there is
a standard way of producing a étale, second countable topological groupoid which full C*-
algebra is isomorphic to the original C*-algebra under consideration. In the case of Boolean
Cuntz-Krieger algebras associated to Boolean dynamical system this strategy works, and so
we can use all the machinery developed by Exel [I1l, 12] for analyze the structure of the
algebras under study. A recent example of application of such an strategy is [15].

The contents of this paper can be summarized as follows: In Section 2 we recall Boolean
algebra Theory. In particular, we summarize some well-known results about the topology
of the space of characters (Stone’s spectrum) of a Boolean algebra. In Section 3 we define
Boolean dynamical systems, that are families of partial actions on a Boolean algebra, and
their representations in a C*-algebra; the C*-algebra associated to the universal represen-
tation will be the Boolean Cuntz-Krieger algebra. We state the existence of a universal
representation and the gauge uniqueness theorem, that will be proved later. In Section 4 we
recall the definition of Katsura’s topological graph. When E is a 0-dimensional space, i.e.
both the vertex and edge spaces are 0-dimensional and compactly supported (definition [£.4]),
we construct a Boolean dynamical system that can be represented in the associated topolog-
ical graph C*-algebra O(F). In Section 5 we focus on finding a universal representation of
a given Boolean dynamical system. This is achieved by constructing a compactly supported
0-dimensional topological graph with the data of the Boolean dynamical system, and defining
a representation of the Boolean dynamical system in the topological graph C*-algebra. We
conclude proving that the Boolean Cuntz-Krieger algebras are isomorphic to a 0-dimensional
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topological graph C*-algebra, and using this characterization to compute its K-Theory. In
Sections 6,7 and 8 we apply Exel’s machinery to Boolean Cuntz-Krieger algebras. To this
end, we first define an *-inverse semigroup associated to a Boolean dynamical system, and
then we prove that the C*-algebra associated to the universal tight representation of this
k-inverse semigroup is isomorphic to our Boolean Cuntz-Krieger algebra. Finally, we define
the groupoid of germs of the partial actions of the *-inverse semigroup on the space of tight
filters defined over its semilattice of idempotents. Thus, by using Exel’s results, we can see
that the Boolean Cuntz-Krieger algebra is the full C*-algebra of this groupoid. This allows
us to work in the realm of groupoid C*-algebra, and to use the known results on this class to
characterize properties of Boolean Cuntz-Krieger algebras. In particular, we use the groupoid
characterization of the Boolean Cuntz-Krieger algebras in Section 9 to characterize its sim-
plicity in terms of intrinsic properties of the associated Boolean dynamical system. A similar
approach was used by Marrero and Muhly for ultragraph C*-algebras [29], although the way
they constructed the groupoid is quite different to ours; also, after the final version of the
present paper was ready, we were aware of Boava, de Castro and Mortari’s work for labelled
graph C*-algebras [4], were they constructed an inverse semigroup in the same mood as our
S (see Section 6), but they concentrated their attention in understanding the nature of the
tight spectra, and do not work out either an associated groupoid or a groupoid picture of
labelled C*-algebras associated to it. In Section 10 we define an admissible pair for a Boolean
dynamical system, and we state an order lattice bijection between the admissible pairs and
the gauge invariant ideals of the Boolean Cuntz-Krieger algebras. Finally, we realize the
quotient of a Boolean Cuntz-Krieger algebra modulo a gauge invariant ideal as the Boolean
Cuntz-Krieger algebra of another induced Boolean dynamical system.

2. BOOLEAN C*-ALGEBRAS

The main object we will use in this paper is a Boolean algebra and its associated C*-
algebras. We will first introduce the basic definitions and results, mostly well-known, and
then we will focus on finding a representation of a Boolean algebra as the set of open subsets
of a topological space (Stone’s representation). It turns out that the points of this topological
space are the set of the ultrafilters of the elements of the Boolean algebra.

Definition 2.1. A Boolean algebra is a quadruple (B,N, U, \), where B is a set with a distin-
guished element () € B, that we called empty, and maps U: Bx B— B, N: B x B — B and
\ : B x B — B that we call the union, intersection and relative complement maps, satisfying
the standard axioms (see [I8, Chapter 2]). The Boolean algebra B is unital if does exist 1 € B
such that 1UA =1 and 1N A = A for every A € B.

Remark 2.2. What we call a Boolean algebra is sometimes called a Boolean ring, and that
what we call a unital Boolean algebra is sometimes simple called a Boolean algebra. The
theories of Boolean algebras and Boolean rings are very closely related; in fact, they are just
different ways of looking at the same subject. See [I8] for further explanation.

A subset B’ C B is called a Boolean subalgebra if B’ is closed by the union, intersection and
the relative complement operations.
Given a Boolean algebra B, we can define the following partial order: given A, B € B

ACB if and only if ANB=A.
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Then (B, C) is a partially ordered set.

Definition 2.3. Let B be a Boolean algebra. A subset C C B is called a filter of B if satisfies:
Fo: 0 ¢ C,

F1: given B € B and A € C with A C B then B € C,

F2: given A, B € C then AN B € C.

If moreover C satisfies:
F3: given A € C and B, B’ € B with A = B U B’ then either B € C or B’ € C,
then it is called an wltrafilter of B.

Given two filters F; and JF> of B, we say that F; C F; if every A; € Fy is also in Fs.
This defines a partial order on the set of filters of B. Then, an easy application of the Zorn’s
Lemma shows that an ultrafilter as a maximal filter.

We will denote by D(B) the set of ultrafilters of B. Given any A € BB, we define the cylinder
set of A as Z(A) :=={C € D(B) : A € C}. The following (straightforward) result shows that
the family {Z(A) : A € B} defines a topology of D(B), in which the sets Z(A) are clopen
and compact. We will call D(B) the Stone’s spectrum of B.

Lemma 2.4. Let B be a Boolean algebra. Let A, B € B then:
(1) Z(A)NZ(B) = Z(AN B),
(2) Z(A)U Z(B) = Z(AUB),
(8) if AC B then Z(B\ A) = Z(B) \ Z(A).

Proof. (1) Let C € Z(AN B), then AN B € C. Therefore by F1 we have that A, B € C, and
hence C € Z(A)N Z(B). Conversely, let C € Z(A)NZ(B), so A, B € C. Therefore by F2 we
have that AN B €C,soC € Z(AN B).

(2) Let C € Z(AUB), so AUB € C. Then by F3 either A € C or B € C, so either C € Z(A)
or C € Z(B). Thus, C € Z(A)U Z(B). In the other hand, let C € Z(A) U Z(B). Then either
CeZ(A)orCe Z(B),so AUB € C by F1. Therefore, C € Z(AU B).

(3) Let C € Z(B)\Z(A),ie., BeCbut A ¢ C. Then (B\A)UA € C, but by F3 either B\ A
or A belongs to C. But by hypothesis, A ¢ C, we have that B\ A € C. Thus, C € Z(B\ A).
Conversely, let B\ A € C. Then by F1 B € C, but A cannot belong to C because otherwise
) =AnN(B\ A) € C by F2, but this contradicts FO. Therefore, C € Z(B) \ Z(A). O

And as consequence it follows:

Lemma 2.5. Let B be a Boolean algebra and let D(B) the Stone’s spectrum of B. If A € B,
then Z(A) C D(B) is a clopen set.

Example 2.6. Let X = N and let B:= {F C N: F finite } U{N\ F': F' finite }. Clearly, B
is a Boolean algebra. Given i € N we have that C; = {A € B:i € A}. We will see that there
exists an ultrafilter C of B that is not of the form C; for some ¢ € N. Indeed, let us define

Coo :={A € B:3N € Nsuch that k € AVk > N},

that is clearly an ultrafilter of B. Now, let C be an ultrafilter of B such that (| A = 0. Given
Aec

k € N, let us denote by [k, 00) the set N\ {1,...,k—1} € B. Observe that, since (| A =10,
Aec
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given any k € N there exists ny € N and A,,...,A,, € Csuch that A, N---NA4,, C [k, o00).
Therefore, by F1, [k, 00) € C for every k € N.

Now, given any A € C, there exists k € N such that [k,00) C A, whence A € C by F1.
On the other side, given any A € C, we claim that |A| = co. Otherwise, if |A| = n < oo,
then there exist A;,..., A, € C such that ANA;N---NA, =0, contradicting condition F2.
Thus, |A| = co. Therefore, since A € B, we have that A = N\ F' for some finite set F' of
N. Then, there exists k& € N such that [k, 00) C A. So, since [k, o0) € Cw, condition F1 says
that A € Cy, too. Thus C = Co.

Therefore, we have that D(B) = {C; : i € NU {Cx}}. Finally observe that, with the
induced topology, we have that D(B) is the one point compactification of N.

Definition 2.7. An element B € B is called a least upper-bound for { Ay} ep with Ay € B if
it is the least element of B satisfying Ay C B for every A € A. We will write the unique least
upper-bound as | Ay.

AEA

Observe that least upper-bound do not necessarily exist, but if |[A| < oo then the least
upper-bound of {Ay}rea is | An.
AEA
Definition 2.8. Let B be a Boolean algebra. We say that a subset Z of B is an ideal if given
A, B € B, then:
(1) if A,Be€Z then AUB €T,
(2) if A€ Z then ANB€Z.

An ideal Z of a Boolean algebra B is itself a Boolean algebra.

Example 2.9. Given a collection {A)} ep of elements A, € B3, the subset

Ty a,:= {AGB:EI)\l,...,)\n suchthatAQUAAi}

AEA i=1
is an ideal of B. Observe that every ideal Z of B is of this form.

Definition 2.10. Let B be the Boolean algebra and let Z be an ideal of B. Given A, B € B,
we define the following equivalent relation: A ~ B if and only if there exists A’, B’ € Z such
that AU A" = BU B’. We define by [A] the set of all the elements of B equivalent to A, and
we denote by B/Z the set of all equivalent classes of B. Moreover, we say that [A] C [B] if
and only if there exists H € Z such that A C BU H.

Let B be a Boolean algebra, and let Z be an ideal of B. Then, the map ¢ : D(Z) — D(B)
defined by ¢(C) = {A € B: B C A for some B € C} is injective. So, given A € B, we have
that Z(A) = «(D(Za)).

Moreover, there exists a bijection between the ultrafilters of B/Z and the ultrafilters of B
that do not contain any element of Z. Therefore, the natural map = : B — B/Z is surjective,
and it induces an injective map ¢ : D(B/Z) — D(B) given by [C] — 7 ([C]) = {A € B :
[A] € [C]} for every [C] € D(B/TI).

So, we will identify D(Z) and D(B/Z) with the corresponding subspaces of D(B).

Lemma 2.11. Let B be a Boolean algebra and let Z be an ideal of B.
(1) If U C D(B), then U is an open subset of B if and only if U = D(I).
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(2) D(B) = D(Z)UD(B/ZI) and D(Z) ND(B/Z) = 0. Thus, for every closed subset V of
D(B), there exists an ideal T of B such that V = D(B/T).

Proof. (1) Let U be an open subset of D(B). Given C € U, let us pick one Az € B such

that Z(A¢) C U and C € Z(Ac). If we define 7 = IU 4c, then U = D(Z). Conversely, if

U=D(Z), let us define Ay ={A € B: AecZ}. Then, U— U Z(A), so U is open.
A€eAT

(2) Let C € D(B), and suppose that CNZ = 0. Let [C] = {[A] : A € C} be a subset of
B/Z. It is routine to check that [C] is an ultrafilter of B/Z, and that «([C]) = C. Finally, let
C € D(Z)ND(B/I). Then, there exists A € C with A € Z. But then [A] € [C], contradicting
the fact that [A] = [0)]. O

Now, we will describe the associated topological space that represents the Boolean algebra,
the so-called Stone’s representation..
Given a Boolean algebra B and given A € B we let x4 denote the function defined on B by

1 if ANB#
0 otherwise '

xa(B) = {
We will regard x4 as an element of the C*-algebra of bounded operators on £*(B).

Definition 2.12. Let B be a Boolean algebra. Then we define the Boolean C*-algebra of B
as the sub-C*-algebra of the B(¢*(B)) generated by {x1 : A € B}. We denote it as C*(B).

C*(B) is a commutative C*-algebra, and given A, B € B we have that

Xa-XB=Xans  and  Xaup = Xa+XB — XanB
where xg = 0. Thus, C*(B) =span{xa : A € B}.

First, recall that the spectrum of C*(B), denoted by CT(\Z3), is the set of characters of
C*(B). Observe that an additive map n : C*(B) — C is a *-homomorphism if and only if

given A, B € B
(C1) n(xa)n(xs) = n(xans)
(€2) n(xaus) = n(xa) +1(xs) = n(xans) -
If n is a character of C*(B), then we define

C, ={AeB:n(xa) =1}.
Recall that, since x4 is a projection for every A € B and 7 is a *-homomorphism, 1(x4) is
either 0 or 1.
Lemma 2.13. Ifn is a character of C*(B), then C, is an ultrafilter of B.

Proof. We must check FO —F3. For FO, recall that by definition yy = 0, and thus n(xg) = 0,
so () ¢ C,. For F1, let A,B € B with A C B and n(x4) = 1. Since xa = xaxs, it follows
that 1 = n(xa) = n(xa)n(xs) = n(xs), so B € C, as desired. For F2, let A, B € C,. Then,
using (C'1), we have that 1 = n(xa)n(xs) = n1(xans), so AN B € C,. Finally, for F3, let
AeC,and B,B' € Bwith A= BUB'. Then, using (C2), it follows that

L =n(xa) =n(xsus) = nxs) +n(xs) — 1(Xns) -
Therefore, either B € C,, or B’ € C,, as desired. O
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Given an ultrafilter C of B, we define the unique additive map 7¢ : C*(B) — C such that

1 ifAeC
WC(XA): 0 ifA%C

Lemma 2.14. ¢ is a character of C*(B).

Proof. We must check that ne satisfies C'1 and C2. For C1, let A, B € B, and recall that
XA XB = Xanp- First, suppose that n¢(xang) = 0. Therefore, AN B ¢ C and hence, by F2,
either A or B are not in C. Thus, ne(A)ne(A) = 0 = ne(xans), as desired. Now, suppose
that ne(xans) =1, so AN B € C. Therefore, by F1, it follows that A, B € C too, and hence
ne(A)ne(A) = 1 =ne(xanp), as desired. Thus, C1 is verified.

For C2, let A, B € B. First, suppose that ne(xaus) = 0. So, AU B ¢ C, and since
A,B,AN B C AU B, it follows from F1 that A, B,AN B ¢ C. Therefore,

ne(xaus) = 0 = ne(xa) + ne(xs) — 1(xans) -

Finally, suppose that AU B € C. Hence, by F3, either A or B belongs to C. First suppose
that A, B € C. Then, by F2 so does AN B. Therefore,

ne(Xaus) =1+1—1=mnc(xa) +ne(xs) — nlxans),
as desired. Now, suppose that A € C but B ¢ C. By F2, we have that AN B ¢ C, so

ne(xaus) =140 —0=mnc(xa) +ne(xs) — n(xans) ,
as desired. O

The following result follows directly from the definitions.

Proposition 2.15. Let C be an ultrafilter of B and let n a character of A. Then C,, = C and
ne, = n. Therefore, there is a bijection between the ultrafilters of B and the characters of A.

By Proposition there is a bijection between D(B) and the set of characters of C*(B).
Now, we will endow D(B) with a topology such that it become homeomorphic to the spectrum

—

of C*(B). Recall that by the Gelfand-Naimark Theorem C*(B) = Cy(C*(B)), where C*(B)
has the Jacobson topology. Recall that, given a subset of Y of C*(B), we define the closure
of Y as {n € C*(B) : Ker n O () Ker p}.

peEY

Proposition 2.16 (Stone’s Representation Theorem). Let B be a Boolean algebra and let

—

D(B) be the Stone’s spectrum of B. Then C*(B) and D(B) are homeomorphic topological
spaces. Therefore, C*(B) = Co(D(B)).

Proof. First recall that, using Proposition 2.15, we identify a character n of C*(B) with its
associated ultrafilter C,. Observe that, given C € D(B), we have Ker e = {xp : B ¢ C}.
Then, given a set Y C D(B), we define

Iy = mKernc:spW{XB:BgéC, VCeY}.
CeYy

Using the definitions, it is straightforward to check that Iy = span{xp: B € B, Y NZ(B) =
0}.
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Let {Ax}xea be a family of elements of B and let us consider V := (J Z(A,). We will
AEA
prove that Y := D(B) \ V is closed in the Jacobson topology, whence every closed subset

of D(B) with respect to the induced topology T is also closed with respect to the Jacobson
topology. Hence, Iy = span{xp : B € B, Z(B) C V}. Then, the closure of Y with respect
the Jacobson topology is the set

{CeDB):Kerne 2 Iy} ={Ce€DB): if B€C then Z(B) L V}.

Let C ¢ Y but in the closure of Y with respect to the Jacobson topology. Then, C € V =

U Z(A,). So, there exists N € A such that C € Z(Ay). But since Z(Ay) C V, this
AEA
contradicts that A,, € C. Therefore, Y is closed with respect to the Jacobson topology, as

desired. So, every closed subset of D(B) is also closed with the Jacobson topology.

Now, let Y be a closed subset of D(B) with respect the Jacobson topology, and let C be an
ultrafilter that does not belong to Y. Therefore, we have that Ker n¢ 2 Iy. This is equivalent
to say that there exists Be € C such that Z(Be) NY = (). Thus, for every C € U \' Y we

can find Be € B such that Z(Be) NY = (. Then, we have that D(B)\Y = |J Z(Bc).
CeD(B)\Y

Hence, D(B)\ 'Y is an open set because it is a union of open subsets. Therefore, Y is a closed

subset of D(B) O

Corollary 2.17. Let B be a Boolean algebra and let D(B) be the Stone’s spectrum of B.
Then, given any A € B, we have that Z(A) is a compact subspace of D(B).

Proof. We will use Proposition 210, that says that C*(B) = Cy(D(B)). Given A € B, we
have that Z(A) is an open subset of D(BB). Consider the ideal I = Cy(Z(A))<Co(D(B)), and
observe that I is the ideal generated by the projection x4, so [ =span {xp: B € B, B C A}.
Then, [ is a unital ideal, and hence Cy(Z(A)) = C(Z(A)). Thus, Z(A) must be compact. [

3. ACTIONS ON BOOLEAN SPACES AND CROSSED PRODUCTS

By the previous results, it is possible to define a partial action on the Boolean C*-algebra
by describing a partial action on the Boolean algebra. This gives a more intuitive way to
understand the actions at the level of the C*-algebra, and to extract information of this action
by understanding the dynamics of the elements of the Boolean algebra. In this section, we
will introduce dynamical systems on a Boolean algebra, and define what is a Cuntz-Krieger
representation of this dynamical system on a C*-algebra. Essentially, this is a generalization of
a Cuntz-Krieger representation of directed graphs, considering the set of vertices the Boolean
algebra, and the set of edges the partially defined actions on the vertices.

Definition 3.1. Let B be a Boolean algebra, we say that a map 6 : B — B is an action on
B if given A, B € B we have that:

Al: (AN B) = 6(A) N (D),
A2: O(AUB) = 6(A)U(B),

Observe that these two above conditions imply

A3: 0(A\ B) = 0(A)\ 0(B).
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We say that the action has compact range if {0(A)} acp has least upper-bound, that we will
denote Ry. Moreover, we say that the action has closed domain if there exists Dy € B such
that G(DQ) = Rg.

Remark 3.2. Observe that given an action # with compact range and closed domain, there
is not necessarily a unique Dy with 6(D,) = Ry, but we will assume that in the definition
there is a fixed one.

Given a set £, and given any n € N, we define £ = {(ay,..., o) : o € L)}, and

o0
= U £, where £° = {0}. Given a € L" for n > 1, we will write it as a = a; -+ -«
n=0
where ; € L. Given 1 <1 < k < n, we define o) := a;- - - a,. We can also endow an order

on L* as follows: given o € L™ and § € L™,
a<p if and only if n<mand a= f,).
In case that a < 3, we define  \ @ := Bpps1,m) if n < m and @ otherwise.

Definition 3.3. A Boolean dynamical system on a Boolean algebra B is a triple (B, £, #) such
that £ is a set, and {0, }aer is a set of actions on B. Moreover, given a = (o, ..., a,) € LZ!
the action 0, : B — B defined as 6, =6, o---0#6,, has compact range and closed domain.

Notation 3.4. Given any o € L*, we will write D, := Dy, and R, := Ry,. Also, when

a =, we will define 6y = Id, and we will formally assume that Ry = Dy := |J A, in order
AeB
to guarantee that A C Ry for every A € B.

Definition 3.5. Let (B, L, 0) be a Boolean dynamical system. Given B € B we define
AB = {aeﬁ:@a(B) 7&@} and )\B = |AB|

We say that A € B is a regqular set if given any () # B € B with B C A we have that
0 < Ap < 00, otherwise is called a singular set. We denote by B,, the set of all regular sets,
and B, the set of all singular sets.

Definition 3.6. A Boolean dynamical system (B, L, ) is locally finite if given an ultrafilter
C of B do not exist infinite {a;}52, C £ such that 6,,(A) # 0 for every A € C.

Observe that if |£| < oo then (B, £, 0) is locally finite.

Definition 3.7. A Cuntz-Krieger representation of the Boolean dynamical system (B, L,0)
in a C*-algebra A consists of a family of projections {P4 : A € B} and partial isometries
{Sa:a € L} in A, with the properties that:

(1) IfA BEB then P4 - Pg = Panp and PAuB—PA—FPB—PAnB,Where P@IO.
(2) IfaeﬁandAEB then Py - Sy = Sa - P, (a)-

(3) If o, 8 EEthenS* Sﬁ—é B PRQ

(4) leen A € B,, we have that

Pya= Y Sa-Poa)- S

a€EAy
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Given a representation {Py4,S,} of a Boolean dynamical system (B, L,0) in a C*-algebra
A, we define C*(P4,S,) to be the minimum sub-C*-algebra of A containing {Pa, S, : A €
B, a € L}.

A universal representation {pa, s} of a Boolean dynamical system (B, L, ) is a represen-
tation satisfying the following universal property: given a representation { P4, S, } of (B, L, 0)
in a C*-algebra A, there exists a non-degenerate *-homomorphism 7gp : C*(pa, sa) — A
such that g p(pa) = Pa and 7s p(sa) = S, for A € B and a € L. We will set C*(B, L,0) :=
C*(pa, sa). The existence of the universal representation can be found in [2], but we will
show it in a different way in Section given a Boolean dynamical system (B, L,0), we
will construct a topological graph E [21], and we will prove that there exists a one to one
correspondence between Cuntz-Krieger representations of (B, £, 6) and Cuntz-Krieger repre-
sentations of E. Hence, the universal C*-algebra C*(B, L, ) is isomorphic to the universal
C*-algebra O(FE) associated to the topological graph E.

Theorem 3.8 (Existence of a Universal representation). Given a Boolean dynamical system
(B, L,0) there exists a unique universal representation of (B, L,0). If C*(B, L, 0) is the asso-
ciated C*-algebra, we will call C*(B, L,0) the Cuntz-Krieger Boolean algebra of the Boolean
dynamical system (B, L,0).

By the universality of C*(B,L,#), there exists a strongly continuous action g : T ~
Aut (C*(B, L, 0)) such that §,(pa) = pa and B,(s,) = 28, for every A € B, o« € L and z € T.
The action f is called the gauge action

Therefore, we can use the representation of C*(B, L, ) as a topological graph C*-algebra
to obtain a gauge uniqueness theorem [21, Theorem 4.5].

Theorem 3.9 (Gauge Uniqueness Theorem). Let (B, L,60) be a Boolean dynamical system
and let {Pa, Sy} be a representation of (B, L,0) in A. Suppose that Py # 0 whenever A # (),
and that there is a strongly continuous action v of T on C*(Pa,S,) C A, such that for all
z € T we have that v, omgp = wg po 8,. Then, mgr is injective.

4. 0-DIMENSIONAL TOPOLOGICAL GRAPHS

Our goal in this section is to use a topological graph E = (E° E',d,r) with E° and E!
being locally compact 0-dimensional spaces (i.e., Hausdorff, totally disconnected and having
a basis consisting of clopen sets) to construct a Boolean dynamical system.

First, we should recall the definition of topological graph given in [21].

Definition 4.1. Let E° and E' be locally compact spaces, let d : E' — E° be a local
homeomorphism, and let r : B! — E° be a continuous map. Then, the quadruple E =
(E°, E',d,r) is called a topological graph.

Let us denote Cy(E') the set of continuous functions on E' such that
€y w) =3 lE(e)* < oo
e€d—1(v)

for any v € EY and (£|€) € Co(E®). For &, ¢ € Cy(E!) and f € Co(EP), we define £ f € Cy(E")
and ([¢) € Co(E") by

(£f)(e) = &(e) f(d(e)) for e € E*
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€l =Y € forve E .
eed=1(v)
With these operations, Cy(E") is a right Hilbert Cy(E°)-module. We define a left action m,
of Co(E®) on Cy(E") by (m,.(f)€)(e) = f(r(e))é(e) for e € E', € € Cy(E') and f € Cy(EY).
In this way, we define a C*-correspondence Cy(E') over Co(E°).

Definition 4.2. A Toeplitz E-pair on a C*-algebra A is a pair of maps T' = (T°, T"), where
T : Cy(E°) — A is a x-homomorphism and T : Cy(E') — A is a linear map, satisfying:
(1) THE)*'TH(C) = T°((£[C)) for &, ¢ € Cu(E"),
(2) T°(N)TH(E) = T (7, (f)E) for f € Co(E°) and € € Cu(EY).
We will denote by C*(T° T') the sub-C*-algebra of A generated by the Toeplitz E-pair
(T0,T").

Given a topological graph E, we define the following 3 open subsets of E°:
Eye := E°\ r(E9),
EY;, = {v € E° : IVneighborhood of v such that ~'(V') is compact}, and

EO = Efm \ sce

We have that ' (IC(Cy(EY))) = C’O(Efm) and Ker m, = Cy(E%,). For a Toeplitz E-pair
T = (T°T"), we define a *-homomorphism @ : K(Cy(E")) — A by ®(b¢¢) = TH(E)TH(C)*
for &,C € Cd(El).

Definition 4.3. A Toeplitz E-pair T = (T°,T") is called a Cuntz-Krieger E-pair if T°(f) =
®(m.(f)) for any f € Co(Ey,). We denote by O(E) the C*-algebra is generated by the
universal Cuntz-Krieger E-pair ¢t = (t°,¢!).

Therefore, O(F) is generated by {t°(f) : f € Co(E®)} and {t'(¢) : £ € Cy(E")}, where
(t°,#1) is a universal Cuntz-Krieger pair of E.

Now, we suppose that E° and E' are locally compact and O-dimensional spaces. Since d is
a local homeomorphism, there exist {U, }aer and {V, }aer (for some index set £) clopen and

compact subsets of E° and E' respectively, such that E' = |J V,, with V, N V3 = () when
acl
a # 3, and the restriction djy, is a homeomorphism for every o € £. Then, we define B as

the Boolean algebra of all the clopen and compact subsets of E°. Given a € £, the action
0, is defined by 0,(A) := d(r~*(A) NV,) for every A € B. Observe that 6, has compact
range R, := U,, but not necessarily there exists D, € B such that 6,(D,) = U,. Thus, the
existence of these D,’s should be included in the hypotheses.

Definition 4.4. Let E = (E° E',d,r) be a topological graph. Then, E is said to be 0-
dimensional if E° and E' are 0-dimensional spaces, (i.e., they have covering dimension equal

to 0). Moreover, E is said to be compactly supported if there exist {V,}aer € E' and
{Ds}aer € EY such that:

) Vo and D, are clopen and compact sets for every a € L,

(1
(2) V, ﬂVg—@Whena#ﬁ
( ) U VCH
acl
(4) the restrictions dy, are homeomorphisms for every o € L,
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(5) Vo Cr7HDy).

Remark 4.5. Observe that if £ is a compactly supported 0-dimensional topological graph,
then we can construct a Boolean dynamical system. However, it is not unique, because it
could exist several {V,}acr C E' and {D,}acs C E° satisfying the conditions of Definition
4.4 We will see that, despite of the choice of the above pairs of sets, the C*-algebras of the
associated Boolean dynamical systems are isomorphic.

Now, let E be a compactly supported O-dimensional topological space, and choose a pair
{Vataer € E' and {D,}acr C E° satisfying Definition 4. We set R, := d(V,) and
D, := D, for every a € L. Given a € L, we define 0,(A) := d(r~'(A)NV,) for every A € B.

Now, we write E' as

E'=||Va,

acl
and given A € B and o € L, we set

Ny =ACE" and MY =d YU, NA) CE*
compact and clopen subsets.

Remark 4.6. Observe that, given A € B
NiCEY, o Ninr(EY) =0 e Nanr(V,) =0 for every a € £
s r ANV, =0 for every a € L
& 0, (A) =d(r "(A)NV,) =0 for every a € L
NaC E}, < r ' (Np) = U My gy is compact for all ) # B C A
acl
& V,Nr~1(B) # 0 for at most a finite number of o, for all ) # B C A
Na C E,(?g & V,Nr Y (B) # 0 for at most a finite and non-zero number of a,
foral) #BC A
< 0,(B) # ) for at most a finite and non-zero number of «, for all ) # B C A
S AcB.y,.
Proposition 4.7. Let E be a 0-dimensional and compact supported topological graph, and let

{Vataer and {D,} be a sets as Definition[{4]. If (B, L,0) is the associated Boolean dynamical
system defined as

B:={ACE": Aisa compact clopen}
and for every a € L and A € B the action
0o (A) :=d(r ' (A) NV,) with range Ry = d(Va,),
then, given any Cunt-Krieger E-representation (T°,T') on A, the family of elements of A
defined by
Py :=T%xn,) and S, = Tl(XM%) .
for every A € B and o € L, is a representation of (B,L,0) on A, i.e.,
(1) If A, B € B then PaPp = Panp and Payp = Pa + Pg — Panp, where Py = 0.
(2) [fa € L and A € B then P,S, = SaPGQ(A)-
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(3) If o, B € L then S%S, = Pr,,, and S:Sg =0 unless a = 5.
(4) For A € B,¢y, we have
Py= Y SuPsS.

aEA»

Proof. For (1), observe that {Ps}aep is a family of commuting projections. Then, Panp =
P,Pg and Paup = P4 + Pg — Panp for every A, B € B follows from the fact that TV is a

homomorphism. For (2), given A € B and « € L, we have that
PyS, = TO(XNA)Tl(XM‘O‘/Q) =T (Wr(XNA)XM%) = Tl((XNA © T)XM%)
=T (xme, | Xmg,) = Tl(XMg,l(AWa)
= Tl(XMga)TO(XNd(T,l(AmVQ)) =T (xme, )T (XNp () = SaPaa(a) -

)

For (3), we look at the equality
SaSs = T" (ag, )T Oz ) = T (0eang, s ) -
By the definition,
Oemg, g ) (©) = > xmg (O)x wi, ()

eed=1(v)

for any v € EY. Since M¢, and M@ﬁ are disjoint subsets of E' whenever o # 3, we get that
this expression will sum 0 if a@ # 5. Now, note that d is a homeomorphism when restricted
to V. So, it follows that

Y Ixmg, (@) = [{e € M, = d(e) = v} = xay,, (v) = Xavm, (V).
ecd=1(v)
For (4), we will use the Cuntz-Krieger relation
T°(f) = ®(m(f)),

which holds whenever f € Co(E?). Since A € By, by the Remark we have that
Ny € EY,. So, it is enough to show that

Tr(Xva) = Z HXM% XM XN, (4)
aEA»
Evaluating at £ € Cy(E') and e € E', we have that

Z QXM% XME XNg, (a) (€)(e) =

aEA

D X (€)(Xate X €)(d(e)) =

Q€A y

> xg, () Z Xmg, (€)XN;, ) (d(€))E(E)
d(e’)=d(e)

aEAy
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Whenever e, ¢’ € M§; for some a € L, since d(e) = d(¢’) if and only if e = ¢/, this reduces to

d(e))é(e) whenever e € MS for a € A
Z XM XNea(A) (d(e))é(e) = { SWQQ(A)( (e)ete) otherwise " !

aEA»

In addition, 0,(A) = 0 when a ¢ A 4. Thus, we can omit the case clause. What remains is
XNoo oy (d(€))§(€) when e € M§, for any a € L. On the other hand,

(mr Oxva )€ (€) = xva (r(€))€(e) -

Now, when e € Mg, for some o € L, we get that x,(r(e)) = XAt )(d(e)) _
XNy, a)(d(€)), s0 we are done. O

5. A FAITHFUL REPRESENTATION OF (B, L,0).

Now, given a Boolean dynamical system (B, £, ), we will construct a faithful representation
of (B,L,0) in O(F), where FE is a compactly supported 0-dimensional topological graph.

Let (B, L,0) be a Boolean dynamical system. We define E° to be the Stone’s spectrum
D(B) of B, and E' to be the disjoint union

= | | P(Zr.),

acl

of Stone’s spectrums of the principal ideals of B generated by the range subsets R, of the
actions 6,. Since D(B) and each D(Zg,) have a basis of clopen sets, they are 0-dimensional
spaces, and since they are totally disconnected spaces they are locally compact Hausdorft
spaces too. These properties are transfered to arbitrary unions of such spaces, so E° and E*
are also locally compact Hausdorff O-dimensional spaces. Also observe that, given any o € L,
then D(Zg,) is a clopen and compact subset of D(B).

Notation 5.1. To distinguish the edge and the vertex space of the topological graph F, we
will denote
E°={vc:C€DB)}and E' = |_|
acl
where E} = {e% : C € D(Zr,)}. Given a € L and A, B € B with B C R,,, we define the
clopen and compact subsets

Ny={ve: AeC}CE" and @ :={es:BeC}yCE}.

Lemma 5.2. Let (B, L,0) be a Boolean dynamical system Then, given « € L and A € Ip,,
we have that

{C €D(ZIr,): 0.(A) €C} ={C € D(Ir,): IC" € D(Z4) such that 6,(B) €C, VB €'}

Proof. The inclusion D it is clear, since every C' € D(Z,) contains A. For the inclusion C,
let us define the set F = {B € T, : 0,(B) € C}. By hypothesis, we have that A € F, so
FO0 is satisfied. F1 and F2 follows because of conditions F1 and F2 of C, and the fact that
0, preserves intersections. Let I' be the set of all the filters F of Z4 such that 6,(B) € C

B € F. Given any ascending sequence of filters {F, }nen of I', we have that |J F, is an
neN
upper-bound that is contained in I'. By Zorn’s Lemma, there exists a maximal element

C' in I'. We claim that C’' is an ultrafilter of Z,. To prove that claim, we only need to
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check condition F3. Let By, By € T, such that B; U By € (', and suppose that neither
By nor By belong to C'. Since 0,(B;) U 0,(Bs) € C, and condition F3 of C holds, we have
that either 6,(B;) or 6,(Bs) belong to C. Let us suppose that 6,(B;) € C. Then, the set
C":={De€eZy:CnNB; CD forsome C € ('} strictly contains C'. Given any D € T4 with
C N By € D for some C' € C', we have that

0,(C)NO,(B1) =0,(CNBy) CH,(D) e,

by condition F1 and F2 of C. Then, it is easy to verify that C” is a filter of Z4, and hence that
C” € I'. But this contradicts the maximality of C. Thus, condition F3 is satisfied, whence C’
is an ultrafilter of Z4 such that 6,(B) € C for every B € C'. So we are done. O

Proposition 5.3. Let (B, L,0) be a Boolean dynamical system, and let the maps d,r : E* —
E° be defined by

d(eg) = ve and r(eg) = Vpu(c) 5
where v, : D(Ir,) — D(Ip,) is a map given by ¢,(C) = {A € Ip, : 0,(A) € C}. Then,
the quadruple (E°, E',d,r) is a topological graph.

Proof. First, by the above arguments, we have that E° and E' are locally compact Hausdorff
spaces. Let d : E' — E° be the map defined by d(e&) = ve for some €2 € E!. Every
point of E! belongs to a component E! for some o € £, and clearly we have that dig1 is an
homeomorphism. Thus, d is a local homeomorphism.

Let ¢, : D(Zr,) — D(Ip,) be the map given by ¢,(C) = {A € Ip, : 0,(A) € C}. Tt is
routine to check that {A € Zp, : 0,(A) € C} is an ultrafilter of Zp_ . Thus, ¢, is a well-defined
map. If A € Zp_, then by Lemma 5.2 ¢ '(Z(A)) = {C € Ix,, : 0,(A) € C} = Z(0,(A)), so
Vo 18 a continuous map. U

Corollary 5.4. Let (B, L,0) be a Boolean dynamical system, let E be the associated topological
graph defined in Proposition[5.3, and let (t°,t') the universal Cuntz-Krieger E-pair. Then,

pa=1t"(xn,)  and  se =t (xm)
for A€ B and o € L, defines a faithful representation of (B, L,0) in O(FE).

Proof. Let E = (E°, E',d,r) be the topological graph defined in Proposition 5.3} Observe
that the pair {E!},cr and {Np,}aer satisfies Definition 4] so that E is compactly sup-
ported. It is easy to check that the Boolean dynamical system associated to E is (B, L, 0)
again. Now, using Proposition [1.7] with the universal faithful representation (¢, ) of O(FE),
we conclude the proof. O

Our next step is to prove that the faithful representation constructed in Corollary [5.4is the
universal one. To do that, we first have to look closer at the topological graph E associated
to a Boolean dynamical system.

Lemma 5.5. Let (B, L,0) be a Boolean dynamical system, and let o € L and C € D(Ip,).
Then, given any C" € D(Ig,) such that 0,(A) € C' for every A € C, we have that C = {B €
Ip, : 0.(B) € C'}.

@

Proof. The first inclusion is clear because C’ contains 0,(A) for every A € C. Now, let B € B
such that 0,(B) € C'. Then, given any A € C we have that 0,(A) € C'. So, we have that

0% 0,(A) N 0.(B) = 0.(ANB) € C'.
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Thus, AN B # 0. Then, A= (AN B)U (A\ (AN B)), but by condition F3 it follows that
either AN B or A\ (AN B) belongs to C. Observe that A\ (AN B) cannot belong to C, as
otherwise

0, (ANB)NO,(A\ (AN B)) =10,
contradicting condition F2 of the ultrafilter C'. Therefore, AN B € C, whence so does B by
condition F1. ]

Lemma 5.6. Let (B, L,0) be a Boolean dynamical system. If o € L, then ¢, : D(Zg,) —
D(Ip,) is injective if and only if given any B € Iy, there exists A € Ip,, such that 0,(A) = B.

Proof. Observe that given o € L, the action 6, induces a x-homomorphism §a :C*(Ip,) —
C*(Zr,,) defined by xa — Xg.(a) for every A € B. Then, using the Stone’s Representation

Theorem, we have that 6, : C (Zp,) — C(Zg,) is defined by f — f oy, for every C(Zp,).
Thus, 6, is surjective if and only if ¢, is injective. But if 0, is surjective then, given any
x5 € C(Ir,), there exists A € Dy such that 6,(x4) = x5, and hence B = 6,(A), as
desired. U

Lemma 5.7. Let (B, L,0) be a Boolean dynamical system, and let E be the topological graph
defined in Proposition[5.3. Then, given e € E} | the following statements are equivalent:

(1) r(e) € Na.

(2) d(e) € Ny, ()

(3) e € MG (4)-

Proof. (2) < (3) is clear by definition. Now, let e = ed for some o € £ and C € D(Zg,,).
Suppose that ver = r(ed) € Na, where C' = {B € Ip, : 6,(B) € C}, whence ve € Ny, (p) for
every B € C'. Since A € (', it follows that ve € Ny, (a), as desired. Now, let us suppose that
d(eg) = ve € N, (a), so that 0,(A) € C. Since r(e@) = ver, where C' = {B € Ip, : 0,(B) € C},
it follows that A € C’. Thus, ver € Ny, as desired. O

Example 5.8. Let X = NU{w}, and let B be the minimal Boolean space generated by the
subsets {F C N : F finite } U{N\ F': F finite } U{w}. We have that D(B) is the compact
space {vg, 11 =1,2,...,00} U{ve, }, where C,, = {A € B:w € A}. Let L = {a}, and define

| N if A={w}
Oa(A) _{ @ otherwise ’

that is an action on the Boolean space B. Therefore, (B, £, ) is a Boolean dynamical system,
and let E be its associated topological graph. Thus, E° = {v¢c, i =1,2,...,00}U{ve,} and
E'={eg :i=1,...,00}. Then, d(e@) = v, and r(e2 ) = vc, for every i = 1,2,...,00. A
picture of this topological graph will be as follows:

Coo

Example 5.9. Let B be the minimal Boolean algebra generated by
{F:F CZfinite }U{Z\ F : F C Z finite} .
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Let 6,, 6, and 6. be actions on B given by the following graph

b b b <A> b b b

._2 ._1 .0 .1 .2 LERIRY
~— ~ ~— -~ -~ ~
4 C C C C C

We have that D(B) = {C,, :n € Z} U{Cs} where C, = {A € B:n€ A} and C, = {Z\ F:
F C Z finite}.

Let us consider its associated topological graph E, where E® = {v¢, : n € Z} U {ve}
is the one point compactification of Z, E} = {ef }, E; = {et : n € Z} U {el_} and
E! ={e¢ :neZ}U{es }. Hence,

E'=FE'UEUFE!
is a compact space because E!, E! and E! are compact by Corollary 217 Then, we have that
d(eg,) = ve, and (e ) = ve,. Given n € Z, we have that d(e}, ) = ve, and r(el ) = ve,_,, and
d(eg ) =ve, and r(e§ ) = vc,_,. Finally, d(eb_) = d(e§_) = ve., and r(eb_) =r(ef_) = ve.. .

Let (B, L, 0) be a Boolean dynamical system and let E be the associated topological graph
defined in Proposition 5.3 We will describe it in terms of (B, £, #). To this end, we must first

determine the source vertices B2, = E°\ r(E'). Recall that r(E') = |J r(EL) = | Np,
by Lemma 5.7,

aEL aeL
Then we have that
r(EY) = {ve € E° : VA € C, 3a € L such that D, N A # (0},

and hence
E° ={ve € E°:3A € C such that D,NA =0 Ya € L},

sce

with closure

E0 ={ve e E°:VA€c(C,3B C Asuch that D,NA=0 Ya € L}.

sce

Now, let us define the compact vertices as
B3, = {vec : JA € C such that 7~ (N4) C E' is compact }.
By Lemma 5.7 we have that r~'(Na) = | Mg 4 So,

acl
EY;, = {vec : 3A € C such that Ay < oo} .

Observe that ve € B, if and only if there exists A € C such that Ax = 0. Now, we define

the regqular vertices as the open set
E) = E}%, \ EY, = {vc : A € C such that Ay < oo and
VB € B with B C A Ja € L such that D,N B #0}
= {ve : 3A € C such that VB € B with B C A then 0 < A\p < o0},
and the singular vertices

Egg = EO\EEQ ={ve : VA € C dB € B with B C A such that A\g € {0,00}}.
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Theorem 5.10. Let (B, L,0) be a Boolean dynamical system, and let E be the associated
topological graph defined in Proposition [5.3. Then, the faithful representation constructed in
Corollary[5.7) is universal. Therefore, C*(B, L,0) = O(E).

Proof. Our strategy will be to prove that any representation { P4, Sy} of (B, L, ) induces a
representation (7°,T") of the associated topological graph E constructed in Proposition [5.3]
such that 7°(xar,) = Pa and T'(xg1) = S,. Then the universality of (t°,¢') will induce the
map 1 : O(E) — C*(Pa, Sa) with pa = t°(xw,) = T%xn,) = Pa and s, = t'(xp1) —
T'(Xg1) = Sa-

First, we claim that the families {xn;, : A € B} and {xmq : @ € £, A € TIr,} generate
Co(E®) and Cy(E') respectively. Recall that the definition for & € Cy(E") to be in Cyq(E') is

that
> o))’ < o0

ecd=1(v)
for all v € E° Since d is injective on a given E!, we just show that xme 1 A € Ig,}
generates C'(E.) for each a € L. Then, Proposition proves the claim.
Therefore, we define T° : Co(E°) — A by xn, — Pa for every A € B, and T :
Cy(E") — A by xma > Sq Py for every A € T, and o € L. T° is an *-homomorphism

by [8, Lemma B.1], and T" is a well-defined linear map since it decreases the norm. Given
a,B €L, A€Ig, and B € I,

Tl(XMg)*Tl(XMg) = (SaPa)*SsPp = 60,5 PanB-
Observe that, given e # ¢ with d(e) = d(€/) = v, if ¢ € E} for some « € L then ¢ ¢ E!.
Indeed, let e = €f and € = eg, for some o, 8 € L, C € D(Ig,) and C" € D(Zr,). By
hypothesis ve = d(ed) = d(eg,) — ver, 50 C = C'. But since €% # el it implies that o # 3.
Therefore,
<XM“‘XM5 Z XMO‘ XM»B )
d(e)=v
= a,ﬁXNAXNB( )Z a,ﬁXNAﬂNB(U>7
and hence
TO(<XM§:,\XM/;>) = 0a,8Panp = Tl(XMj)*Tl(XMg) ,
as desired. Now let « € L, A € B and B € ZTr,. Then,
T°(xn))T (Xmg) = PaSaPs = SaPya)Ps = SaPo.(ays -
Thus, given e € E', and Lemma [5.7] we have that
Wr(XNA)(XM;;)(e) = XNA(T(e))XM%(e)
= XMga(A)(6>XM%(€)
= XMga(A)ﬂNB(e) .
Hence,
T°(xn) T (Xme) = SaPonns = T (1 (xva) (Xms,)) »
whence (79, T") is a Toeplitz E-pair.
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Finally, let f € Co(Ey,). We need to prove that T°(f) = ®(m,.(f)), where & : K(Cy(E")) —
B is the associated *-homomorphism associated to (7°,7%). Given ¢ > 0, we will con-
struct f' € Cy(Ey,) such that [|f — f'|| < e and such that ®(m.(f')) = T°(f'). Let
K be a compact subset of EJ such that | feoprll < e Given v € K, we define the
open subset Z, = {w € E) : ||f(v) = f(w)|| < €}. Then, we can find A, € B
such that v € Ny, C Z,. Therefore, we have that K C |J N4, C E°, but since K

veEK "
is compact, there exist vy,...,v, € K such that K C |JWN, A,,- Observe that we also
i=1
can assume that Na, N Na, = 0 for i # j, and that K = U N4, . Then, we define
=0 fWi)xna,, € Col(E, 0.). Clearly, ||f — f'|| <e. We clalm that

n

Wr(f,) = Zf(vl) Z QXMEQ(A ) XMG o (avy)

=1 OCEAAUZ

Indeed, let £ € Cyq(E') and e € E). Observe that 0 < |Ay, | = A4, < oo for every
1 =1,...,n. Then we have that

im) Do O (€)(e) =

Behn,, Moy aup) Mo (an)

Zf(vz) Z XM%(A ; XM@B(A%)‘@(C[(Q)) =

EAAU
21w D0 X O 20 Xy, [EE ] ] =
: 5(Av;) 05(Au;)
i=1 BEAAv d(e')=d(e)
Z f(vz) Z XM@ (Av; ) (6)
i=1 BEAAUZ

Observe that, by Lemma 5.7 and the fact that N, NN, Aoy = () for i # j, we have that
r(e) € K if and only if there exists a unique 1 < k < n such that e € Mg‘a(A%). Then,

S 1) | X vaeg, (@660 | = 30 Fean, (r@)E(e) = 7 (F(e).

BeA Ay,

as desired.
Finally, since { P4, S,} is a representation of (B, L, ), we have that

= if(MTO (XNAUZ) = if(%)PA Zf v;) Z SaPa,(a

OCEAA,U
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because A,, € B,.,. But

(b(ﬂ-r(f/)) =& Zf(vl) Z QXMS (Av)’ Mea(Av-)
=1 '

OJEAAUZ

S fw) | Y] Tl(XMga(Aui))Tl(X M, 1) Zf Vi) Y SaPoyan)(SaPa,) =

=1 QEAA,UZ_ QEAAU

val > SaPoan)Si=T(f").

OCEAA,U

Thus, (7°,T") is a Cuntz-Krieger E-pair, as desired. O

We can use the characterization of C*(B, L, #) as a topological graph to deduce the following
results:

Corollary 5.11. [21], Section 6] Let (B, L, 0) be a Boolean dynamical system.

(1) C*(B, L, 0) is nuclear,
(2) if B is a unital Boolean algebra then C*(B, L,0) is unital,
(3) if B and L are countable then C*(B, L, 8) satisfies the Universal Coefficients Theorem.

Our intention now is to state a gauge invariant theorem for C*(B, £, #). By the universality
of O(E), there exists a gauge action 3’ : T ~ Aut (O(E)) defined by BL(t°(f)) = t°(f)
and BL(t1(€)) = 2t'(€) for f € Co(E), £ € Cy(E") and z € T. Moreover, the map ¢ :
C*(B, L,0) — O(E), defined by pa — t°(xn,) and s, — t*(xm,,) for A € Band a € L,
is an isomorphism. Then, it is clear that 5, o W = W o 53, for z € T, where [ is the gauge
action of C*(B, L,0) defined in Section [3l Therefore, using the above isomorphism ¥, we
will not make distinction between C*(B, £, ) and O(FE), and between their respective gauge
actions ( and /3.

Theorem 5.12. Let (B,L,0) be a Boolean dynamical system, and let {Pa, S,} be a Cuntz-
Krieger representation of (B,L,0) in A. Suppose that Py # 0 whenever A # (), and that
there is a strongly continuous action v of T on C*(Pa,S,) C A, such that for all z € T we
have that v, o mg p = mgp o B,. Then, mg p is injective.

Proof. The result follows by Theorem [5.10, the above comment and [21l, Theorem 4.5]. O

Finally we will compute the K-Theory of Cuntz-Krieger Boolean algebras. To do that,
we will use the above characterization as topological graph C*-algebra, and then we will use
the results of Katsura [21], Section 6] to give a 6-term exact sequence that allows to compute
the K-Theory of the Cuntz-Krieger Boolean algebra. The peculiarity of the space, that is
0-dimensional, implies that this computation reduces to computing the kernel and cokernel
of a map between the K-groups of certain subspaces of the vertex spaces.
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First recall that, given a topological graph E there is a 6-term exact sequence

Ko(Co(E2)) — L Ko (Co(E2)) KO«TE))
Ki(O(E)) Ky (ColEr)) —L Ky (Co(E,)

where ¢ : Co(Ey,) = Co(E®) is the natural map, and m, : Co(EY)) — K(Ca(E")).

Let (B, L,0) be a Boolean dynamical system, and let F be the associated topological graph.
Recall that E° = D(B), that E}, = D(B,,), and that by the Stone’s Representation Theorem
we have that

KO<C*T<B,«69>> “Tm L Ke(C(B)) KO«I(E» .
K,(O(E)) 0 0

Observe that, since E° is a 0-dimensional space, we have that
Ko(C*(B)) = Ko(Co(E®)) = Co(E", Z) = C(B, Z),
where C(B,Z) is the Z-linear span of the functions defined on B by
1 fANB#0
xa(B) = { #

0 otherwise

for A, B € B.
Now, given A € B4, we have that the characteristic function xr, € Co(Ey,), and hence
Tr(XNA) = Daeas Oxme e - Therefore, the map [m,] : C(Byey, Z) — C(B,Z) is given
B (4) " MBo(4)

by x4 — ZaeAA Xoa(4) for every A € B,,.

Proposition 5.13 (cf. |21, Proposition 6.9]). Let (B, L,8) be a Boolean dynamical system.
Then, Ko(C*(B,L,0)) = Ker (Id — [r,]) and K,(C*(B,L,0)) = Coker (Id — [r,]), where
Id —[m;] : C(Byeg, Z) — C(B,Z) is given by xa = XA = D_acn, Xbaca) JOT A € Brey.

Remark 5.14. We would like to remark that Corollary 5. ITlis a generalization of [3, Corollary
3.11], that Theorem 512 is a generalization of [3, Corollary 3.10], and that Proposition E.13]
is a generalization of [3, Theorem 4.4].

6. AN *-INVERSE SEMIGROUP

In this section we will associate to C*(B, L, ) an *-inverse semigroup, which will help us
to construct the groupoid used to represent the above algebra as a groupoid C*-algebra. In
order to attain our goal we will first associate to C*(B, L, ) a suitable *-inverse semigroup.

Definition 6.1.
T =Tpeo = {sapasya,B €L A€ B, ACR,NRg # 0} U{0}.
Recall that given A € B we have that sy := p4.
Clearly, T C C*(B, L,0). Now,
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Proposition 6.2. T is an *-inverse semigroup.
Proof. First notice that, given o, 8 € L* and A € B,

* *
SaPASg = SaPANRLNRESE 5

so the assumption implies that s,pasj # 0.
Now given s,pasj, s,ppss, we have that

Sa'ylpgw’(A)ﬁBsg if Y= Bf}/and Raﬁ/ NRs % 0
SaParg,(B)Sse  if B =78 and Ry N Rsp # )
SaPANBSS if v =3 and Ry NRy # 0

0 otherwise

* *
SaPASf * SyDBS; =

So T is closed under multiplication. Moreover,
(5apaS3)" = sapAS,

for every o, € L* A€ Bwith ACR,NRs # 0. Thus, T is an *-semigroup with 0.

Next, notice that for any s = s,pasj € T, we have that s = ss*s:

55"s = (5aDASf - 58P AS,) * SaPASH = SaDASk * SaDASE = SaPASH = 5 .

Thus, every s € T'is a partial isometry.

Finally, notice that the idempotents ss*, for s € T", have the form s,pas},. Hence,
6Py, (anBSy i B =af
SaPAre,, (B)S, if a= pa’

SaPANBS, ifa=4
0 otherwise

SaDASs - SEPBSG =

and it is straightforward to check that these projections pairwise commute. Thus, T is an
x-inverse semigroup by [26, Theorem 1.1.3]. O

Corollary 6.3. C*(B, L,0) =span{z : x € T}
Definition 6.4. We will define £(T") to be the set of idempotents of 7.
In order to go forward, we want to keep control of the natural ordering of £(T').

Lemma 6.5. Let o, € L*, A€ B. Then:
(1) If either a # 0 or o = B = (), then sapasy, < sgppsy if and only if a = fa’ and
AC ., (B).
(2) If a = 0 and B # 0, then sapas), < sgppsy if and only if: (i) Ax = {B} and (ii)
05(A) C B.

Proof. (1) sapass, < sgppsy if and only if sapas), = sapasy, - sgppsj if and only if a = Ba’
and A C 6,(B) by Proposition [6.2

(2) If @ = 0, then s,pas;, = pa. Hence, if ps < sgppsh, then pa = pa - sgppsh =
S5D0s(A)NBS - Multiplying on the right side by sg we have that pass = sppg,a)np, and
multiplying on the left side by sj we have that sipass = po,(a)np. Since sppass = po,(a), we
have f3(A) C B. Moreover, pa = sgpg,(4)s; means that Ay = {3}.

Conversely, if Ay = {8} and 05(A) C B, then ps = 8aPos(4)S5 = 55P05(ANBSh = PASEPBS,
whence pa < sgppss. U
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In order to prove the next property of T, we need a technical result.
Lemma 6.6. If() £« € L* and A € B with A C Raq, then pa # pass.
Proof. Suppose that ps = pas’,. Since p4 is a projection, we have that

pa = DPase = (Pas)” = SaPa
whence p4 = Sopask, which only occurs if Ay = {a} and 0,(A) = A. Now, given any
) # B C A, it also follows that 0 # pp = papa = pepast, = ppst, so 0,(B) = B by the
above argument.
Now, consider the Boolean system

A={BeB:BC A},

with unique action ,. Then (6,) 1 = id, whence C*(A,a,0,) = C(A,T). Since C*(A, a, 6,)
has a faithful representation and any representation of (fl, a, 0,) induces a representation of
(B, L,0), we get a contradiction. d

Definition 6.7. A x-inverse semigroup S is E*-unitary if for every s € S, e € £(9), if e < s
then s € £(S).

Proposition 6.8. T is a E*-unitary inverse semigroup.

Proof. We need to check the 6 possible cases:
(1) 5,PBS} < sapasy if and only if
$\DBS,, = SaPASS * SyDBS, = SaS585S5PBS, = (v = o)
= SaPADPRsS6PBSy = SaPASSPBSy = SasPos(A)NBSy
if and only if ad = v = J, whence a = 8 and then s,pas}, € E(T).
(2) s5,pBS; < sapa if and only if
SyPBS, = SaDA * $4PBS,, = SanDe.(A)NBS,
if and only if ay =7, i.e., a = (), whence s,pa = pa € E(T).
(3) sypBs; < pas;, this case is analog to (2).
(4) pp < sapasy if and only if
PB = SaPASj " PB = SaPAN04(B)S5 = SEPANG(B)Se -
Thus,
DAnos(B) = SaPBSs = stﬁp(’a(B) :
By Lemma , the only possibility is that o = 3, whence s,pasi, € E(T).
(5) pp < Sapa if and only if pg = s4pa - B = SapPanp- Thus, by Lemma a =0,

whence s,pa € E(T).
(6) pp < pas, this case is analog to case (5).

U

Proposition will play an important role in the sequel. We also need to determine the
orthogonality of idempotents.

Lemma 6.9. s pas’ - sgprsy = 0 if and only if either
e B B



24 TOKE MEIER CARLSEN, EDUARD ORTEGA, AND ENRIQUE PARDO

(1) a £ B and B % «, or
(2) p=af and Og(A)NB =0, or
(3) a = pa’ and 0, (B)NA=0.

Proof. 1t is a simple computation, according Proposition [6.2 [l
It is possible to use an abstract version of T', defined as follows:

Definition 6.10. Given (B, L, 0), define the set
S:S(Bﬁ’g) I:{(Q,A,ﬁ) ZOé,ﬁ S ,C*,A S B,@ %A Q RQHRB}U{O}

If we endow S with the natural involution («, A, §)* := (8, A, @) and the operation induced
by that of T' (see Proposition [6.2]), we conclude:

Proposition 6.11. S is an x-inverse semigroup.

The first difference between both semigroups arises when looking at the order relation

defined on them. The reason is that, whenever () # 5 € L*, the inequality (0, A,0) < (8, B, )
cannot hold, so that there is no analog of Lemmal6.5(2) for S. The ordering on S is described
as follows.

Lemma 6.12. Let o, 5 € L*, A€ B. Then, (o, A,a) < (B, B, 8) if and only if « = po’ and
ACO,(B).
Definition 6.13. The map
g S — T
(a,A,8) = sapash
is an onto *-semigroup homomorphism.
Notice that if Ay = {a}, then («,0,(A), ) < (0, A, () in S, but 7(av, ,(A), @)

in T, whence 7 is not injective in general. In this case notice that, if 0 # (8, B, 5) < (0, A, 0),
then 0 (8, B, ) - (a,6a(A), ). So,

Lemma 6.14. If Ay = {a}, then (a,0,(A), @) is dense in (0, A, D) [12, Definition 2.9].
This will play a role in the sequel.
6.15. Let us fix the exact situations in which 7 : & — T fails to be injective. For this end,
suppose that
0 +# sapAsE = s,ysz;;.
Then,
0 7é Sf/SOCpASESn = DB,
whence o and « are comparable, as well as so does § and 7).
Suppose that v < «a, i.e. ¥ = ay’. We have two possibilities:

(1) If 8 <n,ie B =np, then
0 # pp = 58aPASESy = SPASy = pgy,(A)sg,ﬁ{,.

Thus, by Lemma [6.6, 8’ =+ = ), whence § =1, a =~ and A = B. So, (o, A, 3) =
(7,B,n) in S.
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(2) If n < 5, i.e. n = P/, then, as above,
0 # pB = Do, (4)Sy Sy
Again by by Lemmal[6.6, 7' = 7/, so that s,pps; = sa8,ppsyss. Thus, pa = sypps,,
whence Ay = {7’} and B =0,/ (A).
The case a < 7 is proved in a similar way. Summarizing, the failure of injectivity for the map

m: S — T is directly connected to the existence of dense pairs of idempotents as in Lemma
0. 141

7. TIGHT REPRESENTATIONS OF T AND S.

This intermediate step will help us to connect C*(B, L, ) with a universal C*-algebra for
a suitable family of representations of both 7" and §. Concretely, the goal of this section is
to prove that the maps

t: T — C*(B,L,0) and tom:S — C*(B,L,0)

are universal tight representations of & and T', respectively.
First we recall some definitions from [11].

Definition 7.1. Set £ = £(T) or £(S). Then:
(1) Given X,Y C & finite subsets,

EXYV ={rc€:2<zforallzec X and 21y forally € Y}.

(2) Given any F' C £, we say that Z C F is a cover for F if for every 0 # = € F there exists
z € Z such that zx # 0. Z is cover for y € £ if it is a cover for F' = {x € £ : = < y}.

(3) A representation ¢ of &£ is tight if for every X, Y C & finite subsets, and for every
finite cover Z C £%Y,

Vo) = N\ e@)n N\ —ey).

z€Z zeX yey

Proposition 7.2 ([I1, Prop. 11.8]). If ¢ is a representation of € which satisfies :

(1) &€ contains X C & finite such that \/ ¢(x) =1, or
reX
(2) € admits no finite cover,

then @ is tight if and only if for every x € € and for every finite cover Z C &£ for x,

V 0(2) 2 o(x).

z2€Z

First observe that C*(B, L, 0) is unital if and only if B is a unital Boolean algebra, with
suprema 1, and in this case p; will be a finite cover for T'. If C*(B, L, ) is not unital, then
we have that {pa}aep is an approximate unit of projections. In particular, given a finite set
Y of elements of £, there exists A such that pgepg = e for every e € Y and B € B with
ACB.

Now, let X C & be a finite cover. Then, X is of the form

{pA} U {SaipBiS:vi ?:1 :
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Let us define C' := AU CJ Do, € B. Since C*(B, L, §) is not unital, and hence B has not
suprema, there exists () 72:}7 € B with C N D = (). Therefore
ppNpa=10 and  pp - Sa,pBSs, =0 Vie{l,...,n}.
Then,
Corollary 7.3. Proposition[7.9 apply to E(T) for every (B, L,0).

Next step is to identify finite covers for ¥, = {y € E(T) : y < 2z}, x € E(T). But first a
(probably well known) result.

Lemma 7.4. Let S be any x-inverse semigroup, and let E(S) its semilattice of idempotents.
Let x € E and s € S such that x < s*s. Then {ey...,e,} is a finite cover for ¥, if and only
if {se1s*, ..., se,s*} is a finite cover for Y qx.

Now, we need to fix a concept.

Definition 7.5. Given () # A € B, we define an expansion of A to be a finite set {1, ..., a,} C
L* such that 6,,(A) # 0 for every 1 < i < n. Moreover, we say that an expansion of A is
complete if o; € a; and a; £ a; whenever ¢ # j, and for every § € L* with 05(A) # () there
exists 7 such that either o; < f or 8 < «;. Equivalently, {a1, ..., a,} is a complete expansion

for Aif pa=>"", S 0D, (A)Sers-
Definition 7.6. Given () # A € B, and n € N, we define
ni={ae L 0,(A) # 0},

and A" = |J Ak.
k=1

Definition 7.7. Given a cover Z of X, we say that Z is a refinement of Z if Z is a cover of
Y, and for every element z € Z there exists y € Z with z < y.

7.8. Now we will analyse how look like the finite covers of 3, for x = py and x = s,pas.
By Lemma [7.4] it will be enough to look at x = p4. Then a finite cover for ¥, has the form

Z = {pBi}?ZI U {S“/jpcj‘sf/j};nzl g Ex .
Observe that we can joint all the idempotents {pg,}i, in a single idempotent pp where
n
B :=J B;, so

1=1
Z ={ps} U{sy,pc,s, }i € 2o
Now, it A\ B = A\ (AN B) ¢ B,,, it means that there exists C' C A\ B with either
Ao =0 or A\c =o00. If A\ =0 then we have that

PC * $4,DC;85, = S4,P0,,(C)nC; Sy, = SyuDosy, =0 Vje{l,... m},

contradicting the fact that Z is a cover of p4. If A\ = 00, there exists 5 € £ such that 5 € ;
for 1 <4 < m. Thus, if we consider the element sgpy,(c)sj, then

Sgpgﬁ(c)SE'S-yijij;j =0 Vie{l,...,m},
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and moreover, since
DA * SpPay(C)Ss = Pa - Pespsy = 0,
this contradicts that Z is a cover for ¥,. Therefore, A\ B must be in B,., for Z to be a cover.

Notice that pg covers all the elements of ¥, that are dominated by panp. Thus, without
loss of generality, we can assume that

o * \n
Z = {S“/ipcis'\/i i=1>

since Z C ¥, with 0.,(A) # 0 for every 1 < i < n, where x = p4 with A € B,.,, and that
Vi # 7; whenever i # j.

Next, we see that {v;}, must contain a complete expansion for A. Otherwise, there exists
B € L* with 5(A) # 0 with o; £ 5 and 8 £ a; for every 1 <4 < n, and then sgpg,4)5h < pa
and Sppg,(4)Ss < pa -+ $y,pc; sy, = 0 for every 1 < ¢ < n, contradicting that Z is a cover for
pa. We relabel the complete expansion as 7, ..., for some 1 <[ <n. We can also take it
minimal, so for every k > [ there exists 1 < i <[ with 7; < 7.

Another important observation is that D; := 6,,(A) \ C; € By, whenever 1 < i < [.
Indeed, let us first suppose that Ap, = 0. Then, 0 # s,pp,s’, is the element that leads
to contradiction with Z being a cover of p4. Now suppose that there exists E; C D; with
Ag, = 0o. Then, there exists § € Ap, such that 7,8 £ v; for every v; with [ +1 < j < n.
Thus, the element s,,5pp,(5,)s, 5 is the element that leads to contradiction with Z being a
cover of py.

We also have that, given «; with 1 <14 < such that ; £ ~; for every j > [+ 1, it must be
0,,(A) C C;. Otherwise, the element s.,py, (anc; s, is the element that leads to contradiction
with Z being a cover of p4.

Now, we define A; := 0,,(A) \ C; for those i < [ such that A; # 0. So, there exist
Yirs -+ o Viney With v < i, for 1 < j < k(i), and we define E;; := Cj; for 1 < j < k(i). We
can relabel the A;s as Ay, ..., A, and if we define f; ; := ;; \ 7; for 1 < j < k(i), then the
sets Z; == {sp, ;pr,;S5,,} are finite covers of pu, for 1 <7 <m.

Now, must proceed as above with this new covers as many time as we need, and since they
are finite covers, each step will have less elements than the previous. So, in a finite number

of steps, there will be a refinement of the cover that will contain a complete expansion {;}
of A with C; = 6,,(A).

Summarizing
Lemma 7.9. If Z C %, is a finite cover for x € E(T), there exists a refinement of Z of Z
such that:
(1) Z C %, is a finite cover,

(2) The elements in Z are pairwise orthogonal,
(3) \| p(z) = > p(2) for every representation p of E(T).

z€Z 262
We are ready to prove the main result of this section

Theorem 7.10. The representation v : T — C*(B, L, 0) is the universal tight representation
of T.
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Proof. First notice that, because of Corollary and Lemma [7.9] the representation ¢ : T" —
C*(B, L, 0) is tight.

Now, let A be any C*-algebra, and suppose that p : T — A is a tight representation.
Consider 3, := p(s,) for every a € L, and pa := p(pa) for every A € B. Then, {3, : a €
L}y U{ps: Ae B} C A, and clearly:

(1) {pa : A € B} is a set of projections in A.

(2) {84 :a € L} is a set of partial isometries in A.

Since p is a *-homomorphism of semigroups, we clearly have that:

(1) papp = panp for every A, B € B.

(2) Pada = SaPo,(a) for every a € £ and A € B.

(3) §%8p = OapPr, for every a,b e L.

In order to prove the two remaining identities, we will use the fact that p is tight:

(1) Take A, B € B. Then, it is clear that {pa\s,pans} is a finite orthogonal cover of py,
and so does {pp\a,panp} of pp. Hence, pa = pa\p + Panp and Pp = Pp\a + Pans,
whence pa+pp—pPans = Pa\s+Pp\a+Dans. Since {pa\s, PB\a, Panp} is an orthogonal
finite cover of paup, we conclude that paup = Pa\s + P\a + DPanB = Pa + DB — Pans,
as desired.

(2) If A € By, then {s,pg,(a)s; : a € AA} is an orthogonal finite cover of p4. Hence,

ﬁA = p(pA> = \/ p( SaPo, (A \/ Sapea Z Sapea
a€A 4 a€A 4 a€A 4
so we are done.

Thus, by the Universal Property of C*(B, L, ), there exists a unique *-homomorphism

i CHB,L,0) — A

Sq > Sq .
pa = Pa
Since 1 o 1 = p, the universality of ¢ is proved. O

Recall 7 : S — T is an onto *-semigroup homomorphism. By Lemma [6.14] and (6.15), the
lack of injectivity of 7 is linked to the existence of dense pairs of idempotents in S. By [12]
Proposition 2.11], it is then immediate to conclude

Corollary 7.11. The representation tom : S — C*(B, L, 0) is the universal tight represen-
tation of S. Therefore, C*(B, L, 0) = Cy, 1, (T) = C},(S)

8. THE TIGHT GROUPOID OF T’

In this section we will benefit of the previous work to construct a groupoid G such that
C*(B, L,0) = C*(G). Now, we proceed to recall the construction of Gign (7). Let us recall
the construction in a generic form (see e.g. [15]):

e If S is an inverse semigroup, then & = £(S) = {idempotents of S} is a semilattice
with ordering e < f if and only if ef = e, and e A f = ef. It extends to an order in
S, s < tif and only if s = ts*s = ss*t. We denote by el f if and only if ef = 0, and
em f if and only if ef # 0.
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A character on £ is a nonzero map ¢ : £ — {0, 1} with ¢(0) = 0, and ¢(ef) = ¢(e)o(f)
for every e, f € £. We denote the set of characters by 50. This is a topological space
when equipped with the product topology inherited from {0, 1}¢. Since the zero map
does not belong to EAO, it is a locally compact space and totally disconnected Hausdorff
space.

A filter in £ is a nonempty subset n C £ such that:

(1) 0 &,

(2) closed under A,

(3) f > e €nimplies f €.

Given a filter n,

o€ —{0,1}
e — [een

is a character. Conversely, if ¢ € &, then ne = {e € E|p(e) = 1} is a filter. These
correspondences are mutually inverses.
A filter n is a ultrafilter if it is not properly contained in another filter. We denote
Es C & the space of ultrafilters.

Tight filters are defined in analogy with tight representations. The set of tight filters
(tight spectrum) is a closed subspace Stlght of 50, containing 5 as a dense subspace.
We can define a standard action of S on 50 as follows:

(1) Foreach e € £, D? = {p € & : ¢(e) = 1},

(2) given s € S,

By:DP, — DP

6 — B6)(e) = ols"es)
When working with filters, D? = {n € &le € n} while B,(n) = {f € £ : f >

ses* for every e € n}.
[ restricts to an action of S on ultrafilters and on tight filters.

Definition 8.1. Consider the set 2 = {(s,z) € S x aight cx € D%} and define (s, z) ~
if and only if z = y and exists e € £ such that x € D? and se = te.
Define Giigni(S) = Q/ ~, with:

(1) d([s,f]i =z and r([s, 2]) = Bs(2),

(2) [s,2] - [t,z] = [st, x] if and only if z = B(z),

@ [al =A@

(4) gtight ={le,z] 1 e € E} = Eiigne

Giight (9) is the tight groupoid of the inverse semigroup S.
Then, we have

Theorem 8.2. C*(B, L,0) = C*(Grigne(T))

Proof. This holds by Corollary [[.11] and [11, Theorem 13.3].

Moreover

Lemma 8.3. Gyyn(T') is Hausdorff
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Proof. By Proposition and [I5, Corollary 3.17] O
Also, we have the following
Lemma 8.4. Gy;yn(T) is amenable.

Proof. Since C*(Gyani(T)) = C*(B, L, 0) is nuclear, then C%,;(Giigni(T)) = C*(Giigni (1)), and
thus C?,;(Giignt (T)) is nuclear. Hence, the result holds by [6l Theorem 5.6.18]. O

red

9. SimpLICITY OF C*(B, L, 0)

In this section we will characterise when C*(B, L, ) is simple, using information from
Giight (T'). To this end, we use a result of [5].

Theorem 9.1 (|5, Theorem 5.1)). Let G be an étale, Hausdorff, second countable, topological
groupoid. If G is (elementary) amenable, then the following are equivalent:

(1) G is minimal and essentially principal,
(2) C*(G) is simple.

Since Giignt (T') is the tight groupoid of an x-inverse semigroup, Giignt(7') is an étale, second
countable, topological groupoid [11]. We know that Gigni(7) is Hausdorff and amenable.
Hence, we need only to take care of Gigni(1') being essentially principal and minimal. As
Giignt (T') is the tight groupoid of an inverse semigroup, we can benefit of the results of [15]
for this task.

9.1. Essentially principal groupoids. In this subsection we take care of the essential
principal property. For this and related properties we refer to [I5, Section 4]. In particular,
we skip the definitions.

Recall the following facts.

Theorem 9.2 ([I5] Theorem 4.7]). Gy (1) is essentially principal if and only if 5 :T ~
Eright 15 topologically free.

Definition 9.3 ([15, Definition 4.8]). Let s € T, e € £(T) such that e < ss*. Then, we say
that:

(1) e is fixed under s if se = e.
(2) e is weakly fixed under s, if sfs*m f for every f € E(T)\ {0} and f <e.

Theorem 9.4 ([I5, Theorem 4.10]). Since Gugu(T) is Hausdorff, the following statements
are equivalent:
(1) 6:T ~ éA’tight is topologically free.
(2) for every s € T and every e € E(T) weakly fixed under s, there exists F' C X, finite
cover consisting of fived elements.

Definition 9.5.

(1) We say that « = ay -+, € L* is a cycle without exits if for any () # A € B such
that a; € Ay we have that Ag, (1) = {oagy1} for t <nand Ag, a4y = {aq}.

(2) We say that (B, L, 0) satisfies Condition (Lg) if given a € L* a cycle without exits,
there exists () # B € B with 0,(B) # 0 such that BN 60,(B) = 0.
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Then

Theorem 9.6. The following are equivalent:

(1) (B, L,0) satisfies condition (Lg),

(2) BT ~ Epignt is topologically free,

(3) Grigne(T') is essentially principal.
Proof. (2) < (3) by Theorem

For (1) < (2) notice that, since T is a E*-unitary by Proposition [6.8] condition (2) in

Theorem is equivalent to the statement:
Vs € S\E(S) and V0 # e € £(S5) with e < ss™, there exists 0 # f < e such that sfs™f=0.

We will separate 3 cases:
(1) Case s = s,: Then e < 5,5 = pr,,. Thus, without loss of generality, we can assume
e=paand f < ps (Abeing R,). By Lemmal6.hl f = sgppsi with B C 03(A) = Rag.
Without loss of generality, we can assume that |a| < |5|. Then

0#sfs" - f= SaBpB3:;536pBSE
implies 8 = af. Assuming la] < | B |, we have that 3 = af and by recurence

ﬁ:aﬁ1=04252="':@n5n:"'
Since |B| < oo, f must be & for some k € N, and thus 0 # sfs*f = Sor+1DBr0. (B)S 1
is equivalent to 8 = o* and BN 0,(B) # 0. So, sfs*- f = 0 for a suitable nonzero
idempotent f occurs exactly when one of the following two situations hold:

(a) There exists § € L£* such that 05(R,) # 0, B £ a and o £ f; in particular, this
is the case if o is a cycle with an exit.

(b) The path « is a cycle without an exit, and 3 = o for some k € N. Then,
Sfs* - f = Sakr1DBroa(B)Sirr = 0 if and only if there exists () # B € B such that
0,(B) # 0 and BN 6,(B) = 0.

This prove the equivalence for this case.

(2) Case s = s%: Then

* * *
€ < SaSy = SaPRaSa = SaPba(Da)Sa < PD. -

Then, the argument is analog to the case (1).
(3) Case s = sappsj: Without loss of generality we can assume |a| > |3]. Then, e <

s*s = spppsh < pr, and f = s,pes) < sgppsy if and only if v = B3 and C C 0,5(B).
Thus, we are in the situation s;pcs; < pp, whence case (1) applies.
L]

This picture allows to prove an analog of the Cuntz-Krieger Uniqueness Theorem for la-
belled graph C*-algebras [2 Theorem 5.5] in our context. In order to prove such a theorem,
we need to recall some facts:

Remark 9.7.

(1) By [15, Proposition 2.5], the set {D. : e € E(T)} is a basis of SAtight(T) by clopen
compact sets.
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(2) For any s € T', the set O(s, Dg+s) := {[s,m] : 1 € D} is a open bisection of Gignt (1)
[11, Proposition 4.18]. Moreover, the isomorphism C*(B, L, 0) = C*(Giign (1)) sends
each s € T'C C*(B, L,0) to the characteristic function lg(s p,..) € C*(Giignt(T)).

(3) By [11l Proposition 4.15] and point (1) above, ©(s, Ds+;) is open and compact for
every s € T'.

(4) By point (1) above and [I5 Proposition 3.8], the set {O(s, Dg«s) : s € T'} is a basis of
the topology of Gent(T"). In particular, since Qt(ght = {le,z] :e € &} = SAtight, the set
{O(e, D.) : e € E(T)} is a basis of the topology of Gyign: (T') .

Now, we are ready to prove our theorem.

Theorem 9.8 (Cuntz-Krieger Uniqueness Theorem for C*(B, L, 0)). Let (B, L,0) be a Boolean
dynamical system satisfying condition (Lg), and let C*(B, L, 0) be its associated C*-algebra.
Then, for any x-homomorphism m : C*(B, L,0) — B, the following are equivalent:

(1) m(saPast) # 0 for every O # A € B with A C R,,.

(2) 7 is injective.

Proof. By Lemma R3] Lemma 8.4 and Theorem 0.6l be can apply [13, Theorem 4.4] to
C*(Gtignt (1)) Thus, in order to conclude our result, it is enough to prove that 7T|CO (
is injective if and only if 7(s,Past) # 0 for every ) # A € B with A C R,

By Remark @.7(2), if w\co(gﬁgm(T)(O)) is injective then 7(s,Pas?) # 0 for every ) # A € B
with A C R,,.

Conversely, suppose that m(s,Pas?) # 0 for every ) # A € B with A C R,,. If there exists
0 # f € ColGuigne (1)) such that 7(f) = 0, then by Remark @7(4) there exists e € &(T)
such that O(e, D.) C supp(f), whence m(e) = 0, contradicting the assumption. So we are
done. U

Grighs (T)(?)

9.2. Minimal groupoids. In this subsection we deal with the question of minimality of the
groupoid. As in the previous subsection, we refer [15, Section 5] for definitions and results.
We will use the following

Theorem 9.9 ([15, Theorem 5.5]). The following statements are equivalent:

(1) B:T ~ é\tight is irreducible,

(2) Guignt(T) is minimal,

(3) for every 0 # e, f € E(T) there exists sy,...,8, € S such that {s; s}, is an outer
cover for e.

By analogy with the case of graph C*-algebras, we propose the following definition:

Definition 9.10. We say that (B, £,0) is cofinal if for every ) # A € B and for every
¢ € &Eiight there exist o, 8 € L* such that SaPos(A)Se € C.

Recall that given e € £, we define the cylinder set of e in aight as

Z(e) :={C € Eugu s € € C}.
For every e € £, Z(e) is a compact open subset of aight.

Then, we have
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Proposition 9.11. The following statements are equivalent:

(1) (B, L,0) is cofinal.
(2) Grigne(T) is minimal.

Proof. First, we will prove that cofinality implies condition (3) in Theorem [0.9] For this end,
suppose that e = sypashand f = sgppsj. Since A C R, we have

* * *
SaPASy < 8aPRaSe = SaSy < PD,-

*

As every cover of pp, is a cover of s,pask, we can assume without loss of generality that
e = pa for some A € B. Since pp = s} fs3, we can assume without loss of generality that
f = pp for some B € B.

Given £ € Z(pa), cofinality implies that there exist ag, B¢ € L* such that

Sagpegé (B) 8:’;5 e é-

Hence,
Z(pa) C U Z(SangBE(B)SZE)'

£€Z(pa)
Since Z(pa) is compact, there exist ae,...,ae, , B¢y, B¢, such that

Z(pA> c U Z(Saéipeﬁgi(B)sz‘éi)'
=1

n

By [15, Proposition 3.7], this is equivalent to say that {S%Z_pgﬁg_(B)szg, ", is an outer cover

for p4. Notice that Sag,Pos, (B)S

(Saéisg Z)

NOWE, we will prove that condition (3) in Theorem 9.9 implies cofinality. For this end, take
any ) # A € B and any & € aight. By the argument at the start of this proof, there exists
0 # B € B such that pp € {. By condition (3) in Theorem [0.9] there exists s; := sa,pc, 55,
for 1 <4 < n such that {s;pas;}, is an outer cover for pg. Without loss of generality, we
can assume that 6g,(A4) C C; for every 1 < ¢ < n, so that s;pas} = saipgﬁi(A)szi for every

1 <i <n. By multiplying by pp, we conclude that {s.,p,( B)0s, (A))Sa } | is a finite cover

%

for pp. Since € is tight and pg € £, then there exists 1 < 7 < n such that

= (sagis}ggi)pg(s%is}g&i)*. Thus, the result holds for s; :=

*
Qg

PB * Sa;P05,(4)50; = Sa; P (0, (B)N05,(4))Sa; € &

j
by [15, (2.10)]. As ¢ is a filter and pp - sajpgﬁj(A)s:;j < Sajpgﬁj(A)SZj, we conclude that
Sa; Do, (A) sj;j € &, as desired. O

Our next goal is to give a characterization of the cofinality of (B, L,0) in terms of the
elements in B and the actions 6. First we need the following definitions.

Definition 9.12. We say that an ideal Z of B is hereditary if given A € Z and o € L then
0,(A) € Z. We also say that 7 is saturated if given A € B,., with 6,(A) € Z for every a € Ay
then A € 7.
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Given a collection Z of elements of B we define the hereditary expansion of Z as

H(Z):={BeB:BC Uﬁai(Ai) where A; € Z and o; € L7}
i=1
Clearly, H(Z) is the minimal hereditary ideal of B containing Z. Also, we define the saturation
of Z, denoted by S(Z), to be the minimal ideal of B generated by the set

COJ sH(D),
n=0

defined by recurrence on n € Z* as follows:

(1) SO(7):=1

(2) For every n € N, S"(T) := {B € B, : 0.(B) € S"Y(T) for every a € Ap}.
Observe that if Z is hereditary, then S(Z) is also hereditary. Therefore, given a collection Z
of elements of B, S(H(Z)) is the minimal hereditary and saturated ideal of B containing 7.

We set L :=T[7, L. Given a € L> and k € N, we define ap g = oy oy € ck.

Theorem 9.13. Let (B, L,0) a Boolean dynamical system. Then the following statements
are equivalent:

(1) The only hereditary and saturated ideals of B are ) and B,

(2) Given A, B € B, there exists C € B, U {0} such that
(a) B\ C € H(A), and
(b) For every o € L there exists k € N such that 6, ,, (C) € H(A).

(3) For every 0 # e, f € E(T), there exist s1,...,8, € S such that {s; s}, is an outer
cover for e.

(4) (B, L,0) is cofinal.

(5) Giign(T) is minimal.

Proof. First observe that (3) < (4) < (5) follows from Theorem [9.9 and Proposition [0.11]
(1) = (2). Suppose that the only hereditary and saturated are () and B. Then, given A # ()
we have that S(H(A)) = B. By definition,

H(A) ={C € B:3p,...,0m € L and n € N such that C' C Uegi(A)}.
i=1

Since S(H(A)) = B, by definition of saturation we have that B = {CUD : C € H(A) and D €
B,ey}. Thus, given any B € B, there exists D € H(A) such that C' := B\ D € B,,, and
there exists n € N such that C € S (H(A)). Therefore, for every a € L, we have that
Oopy,y (C) € H(A).

(2) = (3). Without loss of generality, we can assume that f = p4 and e = pp for some
0 # A, B € B. By hypothesis, there exists C' € B,., U {0} such that B\ C' € H(A). So, there

exist B1,...,Bm € L* such that B\ C C J 03,(A). Thus, if we define s; := sj for 1 <7 <m,
i=1

then s;fs; = P, (4)- Hence, since \/7;1 Do, (A) , we can reduce the proof to the

- pgl 0p,(A)
case that e = pc. Now, if 6,(C) € H(A) for every v € A¢ and C € B,,, we have that
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C € SM(H(A)), whence we can find a finite cover for po. Otherwise, there exists v, € A¢
such that 0., (C) ¢ H(A). Now, we repeat the argument to find a finite cover for py. (). By
recurrence, we either construct a finite path v = 7y - -+, such that 6,(C") € H(A), or we
construct an infinite path o € £ such that aj 4)(C) ¢ H(A) for every k € N. In the first
case we obtain a finite cover for pc. In the second case we get an infinite path, contradicting
the hypothesis. So we are done.

(3) = (1). Let § # A € B. We want to prove that S(H(A)) = B. If we take ) # B € B
then, by hypothesis, there exist s1, ..., s, such that {s; fsj }/_; = {Sa.Pe,, (1)Sh, }iz1 is an outer
cover for pg. So,

pB < \/ Sai D05, (A) Sa -
i=1
We set N := max {|o;| : i =1,...,n}. Since only regular sets can have finite covers, it must
exists C' € B¢, such that

B\C C | 05.(A) € H(A).
ai=@

So we have that

pc < \/ Sai D05, (A) Sa »
1=1,0; £0
and C' € B,,. Thus, we can assume that B € B,., and «; # () with

n
pp < \/ Sa: D05, (A)Sa, -
i=1

Now, we label Ag = {71,...,7vm}, and relabel {a;} so that there exist 0 = jp < j1 < Jo <
s < g = n with v, < o for every j;_1 < k < j; and 4 ﬁ «; otherwise. Then, we have that
Ji
54,00, (B) Sy, < \/ Sakpe,;k(A)S?;k forevery i=1,...,m,
k=j;—1+1
or equivalently
Ji
Po,,(B) < \/ Sak\wp%k(A)SZk\% foreveryi=1,...,m.
k=j;—1+1

Observe that we have |ay \ ;| < |ag|. Thus, we can assume that
Po.,(B) < \/ Sa: Doy, (A)Sa, for every v € Ap
i=1

with Ny := max {|o;| :i=1,...,n} = N; — 1 < N;. By hypothesis, we can also assume that
0,(A) € B, for every v € Ap.

Therefore, after repeating this process Ny times, we prove that pg gy € B,e, for every
v € AFV and 0,(B) € H(A) for every v € AN'. Thus, B € SMNi(#H(A)), and hence
B e S(H(A)).

O
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9.3. The simplicity result. Now, we are ready to state a result, giving a characterization
of simplicity for C*(B, L, ) in terms of properties enjoyed by (B, L, 0).

Theorem 9.14. Let (B, L,0) be a Boolean dynamical system, and let C*(B, L, 0) be its as-
sociated C*-algebra. Then, the following statements are equivalent:
(1) C*(B, L, 0) is simple.
(2) The following properties hold:
(a) (B, L,0) satisfies condition (Lg), and
(b) The only hereditary and saturated ideals of B are () and B.

Proof. By Theorem@.1], C*(B, L, 0) = C*(Giignt(T')). By Lemma 83 and Lemma B4l Gyigne (1)
is Hausdorff and amenable. Then, the result holds by Theorem [@.6] Theorem and
Theorem O

Theorem generalizes |2, Theorem 6.4] (where only sufficient conditions are given) and
[19, Theorem 3.8, 3.14 & 3.16] (which provided an equivalence, and solved a problem in Bates
and Pask’s result) in our context, the point being the use of a completely different approach
to fix the conditions equivalent to simplicity, that are stated in terms of both the groupoid
properties and the Boolean dynamical system.

10. GAUGE INVARIANT IDEALS

Now, using the characterization of the Cuntz-Krieger Boolean C*-algebras as topological
graph C*-algebras explained in Section [B, we will use the work of Katsura [22] to determine
the gauge invariant ideals of the Cuntz-Krieger Boolean C*-algebras. We will restrict for
simplicity, to the class of locally finite Boolean dynamical systems (see definition [3.6)).

Given a Boolean dynamical system (B,L,0), we will denote by Ez g the associated
topological graph defined in Proposition 5.3 If there is no confusion, we will just write E.

Definition 10.1. Let E = (E°, E',d, r) be a topological graph. A subset X° of E° is said to
be positively invariant if d(e) € X° implies r(e) € X for each e € E', and to be negatively
invariant if for every v € XN EY, there exists e € E' with r(e) = v and d(e) € X°. A subset
X0 of EY is called invariant if X° is both positively and negatively invariant.

We define the singular vertices as Eo, = E°\ E).

Definition 10.2. Let £ = (E°, E',d,r) be a topological graph. A subset Y of EY is said
to be hereditary if r(e) € Y implies d(e) € Y, and saturated if v € EY, with d(r~'(v)) C Y
implies v € Y.

Observe that a subset X of E° is positively invariant if and only if E°\ X? is hereditary,
and it is negatively invariant if and only if E°\ X° is saturated.

Lemma 10.3. Let (B, L,0) be a Boolean dynamical system, and let E be the associated
topological graph. If H is an ideal of B, then H is hereditary (definition[913) if and only if
Y := |J Na is a hereditary subset of E°.

AeH
Proof. Suppose that H is a hereditary ideal of B. Let vz € Y, so there exists A € H such that
ve € Ny, and suppose that there exists « € £ such that ve € r(EL). Let C' € D(Zg,) such
that r(ed) = ve, so that C = {B € Ip, : §,(B) € C'}. Since A € C, we have that 6,(A) € C',
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so ver € Ny, (a)- As A € H, by hypothesis 0,(A) € H, and therefore ver € Ny, (4) €Y. Thus,
d(eg) =ve €Y, as desired.

Conversely, suppose that Y := J Ay is a hereditary subset of E°, and suppose that there
AcH
exists A € H such that 6,(A) ¢ H. We claim that there exists an ultrafilter C of B such that

A € C and 6,(B) ¢ H for every B € C. Indeed, let us consider the set I' of all the filters C
of B such that A € C and 6,(B) ¢ H for every B € C. T is a partially ordered set with the
inclusion.

First observe that I" # (), because the minimal filter containing A belongs to I'. Now, let

{C,.}nen be an ascending sequence of filters of I'. C = |J C, is clearly a filter from T'" with
neN
C, C C for every n € N. Then, by Zorn’s Lemma, there exist maximal elements in I". If

C is a maximal element of ', we claim that C is an ultrafilter of B. Indeed, we only have
to check condition F3. Let B € C, and let C,C" € B\ {0} such that B = C' U C’" and
C N C" =10. Suppose that C,C" ¢ C. Then, C N D,C" N D # {) for every D € C; otherwise,
if there exists D € C such that C N D = (), then C 5 (BN D) C C’ by condition F2. Thus,
C’ € C by condition F1, a contradiction, whence C N D # () for every D € C. By the same
argument C' N D # () for every D € C. Now, suppose that there exists D € C such that
0,(C N D) € H. Then, for every D' € C with D’ C D, we have that 6,(CND') C 6,(CND,).
So, 0,(C' N D) € H too, since H is an ideal. Now, suppose that 6,(C' N G) € H for some
G € C. By the same argument as above, 0,(C N G') € H for every G' € C with G’ C G.
Thus, BN D NG € C and

0.(BNDNGNCYUO(BNDNGNC")=0,(BNDNG) ¢ H.

But by the above arguments, we have that 6,(B N D N G) € H because H is an ideal, a
contradiction. Therefore, we can assume that 6,(C N D) ¢ H for every D € C. Now, we
construct the filter (' = {B € B: CND C B for some D € C}. We clearly have that C' € I'
with C C C’, contradicting with the maximality of C. Thus, C is an ultrafilter of B, as desired.

Now, we claim that there exists an ultrafilter C' of B such that 6,(B) € C' for every B € C
and C' ¢ H for every C' € C', where C is the ultrafilter constructed above. Let I be the
set of all filters of B satisfying the above requirements. We have that I # () since the filter
D ={C:€B:0,B) C C for some B € C} belongs to I". Also, [ is a partially ordered set
with the inclusion, and clearly every ascending sequence of filters of IV has an upper-bound.
By the Zorn’s Lemma, I has maximal elements. Let C' be a maximal element. We claim
that C’' is an ultrafilter of B. Indeed, we only have to check condition F3. Let C € ('
and let D, D' € B\ {0} with C = DND" and DND'" =0 and D,D’ ¢ C'. We have that
DNG,D'NG # 0 for every G € C'; otherwise, if there exists G' € C’ such that DNG = (), then
we have that (C'NG) C D’. So, D' € C by condition F1, a contradiction. Thus, D NG # ()
for every G € C'. By the same argument we have that D' NG # () for every G € C'. Finally
suppose that there exists G, G’ € C' such that DN G, D'NG" € H. Then,

(CNGNGE@ND)UCNGNGND)=CNGNG ¢ H,

but since H is an ideal, we have that C NG N G’ € H, a contradiction. Therefore, suppose
that ) # DN G ¢ H for every G € C'. Then, we can define the filter " = {C € B: DNG C
C' for some G € C'}. We have that C” € T” and C’' C C”, contradicting the maximality of C'.
Thus, C’ is an ultrafilter, as desired.
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Finally, since C’ € Zr,, we can define €%, € E}. But ver ¢ Y, since B ¢ H for every B € C'.
Observe that by Lemma we have that r(e%) = ve. Moreover, ve € Ny C Y, since A € C.
But this contradicts that Y is a hereditary set of E°. Thus, 0,(A) € H, as desired, whence
H is a hereditary ideal of B. U

Observe that, if A € B,ey, then given any C € D(Z4) we have that ve € EY,.

Lemma 10.4. Let (B, L,0) be a Boolean dynamical system, and let E be the associated
topological graph. If H is an ideal of B, then H is saturated (definition[913) if and only if

Y := |J Ny is a saturated subset of E°.
AeH

Proof. First, suppose that H is a saturated subset of B, and let C € D() such that v¢ € Effg.
Recall that

1 (ve) = {e&% : C' € D(B) such that 3a € £ with C = {A € B:0,(A) €C'}}.

Suppose that d(e&) = ver € Y for every €& € r~*(vc). Hence, there exists Ber € C' such that
Ber € H. We claim that, for every o € L such that 6,(A) # () for every A € C, there exists
A € C such that 6,(A) € H. Indeed, suppose that there exists o € £ such that 6,(A) ¢ H
for every A € C. Let I' the set of all filters F of B such that 6,(A) € F and 6,(A) ¢ H for
every A € C. Then, F = {B € B : 0,(A) C B for some A € C} is a filter in T', whence T" # .
We have that I is a partially ordered set with the inclusion, and it is clear that I' contains
an upper-bound for every ascending chain. Therefore, by the Zorn’s Lemma, I" has maximal
elements. Given any maximal element C' € I", we have that C’ is an ultrafilter. Therefore,
we have that C' ¢ D(Zg) for every B € H, and hence ver ¢ Y. Moreover, by Lemma [5.5 we
have that r(e%) = ve. But this contradicts the hypothesis that d(r~!(ve)) C Y. Thus, there
exists A € C such that 0,(A) € H. Then, given any a € L such that 6,(A) # 0 for every
A € C, there exists A, € C such that 0,(A,) € H.

Now, since ve € E,(?g, there exists A € C such that A4 < oo, and given any B € B with

B C A then A\g # 0. So, A is a regular set of B. If replace A by AN ( N Aa> € C, we can
a€EAy

suppose that 6,(A) € H for every o € A 4. Then, since H is saturated, we have that A € H,

and hence ve € Ny CY. Thus, Y is a saturated subset of E°.

Conversely, suppose that Y is a saturated subset of £E° and let H be an ideal of B. Let
A € H and regular such that {6,(A) : « € £} C H. We claim that for every ultrafilter
C € D(Zy4) there exists B¢ € ‘H with C € D(Zp,). Indeed, since A is regular, we have that
ve € Ep,. Moreover, since {6,(A) : o € L} € H, we have that d(r~'(vc)) € Y. Therefore,
since Y is saturated, it follows that ve € Y, so Be € C for some Be € H, as desired.

Let C € D(Z4). By the above claim, there exists B € H with C € D(Zp,), and then

ANBe € CNH and Ny NZg, = Nanp,. Therefore, Ny = |J Nanp.. But since D(Z4)
CG'D(IA)
is compact by Corollary 2.17, we have that Ny = NAchl U---UNgng,, for some n € N.

Hence, it is easy to check that A = |J(AN Be,). As AN B, € H for every i = 1,...,n, and
i=1
‘H is an ideal, it follows that A € H, as desired. O
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We have proved in the previous lemmas that, given a hereditary and saturated ideal H of

B, then Y = |J N4 is a hereditary and saturated subset of E°. The converse is also true.
AEH

Indeed, let Y be a hereditary and saturated subset of E°. Given v € Y, pick A, € B such
that v € Ny, and Ny, CY. We define H to be the minimum ideal of B containing the A,’s.
Observe that since every Ny, is compact by Corollary 217, and since H is an ideal, H is
independent of the choice of the A,’s. Now, following the proof of Lemmas & [10.4] one
can check that H is a hereditary and saturated ideal of B. Thus, the following results follows:

Proposition 10.5. Let (B, L,0) be a Boolean dynamical system, and let E be the associated
topological graph. Then, there is a bijection between the hereditary and saturated subsets of
B and the invariant subsets of E.

Example 10.6. Let (B,L,0) be the Boolean dynamical system of Example Then,
the only hereditary and saturated subset of B is the set H = {F : F' C E° finite}, the

associated open hereditary and saturated subspace Y = |J Ny of E® is {vc, : n € Z}, and
AeH

let X = E°\Y = {C..} is the associated invariant space.

Proposition 10.7. Let (B, L,0) be the Boolean dynamical system, and let H be a hereditary
ideal of B. If for any o € L and any [A] € B/H we define 0, ([A]) = [0a(A)], then (B/H, L, 0)
1s a Boolean dynamical system.

Proof. We only need to prove that, given o € £, the map 6, : B/H — B/H is a well-defined
map. But this clear because H is a hereditary ideal of B. Also, the range and domain of 6,
are [R,| and [D,] respectively. O

Let X% be an invariant space of EY. If we define X' = {e € F' : d(e) € X"}, then
(X% X1 d,r) is also a topological graph.

Proposition 10.8. Let (B, L,0) be a Boolean dynamical system, and let E be the associated
topological graph. Given a hereditary and saturated ideal H of B, define X° := E°\ |J Nju.

Aen
Then, EH = E(B/’H,E,@) = (XO, Xl, d, ’l").
Proof. Since E° = D(B) and |J N4 = D(H), using Lemma 21T we can identify X° with

AEH
D(B/H) = Ej, by vec + v¢). By definition, X' = | | {eg : C € D(Zg,) and [C] € D(B/H)}.
acl
So, we can identify it with Ej, = | | D(Zjz,)) by g ef;- With these identifications, it is
acl

clear that the maps d and r are the corresponding ones.
O

A topological graph E = (E°, E',d,r) is called row-finite if 7(E") = E.
Lemma 10.9. Let (B, L,0) be a locally finite Boolean dynamical system, then the associated
topological graph E is row-finite.

Proof. Recall that
r(E') = {ve € E°\Fa € L,0,(A) # ) VA € C}
and
E?g:{vc € E°|3A € C, VB C A we have that 0 < A < 0o} .
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The inclusion EY) C r(E") is always valid, and the converse is obvious by locally finiteness of
the Boolean dynamical system. O

Given a Boolean dynamical system (B, L,0) and a hereditary and saturated set H of B,
we define I as the ideal of C*(B, L, ) generated by

{pAZAG%}.

Conversely, given an ideal I of C*(B, L,0) let us define p; : C*(B,L,0) — C*(B,L,0)/1
to be the quotient map, and H; := {A € B : pr(pa) = 0}. Clearly H; is a hereditary and
saturated set of B.

Then using Proposition it follows:

Proposition 10.10 (cf. [22 Proposition 3.15]). Let (B, L,0) be a Boolean dynamical sys-
tem. If I is an ideal of C*(B, L,0), then there exists a natural surjection C*(B/Hy, L,0) —
C*(B, L,0)/1 which is injective in C*(B/Hy).

Proposition 10.11 (cf. [22 Proposition 3.16]). Let (B,L,0) be a locally finite Boolean
dynamical system. For an ideal I of C*(B, L,0), the following statements are equivalent:

(1) I is a gauge-invariant ideal,

(2) The natural surjection C*(B/Hy, L,0) — C*(B,L,0)/I is an isomorphism,

(3) I = [HI'

Theorem 10.12 (cf. [22, Corollary 3.25]). Let (B, L, 8) be a locally Boolean dynamical system
and let E the associated topological graph. Then the maps I — H; and H — Iy define a
one-to-one correspondence between the set of all gauge invariant ideals of C*(B, L, 0) and the
set of all hereditary and saturated sets of (B, L,0).

Example 10.13. Let (B, L,0) be the Boolean dynamical system from Example 59 By
Example there exists only one non-trivial hereditary and saturated subset H. Then, the
only gauge invariant ideal of C*(B, L, 0) is the ideal Iy generated by the projections {pp :
F C E° finite}. Then the quotients C*(B, L, 0) /I is isomorphic to C*(B/H, L,0). Observe
that B/H has only one non-empty element {oc}, and 6,(c0) = @) and 6,(c0) = 6.(c0) = o0,
thus C*(B/H, L,0) is isomorphic to the Cuntz algebra Os.

11. EXAMPLES

Our motivation to define the Boolean Cuntz-Krieger algebras was to study the labelled
graph C*-algebras [3, 2] from a more general point of view, and this is actually what we
achieved here. However, at this point, it is not clear to us if the class of Boolean Cuntz-Krieger
algebras is strictly bigger than this of labelled graph C*-algebras, but our approach to these
C*-algebras clearly allows to extract largely more information than the usual one. Besides
of that, as we showed that the Boolean Cuntz-Krieger algebras are compactly supported
0-dimensional topological graphs, the C*-algebras that we can construct as Boolean Cuntz-
Krieger algebras includes homeomorphism C*-algebras over 0-dimensional compact spaces,
and graph C*-algebras, among others [21].

Example 11.1. (Weakly left-resolving labelled graphs) Let (E, L, B) be a labelled graph,
where F is a directed graph, £ : E' — A is a labelling map over an alphabet A, and B

is an accommodating set of vertices E? [3, Section 2] that contains {{v} : v € E?, ,}. We
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will suppose that (E, L, B) is weakly left-resolving and that B is a Boolean algebra. Then,
given A, B € B and a € L(E'), we have that r(AU B,a) = r(A,a) Ur(B,a) by definition,
and r(AN B,a) = r(A,a) Nr(B,a) since (E, L, B) is weakly left-resolving. We claim that
r(A\ B,a) =r(A,a)\ r(B,«). Indeed, observe that

r(A\ B,a)Nr(B,a)=r((A\ B)NB,a)=r(0,a) =10
since (E, L, B) is weakly left-resolving and A \ B € B. Thus, since
r(A\ B,a)Ur(B,a)=r(AUB,a) =r(A,a)Ur(B,a) = (r(A,a) \r(B,a)) Ur(B, a),
it follows that (A \ B,a) = r(A,a) \ r(B, «), as desired.

We can define B as the Boolean subalgebra of C*(E, L, B) generated by {s.pas’, : A €
B, a€ LEY)U{D}}, and given o € L(E") we define the action

PA f=a
ea(SBpASE) - Pr(A,a) 6 =0
0 otherwise

for A € Band § € L(E')U{0}. Then (B,L(E"),0) is a Boolean dynamical system, and
C*(E, £, B) = C*(B, L(E"), ).

Example 11.2. Now, we will construct a unital Boolean Cuntz-Krieger algebra that is not
a graph C*-algebra. Let us define the Boolean algebra

B:={F CZ:F finite} U{Z \ F : F finite},
and let £ :={a;}icz U{B}. Then, given A € BB, we define the actions
0, (A)=A+i={x+i:ze A} for every i € Z
N if0eA

O5(A4) = { () otherwise,

and then R,, = R = Do, = Dg = Z € B for every i € Z. Thus, (B, L,0) is a Boolean
dynamical system. Then C*(B, L, 0) is a unital C*-algebra, and since (B, £, §) satisfies con-
dition (Lg) and there are non-trivial hereditary and saturated ideals C*(B, L, ) is simple by
Theorem Since B,y = 0, it follows from Theorem G.13] that

Ko(C*(B, L,0)) (@z) and K1(C*(B, L,0)) =
1€Z

Therefore, since C*(B, L, 0) is unital and has non-finitely generated K-theory, it can not be

a graph C*-algebra. There exists Labelled graph C*-algebras that are not Morita equivalent

to graph C*-algebras [23].

Example 11.3. Let X be a Cantor set, and let Y, Z C X be compact clopen subsets, and let
¢ Y — Z be an isomorphism. Let ¢ : C(Z) — C(Y') the induced isomorphism. We define B
as the Boolean algebra of the compact and clopens of X, and £ = {«a} with the single action
0, : B — B defined as 0,(A) := ¢ 1(A) for every A € B. Whence 0, has compact range,
with R, = Y, and compact domain because 6,(Z) = Y. Then C*(B, L,0) is generated by
projections {pa}acp and a partial isometry s, such that

* *
PASa = SaDy-1(A), S48a = Py and SaSq = Dz -
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since Z € B,.,. Then C*(B, L,0) is isomorphic to the partial automorphism crossed product
C*(C(X), ) (see [10]).

Observe, that in this situation all the cycles are of the form " for n € N, and hence given
A € B we have that 0,~»(A) = ¢~"(A). Hence the Boolean dynamical system (B, £, #) satisfies
condition (Lg) if and only if for every n € N there exists a clopen subset such that ¢™"(A) # 0
and o "(A) N A = ), and it is cofinal if given A, B € B\ ) there exist ny,...,n; € Z such
that A C Ul ¢™(B).

In particular, if ¢ : X — X is a homeomorphism then C*(B, £, §) = C(X) x4 Z. Moreover,
the associated Boolean system will be minimal if and only if ¢ is minimal if and only if the
associated Boolean system satisfies condition (Lg).
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