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M A J O R A R T I C L E

Exposure to Rifampicin Is Strongly Reduced
in Patients with Tuberculosis and Type 2 Diabetes
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and 5Division of Tropical Medicine and Infectious Diseases, Department of Internal Medicine, University of Indonesia, and 6Indonesian
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Background. Type 2 diabetes (DM) is a strong risk factor for tuberculosis (TB) and is associated with a slower
response to TB treatment and a higher mortality rate. Because lower concentrations of anti-TB drugs may be a
contributing factor, we compared the pharmacokinetics of rifampicin in patients with TB, with and without DM.

Methods. Seventeen adult Indonesian patients with TB and DM and 17 age- and sex-matched patients with
TB and without DM were included in the study during the continuation phase of TB treatment. All patients
received 450 mg of rifampicin (10 mg/kg) and 600 mg of isoniazid 3 times weekly. Steady-state plasma concen-
trations of rifampicin and its metabolite desacetylrifampicin were assessed at 0, 2, 4, and 6 h after drug intake.

Results. Geometric means of rifampicin exposure (AUC0–6 h) were 12.3 mg � h/L (95% confidence interval
[CI], 8.0–24.2) in patients with TB and DM, and 25.9 mg � h/L (95% CI, 21.4–40.2) in patients with TB only
( ). Similar differences were found for the maximum concentration of rifampicin. No significant differencesP p .003
in time to maximum concentration of rifampicin were observed. The AUC0–6 h of desacetylrifampicin was also
much lower in patients with TB and DM versus patients with TB only (geometric mean, 0.60 vs. 3.2 mg � h/L;

). Linear regression analysis revealed that higher body weight ( ), the presence of DM ( ),P p .001 P ! .001 P p .06
and plasma glucose concentration ( ) were correlated with exposure to rifampicin.P p .016

Conclusion. Exposure (AUC0–6 h) to rifampicin was 53% lower in Indonesian patients with TB and DM,
compared with patients with TB only. Patients with TB and DM who have a higher body weight may need a
higher dose of rifampicin.

Worldwide, the prevalence of type 2 diabetes (DM) is

increasing—especially in developing countries, where

tuberculosis (TB) is highly endemic. More specifically,

it is estimated that, in 20 years, 75% of the patients

with DM will live in countries that harbor the majority

of cases of TB [1]. As a result, a growing number of

patients with TB will have DM. Recent studies from

Saudi Arabia [2], Russia [3], and from our own group

in Indonesia [4] reveal that 10%–30% of patients with

TB may have DM at this time. This is important, be-

cause DM seems to be associated with a less favorable

response to TB treatment [5, 6]. Indeed, in a large

Received 28 April 2006; accepted 13 June 2006; electronically published 22
August 2006.

Reprints and correspondence: Dr. Reinout van Crevel, P.O. Box 9101, 6500 HB,
Nijmegen, The Netherlands (R.vanCrevel@aig.umcn.nl).

Clinical Infectious Diseases 2006; 43:848–54
� 2006 by the Infectious Diseases Society of America. All rights reserved.
1058-4838/2006/4307-0008$15.00

Indonesian cohort of patients with TB, the presence of

DM was associated with significantly lower sputum

conversion rates after 8 weeks of treatment (B Alisjah-

bana et al., unpublished data).

Altered pharmacokinetics of anti-TB drugs may ex-

plain the adverse effect of DM on the response to TB

treatment. It has been shown that patients who have

DM have lower plasma concentrations of certain drugs

[7, 8]. If this also applies to anti-TB drugs, this might

explain the slower response to TB treatment in patients

with DM. Lower plasma concentrations of anti-TB

drugs have been associated with clinical failure and ac-

quired drug resistance [9–11]. For rifampicin, a key

drug in TB treatment, available evidence suggests that

its efficacy is dependent on exposure to the drug or to

the maximum drug concentrations achieved [12].

Recent studies, including ours, have reported low

plasma concentrations of anti-TB drugs in patients with

TB [13–16], but thus far, no studies have systematically

examined the pharmacokinetics of TB drugs in patients
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Table 1. Characteristics of patients with tuberculosis (TB) and
of patients with TB and type 2 diabetes (TB-DM).

TB-DM group TB group P

Male sex, n/N (%) 9/17 (53) 11/17 (65) .49a

Age, years 50 (28–60) 48 (27–59) .85
Weight, kg 55.6 (36.6–75.2) 46.2 (33.6–70.8) .01

Male patients 55.6 (45–75.2) 50.0 (33.6–55.2) .03
Female patients 55.4 (36.6–65.2) 40.4 (36.2–70.8) .15

BMI 23.9 (16.5–27.7) 18.9 (13.8–33.0) .007
Male patients 20.9 (16.5–26.6) 19.1 (13.8–21.0) .015
Female patients 24.8 (18.8–27.7) 18.7 (15.6–33.0) .19

Fasting blood glu-
cose, mmol/L 9.3 (6.3–12.3) 5.2 (4.4–5.6) !.001

HbA1c, % 9.85 (0–13) 5.6 (0–7) .014
Rifampicin dose,

mg/kg body
weight 8.1 (6.0–12.3) 9.7 (6.4–13.4) .008

NOTE. Data are median (range), unless otherwise indicated. P values
were calculated using the independent t test, unless otherwise indicated.
BMI, body mass index (calculated as weight in kilograms divided by the
square of height in meters); HbA1c, hemoglobin A1c; TB, patients with tu-
berculosis; TB-DM, patients with tuberculosis and type 2 diabetes.

a P value calculated using Pearson’s x2 test.

with DM. Therefore, in the present study, we compared plasma

concentrations of rifampicin in patients with TB with and with-

out DM.

METHODS

Study design and recruitment of subjects. We conducted a

prospective pharmacokinetic study in the urban outpatient TB

clinic Perkumpulan Pemberantasan Tuberculosis Indonesia, in

Jakarta, Indonesia. Within the context of a larger study that

evaluated the effect of DM on the immune response in patients

with TB, patients with TB who had DM were included, and

age- and sex-matched patients with TB who did not have DM

were selected as control subjects.

Diagnosis of TB was based on clinical symptoms and chest

radiography examination and was confirmed by microscopic

detection of acid-fast bacilli and culture positive for Mycobac-

terium tuberculosis. Treatment consisted of a standard regimen

of daily rifampicin, isoniazid, pyrazinamid, and ethambutol for

2 months, as well as rifampicin and isoniazid 3 times weekly

for another 4 months, according to the Indonesian National

Tuberculosis Program. All patients were administered identical

TB drugs from a national manufacturer. Isoniazid and rifam-

picin were formulated in separate tablets. Bioequivalence of the

rifampicin tablets to an international reference standard was

established previously [17]. All patients were included after at

least 2 weeks of TB treatment in the continuation phase. The

Indonesian National Tuberculosis Program recommends 450

mg of rifampicin (10 mg/kg, considering the lower average body

weight of Indonesian people) and 600 mg of isoniazid 3 times

a week during the continuation phase.

Capillary and venous blood glucose levels were measured in

all patients before the start of TB treatment. Newly established

DM was diagnosed according to World Health Organization

criteria [18]—that is, a fasting blood glucose value of �7.0

mmol/L, a capillary blood glucose value of �6.1 mmol/L, or

a random plasma glucose value of �11.1 mmol/L, measured

at 2 different time points. A diagnosis of DM was also accepted

if patients already had established DM and were receiving an-

tidiabetic agents. At the time of blood sampling for measure-

ment of rifampicin pharmacokinetics, DM was confirmed, be-

cause hyperglycemia may disappear during TB treatment [19].

This confirmation showed that capillary fasting blood glucose

concentrations were �6.1 mmol/L in all patients, and the fast-

ing blood glucose concentration from plasma was �7.0 mmol/

L in all but 1 subject whose DM was very strictly controlled

(table 1). In accordance with national guidelines, patients with

TB and DM were treated with oral antidiabetic drugs after 2–

4 weeks of TB treatment. Study subjects had to be at least 18

years of age and were not allowed to use any drug that is known

to affect the pharmacokinetics of rifampicin. Patients were ex-

cluded if they were pregnant or lactating, if they had gastro-

intestinal tract problems (e.g., diarrhea or vomiting on the days

before the pharmacokinetic assessment), if they were HIV pos-

itive, or if they had an elevated creatinine level (11.25 times

above the upper limit of normal) or alanine transaminase level

(12 times the upper limit of normal). The study protocol of

the main DM-immune response study was approved by the

local institutional review board. Written informed consent for

the pharmacokinetic substudy was obtained from all subjects.

Pharmacokinetic assessment. From 11 p.m. on the day pre-

ceding the study day until 4 h after drug intake on the study

day, patients refrained from the intake of any food or drugs

other than the study medication. Considering that the patients

did not consume any food, they also did not take any prescribed

antidiabetic drugs during this period.

On the day of pharmacokinetic assessment, the patients were

administered 450 mg of rifampicin and 600 mg of isoniazid

with 230 mL of still water. Serial venous blood samples were

collected just prior to and 2, 4, and 6 h after witnessed drug

intake in a fasting state. Plasma was immediately separated from

blood samples and frozen at �20�C and was transferred to

storage at �80�C within 60 h until transport on dry ice to The

Netherlands for bioanalysis. The stability of rifampicin and its

metabolite desacetylrifampicin under these conditions has been

validated previously.

Bioanalysis. Total rifampicin concentrations and the con-

centrations of its main metabolite, desacetylrifampicin, were

analyzed using a validated high-performance liquid chroma-

tography method with UV detection. Two hundred mL of ace-
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Table 2. Pharmacokinetic parameters of rifampicin and desacetylrifampicin in 17 patients
with tuberculosis and type 2 diabetes (TB-DM) and in 17 patients with TB only.

Parameter TB-DM group TB group Ratio of TB-DM to TB P

Rifampicina

AUC0–6h, mg � h/L 12.3 (8.0–24.2) 25.9 (21.4–40.2) 0.47 (0.31–0.77) .003b

Cmax, mg/L 3.49 (2.4–6.3) 6.74 (5.6–10.1) 0.52 (0.34–0.80) .004b

Cmax 18 mg/L (%) 1/17 (5.9) 8/17 (47.0) … .007c

Tmax, median h (range) 4 (2–6) 2 (2–4) … .52d

Desacetylrifampicin
AUC0–6h, mg � h/L 0.60 (0.76–2.06) 3.2 (2.7–6.0) 0.27 (0.17–0.62) .001b

Cmax, mg/L 0.24 (0.26–0.65) 0.87 (0.72–1.60) 0.40 (0.09–0.82) .023b

Tmax, median h (range) 4 (4–6) 4 (4–6) … .524d

NOTE. Data are geometric mean (95% CI), unless otherwise indicated. AUC0–6 h, area under the plasma
concentration-time curve from time 0 until 6 h after dose administration; BMI, body mass index (calculated as
weight in kilograms divided by the square of height in meters); Cmax, maximum observed plasma concentration;
Tmax, time to Cmax.

a 450 mg (10 mg/kg) administered in the continuation phase of TB treatment.
b P value calculated using the independent t test on natural logarithm–transformed data.
c P value calculated using Pearson’s x2 test.
d P value calculated using the Wilcoxon rank sum test.

tonitrile and 10 mL of ascorbic acid solution were added to 200

mL of plasma sample. The mixture was vortexed for 20 s and

centrifuged for 5 min, at which time 400 mL of 10 mmol/L

potassium dihydrogen phosphate was added. The mixture was

then vortexed and centrifuged again. Two hundred mL of the

clear supernatant was injected in the high-performance liquid

chromatography apparatus. Chromatographic analysis was per-

formed on an Omnispher 5 C18 column ( mm; Var-250 � 4.6

ian) protected with a Chromguard RP guard column (10 � 3

mm; Varian). The mobile phase consisted of 10 mmol/L po-

tassium dihydrogen phosphate (pH, 4.5) and acetonitrile (per-

cent by volume, 62%:38%). The flow rate was set at 1 mL/

min, and the wavelength for UV detection was 334 nm.

Rifampicin and desacetylrifampicin retention times were 7.8

min and 3.6 min, respectively. The lower limits of quantitation

for rifampicin and desacetylrifampicin were 0.28 mg/L and 0.15

mg/L, respectively. Accuracy was 99.8%, 100.4%, and 100.4%

for the rifampicin standard concentrations of 2.9 mg/L, 9.5 mg/

L, and 23.7 mg/L, respectively. The accuracy of the desacetyl-

rifampicin standard concentrations of 0.09 mg/L, 2.25 mg/L,

and 27.0 mg/L was 103.9%, 102.4%, and 102.6%, respectively.

Intraday precision and between-day precision (coefficient of

variation, %) ranged from 0.7% to 1.1% and from 0.1% to

0.6% for rifampicin, and from 0.9% to 2.9% and from 0.5%

to 3.6% for desacetylrifampicin, respectively.

Pharmacokinetic analysis. Pharmacokinetic parameters of

rifampicin and desacetylrifampicin were calculated using non-

compartmental methods. The area under the plasma concen-

tration time curve from time 0 h until 6 hours after the dose

(AUC0–6 h) was assessed using the linear trapezoidal rule. The

highest observed plasma concentration was defined as Cmax, and

the corresponding sampling time was defined as Tmax. Cmax and

Tmax were determined directly from the plasma concentration-

time data. Pharmacokinetic parameters were calculated using

the WinNonlin software package, version 4.1 (Pharsight Cor-

poration). The relative exposure of the metabolite desacetyl-

rifampicin versus rifampicin was expressed as the ratio of the

metabolite and the parent drug.

Data and statistical analysis. Differences in AUC0–6 h and

Cmax values in patients with TB versus patients with TB and

DM were tested with an independent sample t test on the

natural logarithm–transformed pharmacokinetic data. Pear-

son’s x2 test was used to determine the difference in proportions

of patients reaching a reference peak plasma concentration of

8 mg/L for rifampicin [20, 21]. Values for Tmax were not trans-

formed and were compared using the Wilcoxon rank sum test.

Univariate analyses were performed for the separate groups

(patients with TB and patients with TB and DM) to assess the

effect of sex, age, body weight, and fasting plasma glucose level.

A multivariate linear regression analysis with forced entry was

performed to assess the variation in rifampicin pharmacoki-

netics (AUC0–6 h and Cmax) attributable to the presence of DM

and other variables that emerged from the univariate analyses.

All statistical evaluations were performed with SPSS for Win-

dows, version 12.0.1 (SPSS). P values !.05 were considered to

be statistically significant in all analyses.

RESULTS

Patients. Thirty-six patients with pulmonary TB were re-

cruited for the study, of whom 2 were excluded from further

analysis. Rifampicin concentrations in 1 patient could not be

analyzed because of interference from endogenous substances.

Analysis of the second excluded patient revealed a trough
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Figure 1. Mean plasma concentration (mg/L) over time (h) of rifampicin
in 17 patients with tuberculosis (TB; open circles) and 17 patients with
TB and with type 2 diabetes (DM; closed squares), with standard devi-
ations. P value of comparison between groups !.05.

Figure 2. Natural logarithm of the area under the curve (AUC0–6 h) of
rifampicin versus body weight (kg) for patients with tuberculosis (TB;
dashed line) and for patients with TB and with type 2 diabetes (DM;
solid line).

plasma rifampicin concentration of 2.8 mg/L before witnessed

drug intake, which suggests that the patient had already taken

the drug before arrival at the clinic. The remaining 34 patients

presented with a 2–6-month history of cough (100% of pa-

tients), shortness of breath (85%), fever (91%), night sweats

(68%), and weight loss (85%). All patients had chest radiograph

abnormalities, and the results of sputum microscopy and cul-

ture for M. tuberculosis were positive for all patients. Charac-

teristics of these patients are presented in table 1. Twelve (71%)

of 17 patients with TB and DM used an oral antidiabetic treat-

ment at the time of plasma rifampicin measurement. Gliben-

clamide was most commonly used; only 1 patient used glipizid.

No patient was treated with metformin or insulin. Two patients

used captopril for the treatment of hypertension. Concurrent

use of glibenclamide, glipizide, or captopril is not known to

affect the pharmacokinetics of anti-TB drugs. As expected, body

weight and body mass index were significantly higher in the

TB-DM group (table 1). As a result, the rifampicin dose per

kilogram of body weight was lower for patients in the TB-DM

group.

Pharmacokinetics of rifampicin and desacetylrifampicin.

Marked interindividual variability was observed in exposure to

rifampicin (range [AUC0–6 h], 5.5–71.6 mg � h/L). Patients with

TB and DM had significantly lower rifampicin plasma concen-

trations than did patients with TB and without DM (table 2).

The mean exposure to rifampicin (AUC0–6 h) in patients with

TB and DM was 53% lower than the exposure in patients with

TB only (figure 1). Similar differences were found for Cmax, and

a strong correlation was observed between AUC0–6 h and Cmax

in both patients with TB only and patients with TB and DM

(Pearson correlation coefficients, 0.983 and 0.987, respectively;

). The percentage of patients who reached a referenceP ! .01

value of at least 8 mg/L for rifampicin was significantly lower

in patients with TB and DM compared with patients with TB

only. Although median rifampicin Tmax values differed between

patients with TB and DM and patients with TB only, this dif-

ference did not reach statistical significance at all. With regard

to desacetylrifampicin, the AUC0–6 h and Cmax values were sig-

nificantly lower in the TB-DM group, whereas the Tmax was not

different. The geometric mean of the desacetylrifampicin/ri-

fampicin AUC0–6 h ratio was 0.13 (95% CI, 0.11–0.15) in the

TB-only group, and 0.09 (95% CI, 0.06–0.11) in the TB-DM

group ( ).P p .009

Univariate analyses. In the TB-DM group, no statistically

significant difference was found in exposure between male and

female patients (AUC0–6 h, 18.8 vs. 13.0 mg � h/L; not signif-

icant). In the TB-only group, male patients had lower rifam-

picin exposure than female patients (mean AUC0–6 h, 24.4 vs.

42.5 mg � h/L; ). Age did not display a significantP p .048

correlation with rifampicin pharmacokinetics. Body weight in-

versely correlated with rifampicin exposure, both in the TB-

DM group (Pearson correlation coefficient, �0.462; )P p .062

and in the TB-only group (Pearson correlation coefficient,

�0.468; ) (figure 2). The parallel lines in figure 2P p .058

demonstrate an equal effect of body weight on exposure in

both groups. In addition, the difference between the dashed

(TB) and solid (TB-DM) lines illustrates a clear effect of the

presence of DM on the exposure to rifampicin. Fasting plasma

glucose showed an inverse correlation with AUC0–6 h (Pearson

correlation coefficient, �0.476; ) in the group as aP p .004

whole.

Multivariate analysis. The assumptions for multivariate
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Table 3. Regression analysis of independent associations of
various variables with exposure to rifampicin.

Model, regression
parameter B � SE P

1a

Intercept 4.889 � 0.544 !.001
Body weight �0.035 � 0.011 .004
DM �0.425 � 0.219 .062

2b

Intercept 5.423 � 0.517 !.001
Body weight �0.034 � 0.011 .004
Fasting plasma glucose

at PK assessment �0.114 � 0.045 .016

NOTE. Exposure to rifampicin expressed as the area under the plasma
concentration time curve from time 0 h until 6 h after the dose (AUC0–6 h).
Adjusted R2 is the effect size (i.e., 42.2% of the variation in the natural logarithm
of AUC0–6 h) as explained by the model. B, the regression coefficient for de-
termining the regression equation; DM, type 2 diabetes; PK, pharmacokinetic;
SE, standard error.

a Adjusted .2R p 0.424
b Adjusted .2R p 0.466

linear regression were met, including the absence of multicol-

linearity, the independence of the outcome value, and the lin-

earity of the model. The effect of the independent variables

“body weight” and “DM” on the dependent variable “the nat-

ural logarithm of AUC0–6h” were assessed in Model 1 (table 3).

The absolute difference in the natural logarithm of AUC0–6 h

between patients with TB only and patients with TB and DM

was 0.745. Every additional kilogram of body weight decreased

the natural logarithm of AUC0–6 h by 0.035. The weight differ-

ence between patients with TB only and patients with TB and

DM was approximately 9.5 kg. The weight-corrected portion

in the absolute difference for the presence of DM was 0.425,

corresponding with 57% of the difference in exposure to ri-

fampicin between groups.

A second regression analysis was performed in which fasting

blood glucose level was assessed as an independent variable for

the natural logarithm of AUC0–6 h. The presence of DM and

fasting blood glucose level cannot be assessed simultaneously

in 1 model, because these variables are highly correlated. Mul-

tivariate regression analysis revealed that fasting blood glucose

level was significantly associated with rifampicin AUC0–6h (table

3) and Cmax (data not shown). Every extra millimole of fasting

blood glucose per liter resulted in a decrease of the natural

logarithm of AUC0–6 h of 0.114. The mean difference of ap-

proximately 4 mmol/L in fasting plasma glucose between pa-

tients with TB only and patients with TB and DM corresponds

with 61% of the difference in exposure to rifampicin. Fasting

blood glucose and DM status show equal effects on the de-

pendent variable natural logarithm of AUC0–6 h. Thus, body

weight and DM and hyperglycemia are strongly and inversely

associated with rifampicin AUC0–6 h and Cmax.

DISCUSSION

In this study, we showed that exposure (AUC0–6 h) to rifampicin

was 53% lower in Indonesian patients with TB and DM com-

pared with patients with TB who did not have DM. Similarly,

Cmax of rifampicin was above the target concentration of 8 mg/

L in only 1 (6%) of 17 patients with TB and DM compared

with 8 (47%) of 17 patients with TB who did not have DM.

A higher body weight and the presence of DM contributed to

lower rifampicin exposure. In addition, more profound hy-

perglycemia was associated with lower plasma rifampicin

concentrations.

The magnitude of the difference in AUC0–6 h and Cmax values

of rifampicin between patients with TB and DM and patients

with TB only was much larger than anticipated and is likely to

be clinically relevant. A 50% lower exposure to a key TB drug

such as rifampicin may cause clinical failures and may favor

the emergence of drug resistance. In fact, the findings of this

study suggest that the unfavorable response of patients with

DM to anti-TB drugs [5, 6] may at least partially be explained

by differences in pharmacokinetics. If these findings are con-

firmed, higher fixed dosages of rifampicin may be warranted

for patients with DM and a higher body weight. If available,

physicians may consider the assessment of plasma concentra-

tions of rifampicin in patients with DM in order to individualize

dosing. In this case, we would advise the use of multiple time

point sampling.

Several mechanisms have been postulated to explain the al-

tered pharmacokinetics of anti-TB drugs in patients with DM.

The absorption, distribution, metabolism, and excretion of

drugs could all be changed in patients with DM [8]. With regard

to absorption, gastrointestinal tract problems are common in

patients with DM. In this study, patients with diarrhea and

vomiting were excluded from the study beforehand. Gastro-

paresis (delayed gastric emptying) could decrease the rate of

drug absorption, as reflected in an increase in Tmax and a de-

crease in rifampicin Cmax. However, this study did not reveal

any marked difference in Tmax between the 2 study groups,

which suggests that delayed absorption was not responsible for

a lower Cmax in patients with TB and DM. It should be ac-

knowledged that the number of sampling points may have been

too small to detect a change in Tmax. Furthermore, it is unlikely

that gastroparesis is associated with reduced absorption of ri-

fampicin, because this drug is not subject to saturable first-pass

metabolism after multiple doses and it does not have an ab-

sorption window in the gastrointestinal tract [22, 23].

The low exposure to rifampicin in patients with TB and DM

may possibly be explained by the highly pH-dependent solu-

bility and absorption of rifampicin [23, 24]. DM-associated

hyperglycemia—which is strongly related to rifampicin expo-

sure in this study—can reduce secretion of gastric hydrochloric

acid (which results in a higher gastric pH) [7, 25], which, in
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turn, has been associated with a decrease in rifampicin ab-

sorption [23]. This hypothesis needs confirmation, because gas-

tric pH was not measured in our study, and other studies have

not observed any effect of antacids on the pharmacokinetics

of rifampicin [26].

With regard to metabolism and excretion, our results suggest

that the metabolism of rifampicin to the metabolite desacetyl-

rifampicin was reduced—or excretion of this metabolite was

increased—in patients with TB and DM, at least in the first 6

h after drug administration. However, these findings do not

explain the low exposure to rifampicin in patients with TB and

DM; on the contrary, decreased metabolism of rifampicin in

the hepatocytes of patients with DM might be explained by the

expression of advanced glycosylation end-products in the liver

[27], which impairs the normal function of basement mem-

branes of cells, for example [28].

Linear regression analysis revealed an unexpectedly strong

effect of body weight on the exposure to rifampicin. These

results emphasize that rifampicin should be carefully dosed on

the basis of body weight, as recommended by the World Health

Organization and others [20]. Apparently, uniform dosing of

rifampicin for all Indonesian patients (“one dose fits all”) is

inadequate. As was clearly shown, the fact that patients with

TB and DM generally had higher body weights can only par-

tially explain the differences in rifampicin pharmacokinetics.

This study was limited by the small sample size and by the

limited number of time points for pharmacokinetic assessment.

In addition, this study only assessed the pharmacokinetics of

rifampicin in the continuation phase of treatment. Further-

more, this study focused on pharmacokinetics and did not

assess the outcome of TB treatment.

In summary, we showed that exposure to rifampicin was

strongly reduced in patients with TB and with DM. Patients

with TB and concomitant DM and who have a higher body

weight may possibly need a higher dose of rifampicin. Screening

for DM at TB diagnosis could be worthwhile, and physicians

may consider pharmacokinetic assessment of rifampicin in this

patient group (if available). Additional studies are warranted

to assess the influence of DM—as well as the possible benefit

of active treatment of DM—on the pharmacokinetics of TB

drugs and the outcome of TB treatment.
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