
ESCUELA SUPERIOR DE INGENIERÍA

COMPUTER ENGINEERING

FPGA BASED EMBEDDED SYSTEM TO CONTROL AN
ELECTRIC VEHICLE AND THE DRIVER ASSISTANCE

SYSTEMS

Mario Márquez Luciano

June 5, 2014

ESCUELA SUPERIOR DE INGENIERÍA

COMPUTER ENGINEERING

FPGA BASED EMBEDDED SYSTEM TO CONTROL AN ELECTRIC
VEHICLE AND THE DRIVER ASSISTANCE SYSTEMS

• Departament: Systems and Automation Engineering, Electronic and Elec-
tronic Technology

• Supervisor: Ma Ángeles Cifredo Chacón

• Author: Mario Márquez Luciano

Cádiz, June 5, 2014

Mario Márquez Luciano

Aknowledgments
I would like to aknowledge the continuous support of my family during my years of student.
Also I would like to thank the people of VDE group for giving me the oportunity of working
in the E-Performance Kart. Of course I have to say thank you to my supervisors at the Karl-
sruhe Institut of Technoly, Michael Dreschmann and Falco Bapp, and to my supervisor at the
University of Cádiz, Maria de los Ángeles Cifredo Chacón. And last but not less important to
all my lifelong friends and to those who shared with me an unforgettable Erasmus experience
in Karlsruhe.

i

ii

License
This document has been published under License GFDL 1.3 (GNU Free Documentation Li-
cense). License terms are included at the end of this document.

Copyright (c) 2014 Mario Márquez Luciano.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free Soft-
ware Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU Free Documentation License".

iii

iv

List of Abbreviations
ANSI American National Standards Institute
API Application Programming Interface
ASIC Application-specific Integrated Circuit
AXI Advanced eXtensible Interface
CAN Controller Area Network
CU Control Unit
DC Death Current
DSP Digital Signal Processor
EDK Embedded Development Kit
FPGA Field Programmable Gate Array
IPC Industrial Personal Computer
IRT Isochronous Real-Time
ISE Integrated Software Environment
ITIV Institut für Technik der Informationsverarbeitung
KIT Karlsruher Institute für Technologie
LED Light-emitting Diode
LUT Look-up Table
PLB Processor Local Bus
POSIX Portable Operating System Interface
RAM Random Acess Memory
RPM Revolutions per minute
SDK Software Development Kit
TCS Traction Control System
VDE Verband der Elektrotechnik
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

v

vi

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 1
1.3 Starting Point . 2
1.4 Problem definition . 2
1.5 Schedule . 3

1.5.1 System analysis . 3
1.5.2 Hardware development . 3
1.5.3 Software development . 3
1.5.4 Verification process and tests . 3
1.5.5 Gantt chart . 4

2 The VDE KART 5
2.1 Overview . 5
2.2 Main components . 5

2.2.1 Siemens IPC 427 . 5
2.2.2 Motors . 7
2.2.3 Converters . 8
2.2.4 Control units . 8
2.2.5 Wheel speed sensors . 8
2.2.6 Supercapacitors . 9
2.2.7 Safety . 9
2.2.8 Information leds . 11

2.3 Functions . 12
2.3.1 Torque Vectoring . 12
2.3.2 Traction Control System . 13
2.3.3 Brake balance . 14
2.3.4 Offline telemetry . 14

3 Involved Technologies 15
3.1 FPGA . 15
3.2 ITIV’s custom Xilinx Spartan 6 board for VDE Kart 16

3.2.1 Spartan 6 family . 16
3.2.2 Board features . 17

3.3 Hardware description languages . 18
3.3.1 VHDL . 18

vii

3.3.2 Verilog . 19
3.4 Programming languages . 19

3.4.1 C programming language . 19
3.5 CAN-bus . 19

3.5.1 Features . 20

4 Design of the system 21
4.1 Hardware . 21

4.1.1 Xilinx Microblaze . 22
4.2 Sotfware . 24

4.2.1 Xilinx Standalone . 24
4.2.2 Xilinx Xilkernel . 25

4.3 Restrictions . 26
4.3.1 Memory . 26

4.4 Selected Software platform . 26
4.5 Advantages . 27
4.6 Outlook . 27

5 Hardware development 29
5.1 Microblaze . 29

5.1.1 Configuration . 29
5.2 Block RAM . 30

5.2.1 Interface . 30
5.2.2 Configuration . 31

5.3 PLB Bus . 32
5.4 Wishbone Bus . 33
5.5 PLB to WB Bridge . 34
5.6 PLB Wrapper . 35

5.6.1 Wrapper template generation . 36
5.6.2 Modifications to the template . 36
5.6.3 Peripherals to have the PLB wrapper 37

5.7 CAN transceiver . 37
5.7.1 OpenCores CAN transceiver core . 37
5.7.2 Wrapper . 37

5.8 Torque vectoring . 38
5.8.1 Analysis . 38
5.8.2 Design . 40
5.8.3 Implementation . 40
5.8.4 Performance . 42

5.9 Traction Control System . 42
5.9.1 Analysis . 42
5.9.2 Design . 43
5.9.3 Implementation . 45
5.9.4 Performance . 46

5.10 Inputs/Outputs . 46
5.10.1 Digital Inputs . 46

viii

5.10.2 Digital Outputs . 49
5.10.3 Analog Inputs . 52

5.11 Power on reset . 57
5.11.1 Analysis . 57
5.11.2 Design . 57
5.11.3 Implementation . 59

5.12 System Timer . 59
5.13 Interrupt Controller . 59
5.14 LEDS . 59

5.14.1 GPIO . 60
5.15 UART . 60

5.15.1 XPS Uartlite . 60
5.15.2 STDIO UART . 61
5.15.3 Communication UART . 61
5.15.4 UART Enable GPIO . 62

5.16 Clock generators . 62
5.16.1 System Clock Generator . 62
5.16.2 Peripheral Clock Divider . 63
5.16.3 System Clocks . 65

5.17 Memory map . 66
5.18 Final system . 67

6 Control Software development 69
6.1 System requirements . 69

6.1.1 Functional requirements . 69
6.1.2 Information requirements . 70
6.1.3 Non functional requirements . 70

6.2 Software Life model . 70
6.2.1 First iteration . 70
6.2.2 Second iteration . 71
6.2.3 Third iteration . 71

6.3 Analysis . 71
6.3.1 Use Case model . 71
6.3.2 Data model . 74
6.3.3 Behaviour model . 77
6.3.4 External interfaces . 78

6.4 Design . 80
6.4.1 System architecture . 80
6.4.2 Behaviour model . 81

6.5 Implementation . 84
6.5.1 CAN bus . 84
6.5.2 Multi-threading . 85
6.5.3 Xilkernel Operating System . 85
6.5.4 Linker Script and BMM file . 87

ix

7 Test Software development 89
7.1 Limitations and adopted solution . 89
7.2 Industrial PC software . 89

7.2.1 RMOS3 . 89
7.2.2 UART communication . 90
7.2.3 IO configuration . 91
7.2.4 UART timing . 92
7.2.5 Synchronization switch . 92
7.2.6 Telemetry information . 92

7.3 Test Software . 92
7.3.1 Multi-threading . 92
7.3.2 Communication protocol . 93

8 Test and Validation 95
8.1 Hardware . 95

8.1.1 Simulator . 95
8.1.2 Testing platform . 96

8.2 Software . 96
8.2.1 Testing platform . 96
8.2.2 Modules . 96
8.2.3 Integration . 97

8.3 System . 97
8.3.1 Traction control . 97
8.3.2 Torque vectoring . 97
8.3.3 Testing environment . 99

9 Conclusions 101
9.1 Technical valoration . 101
9.2 Personal valoration . 101
9.3 Further work . 102

A Development tools 105

GNU Free Documentation License 113
1. APPLICABILITY AND DEFINITIONS . 113
2. VERBATIM COPYING . 115
3. COPYING IN QUANTITY . 115
4. MODIFICATIONS . 115
5. COMBINING DOCUMENTS . 117
6. COLLECTIONS OF DOCUMENTS . 117
7. AGGREGATION WITH INDEPENDENT WORKS 118
8. TRANSLATION . 118
9. TERMINATION . 118
10. FUTURE REVISIONS OF THIS LICENSE . 119
11. RELICENSING . 119
ADDENDUM: How to use this License for your documents 119

x

List of Figures

1.1 Gantt chart . 4

2.1 VDE E-Performance Kart . 6
2.2 VDE E-Performance Kart System block diagram 6
2.3 Siemens IPC 427 . 7
2.4 Siemens electric Motors . 8
2.5 Siemens converters and control unit . 9
2.6 Lenor+Bauer speed sensor . 10
2.7 E-Kart supercapacitors . 10
2.8 Custom security board . 11
2.9 LEDs panel . 12

3.1 Xilinx’s FPGA chip . 16
3.2 ITIV’s Spartan 6 custom board . 18

4.1 Microblaze Core block diagram . 23
4.2 Harvard Architecture . 24
4.3 Xilkernel Modules . 26
4.4 System outlook . 27

5.1 Microblaze configuration in EDK . 30
5.2 Microblaze System memory bus . 31
5.3 Xilinx PLB bus . 33
5.4 Wishbone bus . 34
5.5 PLB to Wishbone bridge . 35
5.6 EDK custom peripheral directory structure . 36
5.7 CAN transceiver peripheral . 38
5.8 Flow Diagram of the Torque Vectoring module 41
5.9 Torque Vectoring module core . 42
5.10 Simulink model of the Traction Control System 43
5.11 Flow Diagram of the Traction Control System module 44
5.12 Traction Control System module core . 45
5.13 74HCT166D shitf register . 47
5.14 Flow Diagram of the Digital Inputs module 48
5.15 Digital Inputs module core . 48
5.16 74HC595D shitf register . 50
5.17 Flow Diagram of the Digital Outputs module 51
5.18 Digital Outputs module core . 51

xi

5.19 AD7927 analog to digital converter . 53
5.20 AD7927 power up . 53
5.21 AD7927 configuration and operation mode 54
5.22 Flow Diagram of the Analog inputs module 55
5.23 Analog inputs module core . 56
5.24 Flow Diagram of the Power on Reset core . 58
5.25 Power on Reset core . 58
5.26 Xilinx GPIO . 60
5.27 XPS UARTlite core . 61
5.28 Clock Generator core . 62
5.29 Flow Diagram of the Peripheral Clock Divider 64
5.30 Peripheral Clock Generator core . 64
5.31 Embedded System . 67

6.1 Control software Use Case diagram . 72
6.2 Control software Data model diagram . 75
6.3 Control software State model diagram . 78
6.4 Control software Packet diagram . 81
6.5 DFD level 0 . 81
6.6 DFD level 1 . 82
6.7 DFD level 2 initialization . 82
6.8 DFD level 2 control . 83
6.9 DFD level 3 TCS . 84
6.10 DFD level 3 Torque Vectoring . 84
6.11 Xilkernel configuration . 87

7.1 Communication protocol . 94

8.1 Traction Control simulation . 98
8.2 Torque Vectoring simulation . 98
8.3 Garage testing environment . 99
8.4 Street testing set up . 100
8.5 Street testing environment . 100

xii

List of Tables

2.1 Torque Vectoring Factor . 13
2.2 Torque Vectoring Response . 13

3.1 Spartan 6 lx150 features . 17
3.2 Physical interfaces on the board . 18

4.1 Soft processors . 21

5.1 Torque Vectoring floating point hardware . 40
5.2 Torque Vectoring module signals . 40
5.3 Traction Control System floating point hardware 43
5.4 Traction Control System module signals . 45
5.5 Digital Inputs module signals . 49
5.6 Digital Outputs module signals . 52
5.7 Analog Inputs module signals . 56
5.8 Analog Inputs module processes . 57
5.9 Power on Reset signals . 58
5.10 STDIO UART configuration . 61
5.11 Communication UART configuration . 62
5.12 Clock Generator core signals . 63
5.13 Peripheral Clock Divider core generics . 65
5.14 Peripheral Clock Divider signals . 65
5.15 System Clocks . 65
5.16 System operation times . 66
5.17 Embedded System Memory Map . 66

6.1 Actors of the system . 71
6.2 Entity: Digital Inputs . 76
6.3 Entity: Digital Outputs . 76
6.4 Entity: Analog Inputs . 76
6.5 Entity: CAN transceiver . 76
6.6 Entity: UART . 76
6.7 Entity: GPIO . 77
6.8 Entity: Traction Control . 77
6.9 Entity: Torque Vectoring . 77
6.10 CAN frames . 79
6.11 CAN frames data range . 79
6.12 CAN transceiver configuration . 85

xiii

6.13 Control software loop shared data . 85

7.1 Parameters to the RmIO Siemens function . 90
7.2 Test software shared data . 93
7.3 Shared data format . 94

xiv

Chapter 1

Introduction

1.1 Overview

Several competitions deal with the area “electrification” and many engineers are currently re-
searching this topic. In this background, the electric automobile exhibition in Aschaffenburg,
Germany, takes place at the same time as a contest to award the best idea and implementation
of electrification. This competition is aimed at students and student groups who have made a
project in their own work. It can be an existing vehicle to be converted to electric drive or a
whole new can be created. They will be announced alongside with the latest technical ideas in
area electrification and tested in a 50 meters acceleration sprint [1].

Over the course of the past two and a half years and in collaboration with various institutes
of the electrical and mechanical engineering faculties, the VDE 1 converted a go-kart to have
a full- electrical engine. The project focuses on sportive and dynamic driving characteristics.
Thus, a racing kart was chosen as platform to implement various applications of high-profile
sports racing, e.g. torque vectoring and a traction control system. The team was able to com-
plete a sprint race victoriously in fall of 2012.

This project shows that electric mobility is dynamic and fun and that having fun and to preserve
costs and resources are not mutually exclusive. Many disadvantages of the conventional com-
bustion engine don’t play a role in the E-mobility (revs, turbo lag, oil changes) [1]. Because of
this it is said that E-mobility is the future of the automotive industry and for testing purpouses
racing is the best laboratory in order to transfer this advantages to street cars.

1.2 Motivation

Despite the kart has won the contest in his first participation in the Aschaffenburg exhibition
and all the control systems of the kart work perfectly, the VDE group aims to improve the
performance of their kart and because of this the present Master Thesis takes place. But not
only improving the performance in terms of pure speed is important in this kind of project
but also improving the overall efficiency of the system by developing smaller hardware, more

1German electrical engineering association

1

efficient software and making them more generic, manufacter independent and easy to use.
This Master Thesis could be seen as a perfect example of what hardware-software codesign is.

1.3 Starting Point
At the beginning of this Master Thesis, the VDE E-Kart was delivered as he had won the com-
petition with the Siemens control unit, motors and converters, which means that it was necesary
an initial analysis in order to gather requirements for the new system.

The vehicle’s central data node, hosting the traction control system and remaining control im-
plementations, is an industrial PC by SIEMENS (IPC 427C), running the real-time operating
system RMOS3. To reduce weight while achieving equal or possibly higher processing speed,
the IPC will be replaced by a custom FPGA board developed at ITIV institute for hosting the
implementation of an embedded system including the software control part.
The board was in development in August 2013 and after exhaustive tests was delivered ready
for use.

1.4 Problem definition
The main aim of this work is the design and implementation of an embedded system and his
software part in order to replace the existing Siemens IPC unit, solving the problems described
in the previous section and adding new functionalities to the system. All these new functionali-
ties are developed to be the new basis control electronic for a future new version of the kart for
long runs instead of short sprint races, which is going to be developed and constructed in the
next years. The development of this Master Thesis has been divided in the following different
tasks:

• Sensor data processing

• Acquisition and processing of all four wheel speeds for use in vehicle dynamics calcula-
tions: traction control and torque vectoring

• Acquisition, processing and output of further analog and digital signals, for instance
throttle, steering, acceleration and dashboard switches

• Implementation of traction control system and torque vectoring using VHDL

– Direct VHDL coding based on matlab models

• Lightweight, FPGA-adjusted implementation

– Implementation of peripherals in VHDL to control the digital inputs and outputs
and analog inputs

– Standard hardware interface for the peripherals, which simplifies the process of
adapting them to any type of architecture and buses (PLB, Wishbone, AXI)

2

– Standard and plattform independent drivers for all the peripherals
– Equal or better performance than the previous system

• Structuring and simplification of code

– Use of a simpler and faster programming language (C instead of C++) to write low
level drivers and control tasks

– Change of the Programming paradigm from Object Oriented Programming to Pro-
cedural Programming

– Abstraction layer for the peripherals’s firmware in order to get plattform indepen-
dence

– Well documented source code using documentation tools (Doxygen)

• Connection of converters (power electronics devices for motor control) via CAN bus

• Visualization and documentation of results

1.5 Schedule
In this section the different phases of this thesis are explained in detail and also a schedule plan
is given.

1.5.1 System analysis
In this stage, the actual system was analyzed, which means both Hardware and Software and
all the requirements (hardware and software) for the future system were gathered. The next
three stages compose the development of the system itself and were parallel executed.

1.5.2 Hardware development
In this stage, the embedded system including all custom the components were developed based
on the gathered requirements of the previous stage. This stage is known as the Hardware/Soft-
ware codesign.

1.5.3 Software development
The firmware of the developed peripherals and the control software were developed at this
stage. The firmware development took place right after the hardware design worked properly
in the simulator meanwhile the control software development had to wait until the hardware
platform was tested and stable.

1.5.4 Verification process and tests
All the developed components were tested exhaustively using the avaible tools for that, in
this case the hdl simulator and custom test benchs. This stage took place parallel with both
hardware and software development stages and was necesary in order to debug and improve
the developed components.

3

1.5.5 Gantt chart

Figure 1.1: Gantt chart

Figure 1.1 shows the Gantt chart of this Thesis including all the previously explained phases.
As can be seen, the total duration was 8 months, beginning in mid-August 2013 and ending in
mid-April 2014.

4

Chapter 2

The VDE KART

In this chapter, the VDE-Kart and all of the technologies involved are described so as to have a
general idea of the requirements for the future system developed in this Master Thesis, which
is going to replace the actual system. All these new functionalities are developed to be the new
basis control electronic for a future new version of the kart for long runs instead of short sprint
races, which is going to be developed and constructed in the next years. This car will have
similar features, but adapted to the requirements of long runs (autonomy, power, gear ratio),
compared with the sprint version of the kart, which is described in this chapter.

2.1 Overview
The choice of the vehicle platform, the drive concept and parts of the vehicle’s structure was
the target of a previous Bachelor Thesis. Due to the chassis’ low weight and its maneuverabil-
ity, given by the smaller wheels, it was decided to choose a kart platform for the electrification
project. In addition, due to the low center of gravity and the fact that the construction of a kart
allows for greater wheel loads on the rear axle, a kart platform has a lot of advantages for sprint
races [2].

It has two electric drivetrains, each of them consisting of an electric motor and the necessary
converter. Each drivetrain unit (Motor + Converter) is governed by a dedicated Siemens control
unit. This control unit receives the necesary control data from a Siemens Industrial PC (IPC).
Overall, the kart weighs about 166kg (without driver) and is equipped with similar tyres as the
Formula Student cars. The motors are controlled by a fast and robust industrial PC [2].

Figures 2.1 and 2.2 shows how the E-Kart is but in order to get a more detailed view of the
different components of the kart, they are described individualy in the next sections.

2.2 Main components

2.2.1 Siemens IPC 427
The complete vehicle is controlled by a robust Siemens Industrial PC 427 (see Figure 2.3). The
Siemens IPC 427C monitors and controls the kart. He has 24 digital inputs, 16 digital outputs,

5

Figure 2.1: VDE E-Performance Kart

Figure 2.2: VDE E-Performance Kart System block diagram

6

Figure 2.3: Siemens IPC 427

8 analog inputs and outputs. In addition the IPC has 4 ports for rotary encoders for wheel’s
speed meassuring, RS-232 serial port and Ethernet ports, which are used for Profinet protocol
and programming the IPC via ftp server.

The Siemens IPC is designed for real time tasks and in fact it has installed the real time operat-
ing system RMOS v3.50. It is suited to update all the signals every 50 µs so the performance
is guaranteed.
In addition, every 250 microseconds, new values such as measurements of road tests are stored
in the RAM memory of the IPC, which can be recovered later via the serial interface. Between
the IPC and the control of the converters works the Profinet IRT protocol [2].

2.2.2 Motors

The kart is powered by two water-cooled permanent-magnet synchronous motors manufactured
by Siemens. The Siemens motors 1FE1-042 deliver , (as can be seen in Figure 2.4), a nominal
power output of 14.4 kW and a rated torque of 11 Nm, which can be up to 20 Nm in overload
mode (operating mode S6-40%). The motors can reach a maximum of 18000 RPM.
The overload capability is used in the race as a boost function and is controlled in the software
[2].

Figure 2.4 shows the setup of the motors in the kart. As it can be seen, each of one is conected
to an independent axle, which gives through a gearbox the power to each wheel. The gearbox
is designed to achieve 140 Km/h at 18000 RPM, the maximum engine speed.

For more information about de electric motors, a detailed datasheet is provided in the Appendix.

7

Figure 2.4: Siemens electric Motors

2.2.3 Converters
There are two SINAMICS Siemens S120 frequency converters installed in the vehicle, which
are controlled by one Siemens Control Unit. Each of one controls one motor independently
and the communication between the converters and the control unit is made via the Siemens
“DriveCliq” protocol, which are not open published [2].

Figure 2.5 shows the converters’ placement, which is marked in red colour.

2.2.4 Control units
The Siemens Control Unit C320 is used to control the converters. The exchange of information
between the CU and IPC occurs every 500 µs. This exchange of information is made through
the profinet IRT protocol and by this way, the controller can modify the values of the accelera-
tor pedal and wheel speeds fast enough to ensure a good control of the motors [2].

Figure 2.5 shows the control unit’s placement, which is marked in yellow colour.

2.2.5 Wheel speed sensors
Is a prerequisite for the optimal work of the Traction Control System to keep the readout time
of the sensor in the range below 1 ms. Further processing of the signals should be in the range
below 5 to 10 ms and this condition was fulfilled successfully via using an inductive sensor
of the company “Lenord+Bauer”. The only limitation which has been found is that the sensor
is only accurate from speeds above 10 km/h. Therefore, all the calculations concerning wheel

8

Figure 2.5: Siemens converters and control unit

speeds must be executed only with wheel speeds above 10 km/h [2].

Figure 2.6 shows the Speed sensor’s placement marked in red colour.

2.2.6 Supercapacitors
In order to provide the needed electrical energy for the motors, two supercapacitors store this
electrical energy and releases it when needed. They can be charged to a maximum of 380 Volts
and at maximum power, the stored energy is enough to move the kart for the required 50 m
sprint and a little bit more for the return to the start place, for a total of barely 100 meters of
autonomy at maximum performance. For further information see [3].
Figure 2.7 shows the internal construction of the supercapacitors.

2.2.7 Safety
Current and voltage

The main danger of this Kart is his DC link voltage of 600V, which increases in the interme-
diate circuit when braking. This high voltage requires special efforts to protect the driver and
bystanders against electric shocks. The used components are protected against contact by ap-
plicable standards, so emerging risks of this interconnection are intercepted by safety circuits.
During construction, measures have been taken to prevent that the user comes into contact with
electrical voltage. Furthermore, an emergency shutdown system was installed, so at any time
the energy storage can be separated from the remaining components of the kart and the DC link

9

Figure 2.6: Lenor+Bauer speed sensor

Figure 2.7: E-Kart supercapacitors

10

Figure 2.8: Custom security board

is discharged quickly. All components have been designed for long-term exposure to 5g forces.

Figure 2.8 shows the security custom board.

Kid’s safe drive mode

The key switch “‘VMAX” on the panel is used to protect inexperienced drivers. By using the
Profinet communication, a speed limit of 50 Km/h should be sent to the CU320, corresponding
to an engine speed of 6400 RPM. In addition, the torque vectoring is fixed to factor 0.2 (see
2.1), the braking force distribution and the response at Level 1 (see 2.2). The ASR should be
active.

2.2.8 Information leds
There is the LED panel in the cockpit right in front of the driver’s view, which allows the driver
to have at any time information about the different operating conditions and errors. Figure 2.9
shows the position of the different led lights in the cockpit [3].

This LED panel gives information about:

• 24V power supply on/off

• 600V power supply on/off

• Battery almost empty

11

• Battery empty

• PC error

• Motors hot/error

Figure 2.9: LEDs panel

2.3 Functions

2.3.1 Torque Vectoring
Torque vectoring is a new technology employed in automobile differentials. A differential
transfers engine torque to the wheels. Torque vectoring technology provides the differential
with the ability to vary the power to each wheel. This method of power transfer has recently
become popular in all-wheel drive vehicles. Some newer front-wheel drive vehicles also have
a basic torque vectoring differential. As technology in the automotive industry improves, more
vehicles are equipped with torque vectoring differentials.

The torque vectoring idea builds on the basic principles of a standard differential. A torque vec-
toring differential performs basic differential tasks while also transmitting torque independently
between wheels. This torque transferring ability improves handling and traction in almost any
situation [4] [5].

Torque vectoring in constant corner drive

The torque vectoring function in executed in the control unit as a mathematical formula, which
gives the percentage of torque that must be substracted to the interior wheel and added to the
exterior wheel.

Equation 2.1 models the behaviour of the torque vectoring [2]:

∆MTorqueV ectoring = v2 · sin2 δl · d · 1.85736 (2.1)

where v is the kart’s speed in m/s, δl is the steering angle in radians and d is factor which
changes the sensibility of the torque vetoring. Table 2.1 shows the possible values of the “d”

12

factor:

Torque vectoring switch Factor d
5/5 (off) 0

6/4 0.2
7/3 0.3
8/2 0.4
9/1 0.5

Table 2.1: Torque Vectoring Factor

The torque vectoring does not work in case of an error in the selector switch and in case of
Kid’s safety function active the factor is set to 0.2. In both cases the error LED is activated.
In order to know more about the calculations involving the torque vectoring function see [3].

Dynamic Torque Vectoring in the corner entry

At the transition from a straight line into a circular orbit and back special dynamics bring ad-
vantages in car racing. The faster the vehicle follows the specified steering movements, the
sportier is the driving experience. Therefore, now when turning, the steering wheel selector
“response” broughts into play.

In the actual corner entry, while the steering angle is still changing, a higher weighting factor
“f” for the torque distribution is introduced to force the vehicle quicker to the desired circular
path. If the kart returns to the constant steering angle, it changes again to the Torque Vectoring
formula with the factor “d” (transition from corner entry to constant cornering).

Table 2.2 shows the possible values of the “f” factor:

Response Factor f
1 0
2 0.2
3 0.4
4 0.6
5 0.8
6 1.0

Table 2.2: Torque Vectoring Response

2.3.2 Traction Control System
Critical driving situations that arise especially on slippery road surfaces can cause that the driver
responds incorrectly and the vehicle’s behavior is unstable. The Traction Control System con-

13

cerns the start and acceleration of the vehicle and guarantees a stable behavior, securing that
the physical limits are not exceeded.

The Traction Control System monitors the rotational speed of the wheels using wheel speed
sensors. By comparing the driven and non-driven wheels, the system determines whether a
wheel is spinning or not and calculates the slip. If the slip is too high, the torque is reduced und
thus the slip is also reduced [2].

2.3.3 Brake balance
The VDE E-Kart has a brake balance switch, that allows the driver to change the behaviour of
brakes in that displacing more brake power to rear train or to front according to the driver’s
demand at any time.

2.3.4 Offline telemetry
At car racing it is very important to have as many as possible information about all the sys-
tems of the car. This information can be transmited in real time from the car to the engineers,
which is known as Live-Telemetry, and it is very usefull to do some checks in the car and if
the telemetry is bidirectional make changes in real time to improve the performance or tell the
driver if something is going wrong.
At the moment there is not Live-Telemetry in the VDE E-Kart but all the information is stored
in the computer’s RAM and can be retrieved via serial port when the kart has finished his run.

The most common telemetry information stored is:

• Wheel speeds and global speed

• Gas and brake percentage

• Lateral and vertical G-forces

• Battery charge

• Motor temperatures

14

Chapter 3

Involved Technologies

In this chapter the main technologies involved in this Master Thesis are explained.

3.1 FPGA

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a
customer or a designer after manufacturing, hence “field-programmable”. The FPGA configu-
ration is generally specified using a hardware description language (HDL), similar to that used
for an application-specific integrated circuit (ASIC) (circuit diagrams were previously used to
specify the configuration, as they were for ASICs, but this is increasingly rare).

Contemporary FPGAs have large resources of logic gates and RAM blocks to implement com-
plex digital computations. As FPGA designs employ very fast I/Os and bidirectional data buses
it becomes a challenge to verify correct timing of valid data within setup time and hold time.
Floor planning enables resources allocation within FPGA to meet these time constraints [6].
FPGAs can be used to implement any logical function that an ASIC could perform. The ability
to update the functionality after shipping, partial re-configuration of a portion of the design
and the low non-recurring engineering costs relative to an ASIC design (notwithstanding the
generally higher unit cost), offer advantages for many applications.

FPGAs contain programmable logic components called “logic blocks”, and a hierarchy of re-
configurable interconnects that allow the blocks to be “wired together” somewhat like many
(changeable) logic gates that can be inter-wired in (many) different configurations. Logic
blocks can be configured to perform complex combinational functions, or merely simple logic
gates like AND and XOR. In most FPGAs, the logic blocks also include memory elements,
which may be simple flip-flops or more complete blocks of memory [7].

15

Figure 3.1: Xilinx’s FPGA chip

3.2 ITIV’s custom Xilinx Spartan 6 board for VDE Kart

A custom FPGA board developed at ITIV institute for hosting the implementation of an em-
bedded system including the software control part was chosen as the replacement for the old
Siemens computer.
The board, which is equiped with a Spartan 6 FPGA, was in development in August 2013 and
after exhaustive tests was delivered ready for use.

3.2.1 Spartan 6 family

The Spartan-6 family provides leading system integration capabilities with the lowest total cost
for high-volume applications. The thirteen-member family delivers expanded densities rang-
ing from 3,840 to 147,443 logic cells, with half the power consumption of previous Spartan
families, and faster, more comprehensive connectivity. Built on a mature 45 nm low-power
copper process technology that delivers the optimal balance of cost, power, and performance,
the Spartan-6 family offers a new, more efficient, dual-register 6-input lookup table (LUT) logic
and a rich selection of built-in system-level blocks.

These include 18 Kb (2 x 9 Kb) block RAMs, second generation DSP48A1 slices, SDRAM
memory controllers, enhanced mixed-mode clock management blocks, SelectIO technology,
poweroptimized high-speed serial transceiver blocks, PCI Express compatible Endpoint blocks,
advanced system-level power management modes, auto-detect configuration options, and en-
hanced IP security with AES and Device DNA protection. These features provide a lowcost
programmable alternative to custom ASIC products with unprecedented ease of use. Spartan-6
FPGAs offer the best solution for high-volume logic designs, consumer-oriented DSP designs,
and cost-sensitive embedded applications. Spartan-6 FPGAs are the programmable silicon
foundation for Targeted Design Platforms that deliver integrated software and hardware com-
ponents that enable designers to focus on innovation as soon as their development cycle begins

16

[12].

Spartan 6 lx150

The FPGA model, that was chosen for the custom board was the spartan 6 lx150 and in Table
3.1 the main features of this model are enumerated:

Logic cells 147,443
Slices 23,038

Flip-Flops 184,304
Max distributed RAM 1,355 Kb

DSP48A1 Slices 180
Block RAM 18 Kb 268

Max RAM 4,824 Kb
CMT(2 DCMs + PLL) 6

Memory Controller Blocks 4
Max user I/O 576

Table 3.1: Spartan 6 lx150 features

3.2.2 Board features
The custom FPGA based board developed in the ITIV, which is going to replace the present
Siemens industrial PC, has de following features:

• Power suply between 12 and 24 Volts

• 8 analog inputs with 12 bits precission (AD7927) in range of 0 to 10 Volts

• 24 digital inputs in range of 0 to 24 volts

• 24 digital outputs in range of 0 to 24 volts with a maximum frequency of 2 KHz

• 4 RS-422 interfaces

• 2 CAN bus interfaces

• 2 RS-485 interfaces

• Ethernet interface

• GSM interface

• 2 x 512 Mb SDRAM

17

Table 3.2 resumes the elements of the onboard electronics (sensors, leds, etc) and the conections
with the interfaces of the board.

Interface Onboard electronics
Analog inputs Analog sensors
Digital inputs Switches and buttons

Digital outputs LEDs and circuit release signals
RS-422 Rotary encoders

CAN bus Frequency converters

Table 3.2: Physical interfaces on the board

Figure 3.2: ITIV’s Spartan 6 custom board

3.3 Hardware description languages
There are two main hardware description languages, which are used to describe hardware cir-
cuits in a similar form of a programming language by using conditional statements, assign
statements, loops and all the stuff present in the programming languages but it differs in the
ways of describing the propagation of time and signal dependencies (sensitivity).

3.3.1 VHDL
VHDL (VHSIC Hardware Description Language) is a hardware description language used
in electronic design automation to describe digital and mixed-signal systems such as field-

18

programmable gate arrays and integrated circuits. VHDL can also be used as a general purpose
parallel programming language.

The IEEE Standard 1076 defines the VHSIC Hardware Description Language or VHDL. It
was originally developed under contract F33615-83-C-1003 from the United States Air Force
awarded in 1983 to a team with Intermetrics, Inc. as language experts and prime contractor,
with Texas Instruments as chip design experts and IBM as computer system design experts.
The language has undergone numerous revisions and has a variety of sub-standards associated
with it that augment or extend it in important ways

3.3.2 Verilog
Verilog, standardized as IEEE 1364, is a hardware description language (HDL) used to model
electronic systems. It is most commonly used in the design and verification of digital circuits
at the register-transfer level of abstraction. It is also used in the verification of analog circuits
and mixed-signal circuits.

The designers of Verilog wanted a language with syntax similar to the C programming lan-
guage, which was already widely used in engineering software development. Like C, Verilog
is case-sensitive and has a basic preprocessor (though less sophisticated than that of ANSI
C/C++). Its control flow keywords (if/else, for, while, case, etc.) are equivalent, and its opera-
tor precedence is compatible.

3.4 Programming languages

3.4.1 C programming language
C is a general-purpose programming language initially developed by Dennis Ritchie between
1969 and 1973 at AT & T Bell Labs. Like most imperative languages in the ALGOL tradition,
C has facilities for structured programming and allows lexical variable scope and recursion,
while a static type system prevents many unintended operations. Its design provides constructs
that map efficiently to typical machine instructions, and therefore it has found lasting use in
applications that had formerly been coded in assembly language, most notably system software
like the Unix computer operating system [8].

C is one of the most widely used programming languages of all time, and C compilers are
available for the majority of available computer architectures and operating systems [9].

3.5 CAN-bus
CAN bus (for controller area network) is a vehicle bus standard designed to allow microcon-
trollers and devices to communicate with each other within a vehicle without a host computer.
CAN bus is a message-based protocol, designed specifically for automotive applications but
now also used in other areas such as aerospace, maritime, industrial automation and medical

19

equipment.

Development of the CAN bus started originally in 1983 at Robert Bosch GmbH [10]. The pro-
tocol was officially released in 1986 at the Society of Automotive Engineers (SAE) congress
in Detroit, Michigan. The first CAN controller chips, produced by Intel and Philips, came on
the market in 1987. Bosch published the CAN 2.0 specification in 1991. In 2012 Bosch has
specified the improved CAN data link layer protocol, called CAN FD, which will extend the
ISO 11898-1.

CAN bus is one of five protocols used in the on-board diagnostics (OBD)-II vehicle diagnostics
standard. The OBD-II standard has been mandatory for all cars and light trucks sold in the
United States since 1996, and the EOBD standard has been mandatory for all petrol vehicles
sold in the European Union since 2001 and all diesel vehicles since 2004 [11].

3.5.1 Features
• prioritization of messages

• guarantee of latency times

• configuration flexibility

• multicast reception with time synchronization

• system wide data consistency

• multimaster

• error detection and signalling

• automatic retransmission of corrupted messages as soon as the bus is idle again

• distinction between temporary errors and permanent failures of nodes and autonomous
switching off of defect nodes

20

Chapter 4

Design of the system

In this chapter the chosen design of the final embedded system which is described focusing
on the requirements, limitations and advantages. A widely description of each hardware com-
ponent is done in the Chapter 5, Hardware development and for software components in the
Chapter 6, Software development.

4.1 Hardware
Due to the FPGA based design of the final system, the main aproach to solve this task is to
choose a main soft core, which acts as the main processor of the system and build around
him an embedded system. There are a lot of possibilities in the field of soft cores. A soft
microprocessor (also called softcore microprocessor or a soft processor) is a microprocessor
core that can be wholly implemented using logic synthesis. It can be implemented via different
semiconductor devices containing programmable logic (e.g., ASIC, FPGA, CPLD), including
both high-end and commodity variations [13].
There are a lot of soft cores in the market, an the main options are showed in Table 4.1.

Processor Developer Open Source? Bus Support Word width
OpenSPARC T1 Sun (Oracle) Yes - 64-bit

MicroBlaze Xilinx No PLB, OPB, 32-bit
FSL, LMB, AXI4

Nios, Nios II Altera No Avalon 32-bit
LEON3/4 Aeroflex Gaisler Yes AMBA2 32-bit
OpenRISC OpenCores Yes Wishbone 32-bit

Table 4.1: Soft processors

The selected soft core for the embedded system was the “‘Microblaze”. The reasons for using
this soft processor are the following:

• FPGA Spartan 6: due to use of a Spartan 6 FPGA from Xilinx in the design of the
custom board, it makes sense to use the soft processor of the same manufacter in order to
exploit all the given advantages

21

• Block RAM: This type of RAM memory is inside the Xilinx FPGA chip and is easily
configurable in the development tools

• Microblaze configurations: The Microblaze is a fully and easily configurable processor
aiming area-optimized, performance and maximum frequency designs

• Wide bus support: The Microblaze is compatible with different bus standards, which
makes possible to include a huge amount of custom-made peripherals by the comunity
in the system, even if there is not interface with this buses because it is possible to easily
find a compatible bridge to join both interfaces

• Xilinx development tools: The xilinx Microblaze development tools offer a capable
integrated development environment with both independent hardware and software de-
velopment tools, each of one with their functionalities such as HDL simulator or timing
reports in the case of the hardware tool and a debugger or block RAM memory initial-
ization in the case of the software tool.

• Experience with the design tools: Experience with the design tools is another plus
because the learning phase of the tools to get used to them can be avoided and instead of
that it is possible to go faster and easier into development phase.

In the next section a detailed vision of the “Microblaze” is given.

4.1.1 Xilinx Microblaze
MicroBlaze is the industry-leader in FPGA-based soft processors, with advanced architecture
options like AXI or PLB interface, Memory Management Unit (MMU), instruction and data-
side cache, configurable pipeline depth, Floating-Point unit (FPU), and much more. MicroB-
laze is a 32-bit RISC Harvard architecture soft processor core that is included with both Vivado
Design Edition and IDS Embedded Edition. Highly flexible architecture, plus a rich instruction
set optimized for embedded applications, delivers the exact processing system you need at the
lowest system cost possible [14].

Microblaze features

• Low Latency Interrupt Mode

• LMB BRAM memory with parity protection on internal BRAMs and caches

• IEEE 754 compatible Floating Point Unit (FPU)

• Instruction and Data Caches configurable: 2kB - 64kB (Block RAM based)

• Branch Optimizations and prediction logic

• Data bus error and instruction bus error

• Divide and floating point exceptions

22

• Debug Logic

• JTAG control via a debug support core with up to 8 hardware break points

In figure 4.1 it can be seen the main structure of the Microblaze Core:

Figure 4.1: Microblaze Core block diagram

Hardvard Architecture

A Microblaze processor system, unlike most desktop computers, is based on the Modified Har-
vard architecture (very common in DSPs and Microcontrollers), which has splitted memories
for instructions and for data. Indeed, in a Microblaze processor system the data and instruction
memory are physically the same because the block RAM memory is a dual port memory and
Microblaze access instructions and data from different buses. Both buses are 32-bit wide, that
means up to 4 GBytes of data and instructions are addressable. This memory is accessed by
the Microblaze core via a block RAM memory controller connected to his Local Memory Bus.
When loading the program into memory, the loader is responsible for separating the user data
from the instructions.

23

Figure 4.2: Harvard Architecture

4.2 Sotfware
The software options were evident given the selection of the hardware platform, which means
that the software options were limited to those Microblaze-compatible. Xilinx offers the fol-
lowing software platforms for his Microblaze core integrated in his Software Development Kit
tool:

• Xilinx Standalone

• Xilinx Xilkernel

• Linux

Between these three options, the Linux one was automaticaly discarded due to the higher mem-
ory requirements and the excesive and useless functionality for the system to be developed
compared to the other two software platforms.

4.2.1 Xilinx Standalone
Standalone is the lowest layer of software modules used to access processor specific functions.
Standalone is used when an application accesses board/processor features directly and is below
the operating system layer [15].

Xilinx Standalone has the following features:

24

• Interrupt and Exceptions handling

• Data and Instruction Cache handling

• Fast Simplex Link interface macros

• File handling

4.2.2 Xilinx Xilkernel
Xilkernel is a small, robust, and modular kernel. It is highly integrated with the Platform
Studio framework and is a free software library that you receive with the Xilinx Embedded
Development Kit (EDK) [15]. Xilkernel:

• Allows a very high degree of customization, letting you tailor the kernel to an optimal
level both in terms of size and functionality.

• Supports the core features required in a lightweight embedded kernel, with a POSIX API.

• Works on MicroBlaze, PowerPC 405, and PowerPC 440 processors.

Xilkernel includes the following key features [15]:

• High scalability into a given system through the inclusion or exclusion of functionality
as required.

• Complete kernel configuration and deployment within minutes from inside of Platform
Studio.

• Robustness of the kernel: system calls protected by parameter validity checks and proper
return of POSIX error codes.

• A POSIX API targeting embedded kernels, win core kernel features such as:

– Threads with round-robin or strict priority scheduling.

– Synchronization services: semaphores and mutex locks.

– IPC services: message queues and shared memory.

– Dynamic buffer pool memory allocation.

– Software timers.

– User-level interrupt handling.

• Static thread creation that startup with the kernel.

• System call interface to the kernel.

• Exception handling for the MicroBlaze processor.

• Memory protection using MicroBlaze Memory Management (Protection) Unit (MMU)
features when available.

25

Figure 4.3: Xilkernel Modules

4.3 Restrictions

4.3.1 Memory

The amount of available memory is quite small because it depends on the FPGA where the
system is deployed. In this case, the Spartan 6 lx150 provides 4,824 Kb of block RAM. All
the functionality is fitted into this amount of memory but there is not enough memory space to
hold all the telemetry data.

Performance

The performance of the embedded system is a critical parameter that depends on several factors:

• Clock frecuency: in the board, frequencies from 50 MHz to 120 MHz are achievable.

• Soft core configuration: using hardware mulpliers and caches (instruction and data).

• Speed of the memory: the access speed could vary if a external memory is used or the
internal built-in block RAM

4.4 Selected Software platform
Xilinx Standalone is used as a software test platform in this Master Thesis in the early stages
of the development process (due to his simplicity) to programm and test the firmware and low
level functions of the developed peripherals written in VHDL.

Xilinx Xilkernel is chosen as the basis software development platform of the final system (con-
trol routine).

26

4.5 Advantages
Despite using FPGAs could be slower than using built-in microcontrollers, this aproach has
also a lot of advantages, which are enumerated and explained in the following list:

• Taking advantage of the parallel processing capability of the FPGAs. Some algorithms
and software routines could take a long CPU time to be completed and the parallelization
is a good way to improve the performance. In a single processor system is not possible
to parallelize in the software but if this system is implemented in a FPGA and there is
enough place, this routine or algorithm can be implemented in hardware as a coprocessor
or custom hardware module by using hardware description languages such as VHDL or
Verilog. This solution has the advantage of saving CPU time because it is only needed to
send the data to the coprocessor and retreive the data back

• No limits in the type of system or configurations to implement. The designer has the free-
dom of choosing the different components, use components made by the comunity and if
needed replace them for new improved versions thereof in a search of better performance

• Easy expansion of the system. This is very important in a “open” system like the system
of this Master Thesis is. New hardware functionalities, that were not planed at the begin-
ning, can be added to the system if there is enough space remaining inside the FPGA

4.6 Outlook
Figure 4.4 shows how the new FPGA based design is integrated alongside with the sensors and
further systems of the kart.

Figure 4.4: System outlook

27

28

Chapter 5

Hardware development

In this chapter a detailled description of the hardware development is given. In this work the
hardware development is limited to implement the hardware interfaces to control the physical
electronic circuits in the board and the architecture of the embedded system. Each component
of the system is described in detail including the register interfaces, involved modules and
performance and area results. In order to implement the hardware, the Xilinx development
tools are used.

5.1 Microblaze

As explained in the previous design chapter, the Microblaze core has different configuration
options. In this Master Thesis, the balance between maximum performance and good area
optimization of the FPGA is desirable. The bottleneck of this system is the access throgh the
PLB bus to the system pereipherals. The PLB bus is clocked at the same frecuency of the
Microblaze, which means that the higher the frecuency of the Microblaze and the PLB bus,
the transactions between PLB bus and Microblaze are faster. Indeed the Local Memory Bus,
which is connected to the system’s main memory, works at the same frequency also, so higher
frequencies mean higher transactions between memory and processor. Thus the configuration
aims higher frecuency and area parameters. In the next section, it is described the Microblaze
configuration and how it is obtained:

5.1.1 Configuration

• No instructions and data caches

• No Floating Point Unit

• No integer hardware multiplier and divider

• Branch target cache optimization by using one additional 18 Kb block RAM memory for
this purpose

29

Figure 5.1: Microblaze configuration in EDK

5.2 Block RAM
The Xilinx block RAM is used as the system’s main memory and it stores programm instruction
as well as user data. To use block RAM in the Microblaze system is needed a compatible
memory controller and a Local Memory Bus, which are provided by Xilinx in the Embedded
Development Kit (EDK).

5.2.1 Interface
Local Memory Bus

The lmb_v10 module is used as the LMB interconnect for Xilinx FPGA based embedded pro-
cessor systems. The LMB is a fast, local bus for connecting MicroBlaze instruction and data
ports to high-speed peripherals, primarily on-chip block RAM (BRAM). The Local Memory
Bus has the following features [16]:

• Efficient, single master bus (requires no arbiter)

• Separate read and write data buses

• Low FPGA resource utilization

• up to 125 MHz operation

LMB memory controllers

The LMB BRAM Interface Controller connects a block RAM memory to an lmb_v10 bus [17].
The controller supports:

30

• LMB v1.0 bus interfaces with byte enable support

• Used in conjunction with bram_block peripheral to provide fast BRAM memory solution
for MicroBlaze ILMB and DLMB ports.

• Supports byte, half-word, and word transfers

• Supports optional BRAM error correction and detection.

In a MicroBlaze system, without ECC protection, the LMB BRAM Interface controller would
typically be connected according to figure 5.2.

Figure 5.2: Microblaze System memory bus

As can be observed in figure 5.2, it is needed two memory controllers because of the dual port
block RAM. One is used for programm instructions and other for user data meaning higher
speeds in the memory accesses.

5.2.2 Configuration
The only configuration parameter of the block RAM is the size and it is adjusted with the
address range of the memory controller. The Xilinx Embedded Development Kit tool joins au-
tomaticaly blocks of 18 Kbits block RAM to build bigger RAM memory structures but due to
a limitation in the controller, the maximum addressable memory range is 64 KBytes. It does
not mean that the maximum amount of memory is 64 KBytes, indeed it is possible to use more
than one memory controller for both instruction and data ports. Each controller must have con-
secutive memory address ranges in order to build a bigger memory address space. Apart from
that, to use the full capacity of the memory there are some minor changes in the software part,
specifically in the linker script and the bmm file (memory initialization file). These changes are
explained in the software chapter.

The developed system has four memory controllers with four 64 KBytes block RAM memories
for a total of 256 KBytes of RAM to host the operative system, software routines and peripheral
firmwares.

31

5.3 PLB Bus

The embedded system needs a main data bus to communicate the Microblaze processor with
all of his peripheral components. There are two main options provided by Xilinx, using AXI
bus or PLB bus. The first belongs to the AMBA specification introduced by ARM and the sec-
ond is included in the IBM core connect specification. The AXI bus has a higher perfomance
compared to the PLB but on the other hand it requires more space in the FPGA because of
his shared bus architecture. The PLB bus was chosen due to his low space requirements and
reasonable performance for the target system.

The Xilinx PLB consists of a central bus arbiter, the necessary bus control and gating logic, and
all necessary bus OR/MUX structures. The Xilinx PLB provides the entire PLB bus structure
and allows for direct connection with a configuration number of masters and slaves. It has the
following main features:

• Arbitration support for a configurable number of PLB master devices

• 128-bit, 64-bit, and 32-bit support for masters and slaves

• PLB address pipelining

• PLB watchdog timer

• Supports a configurable number of slave devices

• No external OR gates required for PLB slave input signals

• PLB Reset circuit

Figure 5.3 shows the structure of the PLB connections for a system with masters and slaves
peripherals.

32

Figure 5.3: Xilinx PLB bus

For additional information, please see the Xilinx documentation in [23].

5.4 Wishbone Bus
Despite the PLB is the main bus of the system and all of the developed peripherals have a reg-
ister interface, which can be easily adapted to the PLB bus via a wrapper, the CAN transceiver
peripheral has a Wishbone bus interface, which is adapted to the PLB bus via a bridge explained
in section 5.5.

The WISHBONE System-on-Chip (SoC) Interconnect Architecture for Portable IP Cores is a
portable interface for use with semiconductor IP cores. Its purpose is to foster design reuse
by alleviating system-on-a-chip integration problems. This is accomplished by creating a com-
mon, logical interface between IP cores. This improves the portability and reliability of the
system, and results in faster time-to-market for the end user. WISHBONE itself is not an IP
core but it is a specification for creating IP cores. It has the following features:

• Simple, compact, logical IP core hardware interfaces that require very few logic gates.

• Modular data bus widths and operand sizes.

• Supports both BIG ENDIAN and LITTLE ENDIAN data ordering.

• Variable core interconnection methods support point-to-point, shared bus, crossbar switch,
and switched fabric interconnections.

• Supports single clock data transfers.

33

• MASTER/SLAVE architecture for very flexible system designs.

Figure 5.4 shows the structure of the Wishbone connections for a system with masters and
slaves peripherals.

Figure 5.4: Wishbone bus

To get a more detailed vision, please see the OpenCores documentation in [24].

5.5 PLB to WB Bridge
As explained in the previous section, a bridge is needed to connect the interface between the
CAN transceiver peripheral and the PLB bus. For this purpose, a free core hosted in the Open-
Cores community [31] was used.
The core is a simple CoreConnect PLBv46 to Wishbone bridge that can allow Wishbone pe-
ripherals to be used on Xilinx processor designs. It conforms to the sub-set of the PLBv46
specification adopted by Xilinx in the EDK and has the following features:

• PLBv46 Slave Attachment (non-bursting)

– Native 32-bit slave interface to PLBv46 bus.

– 32-bit master interface to Wishbone bus.

• Directly integrated into EDK tools as a custom pcore (synthesizable VHDL).

• Microprocessor Peripheral Definition (MPD) file provided.

34

• Handling of Bus Errors

Figure 5.5 shows the structure of the system with the PLB to Wishbone bridge connected.

Figure 5.5: PLB to Wishbone bridge

For more information about the PLB to Wishbone bridge core, see the documentation hosted
in [25].

This core was imported in the Xilinx EDK as a custom perihperal, added to the embedded
system and connected to the CAN transceiver peripheral (see section 5.7). No further modifi-
cations to the core were needed.

5.6 PLB Wrapper

The peripherals in this Master Thesis have been developed thinking to make them usable and
portable to any FPGA-based system. In order to achieve this commitment, all the peripherals
have a standard register interface. The use of the PLB bus as the basis bus for the system
forces to adapt the standard register interface to the PLB bus interface. This can be achieved by
using a wrapper, which maps the registers with an memory address accesible for the processor.
The Xilinx Embedded Delopment Kit provides a wizard to generate vhdl or verilog wrapper
templates for custom peripheral as well as software template to write the firmware. The process
to make the wrapper is as follows:

1. Generation of the wrapper template using the utility of Xilinx development environment
to create a new custom peripheral compliant with the PLB bus.

2. Modify the generated wrapper template to connect the standard register interface of the
peripheral with the bus slave handler.

35

5.6.1 Wrapper template generation
To generate the template the wizard for creating a new peripheral must be executed. When the
type of interface is requested select Processor Local Bus and user registers option to create a
peripheral with user readable registers and PLB bus interface. The number of register must be
specified depending on the real number of register that the custom peripheral has.

5.6.2 Modifications to the template
Once the template is generated, it is needed to modify certain files, that appear in the directory
of the custom peripheral.
Figure 5.6 shows the structure of the directory created by the wizard for the custom peripheral.

Figure 5.6: EDK custom peripheral directory structure

The following list describes the type of files to be modified and their function [26]:

• File with “pao” extension: This file establish the VHDL files hierarchy of the peripheral.
It must be edited to take into account the new VHDL files of the custom peripheral.

• File with “vhd” extension with the name of the peripheral given in the wizard in the hdl
directory: This file is top level of the wrapper. Here the ports of the custom peripheral
must be mapped. Also the external ports must be defined in this file.

• File with “vhd” extension with the name “user_logic” in the hdl directory: This file is
where the logic of the peripheral is implemented. The mapping between the PLB bus
registers and the peripheral register interface must be done here.

Netlist files

There is a special case when the custom peripheral has not only vhdl files but also netlist files,
with “ngc” extension. In this case, the following modifications must be done in the directory
and file structure to acomplish the implementation:

36

• A new folder with the name “netlist” must be created at the same level of the “data” and
“hdl” folders (see Figure 5.6). Inside this folder, the “ngc” netlist files must be placed.

• The file with “bbd” extension inside the “data” folder must be modified. A list of the
netlist files included in the custom peripheral (elements of the list separated by commas)
must be typed in the file.

5.6.3 Peripherals to have the PLB wrapper

The following list shows the peripherals of the system, which need a PLB wrapper.

• Traction Control System (see section 5.9)

• Torque Vectoring (see section 5.8)

• Inputs and Outputs (see section 5.10)

5.7 CAN transceiver

A CAN transceiver is included in the design to fulfill the communication requirements of the
new converters for the motors, which has a CAN interface. There are a lot of alternatives in the
market for CAN transceiver IP cores, some with royalties but other are completely free. For
this system, a free CAN transceiver IP core was selected.

5.7.1 OpenCores CAN transceiver core

This CAN controller is based on the Philips SJA1000 and has a compatible register map with
a few exceptions. It also supports both BasicCAN (PCA82C200 like) and PeliCAN mode. In
PeliCAN mode the extended features of CAN 2.0B is supported. The mode of operation is
chosen through the Clock Divider register. The core is written in Verilog.

Register interface

All registers are one byte wide and the addresses are also byte addresses. Byte reads and writes
must be used when interfacing with the core. The core is little endian.

5.7.2 Wrapper

Figure 5.7 shows the structure of the CAN transceiver peripheral.

37

Figure 5.7: CAN transceiver peripheral

5.8 Torque vectoring

Until now, the torque vectoring functionality in the kart (see section 2.3.1) is implemented in
the software routine that controlls the kart. Because of its considerable computational cost rel-
ative to other tasks carried out by the software and so as to release CPU time, this functionality
is implemented in a hardware core as coprocessor.

In this section, the development process of the peripheral for the Torque Vectoring calculations
is explained. The core is written in VHDL and uses Xilinx primitives to take advantage of the
Xilinx features of the Spartan 6 family.

5.8.1 Analysis

Retrieving and analysing the Torque Vectoring formula 2.1, it can be concluded the number
and type of operations and thus the hardware components needed.

∆MTorqueV ectoring = v2 · sin2 δl · d · 1.85736

From the formula 2.1 can be deducted that all operations need specialized floating point hard-
ware. It consists in one sine operation, two floating point power operations and three floating
point multiplications. The power operations can be considered from the viewpoint of hardware
as two multiplications, so the final number of multiplications is five.
To perform floating point operations in the FPGA, it is avaible a configurable LogiCORE IP
Floating-Point core provided by Xilinx and generable by the Core generator tool. It is also
needed a core to perform the sinus operation and for this task Xilinx provides the LogiCORE
IP CORDIC. In the next section the features of these cores and their configuration for the pur-
poses of this Master Thesis are explained.

38

LogiCORE IP Floating-Point Operator v5.0

The Xilinx Floating-Point core provides designers with the means to perform floating-point
arithmetic on an FPGA device. The core can be customized for operation, word length, latency,
and interface [27]. The core has the following features:

• Compliance with IEEE-754 Standard

• Use of XtremeDSP slice for multiply

• Optimizations for speed and latency

• Fully synchronous design using a single clock

• Supported operators:

– multiply

– add/subtract

– divide

– square-root

– comparison

– conversion from floating-point to fixed-point

– conversion from fixed-point to floating-point

– conversion between floating-point types

LogiCORE IP CORDIC

The CORDIC core implements a generalized coordinate rotational digital computer (CORDIC)
algorithm, initially to iteratively solve trigonometric equations, and later generalized to solve a
broader range of equations, including the hyperbolic and square root equations. The CORDIC
core implements the following equation types:

• Rectangular←→ Polar Conversion

• Trigonometric

• Hyperbolic

• Square Root

Two architectural configurations are available for the CORDIC core:

• A fully parallel configuration with single-cycle data throughput at the expense of silicon
area

• A word serial implementation with multiple-cycle throughput but occupying a small sil-
icon area

The CORDIC core works with fixed point arithmetics, so conversions between fixed point data
and IEEE-754 Standard floating point data are needed. If using Trigonometric functions, the
input must be in radians [28].

39

Hardware requirements

The hardware to be used in the implementation of the Torque Vectoring core is resumed in
Table 5.1.

IP core Configuration Operations
Floating-Point Operator Multiplier Multiply and power
Floating-Point Operator Float to Fixed Adapt floating point data to CORDIC’s

fixed point format
Floating-Point Operator Fixed to Float Adapt CORDIC’s fixed point results

to floating point format
CORDIC Sine Sine operation

Table 5.1: Torque Vectoring floating point hardware

5.8.2 Design
With the basic understanding of the Xilinx IP cores, in this design stage the block structure,
behaviour flow diagram and signals and register interface are described.

Figure 5.8 shows the flow diagram of the Torque Vectoring module.
Note that Figure 5.8 represents the flow of a complete calculation of the torque vectoring factor.
Each box represents an operation, which is performed in one clock cycle.

Figure 5.9 shows the block diagram of the Torque Vectoring module.
The inputs and outputs of the Torque Vectoring module are described in table 5.2.

Signal Type Description
Clk Input Reference clock signal

Reset Input Active low reset signal
Speed(31:0) Input Register to store the speed

Steering_input(31:0) Input Register to store the steering angle
Torque_factor(31:0) Input Register to store the torque factor
Torque_const(31:0) Input Register to store the torque constant

Torque(31:0) Output Register where the result is stored

Table 5.2: Torque Vectoring module signals

5.8.3 Implementation
In order to implement in VHDL the module, only one process is used. This process controls
by using a counter, the actual cycle and performs the corresponding floating point operation.
When all the operations have been executed, the result is stored in a register, which is accesi-
ble by the user, and the core starts a new calculation with the actual values in the input registers.

40

Figure 5.8: Flow Diagram of the Torque Vectoring module

41

Figure 5.9: Torque Vectoring module core

This peripheral needs a PLB wrapper because it is made to be accesible from the software. Due
to his only output register but four input registers, the PLB wrapper template must be created
to have five software accesible register, four of them write registers and one read register.

5.8.4 Performance
The performance of the peripheral is described in the next list:

• Maximum frequency: it is limited by the CORDIC core to 6.25 MHz

• Performance: A complete operation cycle takes 7 clock ticks, which means a maximum
performance of 1120 ns to calculate the torque vectoring percentage.

• FPGA resources: this module needs 1400 slices of the FPGA to be implemented

5.9 Traction Control System
Like the torque vectoring functionality, the traction control system is implemented in the soft-
ware routine that controlls the kart. Because of its considerable computational cost relative
to other tasks carried out by the software and so as to release CPU time, this functionality is
implemented in a hardware core as coprocessor.

In this section, the development process of the peripheral for the Traction Control System
calculations is explained. The core is written in VHDL and uses Xilinx primitives to take
advantage of the Xilinx features of the Spartan 6 family.

5.9.1 Analysis
To learn more about the hardware requirements Figure 5.10 shows the Simulink model of the
Traction Control controller for the Kart [2].

42

Figure 5.10: Simulink model of the Traction Control System

Figure 5.10 shows that the Traction Control System controller is implemented with a proportional-
integral controller with windup reset to not saturate the integrator. There can be also observed
two saturation stages to keep the result in the desired range. The input of the controller is the
slip difference between the wheels and the output is the correction factor to be applied to the
actual torque. All the operations inside the controller are performed in floating point IEEE-754
Standard.

To perform floating point operations in the FPGA, it is avaible a configurable LogiCORE IP
Floating-Point core provided by Xilinx and generable by the Core generator tool, which is
explained in section 5.8.1.

Hardware requirements

The hardware to be used in the implementation of the Traction Control System core is resumed
in Table 5.3

IP core Configuration Operations
Floating-Point Operator Multiplier Multiply
Floating-Point Operator Add and sub Adds and subs
Floating-Point Operator Comparator less than Saturation comparation
Floating-Point Operator Comparator greather than Saturation comparation

Table 5.3: Traction Control System floating point hardware

5.9.2 Design
With the basic understanding of the Xilinx IP cores, in this design stage the block structure,
behaviour flow diagram and signals and register interface are described.

Figure 5.11 shows the flow diagram of the Traction Control System module.

43

Figure 5.11: Flow Diagram of the Traction Control System module

44

Note that Figure 5.11 represents the flow of a complete calculation of the Traction Control cor-
rection factor. Each box represents an operation, which is performed in one clock cycle.

Figure 5.12 shows the block diagram of the Traction Control System module:.

Figure 5.12: Traction Control System module core

The inputs and outputs of the Traction Control System module are described in table 5.4.

Signal Type Description
clk Input Reference clock signal

reset Input Active low reset signal
t_sample(31:0) Input Sampling time of the controller

p(31:0) Input P gain of the controller
i(31:0) Input I gain of the controller

antiwindup(31:0) Input Antiwindup gain
pattern(31:0) Input Actual slip input

pattern_est(31:0) Input Set point
correction(31:0) Output Register where the result is stored

Table 5.4: Traction Control System module signals

The core has also a generic called “‘Latency”. The value of the “Latency” generic determines
a delay between the result is calculated and the next sample is captured.

5.9.3 Implementation
In order to implement in VHDL the module, only one process is used. This process controls
by using a counter, the actual cycle and performs the corresponding floating point operation.

45

When all the operations have been executed, the result is stored in a register, which is accesible
by the user, and the core starts a new calculation with the actual values in the input registers.
The saturation comparations are made parallel in the same clock cycle. The value of the generic
called “‘Latency” is used to delay the capture of the next sample.

This peripheral needs a PLB wrapper because it is made to be accesible from the software. Due
to his only output register, the PLB wrapper template must be created to have seven software
accesible register, six of them write registers and one read register.

5.9.4 Performance
The performance of the peripheral is described in the next list:

• Maximum frequency: it is limited by the floating point operators to 50 MHz

• Performance: A complete operation cycle takes 12 clock ticks, which means a maximum
performance of 240 ns to calculate the traction control correction factor.

• FPGA resources: this module needs 450 slices of the FPGA to be implemented

5.10 Inputs/Outputs
The kart has a widely amount of switches and buttons to set some parameters, such as torque
vectoring, traction control, speed limit, boost and more and analog inputs such as gas pedal
or brake pedal. There are also some LEDs, which allow the driver to see if an error ocurrs
or the state of the batteries. On the board there are physical electronic components that are
responsible for driving the inputs and the outputs but it is needed hardware interfaces to control
these components and to give a software accesible register interface. Each case is explained in
a dedicated section.

5.10.1 Digital Inputs
In this section, the development process of the peripheral for the control of the digital inputs is
explained. The core is written in VHDL.

Analysis

In this development stage the requirements to be acomplished and the resources needed are
explained.

In order to describe in VHDL the behaviour of the interface, it is needed a full understanding
of how the electronics on the board work. The electronics on the board were selected to use
the minimum amount of communication lines between the input module and the FPGA. To
acomplish this task, the board has three 74HCT166D synchronous 8-bit parallel-in/serial-out
shift registers, which are serial connected for a total of 24 digital inputs.

Figure 5.13 shows the block diagram of the parallel-in/serial-out shift register.

46

Figure 5.13: 74HCT166D shitf register

As seen in Figure 5.13, there are 8 inputs for parallel load, 1 serial output and control inputs
such as clock and shift/load. For the input module, the signals clock, shift/load and the serial
output are needed and connected to the FPGA. The 24 inputs values are transmitted to the
FPGA using the serial output of the chip. Thus the input module to be developed must generate
the clock and shift/load signals to control the chips on the board and at the same time receive
the values of the serial output of the chips and deserialize the information. This information is
given to the user through a software accesible register interface.

Design

Using all the requirements and the basic understanding of the electronic chips on the board in
this design stage the block structure, behaviour flow diagram and signals and register interface
are described.

Figure 5.14 shows the flow diagram of the Digital Inputs module.

47

Figure 5.14: Flow Diagram of the Digital Inputs module

Figure 5.15 shows the block diagram of the Digital Inputs module.

Figure 5.15: Digital Inputs module core

The inputs and outputs of the Digital Inputs module are described in table 5.5.

48

Signal Type Description
clk Input Reference clock signal
rst Input Active low reset signal
rx Input Serial input

clk_out Output Clock signal to 74HCT166D
sh_ld Output Shift/Load signal to 74HCT166D

in_reg(23:0) Output Register interface to software

Table 5.5: Digital Inputs module signals

Implementation

In order to implement in VHDL the module, only one process is used. This process controls by
using a counter, the number of the input captured at the moment of a clock rising edge. Once
all the 24 inputs are received, this process saves the 24 inputs in the output software register
and initiates a new capture cycle. Depending on the capture process, the signals clock and
shift/load are generated to control the electronic logic.

Other important point is the PLB wrapper of this peripheral. Due to his only output register,
the PLB wrapper template must be created to have only one software accesible register.

Performance

The performance of the peripheral is described in the next list:

• Maximum frequency: it is limited by the 74HCT166D maximum frequency to 50 MHz

• Performance: A complete read cycle takes 25 clock ticks, which means a maximum
performance of 500 ns to read the 24 digital inputs.

• FPGA resources: this module needs 20 slices of the PFGA to be implemented

5.10.2 Digital Outputs
In this section, the development process of the peripheral for the control of the digital outputs
is explained. The core is written in VHDL.

Analysis

In order to describe in VHDL the behaviour of this interface, it is needed a full understanding
of how the electronics on the board work. The electronics on the board were selected to use
the minimum amount of communication lines between the input module and the FPGA. To
acomplish this task, the board has five 74HC595 8-bit serial-in, parallel-out shift register with
output latches, which are serial connected for a total of 24 digital outputs and otuputs enable.

Figure 5.16 shows the block diagram of the 8-bit serial-in, parallel-out shift register with output
latches.

49

Figure 5.16: 74HC595D shitf register

As seen in Figure 5.16, there are 8 outputs, for parallel communication, 1 serial input and
control inputs such as shift register clock input and storage register clock input. For the output
module, the two clock signals and the serial input are needed and connected to the FPGA. The
24 outputs values plus the enable signal are transmitted to the electronic chip from the FPGA
using the serial input of the chip. Thus the output module to be developed must generate the
clock signals to control the chips on the board and at the same time send the serialized values to
the chips trough the serial output. This information (outputs and enables) is given by the user
through a software accesible register interface.

Design

Using all the requirements and the basic understanding of the electronic chips on the board in
this design stage the block structure, behaviour flow diagram and signals and register interface
are described.

Figure 5.17 shows the flow diagram of the Digital Outputs module.

50

Figure 5.17: Flow Diagram of the Digital Outputs module

Figure 5.18 shows the block diagram of the Digital Outputs module.

Figure 5.18: Digital Outputs module core

The inputs and outputs of the Digital Inputs module are described in table 5.6.

51

Signal Type Description
clk Input Reference clock signal
rst Input Active low reset signal

output_register(23:0) Input Register interface to software
en_output_register(11:0) Input Register interface to software

serial_out Output Serial output to 74HC595D
sclk Output Store clock to 74HC595D
shlk Output Shift clock to 74HC595D

Table 5.6: Digital Outputs module signals

Implementation

In order to implement in VHDL the module, only one process is used. This process controls by
using a counter, the number of outputs sent to the serial output at the moment of a clock rising
edge. Once all the 24 outputs and the 12 enable signals are sent, this process captures the new
24 outputs and enables from the software registers and initiates a new send cycle. Depending
on the send process, the clock signals are generated in a proper way to control the electronic
logic.

Other important point is the PLB wrapper of this peripheral. Due to his two input registers
(write registers), the PLB wrapper template must be created to have two software accesible
registers.

Performance

The performance of the peripheral is described in the next list:

• Maximum frequency: it is limited by the 74HCT166D maximum frequency to around 35
MHz

• Performance: A complete read cycle takes 42 clock ticks, which means a maximum
performance of 1200 ns to update the 24 digital outputs

• FPGA resources: this module needs 22 slices of the PFGA to be implemented

5.10.3 Analog Inputs
In this section, the development process of the peripheral for the control of the analog inputs is
explained. The core is written in VHDL.

Analysis

In order to describe in VHDL the behaviour of this interface, it is needed a full understanding
of how the electronics on the board work. To acomplish the task, the board has a AD7927 ana-
log to digital converter, which performs the task of converting analog inputs in digital values

52

suitable to be procesed.

Figure 5.19 shows the block diagram of the analog to digital converter.

Figure 5.19: AD7927 analog to digital converter

As seen in Figure 5.19, the converter has eight analog channels, either one corresponds to an
analog input. The AD7927 has also a clock signal, a chip select, and two serial interfaces, one
to receive configuration data and the other to send the result of the conversions.
For the analog inputs module, the four control signals are needed and connected to the FPGA.
The AD7927 requires a well determined power up secuence next explained.

When supplies are first applied to the AD7927, the ADC may power up in any of the operating
modes of the part. To ensure that the part is placed into the required operating mode, the user
should perform a dummy cycle operation as outlined in Figure 5.20.

Figure 5.20: AD7927 power up

The three-dummy-conversion operation outlined in Figure 5.20 must be performed to place the
part into the auto shutdown mode. The first two conversions of this dummy cycle operation are

53

performed with the DIN line tied high, and for the third conversion of the dummy cycle opera-
tion, the user should write the desired control register configuration to the AD7927 to place the
part into the auto shutdown mode. On the third CS rising edge after the supplies are applied, the
control register contains the correct information and valid data results from the next conversion.

In the particular case of the system to be developed, it is needed to update all eight channels.
The converter has a mode, which allows the converter to perform continuous conversions for a
sequence of channels. In order to set this mode, the following configuration must be sent to the
converter:

• Set normal mode: this ensures the fastest throughput rate performance

• Set sequencial mode: this mode allows the converter to perform consecutive convertions
without modifying the control register

• Set range to 2 · Vref : this allows full range from 0 to 10 Volts

• Set binary mode

Figure 5.19 shows the flow diagram of the configuration and operation mode of the converter.

Figure 5.21: AD7927 configuration and operation mode

Design

Using all the requirements and the basic understanding of the electronic chips on the board in
this design stage the block structure, behaviour flow diagram and signals and register interface
are described.

Figure 5.22 shows the flow diagram of the Digital Outputs module.

54

Figure 5.22: Flow Diagram of the Analog inputs module

Figure 5.23 shows the block diagram of the Analog inputs module.

55

Figure 5.23: Analog inputs module core

Note that there are 8 conversion register but in the diagram a general one is represented to sim-
plify.

The inputs and outputs of the Digital Inputs module are described in table 5.7

Signal Type Description
clk Input Reference clock signal
rst Input Active low reset signal

dout Input Serial out of AD7927
cs Output Chip select signal to AD7927

sclk Output Clock signal to AD7927
din Output Serial input of AD7927

conv_reg_0(11:0) Output Conversion channel 0 register
conv_reg_1(11:0) Output Conversion channel 1 register
conv_reg_2(11:0) Output Conversion channel 2 register
conv_reg_3(11:0) Output Conversion channel 3 register
conv_reg_4(11:0) Output Conversion channel 4 register
conv_reg_5(11:0) Output Conversion channel 5 register
conv_reg_6(11:0) Output Conversion channel 6 register
conv_reg_7(11:0) Output Conversion channel 7 register

Table 5.7: Analog Inputs module signals

Implementation

In order to implement in VHDL the module, there are 7 processes implemented. In the table
5.8 all the processes are described.

56

Process Description
CS generator Generates the chip select signal

DIN start Sincronizes the CS signal with the start of sending data
Dummy Performs the two dummy conversions in the power up of the converter

Configuration Sends the configuration register to the converter
ACK configuration Controls the correctly configuration of the converter

Read inputs Reads the incomming frames from the converter and extracts the data
Save inputs Saves the extracted data from the conversions in the registers

Table 5.8: Analog Inputs module processes

Other important point is the PLB wrapper of this peripheral. Due to his eight output registers
(read registers), for the eight analog inputs, the PLB wrapper template must be created to have
eight software accesible registers.

Performance

The performance of the peripheral is described in the next list:

• Maximum frequency: it is limited by the AD7927 maximum frequency to 20 MHz

• Performance: A complete read cycle takes 128 clock ticks, which means a maximum
performance of 6400 ns to update the 8 analog inputs

• FPGA resources: this module needs 76 slices of the PFGA to be implemented

5.11 Power on reset

5.11.1 Analysis

The designed custom board does not have any switch or button that can be used as a global or
initial reset, so to do this task a power on cirtuit was developed from scratch using VHDL.
A power-on reset (PoR) generator is a microcontroller or microprocessor peripheral that gener-
ates a reset signal when power is applied to the device. It ensures that the device starts operating
in a known state.

5.11.2 Design

Figure 5.24 shows the flow diagram of the Power on Reset, which describes the behaviour of
the module.

57

Figure 5.24: Flow Diagram of the Power on Reset core

Figure 5.25 shows the block diagram of the Power on Reset.

Figure 5.25: Power on Reset core

The inputs and outputs of the Power on Reset are described in table 5.9.

Signal Type Description
clk_50 Input Reference clock signal
locked Input Active high when clk_50 is stable
rst_50 Output Active low reset signal

Table 5.9: Power on Reset signals

58

5.11.3 Implementation
In order to implement in VHDL the module, only one process is used. This process controls,
by using a counter, the number of clock cycles for which the reset has to be maintained to low
level. After the count, the reset is released.

5.12 System Timer
A hardware timer must be included in the system in order to measure the time performance and
as compulsory requirement to run the Xilkernel. Xilkernel uses this timer for multithreading
schduling purposes. The selected hardware timer was the LogiCORE IP XPS Timer/Counter
included in the Xilinx hardware development tools and easily configurable.

This timer can be managed manually by the user if a Xilinx Standalone system is implemented.
The user can configure and access directly, in the source code, to the functions of the timer
writing and reading from the hardware registers using the input/output functions provided by
the Xilinx Standalone layer.
If a Xilinx Xilkernel operative system is implemented, the timer must be configured prior to
the compilation of the operative system. Once compiled, the user can access to the timer’s
functionality via functions provided in the Xilinx Xilkernel API. A detailed explanation of the
configuration parameters is given in the chapter Software Development.

To get a more detailed vision of the timer, please see the Xilinx documentation in [19].

5.13 Interrupt Controller
There are some peripherals in the system, which produce interruption signals when an impor-
tant event has taken place. These events could be: full reception buffers from a communication
peripheral like the CAN transceivers for example, a timer finished count and more. Because
of that, it is very recommended to have an interrupt controller in the system. For this purpose,
the LogiCORE IP XPS Interrupt Controller, provided by Xilinx, was chosen. This Interrupt
Controller concentrates multiple interrupt inputs from peripheral devices to a single interrupt
output to the system processor.

The Interrupt Controller is a compulsory requirement to run the Xilinx Xilkernel and the in-
terrupt port if the timer explained in the previous section must be connected to the Interrupt
Controller.

For additional information, please see the Xilinx documentation in [20].

5.14 LEDS
The board has four leds, which can be used for debug or signalization purposes. In order to con-
trol the switching-on and switching-off of the leds in the software, an input/output peripheral
is needed. Xilinx provides the XPS GPIO core for that.

59

5.14.1 GPIO

The XPS GPIO design provides a general purpose input/output interface to a Processor Local
Bus (PLB). The XPS GPIO can be configured as either a single or a dual channel device. The
channel width is configurable and when both channels are enabled, the channel width of each
of the channels can be configured individually. The ports can be configured dynamically for
input or output by enabling or disabling the 3-state buffer. The channels may be configured to
generate an interrupt when a transition on any of their inputs occurs.

The major interfaces and modules of the pripheral are shown in figure 5.26:

Figure 5.26: Xilinx GPIO

For additional information, please see the Xilinx documentation in [21].

5.15 UART
The Embedded System has to comunicate with the exterior for information exchange with
other external systems and for debug and data visualization purposes. Xilinx provides in his
EDK development environment the XPS UARTlite core, which implements a very basic UART.
Although it is a very basic UART, for the needs of system being developed it is adequate. In
the system to be developed, two UARTs are implemented and their function is described in the
following sections.

5.15.1 XPS Uartlite

The XPS UART Lite performs parallel-to-serial conversion on characters received through PLB
and serial-to-parallel conversion on characters received from a serial peripheral. It is capable of
transmitting and receiving 8, 7, 6 or 5-bit characters, with 1-stop bit and odd, even or no parity,
and transmit and receive independently.

60

The device can be configured and its status can be monitored via the internal register set. The
XPS UART Lite generates an interrupt when Receive FIFO becomes non-empty or when trans-
mit FIFO becomes empty. This interrupt can be masked by using an interrupt enable/disable
signal. It also contains a 16-bit programmable baud rate generator and independent 16-word
Transmit and Receive FIFOs, which can be enabled or disabled through software control.

The XPS UART Lite modules are shown in the top-level block diagram in figure 5.27:

Figure 5.27: XPS UARTlite core

For additional information, please see the Xilinx documentation in [22].

5.15.2 STDIO UART

This UART is used as the standard input/output of the system, which comprises all the in-
put/output functions like printf, scanf and others. Table 5.10 shows the configuration parame-
ters:

Parameter Value
Baud rate 9600

Parity Even
Data bits 8
Stop bits 1

Table 5.10: STDIO UART configuration

5.15.3 Communication UART

This UART is used for communication purposes between the Embedded System and the Siemens
Industrial PC. The next table shows the configuration parameters:

61

Parameter Value
Baud rate 115200

Parity None
Data bits 8
Stop bits 1

Table 5.11: Communication UART configuration

5.15.4 UART Enable GPIO
The two built-in UARTS have an switching-on/off connection. If not used, a UART can be
deactivated in oder to save power. To control this two activation outputs a GPIO peripheral is
included in the system.

5.16 Clock generators
The Microblaze system to be developed has different clocks for the different components in
the system. The board has a 50 MHz Crystal oscillator, which produces the input clock signal
of the system. This clock signal is conected to a Xilix clock generator IP, which produces a
stabilized clock output.

5.16.1 System Clock Generator
The Clock Generator core takes in common clock requirement through its parameters and gen-
erates the architecture-specific clocking circuitry. The circuitry is implemented in a VHDL
source. When the Clock Generator cannot generate circuitry for the given requirement, it pro-
vides failure analysis. The generation algorithm is implemented in C++ programming language
and currently it is only integrated with EDK implementation tool, PlatGen and SimGen. It sup-
ports up to 16 different clock requirements and generates synthesizable structural VHDL code
[18].

Figure 5.28 shows the block diagram of the System Clock Generator of Xilinx for this specific
system.

Figure 5.28: Clock Generator core

62

The inputs and outputs of the System Clock Generator are described in table 5.12.

Signal Type Description
CLKIN Input Reference clock signal

RST Input Active high reset signal
LOCKED Output Active high when the output clocks are stabilized
CLKOUT0 Output Clock output 0
CLKOUT1 Output Clock output 1
CLKOUT2 Output Clock output 2

Table 5.12: Clock Generator core signals

The clock output frequency values and use are described in the section 5.16.3 (System Clocks).

5.16.2 Peripheral Clock Divider

There is an existing limitation in the previous System Clock Generator core because the core
can generate frequencies from 1 MHz to 1 GHz but not frequencies lower than 1 MHz. In the
system there are some peripherals, which do not need such high frequencies to work but rather
frequencies in the KHz range. To solve this drawback, a clock divider was developed from
scratch using VHDL and later included in the embedded system.

Figure 5.29 shows the flow diagram of the Peripheral Clock Divider, which describes the be-
haviour of the module:

63

Figure 5.29: Flow Diagram of the Peripheral Clock Divider

Figure 5.30 shows the block diagram of the Peripheral Clock Divider:

Figure 5.30: Peripheral Clock Generator core

To make the Peripheral Clock Divider configurable VHDL generics were used to determine the
clock division factor. They are described in table 5.13.

64

Generic Default value Description
clk_0 600 Clock 0 division factor
clk_1 2000 Clock 1 division factor
clk_2 312 Clock 2 division factor
clk_3 2 Clock 3 division factor

Table 5.13: Peripheral Clock Divider core generics

The inputs and outputs of the Peripheral Clock Divider core are described in the table 5.14

Signal Type Description
clk Input Reference clock signal
rst Input Active low reset signal

locked Input Active high when input clock is stabilized
clk_out0 Output Clock output 0
clk_out1 Output Clock output 1
clk_out2 Output Clock output 2
clk_out3 Output Clock output 3

Table 5.14: Peripheral Clock Divider signals

The clock output frequency values and use are described in the section 5.16.3 (System Clocks).

5.16.3 System Clocks
Table 5.15 shows the different clock signals of the embedded system, who has generated the
signal, the frequency and the modules, which use each clock signal.

Clock Signal Generated by Frequency Clock Source of
CLK_S Crystal oscilator 50 MHz System Clock Generator,

Power on Reset
CLKOUT0 System Clock Generator 50 MHz Microblaze, PLB bus,

Peripheral Clock Divider
CLKOUT1 System Clock Generator 10 MHz CAN transceivers
CLKOUT2 System Clock Generator 6.25 MHz Torque Vectoring

clk_out0 Peripheral Clock Divider 88.33 KHz Digital outputs
clk_out1 Peripheral Clock Divider 25 KHz Digital inputs
clk_out2 Peripheral Clock Divider 160.25 KHz Analog inputs
clk_out3 Peripheral Clock Divider 2 KHz Traction Control System

Table 5.15: System Clocks

Table 5.16 shows the different operation times of the peripherals of the embedded system.

65

Peripheral Clock frequency Operation time
Analog inputs 160.25 KHz 800 µs
Digital inputs 25 KHz 1 ms

Digital outputs 88.33 KHz 960 µs
Torque Vectoring 6.25 MHz 1120 ns
Traction Control 2 KHz 10 ms

Table 5.16: System operation times

5.17 Memory map
The complete memory map with all the components of the embedded system is described in
the table 5.17.
Note that, as explained in section 5.2.2, the four memory controllers must be in a address range
of four consecutive 64 KB addresse spaces in order to build a memory space for a total of 256
KBytes.

Component Base Address Offset Bus Description
dlmb_cntlr_3 0x00000000 0xFFFF LMB data memory controller 3
ilmb_cntlr_3 0x00000000 0xFFFF LMB instruction memory controller 3
dlmb_cntlr 0x00010000 0xFFFF LMB data memory controller 0
ilmb_cntlr 0x00010000 0xFFFF LMB instruction memory controller 0

dlmb_cntlr_1 0x00020000 0xFFFF LMB data memory controller 1
ilmb_cntlr_1 0x00020000 0xFFFF LMB instruction memory controller 1
dlmb_cntlr_2 0x00030000 0xFFFF LMB data memory controller 2
ilmb_cntlr_2 0x00030000 0xFFFF LMB instruction memory controller 2

RS232_activation 0x81400000 0xFFFF SPLB UART activation
LEDS 0x81420000 0xFFFF SPLB LEDs GPIO

xps_intc_0 0x81800000 0xFFFF SPLB LEDs GPIO
xps_timer_0 0x83C00000 0xFFFF SPLB System timer

xps_uartlite_0 0x84000000 0xFFFF SPLB STDIO UART
RS232 0x84020000 0xFFFF SPLB Communication UART
mdm_0 0x84400000 0xFFFF SPLB Hardware debugger

digital_output 0xC1E00000 0xFFFF SPLB Digital outputs
digital_input 0xC5000000 0xFFFF SPLB Digital inputs
analog_input 0xC5200000 0xFFFF SPLB Analog inputs
tcs_system_0 0xC7200000 0xFFFF SPLB Left side Traction Control
tcs_system_1 0xC7220000 0xFFFF SPLB Right side Traction Control

plbv46_2_wb_1 0xC9800000 0xFFFF SPLB CAN transceiver 1
plbv46_2_wb_0 0xC9820000 0xFFFF SPLB CAN transceiver 0
torque_vectoring 0xC9A00000 0xFFFF SPLB Torque Vectoring

Table 5.17: Embedded System Memory Map

66

5.18 Final system
Figure 5.31 shows the block diagram of the complete embedded system. In the system can be
differentiated four types of peripherals connected to the PLB bus depending on the function.
The fifth group is the set of peripherals, which are not connected to the PLB bus.

Figure 5.31: Embedded System

67

68

Chapter 6

Control Software development

In this chapter a detailled description of the control software development including all the
stages in the software lifetime cycle is given. In this work the scope of the control software de-
velopment is focused on the development of the new control algorithm and specification of the
base software platform, including the information exchange protocols. During the development
stage the Xilinx Software development tool was used.

6.1 System requirements

In this section, the requirements of the system are enumerated.

6.1.1 Functional requirements

• Control loop: The system must control all the automobile systems of the kart

• Drive paramenters change: The driver must be able to change the behaviour of the
traction control and torque vectoring by selecting the desired mode

• Traction control: The system must apply a traction control regulation to the output
torque when the wheels slip above the desired slip factor

• Torque Vectoring: The system must apply a torque vectoring regulation to the output
torque depending on the direction of the actual curve

• Telemetry: The system must store relevant telemetry data in order to later analyse this
data and extract conclussions.

• Communication with motor converters: The software must send the torque to the mo-
tor converters

• Information displaying: The software must display the important debug or runtime
information

69

6.1.2 Information requirements

• Telemetry: The desired storable telemetry data is:

– Timestamp

– Gas pedal

– Global speed

– Speed of each individual wheel

– Applied torque to each motor

– Slip of each side of the kart

– Traction control factor of each side

– Torque vectoring tunning factor

• Communications: The exchanged information with the motors is:

– Torque

– Speed

6.1.3 Non functional requirements

• Security: If a severe error occurs, the must be stoped as soon as possible

• Reliability: The communication must be reliable

• Performance: The system must execute the software at least as fast as the previous
system

• Portability: The system must present an abstraction layer to secure the portability of the
drivers.

6.2 Software Life model

The software development model used is the incremental model. With this model of develop-
ment, a new version of the software is produced in each cycle. The software growns gradually
in benefits and additional functionality. The features ,that had each of these versions, are de-
scribed in the following pages.

6.2.1 First iteration

In the first iteration of the development, the firmware of the different hardware components was
developed. A basic software platform for testing purposes was developed using a standalone
operating system to have access to the low level functions of the system.

70

6.2.2 Second iteration

In the second iteration, the main software of the kart (the control loop) and his communication
routines was developed. At this stage, the operating system was changed to a real time one with
multithreading capabilities.

6.2.3 Third iteration

In the third iteration, a special test version of the control software was developed. That was
a forced development due to the impossibility of controlling the Siemens converters (Profinet
interface) with the existing hardware, software and documentation avaible. The important data
for the calculations is sent to the Embedded System from the Siemens industrial PC.

6.3 Analysis

6.3.1 Use Case model

Actors

This section describes the different roles played by users interacting with the system. The roles
of actors can be individuals, external systems or even the time (temporal events).

Table 6.1 decribes the actors of the system.

Actor Description
Driver It is the main user of the system
Time Time triggers some events and processes

Sensors Data comes to the system and changes his behaviour

Table 6.1: Actors of the system

Use Case diagram

Figure 6.1 represents the Use Case diagram, which shows the main functionality of the system
at the highest abstraction level.

71

Figure 6.1: Control software Use Case diagram

In the following pages, all the use cases are explained.

Use Case: Control loop

• Use Case: Control loop

• Scenarios:

– Main: Normal control loop

– Alternative 1: Normal control loop with traction control

– Alternative 2: Normal control loop with torque vectoring

• Description: Controls all the functionality of the Kart

• Actors: Driver, time and sensors

• Preconditions: The software system must be initialized

• Postconditions: All must be stoped and all the resources released

• Main Scenario:

1. The driver starts the system

2. The system initializes all his peripherals

3. The system configure the software timers

4. The driver configures the parameters of the system, e.g. Torque vectoring and Trac-
tion Control

5. Update paramenters if changes were made.

72

6. The system updates all the inputs

7. The system processes the inputs

8. The system checks if Traction Control or/and Torque Vectoring are set

9. The system do the calculations

10. The system updates all the outputs, including communication interfaces

11. Repeat from 4

• Extensions:

8.a If Traction Control set, extend to Use Case “Traction Control”.

8.b If Torque Vectoring set, extend to Use Case “Torque Vectoring”.

9.a If an error occurs, depending on the severity, inform or stop completely the system.

Use Case: Drive parameters configuration

• Use Case: Drive parameters configuration

• Scenarios:

– Main: Change drive parameters

• Description: Updates the drive parameters like Torque Vectoring setting and Traction
Control

• Actors: Driver

• Preconditions: None

• Postconditions: Drive parameters are changed

• Main Scenario:

1. The driver wants to change the drive parameters

2. The driver adjusts the Torque Vectoring factor and response

3. The driver adjusts the Traction Control

4. The system stores the new configuration

Use Case: Torque Vectoring

• Use Case: Torque Vectoring

• Scenarios:

– Main: Do the Torque Vectoring calculation

• Description: Do the Torque Vectoring calculation by using the dedicated coprocessor

• Actors: Time, Sensors

73

• Preconditions: Torque Vectoring is set to activated

• Postconditions: Torque Vectoring correction factor is calculated

• Main Scenario:

1. The system wants to calculate the Torque Vectoring response (Torque Vectoring
timer is triggered)

2. The system sends to the coprocessor the actual speed of the car, the steering angle
and the torque vectoring factor.

3. The coprocessor processes the data meanwhile the system does other tasks

4. The system updates the value calculated by the coprocessor.

5. The system restarts the Torque Vectoring timer.

Use Case: Traction Control

• Use Case: Traction Control

• Scenarios:

– Main: Do the Traction Control calculation

• Description: Do the Traction Control calculation by using the dedicated coprocessor

• Actors: Time, Sensors

• Preconditions: Traction Control is set to activated

• Postconditions: Traction Control correction factor is calculated

• Main Scenario:

1. The system wants to calculate the Traction Control correction factor (Traction Con-
trol timer is triggered)

2. The system sends to each coprocessor (one for the left side, one for the right side)
the actual slip of the left and right side respectively.

3. The coprocessor processes the data meanwhile the system does other tasks

4. The system updates the value calculated by the coprocessor.

5. The system restarts the Traction Control timer.

6.3.2 Data model
The system is divided in different modules to split the functionality in input/output, communi-
cation and calculations. Most of the modules are written as a firmware to control the hardware
on the board. Figure 6.2 represents the Data model diagram, which shows the data modules,
their attributes and the relation between them. The attributes of each entity are described in
tables.

74

Figure 6.2: Control software Data model diagram

75

Digital inputs

Attribute Type Description
Memory address Integer Unique memory address of the peripheral

Input values Boolean vector Digital inputs value

Table 6.2: Entity: Digital Inputs

Digital outputs

Attribute Type Description
Memory address Integer Unique memory address of the peripheral

Output values Boolean vector Digital outputs value
Outputs enable Boolean vector Digital outputs enable

Table 6.3: Entity: Digital Outputs

Analog inputs

Attribute Type Description
Memory address Integer Unique memory address of the peripheral

Input values Boolean vector Analog inputs value

Table 6.4: Entity: Analog Inputs

CAN Transceiver

Attribute Type Description
Memory address Integer Unique memory address of the peripheral

CAN frame CAN frame type Contains the ID, extended ID and 8 Bytes of data
Extended mode Boolean Extended mode active

Table 6.5: Entity: CAN transceiver

UART

Attribute Type Description
Memory address Integer Unique memory address of the peripheral

FIFO buffer Char vector 16 Byte send/receive FIFO

Table 6.6: Entity: UART

GPIO

76

Attribute Type Description
Memory address Integer Unique memory address of the peripheral

Port value Boolean vector Value of the input/output port
Port direction Boolean vector Set the port as input/output

Table 6.7: Entity: GPIO

Traction Control

Attribute Type Description
Memory address Integer Unique memory address of the peripheral

Sampling Float Sample time for the PI controller
Set point Float Set point for the desired wheel slip

Anti windup Float Anti windup gain
Slip input Float Actual slip of the wheels

P gain Float P stage gain
I gain Float I stage gain

Correction Float Traction Control gas correction factor

Table 6.8: Entity: Traction Control

Torque Vectoring

Attribute Type Description
Memory address Integer Unique memory address of the peripheral

Speed Float Speed of the kart
Steering Float Steering angle of the steering wheel

Torque constant Float Torque vectoring constant
Torque factor Float Torque multiplicative constant

Torque Float Torque correction factor

Table 6.9: Entity: Torque Vectoring

6.3.3 Behaviour model

In this section, the behaviour model of the software system at the analysis stage is described.
The used tools are state diagrams, which explains the real behaviour of the system at high level
of abstraction.
Figure 6.3 represents the States model diagram.

77

Figure 6.3: Control software State model diagram

Each single state is described in the following list.

• Hardware Platform Initialization: Initializates the hardware platform (peripherals).

• Software Platform Initialization: Initializates the operating system, threads and timers.

• Error check: Test if an error (hard/soft) or stop signal from the driver occurs.

• Updating Inputs: Updates digital and analog inputs of the system.

• Updating Communication interfaces (input): Updates information from input com-
munication buffers.

• Updating drive parameters: Updates the traction control and torque vectoring parame-
ters.

• Automotive calculations: Calculates traction control and torque vectoring.

• Updating Communication interfaces (output): Updates information to output commu-
nication buffers.

• Updating Outputs: Updates digital outputs of the system.

6.3.4 External interfaces

In this section, the external interfaces of the software system are explained. It can be differenti-
ated two types of interfaces, the communication interfaces and the peripehrals and coprocessors
of the system.

78

Communication

The communication interfaces are those, whose task is to exchange information between two
computation systems. CAN bus is the communication interface used to send data to the motors.
The following list shows the important information of this interface

CAN bus

• Related processes: CAN information exchange task

• Origin: Embedded System

• Destination: Motor converters

• Exchanged data: CAN frames described in table 6.10

• Periodicity: It depends on the speed of the system, but a maximum of 1 Mbit per second
can be sent

• Triggering event: CAN timer

• Security requirements: Data must be in the valid range, otherwise the motors could be
damaged. Ranges shown in Table 6.11

ID Signal Data Description
0x301 Ctrl_Enable Byte_0(0) Turn on/off the controler
0x301 Ctrl_Mode Byte_0(3:1) Control mode of the controller
0x301 Ctrl_TargetSetpoint Byte_2(15:8) Byte_1(7:0) Set point of torque
0x311 Ctrl_Status1_ActSpeed Byte_6(15:8) Byte_5(7:0) Actual speed

Table 6.10: CAN frames

ID Signal Type Size (bits) Range
0x301 Ctrl_Enable Bit 1 1
0x301 Ctrl_Mode Unsigned 3 0..0
0x301 Ctrl_TargetSetpoint Signed 16 -10000 to 10000
0x311 Ctrl_Status1_ActSpeed Signed 16 -32768 to 32767

Table 6.11: CAN frames data range

Peripherals

The communication with the hardware peripherals is done according to the following specifi-
cation.

79

• Related processes: Control loop

• Origin: Embedded System

• Destination: On-board peripherals

• Exchanged data: State of the inputs and activation of the outputs.

• Periodicity: Execution in the control loop

• Triggering event: None

• Security requirements: None

6.4 Design

6.4.1 System architecture

The chosen architecture for the system is the basic input-process-output architecture. The input-
process-output (IPO) model, also known as the IPO+S model, is a functional model and con-
ceptual schema of a general system. The IPO architecture identifies a program’s inputs, its
outputs, and the processing steps required to transform the inputs into the outputs. Data has to
flow into the system in some form. Input is the data flowing into the system from outside. The
next stage in the information flow is the input data being manipulated in some way. Process-
ing is the action of manipulating the input into a more useful form. Output is the information
flowing out of the system.

Packet diagram

Figure 6.4 shows the packet diagrams, which gives the modular organization of the software,
and the functionality of each software module.

80

Figure 6.4: Control software Packet diagram

6.4.2 Behaviour model
In order to describe the behaviour of the system, Data Flow Diagrams are used in the structured
programming paradigm to describe this behaviour. DFDs are divided in different levels of ab-
straction, starting at level 0, which represents the highest abstraction level and finishing at level
3, the most precise description of a single module of the system. In the next pages, the DFDs
of the system are presented.

Figure 6.5 represents the level 0 Data Flow Diagram.

Figure 6.5: DFD level 0

As external entities, the driver is the user of the system and has the ability of changing the
behaviour of the system by changing the drive parameters, such as the strength of the torque
vectoring, the brake balance and the traction control. The sensors provide the data for the
automotive calculations and the kart receives the control signals. There is a global process,
called Kart Control, which performs the control routine.
Figure 6.6 represents the level 1 Data Flow Diagram.

81

Figure 6.6: DFD level 1

Decreasing to a lower level of abstraction, the Control routine executes to main processes, the
initialization process, which sets up the hardware to a initial working state, and the main control
routine, which produces besides the control signals, the telemetry data, which is stored for a
further necessity.

Figure 6.7 represents the level 2 Data Flow Diagram for the initilization process.

Figure 6.7: DFD level 2 initialization

In a more lower level of abstraction, the initialization routine has the mission of setting up the
IO modules, communication modules, timers and working threads of the system.

Figure 6.8 represents the level 2 Data Flow Diagram for the control process.

82

Figure 6.8: DFD level 2 control

83

The control routine is the most important part of the software. It performs all the automotive
calculations, such as the traction control and the torque vectoring. This two calculations, when
needed, are parallel performed, taking advantage of the parallel processing of the hardware.
Figure 6.9 represents the level 3 Data Flow Diagram for the traction control process.

Figure 6.9: DFD level 3 TCS

Figure 6.10 represents the level 3 Data Flow Diagram for the torque vectoring process.

Figure 6.10: DFD level 3 Torque Vectoring

In the lower level of abstraction (both figures 6.9 and 6.10), the parameters needed for the
calculations are sent to the hardware coprocessors and after the calculation time, the result is
retrieved by the software

6.5 Implementation

6.5.1 CAN bus

The CAN bus controller must be configured in a proper way to match the specifications of the
converters. Table 6.12 specifies the configuration.

84

Speed 1 Mbit/s
Mode Normal

Sampling Triple
Reception filter 0x00000301
Reception mask 0x1FFFFFFF

Table 6.12: CAN transceiver configuration

6.5.2 Multi-threading

Due to certain asynchronous communication tasks, a Multi-threading enviroment is required.
The software is structured in two threads, the main thread executes the control loop and shares
a memory zone with a secondary thread in charge of be receiving and sending information. The
shared information between the two threads is resumed in Table 6.13.

Item Type Description
speed_left float (input) Speed of the left side motor

speed_right float (input) Speed of the right side motor
torque_left float (output) Torque to the left side motor

torque_right float (output) Torque to the right side motor

Table 6.13: Control software loop shared data

6.5.3 Xilkernel Operating System

As explained in section 4.2.2, Xilkernel is the chosen Operating System to support all the
control software of the system. Because Xilkernel is a modular configurable operating system,
it is necesary to configure individually each functionality of the system. By adding only the
necesary functionality, the operating system compiles to the smallest size possible, which is
very important to fullfill the memory requirements. In the next sections, the configuration of
the customized Xilkernel version for the embedded system is explained.

STDIO

The Standard Input/Output is an essential part of any standard computer system but also for
embedded systems. It allows to see important information for debugging the system and also
can be used to import or export data from the system, e.g. telemetry data and configuration
parameters.

The only avaible option for the implemented hardware is to connect the STDIO to a UART
and then use the input and output functions by using an hyperterminal. In section 5.15.2
the features of the UART for input/output purposes are explained. This UART has the name
“xps_uartlite_0”, so this must be selected in the STDIO option configuration in the Xilkernel
configuration wizard.

85

Multi-threading

Xilkernel was chosen because it is a real time operating system with multithreading support.
Multithreading is very important in real time systems to reach the best possible performance
by balancing all the task of the system. With a well balanced system, the CPU time is well
exploited. In control real time systems there are also some communications processes which
need to be executed periodically at a certain time interval and threads are the best solution to
keep an efficient but readable source code.

The threads support must be activated in the Xilkernel configuration wizard but there are other
important parameters to be configurated, such as the maximum number of threads or the stack
size. All can be configurated in the mentioned configuration wizard.

Scheduler

In a multi-thread system there are two options to control execution of the threads:

1. Manually control of the execution

2. Using a Scheduler

Both give advantages and disadvantages depending on the target system but for this case, using
a Scheduler was chosen. By using a Scheduler, the management of the threads is easier and the
time requirements are kept.
The Shcheduler support must be activated in the Xilkernel configuration wizard but there are
other important parameters to be configurated, such as the type of Scheduler. The chosen
Scheduler is a Round Robin one, which gives the same amount of time to each thread. This is
made to keep synchronized the control loop thread with the communication threads.

Mutex locks

The threads must often share variables or a buffer. To avoid the incorrect modification of a
shared resource between the threads mutex are used. Mutual exclussion locks secure that this
critical section of code is only accesed by one thread at time.

Mutex are by default disabled in the Xilkernel core, so it is necesary to activate them in the
configuration wizard.

Timers

Timers are a basic piece and for the real time systems very important because it is the task of
the timers to control the Schduler and support time measures. The timer must also, like the
previous features, activated in the configuration wizard. The options to be configured are the
following:

• “xps_timer_0” must be selected as the system timer

• The working frequency must be set to the base frequency of the system (50 MHz)

• The system timer interval must be configured to 1 ms. That means that every millisecond
a kernel tick is generated. This tick is used for scheduling and timing measure purposes

86

Interrupt Controller

The Interrupt Controller is used by the Xilkernel for the timers interruptions but can also be used
for catching external interruptions. The system timer must be specified in the configuration
wizard, otherwise Xilkernel does not compile.

Summary

Figure 6.11 shows the final configuration as it was introduced in the Software Development
tool.

Figure 6.11: Xilkernel configuration

6.5.4 Linker Script and BMM file
There are two important files to be modified in order to load the software in the RAM memory
of the system. In the next sections they are explained.

Linker Script

The final step in creating an executable from object files and libraries is linking. This is per-
formed by a linker which accepts linker command language files called linker scripts. The
primary purpose of a linker script is to describe the memory layout of the target machine, and
specify where each section of the program should be placed in memory.

Xilinx SDK provides a linker script generator to simplify the task of creating a linker script.
The linker script generator GUI examines the target hardware platform and determines the
available memory sections. The only action required is to assign the different code and data

87

sections in the ELF file to different memory regions.

Due to the four block RAM memory controllers added to the system, the linker script file must
be modified to create a new contiguous memory space joining the four address spaces of the
controllers.

BMM file

A Block RAM Memory Map (BMM) file is a text file that has syntactic descriptions of how
individual block RAMs constitute a contiguous logical data space. Data2MEM tool uses BMM
files to direct the translation of data into the proper initialization form. Since a BMM file is a
text file, it is directly editable.

Due to the four block RAM memory controllers added to the system, the BMM file must
be modified to create a new contiguous memory space joining the four address spaces of the
controllers.

88

Chapter 7

Test Software development

In this chapter a detailled description of the software development for testing purposes is given.
A different version of the control software is needed due to some limitations in the actual
hardware and software.

7.1 Limitations and adopted solution
The existing limitations are the following:

• The Ethernet MAC on the custom board is a class 2 type one, which means that it is not
possible to use this MAC for Profinet communications. The Profinet network present in
the Kart uses MACs of type 3, which are not backwards compatible.

• Requirement of an external software Profinet Stack

Due to this limitations, the adopted solution was to communicate the old Siemens IPC with the
Embedded System on the FPGA. The Siemens IPC has the task of procesing the information
of the sensors, communicate with the FPGA and controlling the converters. The Embedded
System on the FPGA has the task of exchange the information with the IPC and use this to do
the torque vectoring and traction control calculations.

7.2 Industrial PC software
In this section, the changes made to the software, that runs in the industrial PC, are explained.
These changes affect to the stored telemetry data and the communication with the developed
embedded system via the serial interface. The changes were made in a way to have the minimal
impact on the performance of the system because of its real time behaviour.

7.2.1 RMOS3
RMOS3 is a real time operating system with multitasking functionality. Along with the ability
of real-time, short reaction times determinism is an important feature included. Thanks to that
the reaction times are guaranteed on a short time interval.

89

Robust operating systems also offer strong performance in emergency situations. RMOS3 is
optimized for use in embedded applications. In harsh environmental conditions can be used in
place of hard drives or memory CompactFlash Memory Cards. Also RMOS3 is suitable for
active and inactive service. RMOS3 supports the C and C++ programming languages.

7.2.2 UART communication

The UART is the only free and remaining interface available on the Siemens computer us-
able for the communication purposes. To control the UART on the Siemens IPC, the BYT is
available. The BYT driver serves for simultaneous management of multiple, byte-oriented dis-
tributed I/O devices (parallel driver). Byte-oriented units include, for example, terminals and
printers. it is possible, for example, to defined custom control characters for terminals. The
driver can be customized to suit the requirements of all standard controllers. The BYT driver
can be operated in unrestricted half duplex mode, i.e. no simultaneous transmission and receive
operations, as well as in restricted duplex mode. The terminal and transparent modes differ in
terms of the handling of terminal/protocol control characters required for calls of specific read
functions of the BYT driver [29].

RmIO function

In order to control the UART driver, the RMOS3 operating system provides the function
“‘RmIO” in the API. This function is able to control up to 255 IO drivers in the system. A
typical call of this function looks like [30]:

int _FIXED _FAR RmIO(uint Function,
uint DeviceID,
uint UnitID,
uint FlagID,
uint FlagMask,
RmIOStatusStruct *pState,
void *pParam);

Table 7.1 describes the parameters of the function abovementioned.

Parameter Description
Function Type of IO function (see 7.2.2)
DeviceID ID of the Driver

UnitID ID of the physical device
FlagID ID of the event flag group

FlagMask Mask of the flag
pState Pointer to a 8 byte status field

pParam Pointer to I/O parameters (see 7.2.2)

Table 7.1: Parameters to the RmIO Siemens function

90

Send information

To send the information by using the onboard UART of the Siemens IPC, the previously pre-
sented parameters must be set as following.

• The function parameter must be set to BYT_WRITE. This mode allows the UART to
send information.

• The DeviceID parameter must be set to stddata.stdout_dev, where stddata is a struct of
type STDSTRUCT, which holds the important information concerning the input/output
devices. The stdin_dev references the standard output of the system, in this case, the
UART.

• The UnitID parameter must be set to stddata.stdout_unit.

• The fields of the parameters block must be set as following:

– string: reference to the first element on the sending buffer

– strlen: size of the sending buffer

Receive information

To receive the information by using the onboard UART of the Siemens IPC, the previously
presented parameters must be set as following.

• The function parameter must be set to BYT_POLL_XBUF. This mode allows the user
to poll the receiving buffer of the UART to retreive information.

• The DeviceID parameter must be set to stddata.stdin_dev, where stddata is a struct of
type STDSTRUCT, which holds the important information concerning the input/output
devices. The stdin_dev references the standard input of the system, in this case, the
UART.

• The UnitID parameter must be set to stddata.stdin_unit.

• The fields of the parameters block must be set as following:

– buffer: reference to the first element on the sending buffer

– timlen: size of the sending buffer

7.2.3 IO configuration
By default, the software for the Siemens IPC was developed without serial communication ca-
pabilities, which means that the input direction of the standard IO of the system is blocked.
With the default configuration of the software is only possible to send information to the out-
side. This must be changed in order to have a bidirectional communication, so further changes
in the software were needed. In the entry point of the main task, the following code had to be
added:

91

fdureopen((entry.ide & 0xFFFF), //Device
entry.id, //Unit
"r", //Mode
stdin); //Stream

The C standard API’s function “fdureopen” is used to redirect a stream to a driver. As showed
in the previous extract of code, the input stream of the system is redirected to the UART driver
in read mode, which allows the system to read the input buffer of the UART.

7.2.4 UART timing
The UART included in the Siemens PC has a minimum access time of around 10 to 20 ms to
access his buffers through the RmIO function. If the RmIO function is accessed repeatedly
without a time interval of 10 to 20 ms between calls, the system could be blocked. To secure
that restriction, a delay is added before a the software has to send data and also when the
software tries to access the input buffer to read the incoming data.

7.2.5 Synchronization switch
The communication between the IPC and the Embedded System is started by the Siemens IPC
meanwhile the Software of the Embedded System waits for the first message. To start the
communication, the “max speed limit” switch was chosen, so activating this switch controls
the start and the stop of the communication. It is important to stop the communication at the
end of the run in order to read all the telemetry data stored during the test run of the kart.

7.2.6 Telemetry information
In order to make a later analysis of the telemetry information, this information must be stored
and later retrieved. To store the information, a vector of floating point data is created with
a maximum length of 400000, which means that at 2000 samples per second and with six
parameters to store, it can be recorded 33,3 seconds of data, enough to cover a complete run
of the car. The information is organized in a csv file type format and it is stored in a log file,
which is saved by the hyperterminal application used to receive the data. Later, this data can be
used to draw charts using Matlab or another similar tool.

7.3 Test Software
The changes on the test software runnning on the embedded system are made to keep the
communication with the Siemens IPC and exchange the necesary information to control the
motors.

7.3.1 Multi-threading
Due to certain asynchronous communication tasks, a Multi-threading enviroment is required.
The software is structured in two threads, the main thread executes the control loop and shares

92

Item Type Description
slip_l float (input) Left side slip
slip_r float (input) Right side slip
speed float (input) Global speed of the kart

steer_ang unsigned (input) Steering wheel angle
tcs_act unsigned (input) TCS on/off

torque_fact float (input) Torque Vectoring factor
gas float (input) Gas pedal percentage

torque_left float (output) Torque to the left side motor
torque_right float (output) Torque to the right side motor
tcs_left_fact float (output) TCS torque correction to the left side motor

tcs_right_fact float (output) TCS torque correction to the right side motor

Table 7.2: Test software shared data

a memory zone with a secondary thread in charge of be receiving and sending information. The
shared information between the two threads is resumed in Table 7.2.

7.3.2 Communication protocol

In order to exchange the important data to do the calculations in the Embedded System and send
back to the Siemens IPC, which is controlling the motors, a custom communication protocol is
required.

Protocol

The protocol is designed due to limitations of the UART implemented in the Embedded System.
This UART has a small buffer, which can only contain 16 Bytes. Because the exchanged data
is larger than 16 Bytes, the information has been splitted in two parts. An intermediate ACK is
needed for synchronization purposes. Also due to limitations in the configuration of the UART
in the Siemens IPC, the information cannot be transmitted in binary format, so the information
is sent in ASCII code an converted in the destination system.

1. The Siemens IPC sends the first part of the sending buffer. Meanwhile the software in
the Embedded System waits to receive the whole buffer.

2. Once the first part is received, the Embedded System sends an ACK to the Siemens IPC.

3. When the IPC receives the ACK, he sends the second part of the buffer.

4. The Embedded System receives the whole buffer and sends to the IPC the data produced
by the torque vectoring and traction control calculations.

Figure 7.1 shows the data exchange protocol created to comunicate both computers, the Siemens
IPC and the Embedded System.

93

Figure 7.1: Communication protocol

Table 7.3 resumes the exchanged data.

Item Size Format Range
slip_l 5 Bytes x.xxx 0.100 to 1.000
slip_r 5 Bytes x.xxx 0.100 to 1.000
speed 6 Bytes xx.xxx 0.000 to 38.889

steer_ang 3 Bytes xxx 0 to 100
torque_fact 3 Bytes x.x 0.0 to 1.0

tcs_act 1 Byte x 0 to 1
gas 7 Bytes xxx.xxx 0.000 to 100.000

torque_left 7 Bytes xxx.xxx 0.000 to 100.000
torque_right 7 Bytes xxx.xxx 0.000 to 100.000
tcs_left_fact 5 Bytes x.xxx 0.100 to 1.000

tcs_right_fact 5 Bytes x.xxx 0.100 to 1.000

Table 7.3: Shared data format

94

Chapter 8

Test and Validation

In this chapter a detailled description of the testing stage of the development is given for both
hardware and software parts. This stage was executed in parallel with the development process
to detect errors easily and at earlier stages of the development. All the tests were manually
executed except the VHDL testbenchs and the testing environment is described in each section.

8.1 Hardware

The hardaware is the biggest part of this Master Thesis and each developed hardware compo-
nent had to be tested in a proper way to be fault proven.

8.1.1 Simulator

The simulator is an important part of the hardware test and it is the very first tool, that the
hardware developer has to test the hardware modules before implementing them in the FPGA.
By using the simulator, common errors as well not common are easier to find and eliminate.
The signal waves in the simulator shows the behaviour of the hardware and the developer can
see if this behaviour matchs with the expected behaviour. In this Master Thesis two types of
simulations have been done unsing for that the Simulator iSim, included in the Xilinx ISE suite.

Behavioral simulations

The behavioral simulations are the simpler simulations. As his name says, they are used to
test the proper behaviour of the developed hardware module. In this testing stage, concept and
programming errors in the VHDL code can be found. If the simulation shows the expected
behaviour, it is a good point but it does not mean that the developed hardware is going to work
in the FPGA because this simulation is executed even before the synthesis of the hardaware,
which means that the delay of the signals, clock skew, and other important parameters are not
taken into count. These simulations can be performed manually but there is an important tool to
make them automatic. This tool is the called VHDL testbench. A testbench is a normal VHDL
file used for testing (it is not possible to do the synthesis stage) purposes, where stimulus signals
can be generated and connected to the VHDL modules, which are intended to be tested.

95

Post place and route simulations

Post place and route simulations are generated by the Xilinx ISE right after the place and route
stage, which is the last one before generating the final bitstream. These type of simulations
includes, additional to the behavioral simulations features, the delay of the signals in the model,
so they are really usefull to test if the timing constraints are met, the delays, the clock skew and
the hold to set up. When a post place and route simulation shows the desired behaviour and
delays, the developed hardware is going to work on the FPGA.

8.1.2 Testing platform

Apart from the simulator, all the developed peripherals and coprocessors were tested on the
board. In the case of the peripherals because they control physical devices on the board and
it is important to test if they work properly. In the case of the coprocessor just to test if they
produce the expected calculations. For both, all the functionality included in the drivers were
tested.

For testing purposes, a small Embedded platform was developed following the same design as
the final system but only with the strictly necesary components to test the components. The
selected software was the Standalone platform instead of the Xilkernel. Standalone does not
need configuration and runs with lower memory requirements.

8.2 Software

After the hardware was developed, the software was developed and had to be tested. This
software part includes both drivers and control routines.

8.2.1 Testing platform

The testing platform was the final Embedded System with a Xilkernel operating system.

8.2.2 Modules

Drivers

The software drivers of each peripheral and coprocessor were tested at the same time of the
hardware. Very simple software routines were writen in order to test the features of the hard-
ware. In some cases, the interaction of the user is required to test the hardware and software.
For example, when the analog and digital inputs were tested, the user had to select the dif-
ferent positions of each switch and button to test the digital inputs. In the case of the analog
inputs, the interaction with the different analog sensors (accelerator, brake and other sensors)
was required.

96

Control

The control routine was tested manually using the onboard debugger and the standard input/out-
put through an Hyperterminal. All the important parameters were displayed in the Hypertermi-
nal at each control loop round.

Communications

The communication software was tested using the abovementioned Hyperterminal as well a
secondary communication module in the case of the CAN bus VHDL module.

8.2.3 Integration
The completelly integrated system, both hardware and software, was tested with all the sensor
connected to the board. It was only necessary to prove that the parameters and values in the
software were the expected.

8.3 System

8.3.1 Traction control
The traction control coprocessor was tested mainly in the garage. Two ways of testing the
traction control were performed:

1. Simulation of the slip values: A software routine was developed to simulate the slip
values of the wheels. The slip telemetry data was recorded in a previous test in June
2013, when the original software traction control was in testing stage. The reaction of
the hardware coprocessor was stored and used to create a chart to compare his behaviour
with the software version.

2. In the car: The wheel slip values in real time were transmited to the coprocessor and the
calculated correction factor was used to reduce the amount of torque in each moment.

Validation Charts

Figure 8.1 shows the behaviour of the Traction Control core. The slip of the wheels was simu-
lated in a simular way to real values from a previous test in June 2013.

8.3.2 Torque vectoring
The torque vectoring coprocessor was tested only in the garage. In order to test the torque
vectoring is needed a wide testing place to drive the kart in constant curve trajectories. Battery
autonomy is also an important point. Because the autonomy is not more than 100 meters at full
power and the wide testing place required to move the kart from the South campus to the East
campus of the Univeristy, the torque vectoring behaviour was tested with a software simulation
routine. Because this torque vectoring is calculated with a mathematical formula, it is easy to
compare his behaviour with the expected values.

97

Figure 8.1: Traction Control simulation

Validation Charts

Figure 8.2 shows the behaviour of the Torque Vectoring core. It was simulated from 0 to 40
m/s (the maximum speed of the kart) and for different steering angles.

Figure 8.2: Torque Vectoring simulation

98

Figure 8.3: Garage testing environment

8.3.3 Testing environment
The system was tested in two different environments, in the garage and in the street.

Garage

In the garage the majority of the test (static tests) were performed. The power supply in this
case was connected direct to the power network and set to a stable and constant 24 Volts with
a maximum meassured current of 4,5 Amps. Figure 8.3 shows the testing environment in the
garage, where the first tests in the kart were made.

Street

At the street the dynamical tests were performed. Due to evident limitations (weather, testing
place and volunteers) only a few test journeys could be done but important telemetry data for
posterior analysis was colected.

Figure 8.4 shows the set up of the kart for testing purposes. The new custom board is fixed in
the chassis and connected via serial port with the Siemens IPC.

Figure 8.5 shows the testing environment in the street, where the traction control was tested on
the new custom board.

99

Figure 8.4: Street testing set up

Figure 8.5: Street testing environment

100

Chapter 9

Conclusions

In this chapter, the technical and personal valoration, as well as the possible further work are
presented.

9.1 Technical valoration
• Traction Control: The Traction Control core behaves in the same way as the software

version and reduces load in the software, so a better overall performance is reached.

• Torque Vectoring: The Torque Vectoring core reduces also the load of the software and
helps to reach a higher performance.

• I/O and COM Peripherals: The I/O and COM peripherals offer a standard register inter-
face to connect or adapt them to any existing type of bus and embedded system.

• Set the basis for further Bachelor/Master Thesis: There are many more things to im-
plement in this Kart and this Thesis is only the basis and the beginning for upcomming
Thesis.

• Performance: The new system has a better performance than the older one, which means
that additional features can be added in the source code without handicapping the base
performance thanks to this given performance margin.

9.2 Personal valoration
This Master Thesis has been the second contact (first was the Bachelor Thesis) with the Auto-
motive Industry. During this Master Thesis, I have improved my knowledge on certain fields,
that I have treated in the past, as well I have learnt about new technologies and interesant topics:

• Xilinx Tools: I had 3 years of experience in the Xilinx Embedded Development Kit,
thanks to the previous work on my Bachellor Thesis and further personal interest. In this
Master Thesis, I have improved my knowledge about this tools and also I have learnt how
different is the design of an Embedded System for a, unknown to this moment, different
FPGA target Spartan 6 instead of Spartan 3.

101

• New operating systems: In the development of the software, I had to learn the use of
two different operating systems, both completely new for me. In the case of the Xilker-
nel, how it works, how to configurate the kernel to get a custom and small system and
of course how to develop software for the Xilkernel using the available features of the
system. In the case of the RMOS3 of Siemens, I had to understand how the operating
system works as well as the control software routines. These two operating system are
widely used in the industry, so this can be considered as an starting point to learn these
technologies.

• Electronics: I had only the basic knowledge about electronics but in this Master Thesis I
have learnt a lot of new concepts, from the basic knowledge about the physical chips on
the board and their functionaly to the electric motors, converters and industrial electron-
ics.

• Mechanical engineering: Because the main basis of this Thesis is the VDE Kart, some
implemented functionalities, such as the traction control and torque vectoring, requiered
the understanding of the basic mechanical priciples in order to know, how they work and
translate this knowledge to the electronical and software design.

• Communications: I have improved my knowledge about the CAN bus but I have also
learnt about Profinet protocol standard.

• Embedded Systems: The system of this Thesis is really big compared with other embed-
ded systems, that I have designed in the past, so it gave me the opportunity to learn how
to design and integrate the hardware components aiming the best possible performance
but also trying to keep the design compact.

• Simulation and test of hardware: I have learnt how to write VHDL testbenchs for the
automatization of the hardware tests.

9.3 Further work
• Increase the frequency of the system: It is unknown, which requirements are needed for

the future. The System has been implemented thinking in that and it does not run at
his maximum performance. The actual frequency of the system is set to 50 MHz but
this design could allow up to 120 MHz. In the future, more components are going to be
added, thus the performance at 50MHz could be affected. The easiest way to increase the
global performance of the system is to increase the base frequency.

• Multi-core system: Other way to increase the performance of the system, if needed, is
to add more processors to the system and built a multi core version. Multi core ver-
sions could run at lower frequencies, which could represent a better power consumption.
Due to the flexibility of the FPGAs and the remaining space in the selected FPGA this
extension is possible and not a complicated task thanks to the Xilinx development tools.

• Wireless Live Telemetry using GSM: Telemetry is an important aspect in motor racing
and if it can be accessed live, it could allow the engineers to have a exact view point
of the situation at each moment and tell the driver if some changes are needed to reach

102

a better performance. The term “‘live” means that the transmission of the information
must be performed wireless. The GSM option has been considered and the custom board
has a GSM transceiver, so making a few changes to the hardware system, it is possible to
send the information via GSM by using a simple UART.

• Display: It is also possible to add a display, where the driver can see in real time the most
important parameters of the kart, such as speed, the charge of the batteries, temperature
of the motors and more. The custom board has an HDMI connector, so a HDL HDMI
controller could be added to the system to control the display.

• Launch control: The launch control is a system similar to the traction control but they
are by concept used for different purposes. Meanwhile the traction control is dynamic,
the launch control is static, which means that his behaviour is programed before the start.
Both can be used to achieve better traction at the start but the launch control will not
work appart from the start because it is only designed for this purpose. Despite that, the
launch control has a better performance at the start compared to the traction control.

• Regenerative braking (Active motor braking): The kart has only disk brakes on the front
wheels, which means that the braking power is focused on the front wheels. The weight
distribution of the kart is approximately 25/75, which means that the majority of the
weight is on the rear axle. For braking dynamics it is really bad because the front wheels
have less grip and it is really easy to block them. In order to add more braking power and
to balance the brakes, it is possible to brake with the electric motors. In addition, if the
system allows regenerative braking, the energy generated by the motors can be used to
charge the batteries.

• Delegate more tasks to hardware: Certain tasks could be performed by the hardware in
the future, releasing load to the processor.

103

104

Appendix A

Development tools

Doxygen
Doxygen is the de facto standard tool for generating documentation from annotated C++ sources,
but it also supports other popular programming languages such as C, Objective-C, C#, PHP,
Java, Python, IDL (Corba, Microsoft, and UNO/OpenOffice flavors), Fortran, VHDL, Tcl, and
to some extent D.

Doxygen can help you in three ways:

1. It can generate an on-line documentation browser (in HTML) and/or an off-line refer-
ence manual (in LATEX) from a set of documented source files. There is also support for
generating output in RTF (MS-Word), PostScript, hyperlinked PDF, compressed HTML,
and Unix man pages. The documentation is extracted directly from the sources, which
makes it much easier to keep the documentation consistent with the source code.

2. You can configure doxygen to extract the code structure from undocumented source files.
This is very useful to quickly find your way in large source distributions. Doxygen can
also visualize the relations between the various elements by means of include depen-
dency graphs, inheritance diagrams, and collaboration diagrams, which are all generated
automatically.

3. You can also use doxygen for creating normal documentation (as I did for the doxygen
user manual and web-site).

Please see http://www.stack.nl/~dimitri/doxygen/ to have a more detailed look
about Doxygen.

Dia
Dia is roughly inspired by the commercial Windows program ’Visio,’ though more geared
towards informal diagrams for casual use. It can be used to draw many different kinds of
diagrams. It currently has special objects to help draw entity relationship diagrams, UML di-
agrams, flowcharts, network diagrams, and many other diagrams. It is also possible to add

105

http://www.stack.nl/~dimitri/doxygen/

support for new shapes by writing simple XML files, using a subset of SVG to draw the shape.

It can load and save diagrams to a custom XML format (gzipped by default, to save space), can
export diagrams to a number of formats, including EPS, SVG, XFIG, WMF and PNG, and can
print diagrams (including ones that span multiple pages).

Please see https://wiki.gnome.org/Apps/Dia to have a more detailed look about
Dia.

Xilinx Project Navigator

Project Navigator integrates the tools you need and gets your design process started quicker in
an easy-to-use graphical interface. All Editions of the ISE Design Suite include the ISE Project
Navigator which provides project and design source management, easy access to running all
necessary steps in the ISE design flow, and access to viewing and analyzing design results. In
addition, designers have access to intuitive Architecture Wizards and IP catalog, language tem-
plates, graphical tools to assist with I/O planning, constraint entry, and design analysis, ISim
HDL simulator, error navigation to Answer Records on the Web, and much more.

Please see http://www.xilinx.com/tools/projnav.htm to have a more detailed
look about Project Navigator.

ISim

ISim provides a complete, full-featured HDL simulator integrated within ISE. HDL simulation
now can be an even more fundamental step within your design flow with the tight integration
of the ISim within your design environment.

Please see http://www.xilinx.com/tools/isim.htm to have a more detailed look
about ISim.

EDK

The Embedded Development Kit (EDK) is an integrated development environment for design-
ing embedded processing systems. This pre-configured kit includes Xilinx Platform Studio
and the Software Development kit, as well as all the documentation and IP that you require
for designing Xilinx Platform FPGAs with embedded PowerPC hard processor cores and/or
MicroBlaze soft processor cores.

Please see http://www.xilinx.com/tools/platform.htm to have a more detailed
look about Xilinx EDK.

106

https://wiki.gnome.org/Apps/Dia
http://www.xilinx.com/tools/projnav.htm
http://www.xilinx.com/tools/isim.htm
http://www.xilinx.com/tools/platform.htm

SDK
The Software Development Kit (SDK) is the Xilinx Integrated Design Environment for creat-
ing embedded applications on any of Xilinx’ award winning microprocessors from Zynq-7000
All Programmable SoCs, to the industry-leading MicroBlaze. SDK is the first application IDE
to deliver true homogenous and heterogenous multi-processor design and debug.

Please see http://www.xilinx.com/tools/sdk.htm to have a more detailed look
about Xilinx EDK.

107

http://www.xilinx.com/tools/sdk.htm

108

Bibliography

[1] VDE group Karlsruhe website: http://vde-karlsruhe.de/das-projekt

[2] Francisco Caicedo Montalvo: Entwurf und Implementierung einer Antriebss-
chlupfregelung. Bachelor’s Thesis, Karlsruher Institut für Technologie, September 2012.

[3] Philipp Bäuerle: Das VDE E-Performance Kart. Bachelor’s Thesis, Karlsruher Institut für
Technologie, October 2011.

[4] Malcom Burgess: Torque Vectoring http://www.
vehicledynamicsinternational.com/downloads/VDI_Lotus_
Vector.pdf

[5] Torque vectoring technology: http://torque-vectoring.belisso.com/

[6] Wisniewski, Remigiusz (2009). Synthesis of compositional microprogram control
units for programmable devices. University of Zielona Gora. ISBN 978-83-7481-293-
1 http://zbc.uz.zgora.pl/Content/27955/Remigiusz_Wisniewski_
Synthesis_of_CMCUs_for_Programmable_Devices.pdf

[7] FPGA Architecture for the Challenge. Electrical and Computer Engineering De-
partment, University of Toronto http://www.eecg.toronto.edu/~vaughn/
challenge/fpga_arch.html

[8] Dennis M. Ritchie. “The History of the C Programming Language”. Retrieved February
26, 2014. http://cm.bell-labs.com/who/dmr/chist.html

[9] “Programming Language Popularity”. 2009. Retrieved 16 January 2009. http://www.
langpop.com/

[10] CAN wiki: http://www.can-wiki.info/doku.php

[11] CAN bus standard document: http://www.bosch-semiconductors.de/
media/pdf_1/canliteratur/can2spec.pdf

[12] Xilinx datasheet 160: http://www.xilinx.com/support/documentation/
data_sheets/ds160.pdf

[13] Xilinx Microblaze FAQ: http://www.xilinx.com/products/design_
resources/proc_central/microblaze_faq.pdf

109

http://vde-karlsruhe.de/das-projekt
http://www.vehicledynamicsinternational.com/downloads/VDI_Lotus_Vector.pdf
http://www.vehicledynamicsinternational.com/downloads/VDI_Lotus_Vector.pdf
http://www.vehicledynamicsinternational.com/downloads/VDI_Lotus_Vector.pdf
http://torque-vectoring.belisso.com/
http://zbc.uz.zgora.pl/Content/27955/Remigiusz_Wisniewski_Synthesis_of_CMCUs_for_Programmable_Devices.pdf
http://zbc.uz.zgora.pl/Content/27955/Remigiusz_Wisniewski_Synthesis_of_CMCUs_for_Programmable_Devices.pdf
http://www.eecg.toronto.edu/~vaughn/challenge/fpga_arch.html
http://www.eecg.toronto.edu/~vaughn/challenge/fpga_arch.html
http://cm.bell-labs.com/who/dmr/chist.html
http://www.langpop.com/
http://www.langpop.com/
http://www.can-wiki.info/doku.php
http://www.bosch-semiconductors.de/media/pdf_1/canliteratur/can2spec.pdf
http://www.bosch-semiconductors.de/media/pdf_1/canliteratur/can2spec.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/products/design_resources/proc_central/microblaze_faq.pdf
http://www.xilinx.com/products/design_resources/proc_central/microblaze_faq.pdf

[14] Xilinx Microblaze website: http://www.xilinx.com/tools/microblaze.
htm

[15] Xilinx OS library: http://www.xilinx.com/support/documentation/
sw_manuals/xilinx11/oslib_rm.pdf

[16] Local Memory Bus (LMB) v1.0: http://www.xilinx.com/support/
documentation/ip_documentation/lmb.pdf

[17] IP Processor LMB BRAM Interface Controller http://www.xilinx.com/
support/documentation/ip_documentation/lmb_bram_if_cntlr/
v3_00_b/lmb_bram_if_cntlr.pdf

[18] LogiCORE IP Clock Generator: http://www.xilinx.com/support/
documentation/ip_documentation/clock_generator.pdf

[19] LogiCORE IP XPS Timer/Counter: http://www.xilinx.com/support/
documentation/ip_documentation/xps_timer.pdf

[20] LogiCORE IP XPS Interrupt Controller: http://www.xilinx.com/support/
documentation/ip_documentation/xps_intc.pdf

[21] XPS General Purpose Input/Output (GPIO): http://www.xilinx.com/
support/documentation/ip_documentation/xps_gpio.pdf

[22] LogiCORE IP XPS UART Lite: http://www.xilinx.com/support/
documentation/ip_documentation/xps_uartlite/v1_02_a/xps_
uartlite.pdf

[23] LogiCORE IP Processor Local Bus: http://www.xilinx.com/support/
documentation/ip_documentation/plb_v46.pdf

[24] Opencores Wishbone bus standard: http://cdn.opencores.org/downloads/
wbspec_b3.pdf

[25] PLB to Wishbone core: http://opencores.org/project,plbv46_to_wb_
bridge

[26] Xilinx Platform Specification Format: http://www.xilinx.com/support/
documentation/sw_manuals/xilinx13_2/psf_rm.pdf

[27] Xilinx Floating point operator: http://www.xilinx.com/support/
documentation/ip_documentation/floating_point_ds335.pdf

[28] Xilinx CORDIC IP core: http://www.xilinx.com/support/
documentation/ip_documentation/cordic/v5_0/ds858_cordic.pdf

[29] RMOS3 reference manual part 2: http://cache.automation.siemens.
com/dnl/jU/jUzODg4OQAA_84119572_HB/RMOS3_Reference_Manual_
Part2.pdf

110

http://www.xilinx.com/tools/microblaze.htm
http://www.xilinx.com/tools/microblaze.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/oslib_rm.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/oslib_rm.pdf
http://www.xilinx.com/support/documentation/ip_documentation/lmb.pdf
http://www.xilinx.com/support/documentation/ip_documentation/lmb.pdf
http://www.xilinx.com/support/documentation/ip_documentation/lmb_bram_if_cntlr/v3_00_b/lmb_bram_if_cntlr.pdf
http://www.xilinx.com/support/documentation/ip_documentation/lmb_bram_if_cntlr/v3_00_b/lmb_bram_if_cntlr.pdf
http://www.xilinx.com/support/documentation/ip_documentation/lmb_bram_if_cntlr/v3_00_b/lmb_bram_if_cntlr.pdf
http://www.xilinx.com/support/documentation/ip_documentation/clock_generator.pdf
http://www.xilinx.com/support/documentation/ip_documentation/clock_generator.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_timer.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_timer.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_intc.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_intc.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_gpio.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_gpio.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_uartlite/v1_02_a/xps_uartlite.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_uartlite/v1_02_a/xps_uartlite.pdf
http://www.xilinx.com/support/documentation/ip_documentation/xps_uartlite/v1_02_a/xps_uartlite.pdf
http://www.xilinx.com/support/documentation/ip_documentation/plb_v46.pdf
http://www.xilinx.com/support/documentation/ip_documentation/plb_v46.pdf
http://cdn.opencores.org/downloads/wbspec_b3.pdf
http://cdn.opencores.org/downloads/wbspec_b3.pdf
http://opencores.org/project,plbv46_to_wb_bridge
http://opencores.org/project,plbv46_to_wb_bridge
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/psf_rm.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/psf_rm.pdf
http://www.xilinx.com/support/documentation/ip_documentation/floating_point_ds335.pdf
http://www.xilinx.com/support/documentation/ip_documentation/floating_point_ds335.pdf
http://www.xilinx.com/support/documentation/ip_documentation/cordic/v5_0/ds858_cordic.pdf
http://www.xilinx.com/support/documentation/ip_documentation/cordic/v5_0/ds858_cordic.pdf
http://cache.automation.siemens.com/dnl/jU/jUzODg4OQAA_84119572_HB/RMOS3_Reference_Manual_Part2.pdf
http://cache.automation.siemens.com/dnl/jU/jUzODg4OQAA_84119572_HB/RMOS3_Reference_Manual_Part2.pdf
http://cache.automation.siemens.com/dnl/jU/jUzODg4OQAA_84119572_HB/RMOS3_Reference_Manual_Part2.pdf

[30] RMOS3 reference manual part 3: http://cache.automation.siemens.
com/dnl/zQ/zQ5Mjc3AAAA_84125183_HB/RMOS3_Reference_Manual_
Part3.pdf

[31] Open Cores Community: http://opencores.org/

111

http://cache.automation.siemens.com/dnl/zQ/zQ5Mjc3AAAA_84125183_HB/RMOS3_Reference_Manual_Part3.pdf
http://cache.automation.siemens.com/dnl/zQ/zQ5Mjc3AAAA_84125183_HB/RMOS3_Reference_Manual_Part3.pdf
http://cache.automation.siemens.com/dnl/zQ/zQ5Mjc3AAAA_84125183_HB/RMOS3_Reference_Manual_Part3.pdf
http://opencores.org/

112

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful doc-
ument “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secon-
darily, this License preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the

113

Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial, philo-
sophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the doc-
ument straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file format whose markup, or ab-
sence of markup, has been arranged to thwart or discourage subsequent modification by readers
is not Transparent. An image format is not Transparent if used for any substantial amount of
text. A copy that is not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Ex-
amples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.
The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning of the body of the text.
The “publisher” means any person or entity that distributes copies of the Document to the
public.
A section “Entitled XYZ” means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in an-
other language. (Here XYZ stands for a specific section name mentioned below, such as
“Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section “Enti-
tled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this

114

License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or state
in or with each Opaque copy a computer-network location from which the general network-
using public has access to download using public-standard network protocols a complete Trans-
parent copy of the Document, free of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to en-
sure that this Transparent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

115

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for au-
thorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public per-
mission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then add
an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

116

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that
the text has been approved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

117

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggregate”
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any War-
ranty Disclaimers, provided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original
version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void,
and will automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copy-
right holder notifies you of the violation by some reasonable means, this is the first time you
have received notice of violation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, receipt of a copy of some or all of the same material does not
give you any rights to use it.

118

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documenta-
tion License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to choose that version for the
Document.

11. RELICENSING
“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business
in San Francisco, California, as well as future copyleft versions of that license published by
that same organization.
“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.
An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on
the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute
and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Founda-
tion; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU Free Documentation
License”.

119

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with . . .
Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover
Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

120

	Introduction
	Overview
	Motivation
	Starting Point
	Problem definition
	Schedule
	System analysis
	Hardware development
	Software development
	Verification process and tests
	Gantt chart

	The VDE KART
	Overview
	Main components
	Siemens IPC 427
	Motors
	Converters
	Control units
	Wheel speed sensors
	Supercapacitors
	Safety
	Information leds

	Functions
	Torque Vectoring
	Traction Control System
	Brake balance
	Offline telemetry

	Involved Technologies
	FPGA
	ITIV's custom Xilinx Spartan 6 board for VDE Kart
	Spartan 6 family
	Board features

	Hardware description languages
	VHDL
	Verilog

	Programming languages
	C programming language

	CAN-bus
	Features

	Design of the system
	Hardware
	Xilinx Microblaze

	Sotfware
	Xilinx Standalone
	Xilinx Xilkernel

	Restrictions
	Memory

	Selected Software platform
	Advantages
	Outlook

	Hardware development
	Microblaze
	Configuration

	Block RAM
	Interface
	Configuration

	PLB Bus
	Wishbone Bus
	PLB to WB Bridge
	PLB Wrapper
	Wrapper template generation
	Modifications to the template
	Peripherals to have the PLB wrapper

	CAN transceiver
	OpenCores CAN transceiver core
	Wrapper

	Torque vectoring
	Analysis
	Design
	Implementation
	Performance

	Traction Control System
	Analysis
	Design
	Implementation
	Performance

	Inputs/Outputs
	Digital Inputs
	Digital Outputs
	Analog Inputs

	Power on reset
	Analysis
	Design
	Implementation

	System Timer
	Interrupt Controller
	LEDS
	GPIO

	UART
	XPS Uartlite
	STDIO UART
	Communication UART
	UART Enable GPIO

	Clock generators
	System Clock Generator
	Peripheral Clock Divider
	System Clocks

	Memory map
	Final system

	Control Software development
	System requirements
	Functional requirements
	Information requirements
	Non functional requirements

	Software Life model
	First iteration
	Second iteration
	Third iteration

	Analysis
	Use Case model
	Data model
	Behaviour model
	External interfaces

	Design
	System architecture
	Behaviour model

	Implementation
	CAN bus
	Multi-threading
	Xilkernel Operating System
	Linker Script and BMM file

	Test Software development
	Limitations and adopted solution
	Industrial PC software
	RMOS3
	UART communication
	IO configuration
	UART timing
	Synchronization switch
	Telemetry information

	Test Software
	Multi-threading
	Communication protocol

	Test and Validation
	Hardware
	Simulator
	Testing platform

	Software
	Testing platform
	Modules
	Integration

	System
	Traction control
	Torque vectoring
	Testing environment

	Conclusions
	Technical valoration
	Personal valoration
	Further work

	Development tools
	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	11. RELICENSING
	ADDENDUM: How to use this License for your documents

