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Summary

Tissue velocity imaging has become a useful non-invasive method that complements conventional echocardiographic 

techniques in the assessment o f left ventricular function. Myocardial velocities can be determined in a variety o f clinical 

conditions, such as evaluation o f regional left ventricular systolic and diastolic function in cardiomyopathies as well as in 

ischemic heart disease. Strain and strain-rate are applications derived from tissue velocity imaging data. Strain imaging shows 

great promise as a means to access myocardial function. A novel approach to quantify regional left ventricular function from 

routine gray-scale two-dimensional echocardiographic images, known as speckle tracking, calculates myocardial strain 

independent of angle of incidence. Speckle tracking strain images complement traditional tissue velocity imaging providing a 

more complete description o f cardiac dynamics.
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Tissue velocity imaging

Echocardiography is the predominant, non-invasive diagnostic modality, for the evaluation o f left ventricular function as well as 

for the assessment and quantification o f valvular heart lesions. However, assessment of regional cardiac dysfunction at rest and 

during stress with this technique remains subjective and semiquantitative.1,2

Tissue velocity imaging (TVI) is an echocardiographic diagnostic method that provides quantitative data about regional 

myocardial function. Isaaz et al. first reported the use o f TVI in the evaluation of left ventricular (LV) function with pulsed Doppler 

recordings o f intramyocardial velocities in the posterior wall.3 TVI was introduced by McDicken et al. in 1992.4 The use o f color 

TVI, including M-mode and two-dimensional (2-D) imaging, was further developed by Sutherland et al. in 1994. 5 

TVI is non-invasive, does not yield radiation damage, is user friendly and therefore repeatable. Color TVI is the color Doppler 

technique modified to colorize the myocardium, in order to depict the velocities of myocardial motion. Myocardial motion may be 

studied either radially (endo- epicardial direction o f motion in parasternal imaging) or longitudinally (cardiac base to apex 

direction o f motion in apical imaging).

The technique is based on the Doppler principle o f velocity estimation o f structures moving with respect to the ultrasound 

transducer. The high-pass wall filters that are usually used to eliminate the low-velocity and high-amplitude signals of myocardial 

walls for detection o f blood flow velocities in conventional Doppler/color flow modalities are bypassed for TVI. In addition, 

thresholding is used to enhance low-velocity myocardial signals and eliminate the blood flow signals within the cardiac 

chambers.4"6

In the 2-D image, each pixel displays one color representing the direction and magnitude of the wall velocity along the scan 

line.7 As with all Doppler, the direction of motion should be as close as possible to the scan line direction, and careful attention 

needs to be paid to gain settings, because excessive gain leads to spectral broadening and overestimation o f velocities. Due to 

its relatively high spatial resolution, TVI provides valuable information on regional myocardial wall motion during different 

intervals of the cardiac cycle, namely during systole, early diastole and late diastole. In addition, by using the single-gated 

pulsed-wave tissue Doppler option, myocardial velocity vs. time curves (sonograms or velocity-time waveform displays) can be 

recorded from locations selected in the 2-D TVI images. Off-line processing enables accurate quantification of regional 

myocardial motion in both systole and diastole, from multiple sites, with an image dataset being acquired within minutes by an 

experienced sonographer.

TVI uses standard color coding to depict both velocity and direction of movement, with myocardial motion away from the 

transducer coded in blue and towards the transducer in red.5 This information can be displayed as a standard 2-D image (Figure 

1) or as a M-mode TVI, where temporal resolution is enhanced. Differences in myocardial velocity from endocardium to 

epicardium are thus displayed, leading to the recognition o f myocardial velocity gradients (MVG).8,9

Contraction of the LV occurs towards a central point situated at two-thirds along a long-axis line from the level o f the mitral 

annulus to the apex.10 Normal myocardial motion includes three components, along the radial, longitudinal and circumferential 

axes. It is not yet possible to asses all three axis simultaneous by any of the echo techniques. The longitudinal shortening is an 

integral part o f global contractile function, and it is thought to play a role in contributing to the LV ejection fraction.11-13 Using 

single-gated pulsed-wave TVI, three (sometimes four) distinct velocity peaks in systole and diastole are observed14 (Figure 2):

• Systolic myocardial velocity may show two components in some patients, representing isovolumic contraction (S1) 

and the peak systolic (shortening) velocity (S2, very often titled as S)
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• Peak early diastolic myocardial relaxation velocity (De)

• Peak late diastolic myocardial relaxation velocity, associated with atrial contraction (Da)

Several studies aiming at determining normal values in adults were carried out.3,15-21 The early diastolic myocardial velocities are 

usually the highest. There is little evidence o f a significant difference in velocities between sexes. Increased age has been 

associated with a gradual fall in myocardial velocities both in systole and early diastole,1522-24 increase in late diastolic 

myocardial velocity, as well as a fall in the ratio De/Da.25-26 Diastolic myocardial velocities vary with heart rate and phase of 

respiratory cycle at which they are measured.27

Using the parasternal view, normal values for the systolic and early diastolic transmyocardial velocity gradients within 

myocardial segments were assessed (radial axis).8,9,18,28 The transmyocardial velocity gradient was obtained, showing a gradual 

increase in radial shortening velocity from subepicardial to the subendocardial region, independent o f age.18 When imaging from 

the apex (longitudinal axis) longitudinal contraction and relaxation velocities o f the LV myocardium are highest in the basal 

segments and decrease progressively when moving the measurement site toward the apex .16,17

Strain and Strain Rate

Applications derived from TVI data are strain and strain rate (SR). Strain and SR are measures o f deformation and rate of 

deformation that are basic descriptors o f both the nature and function of cardiac tissue. 29-30 The term strain was first used in 

relation to the heart by Mirsky and Parmley to describe myocardial deformation.31 Strain is defined as tissue deformation due to 

applied or internal force (stress), normalized to tissue original length. Strain reflects the functional properties o f the tissue. It is a 

dimensionless measure o f regional lengthening and shortening of the myocardium. As ventricles contract, muscle shortens in 

the longitudinal and circumferential dimensions (a negative strain) and thickens or lengthens in the radial direction (a positive 

strain). SR is the speed at which deformation (i.e. strain) occurs (deformation per time unit). SR is given by the formula SR= (v2- 

v1) / distance, where v1 and v2 are velocities o f myocardium at two points separated by distance; this gives the difference in 

tissue velocity per unit length.32 The strain rate is positive during elongation and negative during shortening. Thus, systolic 

myocardial thickening is positive strain rate. Strain and SR are not influenced by the function of adjacent myocardial segments 

nor of the global heart movements, and are less dependent upon the direction o f shortening and lengthening relative to the scan 

line.

Like TVI, strain and SR throughout the cardiac cycle may be represented as a cyclic curve of a single point over time (Figure 3) 

or as a color coded imaging (SRI) over M-mode imaging. Two parts of the heart muscle may have the same amount o f strain, 

but different strain rates.

Strain rate by speckle tracking in grey scale images

A novel approach to quantify regional LV function from routine gray-scale 2D echocardiographic images, known as speckle 

tracking, calculates myocardial strain independent of angle o f incidence. 33-36

The basic principle o f speckle tracking is using the interference of the reflected ultrasound, giving rise to an irregular - random -  

‘speckle' pattern. The speckles follow the motion of the myocardium so when the myocardium moves from one frame to the 

next, the position of this fingerprint will shift slightly, remaining fairly constant .Thus, if a region (kernel) is defined in one frame, a
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search algorithm will be able to recognise the region with the most similar speckle pattern in the next frame and hence, to find 

the new position o f the kernel. This has been shown to be feasible in flow and strain rate imaging (Figures 4 and 5).

Applications

TVI has become a useful non-invasive method that complements conventional echocardiographic techniques in the assessment 

o f LV myocardial velocities in a variety o f clinical conditions, such as evaluation of regional LV systolic and diastolic function in 

cardiomyopathies as well as in ischemic heart disease.37,38

The greatest clinical contribution o f tissue Doppler to date has almost certainly been in the assessment o f left ventricular 

diastolic function. TVI offers the ability to measure regional diastolic function, with pulsed-wave TVI allowing quantification of 

diastolic myocardial velocities from a small sample volume placed in the region of interest.

A related application of TVI to routine clinical practice is the assessment of left ventricular filling pressure.39 Regional LV 

function is assessed by color-coded 2-D tissue velocity mapping or position o f a sample volume within the myocardium at 

different sites. The color-coded 2-D tissue velocity map enables immediate appreciation of cardiac asynchrony, e.g. akinetic 

segments are shown by dark colors representing low tissue velocity, dyskinetic segments may be seen to exhibit colors opposite 

to those o f adjacent normal segments.

Patients with ischemic heart disease often have abnormal LV diastolic function. Color 2-D and color M-mode TVI are used for 

quantification o f systolic myocardial velocities in these patient, both at rest and with pharmacological stress testing. 40-42 TVI 

enables measurement o f regional systolic and diastolic myocardial velocities and furthermore, is particularly useful in the 

identification of abnormalities o f LV diastolic relaxation.

Both isovolumic contraction and isovolumic relaxation phases represent situations in which the afterload to left ventricular 

contraction and relaxation is very low. This is a privileged situation for myocardial contraction to express itself, especially in 

cases o f stunning or hibernation, in which the low or absent myocardial thickening during ejection phase, i.e. against a very high 

afterload, becomes possible during the isovolumic contraction phase. Myocardial velocity during IVC decreases to zero or 

inverts direction of motion in cases of myocardial ischemia. This aspect seems peculiar with the delayed onset of contraction in 

response to ischemia. Myocardial velocity during IVR appears increased, late-peaking, and prolonged by ischemia. This aspect, 

called post-systolic thickening (if radial) and shortening (if longitudinal) seems also peculiar with the delayed onset of relaxation 

in response to ischemia. 43-45 Several studies have demonstrated that De is often reduced. De/Da ratio < 1, and regional 

isovolumic relaxation times are prolonged in patients with LV segmental dysfunction due to ischemia. 43-46 However, Da velocity 

remains unchanged, suggesting that (“post systolic”) early diastolic changes reflect an active, energy requiring relaxation 

process, whereas late diastolic filling merely reflects passive stretch after atrial contraction.41

TVI is also useful in assessing the severity o f LV asynchrony in patients with LBBB with heart failure as well as in evaluating the 

pacing effects on long-axis function in these patients.47,48

Change o f velocity and patterns o f velocity propagation along the heart walls can be easily observed using the 2-D TVI image 

sequences. The application in electrophysiology enables recognition o f the site o f pre-exitation in the Wolff-Parkinson-White 

syndrome and detecting the origin o f other rhythm abnormalities .49 Bartel et al. demonstrated that using TVI patterns increases 

the detection o f vegetation in infective endocarditis as well as o f thrombus formations.50

Peak systolic pulsed TVI o f the tricuspid annular velocity provides a simple, rapid, and non-invasive tool for assessing right 

ventricular systolic function in patients with heart failure.51
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Conclusion

Tissue velocity imaging has become a useful non-invasive method that complements conventional echocardiographic 

techniques in the assessment o f LV myocardial velocities in a variety of clinical conditions, such as evaluation o f regional LV 

systolic and diastolic function in cardiomyopathies as well as in ischemic heart disease. Strain and strain-rate are applications 

derived from TVI data. Strain imaging shows great promise as a means to access myocardial function. A novel approach to 

quantify regional LV function from routine gray-scale 2-D echocardiographic images, known as speckle tracking, calculates 2-D 

myocardial strain, i.e. independent o f angle of incidence. Speckle tracking images thus provides a more complete description of 

cardiac dynamics.

Although not widely applied in routine echocardiography, tissue velocity imaging can be used to assess global and regional 

systolic and diastolic LV function and to identify abnormal LV relaxation in a variety o f conditions. This technology should be 

understood and training recommended on the basis of the promising future use of this Doppler technology.
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Figures 

Figure 1:

Tissue velocity imaging uses standard color coding to depict both velocity and direction of movement, with myocardial motion 

away from the transducer coded in blue and towards the transducer in red. This figure shows a 2-dimensional image of a heart 

failure patient with left bundle-branch block.

Figure 2:

Longitudinal pulsed wave Doppler o f the myocardium, 4 chamber view; the sample volume is positioned at the basal level o f the 

interventricular septum. S1 = peak systolic myocardial velocity during isovolumic contraction; S = peak systolic myocardial 

velocity; De = peak early diastolic myocardial velocity; Da = peak late diastolic myocardial velocity. Tissue velocity imaging 

shows abnormal relaxation (Da>De).

Figure 3:

Longitudinal strain versus time curves in a heart failure patient with left bundle-branch block. Dyssynchrony is shown as the 

difference in timing o f peak strain from interventricular septum (yellow) and lateral (light blue) segment.

Figure 4:

An example o f longitudinal strain versus time curves in a normal control subject from the apical 4 chamber view. Longitudinal 

strain was calculated by speckle tracking from multiple circumferential points over a cardiac cycle. These data were averaged to 

6 strain versus time plots to represent standard segments. The curves are color-coded by the defined myocardial regions as 

depicted in the figure (yellow-basal septum; red-midseptum; green-apical septum; purple-apicolateral; dark blue-midlateral; light 

blue-basolateral). Time to peak strain in a normal subject occurs synchronously over a very narrow time range.

Figure 5:

An example o f longitudinal strain versus time curves in a heart failure patient with left bundle-branch block. Longitudinal strain 

was calculated by speckle tracking and averaged to 6 strain versus time plots to represent standard segments. The curves are 

color-coded by the defined myocardial regions as depicted in the figure (yellow-basal septum; red-midseptum; green-apical 

septum; purple-apicolateral; dark blue-midlateral; light blue-basolateral). An example of dyssynchrony is shown as the difference 

in timing of peak strain from earliest (yellow) and latest (light blue) segment.
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