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THE TIGHT GROUPOID OF AN INVERSE SEMIGROUP

Ruy Exel and Enrique Pardo

In this work we present algebraic conditions on an inverse semigroup S (with zero)
which imply that its associated tight groupoid Gtight(S) is: Hausdorff, essentially prin-
cipal, minimal and contracting, respectively. In some cases these conditions are in fact
necessary and sufficient.

1. Introduction.

This article should be considered as a continuation of the work started by the first named
author in [3], where the notion of tight representations of inverse semigroups was intro-
duced and used to study a large class of C*-algebras. Given any inverse semigroup S, the
theory developed in [3] gives a recipe to build an étale groupoid, denoted Gtight(S), whose
C*-algebra is isomorphic to the universal C*-algebra for tight representations of S.

Since then a very large number of C*-algebras were shown to fit this model, including
virtually all C*-algebras in the literature defined in terms of generators and relations,
provided the relations specify that the generators are partial isometries1. To be honest,
algebras which have been referred to as Toeplitz extensions in various contexts are typically
not included, but these are often extensions of some other algebra of interest which, most
of the time, may be shown to fit the model referred to above.

To mention an example of interest to us, in [6] and [7] a unified treatment was given
to a certain class of C*-algebras studied by Katsura in [9], alongside Nekrashevych’s C*-
algebras introduced and discussed in [12], [13] and [14]. The unifying principle is the
notion of self similar graphs introduced in [7], which gives rise to C*-algebras that can
be effectively studied via the already mentioned theory of tight representations of inverse
semigroups.

The applications of this circle of ideas to a growing class of C*-algebras begs for a
unified treatment of questions of relevance in the study of the structure of such C*-algebras.
Since these are groupoid C*-algebras for Gtight(S), and since many algebraic properties of
the C*-algebra depend directly on this groupoid, we have spent a lot of effort in trying
to characterize these properties in terms of the algebraic structure of the given inverse
semigroup. The present paper is thus our account of that effort, in which we were more or
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less successful in determining conditions on S, often necessary and sufficient, for Gtight(S)
to be:

• Hausdorff,

• essentially principal,

• minimal and

• contracting.

These conditions are all algebraic in nature and their verification is often easily determined,
as illustrated by the applications given in [8].

2. Inverse semigroups.

The specific purpose of the present section is to review some of the main concepts from
[3], occasionally offering minor improvements. We will also briefly recall some basics facts
about inverse semigroups. We refer the reader to [10] for an extensive treatment of inverse
semigroups.

2.1. Definition. An inverse semigroup is a set S equipped with an associative multipli-
cation operation

S × S → S,

such that:

(i) for every s in S, there exists a unique s∗ ∈ S, such that ss∗s = s, and s∗ss∗ = s∗,

(ii) there exists a (necessarily unique) element 0 ∈ S, called the zero element , such that
s0 = 0s = 0, for all s in S.

Axiom (2.1.ii) is not usually part of the standard definitions of inverse semigroups,
but in all of our uses of this concept, the zero element will play an important role, hence
our insistence in including it explicitly.

In case an inverse semigroup S lacks a zero, it is always easy to adjoin one by simply
considering S ∪{0} with the obvious extension of the multiplication operation. In particu-
lar it is imperative to do so in case one wishes to consider groups as special cases of inverse
semigroups. Although this might seem a little strange, it causes no serious technical
problems.

Whenever an inverse semigroup S is in sight, we will denote by

E = {e ∈ S : e2 = e}.

In the rare occasions when explicit reference to S is important to dispel possible confusions,
we might also write E(S) for the above set.

It is well known that every element e in E is self-adjoint in the sense that e∗ = e.
Moreover E is a commutative sub-semigroup of S and, under the order relation

e ≤ f ⇔ e = ef, ∀ e, f ∈ E , (2.2)
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one has that the greatest lower bound e ∧ f always exists for any e and f in E , namely

e ∧ f = ef.

For this reason, E is called the idempotent semi-lattice of S.
The order relation on E may in fact be extended to an order relation on S, defined by

s ≤ t ⇔ s = ts∗s, ∀ s, t ∈ S. (2.3)

It is well known that this relation is invariant under left or right multiplication and that
s ≤ t, if and only if s = ss∗t. Moreover,

s ≤ t ⇒ s∗s ≤ t∗t, and ss∗ ≤ tt∗. (2.4)

See [10: Proposition 7] for proofs of these facts.
Given two elements e and f in E , we will say that e is orthogonal to f , provided

ef = 0. In symbols
e ⊥ f ⇔ ef = 0.

On the other hand, we say that e intersects f , when ef 6= 0. In symbols

e ⋓ f ⇔ ef 6= 0.

A character on E is any nonzero map

φ : E → {0, 1}

such that φ(0) = 0, and
φ(ef) = φ(e)φ(f),

for all e, f ∈ E .
The set of all characters on E is denoted by Ê0. This notation is meant to avoid

confusion with the set Ê of all semi-characters , meaning characters which are not required
to satisfy “φ(0) = 0”. Semi-characters are used by some authors but they will not play
any role in this work.

We will always view Ê0 as a topological space equipped with the product topology,
that is, the subspace topology inherited from {0, 1}E .

Should the zero map be allowed as a character, Ê0 would be closed in {0, 1}E , and
hence compact. Having explicitly excluded the zero map from Ê0, this becomes a locally
compact space.

A filter in E is a nonempty subset η ⊆ E , not containing the zero element, which is
closed under “∧”, and which moreover satisfies

f ≥ e ∈ η ⇒ f ∈ η,

for all e, f ∈ E . Given a filter η, we define

φη : e ∈ E 7→ [e ∈ η] ∈ {0, 1},
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where the brackets correspond to boolean value. In other words, φη is the characteristic
function of η, when η is seen as a subset of E . It is easy to see that φη is a character on E .

Conversely, given a character φ on E , the set

ηφ = {e ∈ E : φ(e) = 1}

is a filter. One may easily prove that the correspondences “φ → ηφ” and “η → φη” are
each other’s inverse, and hence filters may, and will, be identified with characters and vice
versa.

The product topology viewed from the point of view of filters is easy to describe: given
finite subsets X, Y ⊆ E , consider the set

U(X, Y ) = {η ∈ Ê0 : X ⊆ η, Y ⊆ E \ η}.

Then each U(X, Y ) is an open set and the collection of all such is easily seen to form a
basis for the topology of Ê0. Assuming that X is nonempty, and letting x0 =

∧

X , observe
that for any filter η one has that

x0 ∈ η ⇐⇒ X ⊆ η,

so

U(X, Y ) = U
(

{x0}, Y
)

.

On the other hand, if X is empty, and if η is a given element in U(∅, Y ) then, choosing
any e ∈ η, one has that

η ∈ U
(

{e}, Y
)

⊆ U(∅, Y ).

This shows that

U
(

∅, Y
)

=
⋃

e∈E

U
(

{e}, Y
)

,

and we then see that the collection of all U(X, Y ), where X is a singleton, also form a
basis for the topology of Ê0.

A filter ξ is said to be an ultra-filter if it is not properly contained in another filter.
A character φ is said to be an ultra-character if its associated filter ξφ is an ultra-filter.

A useful characterization of ultra-filters is given by [3: Lemma 12.3]: a filter ξ is an
ultra-filter if and only if ξ contains every idempotent f such that f ⋓ e for every e in ξ.
Therefore the only reason why an idempotent e fails to belong to an ultra-filter ξ is when
e is orthogonal to some f in ξ.

Referring to our discussion above regarding open subsets of Ê0, ultra-filters have spe-
cially nice neighborhood bases:

2.5. Proposition. If ξ is an ultra-filter then the open sets of the form U
(

{e}, ∅
)

, as e
range in ξ, forms a neighborhood basis for ξ.
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Proof. It is enough to show that, whenever X and Y are finite subsets of E such that
ξ ∈ U(X, Y ), then there is some e in ξ such that

ξ ∈ U
(

{e}, ∅
)

⊆ U(X, Y ). (2.5.1)

For each y in Y , we have that y /∈ ξ so, by [3: Lemma 12.3], there is some fy ∈ ξ such
that fy ⊥ y. Defining

e =
∧

X ∧
∧

y∈Y

fy,

the reader may now easily show that e satisfies (2.5.1), and hence the proof is concluded. �

2.6. Definition. A subset J ⊆ E is said to be an ideal of E if

(i) 0 ∈ J , and

(ii) for every e in J , and every f in E , one has that ef ∈ J .

Notice that (2.6.ii) is equivalent to saying that

f ≤ e ∈ J ⇒ f ∈ J ,

for every e, f ∈ E . Ideals are therefore precisely the nonempty hereditary subsets of E .
Important examples are the principal ideals , namely ideals of the form

Je := {f ∈ E : f ≤ e} = eE . (2.7)

Like the similar concept in ring theory, an arbitrary intersection of ideals is an ideal,
but, unlike rings, an arbitrary union of ideals in a semi-lattice is also an ideal.

If J is an ideal in E , then so is

J⊥ = {f ∈ E : f ⊥ e, for all e ∈ J }.

Given any e in E , notice that

J⊥
e = {f ∈ E : f ⊥ e}.

If X and Y are subsets of E , one then has that

EX,Y :=
⋃

x∈X

Jx ∩
⋃

y∈Y

J⊥
y (2.8)

is an ideal of E , which will soon play an important role in the definition of a special property
for characters. Notice that if X is finite and nonempty, and if we let x0 =

∧

X , then

EX,Y = E{x0},Y .

2.9. Definition. Given an ideal J ⊆ E , and a subset C ⊆ E , we will say that:

(a) C is an outer cover for J if, for every nonzero f in J , there exists some c in C such
that c ⋓ f ,

(b) C is a cover for J if C is an outer cover for J and C ⊆ J .

Given an idempotent e in E , and a cover (resp. outer cover) C for Je, we will say that C
is a cover (resp. outer cover) for e.
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Covers were introduced in [3: Definition 11.5], where the subset J being covered was
not required to be an ideal. However only covers for ideals will be relevant here.

It is easy to see that C is an outer cover for an idempotent e if and only if

Ce := {ce : c ∈ C}

is a cover for e. However it does not seem possible to turn an outer cover of a general ideal
into a cover, especially if the ideal is of the form J⊥

e .
A character ξ is said to be a tight character if, for every finite subsets X, Y ⊆ E , and

for every finite cover Z ⊆ EX,Y , one has that

∨

z∈Z

φ(z) ≥
∧

x∈X

φ(x) ∧
∧

y∈Y

(

1− φ(y)
)

.

Replacing “≥” by “≤” above, it is elementary to check that the resulting inequality
is always true. When φ is tight one therefore gets an equality above.

We will say that a filter ξ is a tight filter when its associated character φξ is a tight
character. Thus, a filter ξ is a tight filter if and only if, for every finite subsets X, Y ⊆ E ,
and for every finite cover Z ⊆ EX,Y , one has that

X ⊆ ξ, and Y ∩ ξ = ∅ ⇒ Z ∩ ξ 6= ∅. (2.10)

The set of all tight characters is called the tight spectrum of E , and is denoted by
Êtight. It is easy to see that Êtight is closed within Ê0, and hence a locally compact space.

Every ultra-character is known to be tight [3: Proposition 12.7], and the set of all
ultra-characters is dense in Êtight [3: Theorem 12.9].

3. Inverse semigroup actions.

In this section we will focus on actions of inverse semigroups on locally compact topological
spaces. Besides introducing the basic concepts, we will briefly recall the definition of the
groupoid of germs for a given inverse semigroup action. Considering that such a groupoid is
often non-Hausdorff, we will discuss conditions under which this pathology does not occur.
We will then give necessary and sufficient conditions for the tight groupoid associated to
an inverse semigroup to be Hausdorff. We again refer the reader to [3] for the basic theory
of inverse semigroup actions.

3.1. Definition. Throughout this work we will write

α : S y X

to mean that

(i) S is an inverse semigroup (with zero),

(ii) X is a locally compact Hausdorff topological space,

(iii) α is an action of S on X , in the sense of [3: Definition 4.3],

(iv) α0 is the empty map.
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For the benefit of the reader we recall that (3.1.iii) means that for each s ∈ S, one is
given a partial homeomorphism αs on X (meaning a homeomorphism between two open
subsets of X), such that

αs ◦ αt = αst, ∀ s, t ∈ S,

where the composition above is defined on the largest domain where it makes sense.
It follows that αs∗ = α−1

s , for every s in S. Moreover, for every e in E , the associated
partial homeomorphism αe is necessarily the identity map on some open subset ofX , which
we will always denote by Dα

e . The collection of sets

{Dα
e }e∈E (3.2)

should therefore be thought of as an important ingredient of α. Incidentally, when describ-
ing the definition of an action [3: Definition 4.3] above, we should have added that the Dα

e

are required to cover X .
It may then be easily verified that, for every s in S, the domain of αs coincides with

Dα
s∗s, while the range of αs coincides with Dα

ss∗ . In other words,

αs : D
α
s∗s → Dα

ss∗ .

If Y is a subset of X , we say that Y is invariant under α if

αs(Y ∩Dα
s∗s) ⊆ Y, ∀ s ∈ S.

If Y is moreover locally compact, we may restrict α to Y , thus obtaining an action of
S on Y .

Given any inverse semigroup S, there is an important action

β : S y Ê0,

which we would like to describe. First of all, for each e in E , let

Dβ
e = {φ ∈ Ê0 : φ(e) = 1}.

For each s in S, we let βs be the map from Dβ
s∗s to Ê0 given by

βs(φ) e
= φ(s∗es), ∀φ ∈ Dβ

s∗s, ∀ e ∈ E .

Observe that βs(φ) is not the zero map because

βs(φ) ss∗
= φ

(

s∗(ss∗)s
)

= φ(s∗s) = 1 6= 0.

It may be shown that the range of βs is Dβ
ss∗ , and that the correspondence s 7→ βs is

a well defined action of S on Ê0.
It is sometimes useful to view β as acting on filters, once these are identified with

characters. The resulting picture is as follows: for each e in E , one has that

Dβ
e = {ξ ∈ Ê0 : e ∈ ξ}, (3.3)

while, for each s in S, and for each ξ in Dβ
s∗s, one has that

βs(ξ) = {f ∈ E : f ≥ ses∗, for some e ∈ ξ}. (3.4)

3.5. Proposition. Given an inverse semigroup S and an ultra-filter ξ ∈ Dβ
s∗s, one has

that βs(ξ) is an ultra-filter.
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Proof. Suppose that η is a filter containing βs(ξ). Then

ξ = βs∗
(

βs(ξ)
)

⊆ βs∗(η),

so we conclude that ξ = βs∗(η) by maximality, and then

η = βs
(

βs∗(η)
)

= βs(ξ),

proving that βs(ξ) is an ultra-filter. �

Using the above result, or explicitly referring to [3: Proposition 12.11], we have that
Êtight is also invariant under β. Restricting β to Êtight we obtain an action

θ : S y Êtight (3.6)

which is by far the most important inverse semigroup action in this work, as it will soon
become clear. We will refer to it as the standard action of S.

3.7. Proposition. Let S be an inverse semigroup with idempotent semi-lattice E . For
any subset F ⊆ E , let

Dθ{F} :=
⋃

f∈F

Dθ
f .

Given an ideal J ⊆ E , and a finite subset C ⊆ E , one has that C is an outer cover for J
if and only if

Dθ{J } ⊆ Dθ{C}.

If moreover C ⊆ J , then C is a cover for J if and only if the above inclusion of sets is an
equality.

Proof. Assuming that C is an outer cover for J , take any ξ in Dθ{J }, so there is some e
in J , such that ξ ∈ Dθ

e , and hence e ∈ ξ. Observe that

Ce := {ce : c ∈ C}

is clearly a cover for

Je = E{e},∅

and, since ξ is tight, we deduce from (2.10) that ce ∈ ξ, for some c in C. However, as c ≥
ce ∈ ξ, we have that c ∈ ξ, whence ξ ∈ Dθ

c ⊆ Dθ{C}. This proves that Dθ{J } ⊆ Dθ{C}.
Conversely, let e be a nonzero element in J . Our task is then to show that there exists

some c in C, such that c ⋓ e. Using Zorn’s Lemma, let ξ be an ultra-filter containing e.
By [3: Proposition 12.7], we have that ξ is tight, and then it is clear that ξ ∈ Dθ

e ⊆
Dθ{J }. By hypothesis we then have that ξ is in Dθ{C}, which means that ξ ∈ Dθ

c , for
some c in C, whence c ∈ ξ. Using that ξ is a filter it follows that ec ∈ ξ, so ec 6= 0, and
then e ⋓ c, as desired.

We leave the easy proof of the last sentence in the statement for the reader. �
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The hypothesis that the subset C is finite in the above result cannot be removed, as
one may easily show through elementary examples. For that reason only finite covers are
considered in this work. In fact, the very use of the word “cover” in the infinite case might
not be entirely appropriate and perhaps one should even require finiteness in Definition
(2.9). In any case only finite covers will play a role in the sequel.

For the special case of the ideal Je, notice that Dθ{Je} = Dθ
e , so Proposition (3.7)

takes the following somewhat simpler form:

3.8. Proposition. Given e ∈ E , and a finite subset C ⊆ E , one has that C is an outer
cover for e if and only if

Dθ
e ⊆

⋃

c∈C

Dθ
c .

If moreover C ⊆ Je, then C is a cover for Je if and only if the above inclusion of sets is
an equality.

Given any action α : S y X , let us now briefly describe its groupoid of germs. The
reader is referred to [15: page 140] and [3: Section 4] for more details.

We begin by considering the set

Ω = {(s, x) ∈ S ×X : x ∈ Dα
s∗s}.

Given (s, x) and (t, y) in Ω, we say that

(s, x) ∼ (t, y)

provided x = y, and there exists an idempotent e ∈ E , such that x ∈ Dα
e , and se = te. In

this case we say that s and t have the same germ at x. En passant notice that one then
has αs(x) = αt(x), because

αs(x) = αs

(

αe(x)
)

= αse(x) = αte(x) = αt

(

αe(x)
)

= αt(x).

It is elementary to check that “∼” is an equivalent relation on Ω. The equivalence
class of each (s, x) in Ω, usually denoted by [s, x], is called the germ of s at x. The set of
all germs, namely

Gα = Ω/ ∼,

is the carrier set of the groupoid we are about to define. First of all, given any [s, x] in Gα,
we define the source, or domain of [s, x], as well as its range, by

d([s, x]) = x, and r([s, x]) = αs(x),

respectively.
When [s, z] and [t, x] are given in Gα, and d([s, z]) = r([t, x]), that is, when z = αt(x),

we define their product , by
[s, z][t, x] = [st, x].

It is also customary to denote a germ [t, x] by the alternative notation [y, t, x], where
y = αt(x). The problem with this notation is that it carries a superfluous information in
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the variable y, but the definition of the product looks a bit more symmetric: [w, s, z][y, t, x]
is defined if and only if z = y, in which case

[w, s, z][y, t, x] = [w, st, x].

We leave it up to the reader to decide which is the nicer notation, but in the meantime
we shall adopt the shorter notation [t, x].

It may then be proved that Gα is a groupoid with the above operation, the inverse2

of any given germ [s, x] being given by

[s, x]−1 = [s∗, αs(x)].

The unit space of Gα is given by

G(0)
α =

{

[e, x] : e ∈ E , x ∈ Dα
e

}

,

and it may be identified with X via the bijective mapping

[e, x] ∈ G(0)
α 7→ x ∈ X. (3.9)

In order to describe the appropriate topology on Gα, we introduce the following nota-
tion: given s in S, and any open set U ⊆ Dα

s∗s, we let

Θ(s, U) =
{

[s, x] : x ∈ U
}

.

The collection of all Θ(s, U) may then be shown to form a basis for a topology on Gα,
with respect to which Gα becomes a locally compact, étale groupoid.

Even if X is assumed to be Hausdorff, Gα is not always Hausdorff. The question of
whether or not Gα is Hausdorff is thus the first main problem we wish to analyze. We
begin by presenting a proof of a well known characterization of the Hausdorff property for
general étale groupoids.

3.10. Proposition. Let G be an étale groupoid with range and source maps denoted by
r and d, respectively, and such that G(0) is Hausdorff. Then, the following are equivalent:

(1) G is Hausdorff.

(2) G(0) is closed.

Proof. Assuming that G is Hausdorff, observe that

G(0) = {γ ∈ G : γ = r(γ)}.

Therefore G(0) is the inverse image, under the continuous mapping

f : γ ∈ G 7→ (γ, r(γ)) ∈ G × G

2 The inverse also looks nicer in the alternative notation: [y, t, x]−1 = [x, t∗, y].
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of the diagonal of G. Since the diagonal is closed in a Hausdorff space, we deduce that G(0)

is closed.
Conversely, suppose that G(0) is closed. Given two distinct elements γ and γ′ in

G, suppose first that r(γ) 6= r(γ′). Then, since G(0) is Hausdorff, we may find disjoint
open subsets of G(0) separating r(γ) from r(γ′), and then their inverse image under the
continuous function r will separate γ from γ′.

Suppose now that r(γ) = r(γ′). Then the product γ−1γ′ is well defined, and since
γ 6= γ′, we have that γ−1γ′ 6∈ G(0). By hypothesis, there is an open neighborhood V of
γ−1γ′ which does not intercept G(0) and, because G is étale, we may assume that V is an
open bisection. Given any open bisection W such that γ ∈ W , we have that WV is open,
and

γ′ = γ(γ−1γ′) ∈ WV.

The proof will then be complete once we show that W ∩ WV = ∅. To settle this,
suppose by contradiction that η ∈ W ∩ WV . We may then write η = ων, for suitable
ω ∈ W and ν ∈ V , so r(η) = r(ω). But since both η and ω lie in the bisection W , where
the range map is one-to-one, we deduce that η = ω, whence

ν = ω−1η = ω−1ω ∈ G(0),

and then ν ∈ V ∩ G(0), which is a contradiction. �

As already announced, our first major goal is to study the Hausdorff property for the
groupoid of germs Gα relative to an inverse semigroup action α. Some important tools for
this task are described next.

3.11. Definition. Given an inverse semigroup S, and given s in S, we will let

Js = {e ∈ E : e ≤ s}.

If we are moreover given an action α : S y X , we will let

F α
s =

⋃

e∈Js

Dα
e .

Incidentally, regarding the relation “e ≤ s” appearing in the definition of Js, above,
notice that, when comparing an idempotent element e to a general element s in S, we have
by (2.3) that

e ≤ s ⇔ e = se. (3.12)

It is easy to see that Js is an ideal of E . However, since s does not necessarily belong
to E , we cannot say that Js is a principal ideal as in (2.7).

Given an action α : S y X , using the terminology introduced in (3.7), observe that

F α
s = Dα{Js}. (3.13)

Also notice that if t ≤ s, then necessarily Dα
t∗t ⊆ Dα

s∗s, so we see that

F α
s ⊆ Dα

s∗s, ∀ s ∈ S.
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It should also be noted that if s is idempotent, then the above inclusion of sets becomes
an equality. On the opposite extreme, if s is not idempotent, and if S is E*-unitary3, then
Js = {0}, whence F α

s = ∅.

3.14. Proposition. Given an action α : S y X , for every s in S, one has that

Θ(s,Dα
s∗s) ∩ G(0)

α = Θ(s,F α
s ).

Proof. Given x in Dα
s∗s, notice that by [3: Proposition 4.11], one has that [s, x] lies in the

unit space G
(0)
α if and only if [s, x] = [e, x], for some idempotent e, with x ∈ Dα

e . In this
case, there exists an idempotent f , such that x ∈ Dα

f , and sf = ef , so we see that ef ≤ s,
and

x ∈ Dα
e ∩Dα

f = Dα
ef ⊆ F α

s ,

whence [s, x] ∈ Θ(s,F α
s ). This proves that Θ(s,Dα

s∗s) ∩ G
(0)
α ⊆ Θ(s,F α

s ).
Conversely, if x ∈ F α

s , we may choose an idempotent e with x ∈ Dα
e , and se = e. It

follows that
[s, x] = [e, x] ∈ Θ(s,Dα

s∗s) ∩ G(0)
α ,

thus proving the reverse inclusion. �

We are indebted to Benjamin Steinberg for an interesting discussion which helped
shape the following characterization of Hausdorffness for the groupoid of germs.

3.15. Theorem. Let α be the action of an inverse semigroup S on a locally compact
Hausdorff spaceX , satisfying the conditions of (3.1). Also let Gα be the associated groupoid
of germs. Then, the following are equivalent:

(1) Gα is Hausdorff,

(2) for every s ∈ S, one has that F α
s is closed relative to Dα

s∗s.

Proof. Assuming that Gα is Hausdorff, we have by (3.10) that G
(0)
α is closed, whence

Θ(s,F α
s ) is closed in Θ(s,Dα

s∗s) by (3.14). Observing that the source map

d : [s, x] ∈ Θ(s,Dα
s∗s) 7→ x ∈ Dα

s∗s

is a homeomorphism by [3: Proposition 4.18], we deduce that d
(

Θ(s,F α
s )

)

is closed in
d(Θ(s,Dα

s∗s)), which is to say that F α
s is closed in Dα

s∗s.
In order to prove the converse, notice that by the argument used just above, condition

(2) implies that Θ(s,F α
s ) is closed in Θ(s,Dα

s∗s), so the set

Θ(s,Dα
s∗s) \Θ(s,F α

s )

is open relative to Θ(s,Dα
s∗s), and hence also open in Gα. Moreover, we have

Gα \ G(0)
α =

(
⋃

s∈S

Θ(s,Dα
s∗s)

)

\ G(0)
α =

3 An inverse semigroup S is said to be E*-unitary if, whenever an element s in S dominates a nonzero
idempotent, then smust itself be idempotent. An alternative way to express this condition is that Js = {0},
whenever s is not idempotent.
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=
⋃

s∈S

Θ(s,Dα
s∗s) \ G

(0)
α

(3.14)
=

⋃

s∈S

Θ(s,Dα
s∗s) \Θ(s,F α

s ),

which is therefore an open set, proving that G
(0)
α is closed, whence Gα is Hausdorff thanks

to (3.10). �

Recall from [3: Theorem 13.3] that, given an inverse semigroup S, the groupoid of
germs for the action θ : S y Êtight introduced in (3.6), is denoted Gtight(S). We will now
use (3.15) to give a characterization of the Hausdorff property for this groupoid. We are
thankful to Charles Starling for an interesting discussion from where the following result
came to life.

3.16. Theorem. Let S be an inverse semigroup (with zero). Then the following are
equivalent:

(i) Gtight(S) is Hausdorff,

(ii) for every s in S, the ideal Js defined in (3.11) admits a finite cover.

Proof. Assuming (ii) we will prove Gtight(S) to be Hausdorff via (3.15), so we need to show
that the set F θ

s introduced in (3.11) is closed in Dθ
s∗s, for any s in S. Given s, let C be a

finite cover for Js. Then

F θ
s

(3.13)
= Dθ{Js}

(3.7)
= Dθ{C} =

⋃

e∈C

Dθ
e .

Recall that Dθ
e is compact for every e in E , as discussed right after [3: Definition 10.2].

Being a finite union of compact sets, F θ
s is also compact, and hence closed in Dθ

s∗s. So
Gtight(S) is Hausdorff by (3.15).

Conversely, assuming that Gtight(S) is Hausdorff, pick any s in S and let us produce
a finite cover for Js. Employing (3.15) once more, we have that F θ

s is closed in Dθ
s∗s, and

since Dθ
s∗s is compact, we have that F θ

s is itself compact. On the other hand {De}e∈Js
is

clearly an open covering (in the usual topological sense) for F θ
s , so we may extract a finite

sub-covering, say

F θ
s =

n
⋃

i=1
Dθ

ei
. (3.16.1)

Letting
C = {e1, e2, . . . , en},

we then have that (3.16.1) translates into

Dθ{Js} = Dθ{C}.

So, using (3.7) again, we deduce that C is a finite cover for Js. �

Notice that the condition in the above statement that Js admit a finite cover is always
true if s is idempotent, since in this case {s} is a finite cover for Js. Thus it is only relevant
to require a finite cover for Js, when s ∈ S \ E . Given such an s, the existence of any
nonzero idempotent e in Js is a counter-example to the condition that S is E*-unitary.
So, requiring a finite cover for Js, above, may be interpreted as requiring the E*-unitary
property not to fail too badly. In particular we have:

3.17. Corollary. If S is an E*-unitary inverse semigroup then Gtight(S) is Hausdorff.
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4. Topologically free actions.

In this section we will study fixed points for inverse semigroup actions, paying special
attention to situations where the number of fixed points is small in a certain well defined
technical sense, generalizing the well known notion of topologically free group actions. We
will then show that our condition is equivalent to the groupoid of germs being essentially

principal . Finally we will discuss conditions on an inverse semigroup for the standard
action on the tight spectrum of its idempotent semi-lattice to be topologically free, and
hence for the associated tight groupoid to be essentially principal.

4.1. Definition. Given an action α : S y X , let s ∈ S, and let x ∈ Dα
s∗s.

(1) When αs(x) = x, we will say that x is a fixed point for s.

(2) If there exists e ∈ E , such that e ≤ s, and x ∈ Dα
e , we will say that x is a trivial fixed

point for s.

(3) We say that α is a free action, if every fixed point for every s in S is trivial.

(4) We say that α is a topologically free action, if for every s in S, the interior of the set
of fixed points for s consists of trivial fixed points.

We will not use the notion of free actions in this work, having presented it above
mainly for comparison purposes.

Observe that in case x is a trivial fixed point for s, and e is as in (4.1.2) then se = e,
so

αs(x) = αs

(

αe(x)
)

= αse(x) = αe(x) = x,

so in particular, x is a fixed point for s. Moreover, since e ≤ s∗s, by (2.4), we have that
Dα

e ⊆ Dα
s∗s, and then every y ∈ Dα

e is seen to be a trivial fixed point for s. As a conclusion
we see that the set of trivial fixed points for s is open, and hence it is necessarily contained
in the interior of the set of fixed points for s. In other words, denoting the set of fixed
points for s by Fs, and the set of trivial fixed points by TFs, we always have that

TFs ⊆
◦
F s, (4.2)

while the reverse inclusion holds provided α is topologically free.
Also notice that if e is an idempotent element in S, then every x in Dα

e is a trivial
fixed point for e.

In the special case of E*-unitary inverse semigroups we have:

4.3. Proposition. Given an E*-unitary inverse semigroup S, and an action α : S y X ,
then only idempotent elements may have any trivial fixed points.

Proof. Suppose that an element s ∈ S admits a trivial fixed point x. So there exists an
idempotent e such that x ∈ Dα

e , and se = e. It follows that e ≤ s, and e 6= 0, because
x ∈ Dα

e , so we conclude that s is idempotent. �

The above notions of freeness and topological freeness therefore become greatly sim-
plified for E*-unitary inverse semigroups, resembling the corresponding notions for group
actions:
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4.4. Proposition. Given an action α : S y X , where S is E*-unitary, one has that:

(1) α is free if and only if, for every s ∈ S \ E , the set of fixed points for s is empty.

(2) α is topologically free if and only if, for every s ∈ S \ E , the set of fixed points for s
has empty interior.

Proof. Left for the reader. �

The set F α
s , which played such a crucial role in the study of Hausdorff groupoids (see

(3.15)), is also relevant regarding trivial fixed points:

4.5. Proposition. Given an action α : S y X , and given s in S, one has that F α
s is

precisely the set of trivial fixed points for s.

Proof. For any x ∈ Dα
s∗s, one has by definition that x is a trivial fixed point for s if and

only if there is some e in E such that s ≤ e, and x ∈ Dα
e , and this happens to be precisely

the definition of F α
s . �

Let us now suppose we are given a locally compact étale groupoid G, with range and
source maps r and d, respectively, and unit space G(0). The following are well established
notions in the theory of groupoids:

4.6. Definition. ([16: Definition 3.1])

(1) The isotropy group bundle of G is defined to be the set

G′ = {γ ∈ G : d(γ) = r(γ)}.

(2) For any x ∈ G(0), the isotropy group of x is defined to be the set

G(x) = {γ ∈ G : d(γ) = r(γ) = x}.

(3) G is said to be principal if G′ = G(0).

(4) G is said to be essentially principal if the interior of G′ coincides with G(0).

We will not use the notion of principal groupoids in this work, having presented it
above mainly for comparison purposes.

By a result of Renault [16: Proposition 3.1], if G is moreover second countable and
Hausdorff, and G(0) has the Baire property, then G is essentially principal if and only if
the set consisting of the points x in G(0) with trivial isotropy (meaning that G(x) = {x}),
is dense in G(0).

In what follows we will relate the important notions defined in (4.1.4) and (4.6.4), via
the groupoid of germs.

4.7. Theorem. Given an action α : S y X , the corresponding groupoid of germs Gα is
essentially principal if and only if α is topologically free.
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Proof. Given s in S, let x be an interior fixed point for s. So there exists an open neighbor-
hood U of x, contained in Dα

s∗s, and consisting of fixed points for s. If y is in U , consider
the germ γ = [s, y]. Then

r(γ) = αs(y) = y = d(γ),

so γ ∈ G′
α. This implies that Θ(s, U) is contained in G′

α, and since the former is an open
set, we have that Θ(s, U) is in fact contained in the interior of G′

α. Assuming that Gα is
essentially principal, we then deduce that

Θ(s, U) ⊆ G(0)
α .

In particular [s, x] lies in G
(0)
α , so [s, x] = [e, x], for some idempotent e ∈ E . The

condition for equality of germs then gives an idempotent f in E , such that x ∈ Dα
f , and

sf = ef . Since
x ∈ Dα

e ∩Dα
f = Dα

ef ,

and
sef = sfe = ef,

we conclude that x is a trivial fixed point for s. This shows that every interior fixed point
is trivial, and hence that α is topologically free.

Conversely, assume that α is topologically free, and let γ lie in the interior of G′
α. By

definition of the topology on the groupoid of germs one may then choose s ∈ S, and an
open set U ⊆ Dα

s∗s, such that
γ ∈ Θ(s, U) ⊆ G′

α.

In particular we may write γ = [s, x], for some x in U . Given any y in U , we then have
that [s, y] ∈ G′

α, so
αs(y) = r([s, y]) = d([s, y]) = y,

and we see that y is a fixed point for s. It follows that U is contained in the set of fixed
points for s. In particular x is an interior fixed point, and hence, by hypothesis, x is a
trivial fixed point. This means that there exists an idempotent e ∈ E , such that x ∈ Dα

e ,
and se = e, and consequently

γ = [s, x] = [e, x] ∈ G(0)
α .

This shows that the interior of G′
α is contained in G

(0)
α , which is to say that Gα is essentially

principal. �

The remainder of this section will be devoted to characterizing topological freeness
for the action of an inverse semigroup on its tight spectrum. The next few concepts will
be useful for this purpose.

4.8. Definition. Let S be an inverse semigroup, and let s ∈ S. Given an idempotent
e ∈ E such that e ≤ s∗s, we will say that:

(1) e is fixed under s, if se = e,

(2) e is weakly-fixed under s, if sfs∗ ⋓ f , for every nonzero idempotent f ≤ e.
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Observe that to say that e is fixed under s is the same as saying that e ≤ s, as already
pointed out in (3.12). Moreover notice that the set of all fixed idempotents is precisely Js.

If e is fixed by s, then
ses∗ = es∗ = (se)∗ = e,

so e is also fixed under conjugation by s, meaning that ses∗ = e. Still assuming that e is
fixed under s, observe that for every idempotent f ≤ e, one has that

sf = sef = ef = f,

whence f is also fixed under s. By the above argument we then have that sfs∗ = f , so if
in addition f is nonzero, then

(sfs∗)f = f 6= 0,

meaning that sfs∗ ⋓ f . This holding for any nonzero f ≤ e, we see that e is weakly-fixed
under s. In other words, every fixed idempotent is weakly-fixed.

For the case of the standard action on the space of tight filters, we have:

4.9. Lemma. Let S be an inverse semigroup, and let s ∈ S. Given an idempotent e ∈ E
such that e ≤ s∗s, the following are equivalent:

(i) e is weakly-fixed under s,

(ii) every tight filter ξ in Dθ
e is a fixed point for s, relative to the standard action θ of S

on Êtight.

Proof. Assuming (i), let ξ be an ultra-filter in Dθ
e . We then claim that

c ⋓ d, ∀ c ∈ ξ, ∀ d ∈ θs(ξ).

Given c and d, as above, we have by (3.4) that d ≥ sbs∗, for some b ∈ ξ. So

f := bce ∈ ξ,

from where we deduce that f 6= 0. Since f ≤ e, we have by hypothesis that

0 6= (sfs∗)f ≤ (sbs∗)c ≤ dc.

This proves that dc 6= 0, as claimed. Since ξ is supposed to be an ultra-filter, we have
by [3: Lemma 12.3] that d ∈ ξ, for all d in θs(ξ), which is to say that θs(ξ) ⊆ ξ. Observing
that θs(ξ) is also an ultra-filter by (3.5), we deduce that θs(ξ) = ξ, proving that ξ is fixed
by s.

If ξ is a general tight filter in Dθ
e , then by [3: Theorem 12.9] we may write ξ as the

limit of a net {ξi}i of ultra-filters. Observing that Dθ
e is open, we may also assume that

the ξi lie in Dθ
e . By what was said above we then see that the ξi are fixed by s, and hence

so is ξ, by continuity of θs. This proves (ii).
Conversely, let f be a nonzero element with f ≤ e. Using Zorn’s Lemma, let ξ be

an ultra-filter containing f , which is therefore also a tight filter by [3: Proposition 12.7].
Since f ≤ e, we see that e ∈ ξ, whence ξ ∈ Dθ

e . Using hypothesis (ii) we then have that
θs(ξ) = ξ, so it follows that sfs∗ ∈ ξ, and then necessarily sfs∗ ⋓ f . This proves that e is
weakly-fixed under s. �
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Our main result regarding topological freeness for the standard action on the space
of tight filters is in order. The reader should observe that condition (iii) below is exactly
Definition (4.1.4) of topological freeness, but for the fact that it only refers to ultra-filters.

4.10. Theorem. Given an inverse semigroup S (with zero), consider the following state-
ments:

(i) The standard action θ : S y Êtight is topologically free.

(ii) For every s in S, and for every e in E which is weakly-fixed under s, there exists a
finite cover for e consisting of fixed idempotents.

(iii) For every s in S, and for every ξ ∈ Dθ
s∗s which is an interior fixed point for s, as well

as an ultra-filter, one has that ξ is trivially fixed by s.

Then (i)⇒(ii)⇒(iii). If moreover every tight filter is an ultra-filter4, or if S satisfies the
equivalent conditions of (3.16), then also (iii)⇒(i).

Proof. (i)⇒(ii): Let s ∈ S and let e be an idempotent element weakly-fixed under s. We
then claim that

Dθ
e =

⋃

f∈Je∩Js

Dθ
f . (4.10.1)

By (4.9) we have that Dθ
e ⊆ Fs, where Fs denotes the set of fixed points for s. Noticing

that Dθ
e is open, it follows that

Dθ
e ⊆

◦
F s.

Assuming that θ is topologically free, we then have that Dθ
e consists of trivial fixed

points. Therefore for any ξ in Dθ
e , there exists some f in E , such that sf = f , and ξ ∈ Dθ

f .

Given that ξ is also in Dθ
e , we have that ξ ∈ Dθ

ef , and clearly sef = ef . Therefore ef lies
in Je∩Js, proving the inclusion “⊆” in (4.10.1). Since the reverse inclusion holds trivially,
the claim is proved.

Using the fact that Dθ
e is compact, we may then find a finite set

{f1, f2, . . . , fn} ⊆ Je ∩ Js,

such that

Dθ
e =

n
⋃

i=1

Dθ
fi
.

We then have by (3.8) that {f1, f2, . . . , fn} is a cover for e. Since each fi is in Js, we
have that fi is fixed by s. This proves (ii).

(ii)⇒(iii): Pick any s in S, and let ξ be an ultra-filter which is an interior fixed point for
s. Then by (2.5) there is some e in E such that

ξ ∈ U
(

{e}, ∅
)

∩ Êtight ⊆ Fs.

4 Semi-lattices in which every tight filter is an ultra-filter have been called compactable semi-lattices
[11 : Theorem 2.5] and they occur quite often.
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Incidentally, the set intersection occurring above coincides with what we have been calling
Dθ

e starting with (3.2), hence

ξ ∈ Dθ
e ⊆ Fs.

By (4.9) we then have that e is weakly-fixed under s, so we may use condition (ii) to
obtain a finite cover {f1, f2, . . . , fn} for e consisting of fixed idempotents. Again invoking
(3.8) we get

Dθ
e =

n
⋃

i=1
Dθ

fi
,

so ξ ∈ Dθ
fi
, for some i, and hence ξ is trivially fixed by s.

(iii)⇒(i): When all tight filters are ultra-filters, (iii) becomes the very definition of topo-
logical freeness and hence there is nothing to do. Otherwise, assuming the equivalent
conditions of (3.16), let s be in S, and let ξ be any element of Dθ

s∗s which lies in the
interior of the fixed point set for s.

Using [3: Theorem 12.9] again, let {ξi}i be a net of ultra-filters converging to ξ, and
we may clearly suppose that all ξi’s are also interior fixed points for s.

By (iii) we have that the ξi are trivial fixed points, which is to say that ξi ∈ F θ
s , as

observed in (4.5). Given that Gtight(S) is Hausdorff, we have by (3.15) that F θ
s is closed

in Dθ
s∗s, and hence

ξ = lim
i

ξi ∈ F θ
s ,

whence ξ is also a trivial fixed point. This proves that θ is topologically free. �

The following is a useful consequence of our work so far:

4.11. Corollary. Let S be an inverse semigroup. Then Gtight(S) is both Hausdorff and
essentially principal if and only if the following two conditions hold for every s in S:

(i) there exists a finite cover for Js,

(ii) for every idempotent e in E which is weakly-fixed under s, there exists a finite cover
for e consisting of fixed idempotents.

Proof. If Gtight(S) is Hausdorff then (i) holds by (3.16). On the other hand, if Gtight(S) is

essentially principal then the standard action θ : S y Êtight is topologically free by (4.7)
and hence (ii) holds by the implication (i)⇒(ii) of (4.10).

Using (3.16) we see that (i) implies that Gtight(S) is Hausdorff and hence the “equiva-
lent conditions of (3.16)” hold, in which case all of the conditions in (4.10) are equivalent.
So we deduce from (ii) that θ is topologically free and hence (4.7) implies that Gtight(S) is
essentially principal. �

It is curious that in the “only if” part of the above result, the two conditions “Haus-
dorff” and “essentially principal” separately imply conditions (i) and (ii), respectively.
However, in proving the converse, apparently (i) and (ii) are both needed to get “essen-
tially principal”.
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5. Irreducible actions and minimality.

In this short section we will study irreducibility of inverse semigroup actions versus min-
imality of the corresponding groupoid of germs. The main result of this section, namely
(5.5), is a characterization of minimality for the tight groupoid associated to a general in-
verse semigroup (with zero). As before, we will fix an inverse semigroup action α : S y X
satisfying the conditions laid down in (3.1).

5.1. Definition.

(1) Given x and y in X , we say that x and y are trajectory-equivalent under α, in symbols,
x ∼α y, if there exist s ∈ S such that x ∈ Dα

s∗s and αs(x) = y.

(2) We say that a subset W of X is invariant under α if, for every w ∈ W and x ∈ X ,
one has that w ∼α x implies that x ∈ W .

(3) We say that α is irreducible if there are no open invariant subsets of X , other than
the empty set and X , itself.

It is easy to see that trajectory-equivalence is an equivalence relation. Also, given a
subset W of X , it is elementary to check that W is invariant if and only if

αs(W ∩Dα
s∗s) ⊆ W, ∀ s ∈ S.

Given any subset V ⊆ X , consider the set

Orb(V ) =
⋃

s∈S

αs(V ∩Dα
s∗s).

It is then evident that Orb(V ) is an invariant subset of X . If V is moreover open, then
Orb(V ) is clearly also open.

5.2. Proposition. A necessary and sufficient condition for α to be irreducible is that
Orb(V ) = X , for every nonempty open subset V ⊆ X .

Proof. Left for the reader. �

The corresponding, and well established notion of minimality for groupoids is as fol-
lows:

5.3. Definition. Given a groupoid G with range and source maps r, d : G → G(0), we say
that a subset U of G(0) is invariant if, for every γ in G, one has that

d(γ) ∈ U ⇐⇒ r(γ) ∈ U.

A groupoid G is said to be minimal if the only invariant open subsets of G(0) are the empty
set and G(0) itself.

5.4. Proposition. Given an action α : S y X , let Gα be the corresponding groupoid of
germs. Then, identifying G(0) with X , as usual, we have that the above two notions of
invariance for subsets of X agree with each other. In particular α is irreducible if and only
if Gα is minimal.
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Proof. Left for the reader. �

For the case of the standard action on the space of tight filters, one has:

5.5. Theorem. Let S be an inverse semigroup (with zero). Then the following are equiv-
alent

(i) The standard action θ : S y Êtight is irreducible,

(ii) Gtight(S) is minimal,

(iii) for every nonzero e and f in E , there are s1, s2, . . . , sn in S, such that {sifs
∗
i }1≤i≤n

is an outer cover for e.

Proof. The equivalence between (i) and (ii) of course follows from (5.4).

(i)⇒(iii): Assuming (i), and given e and f as in (iii), observe that the orbit of Dα
f coincides

with Êtight by (5.2). In particular we have that

Dα
e ⊆ Orb(Dα

f ) =
⋃

s∈S

αs(D
α
f ∩Dα

s∗s).

The sets appearing in the right-hand-side above have a nicer description as follows:

αs(D
α
f ∩Dα

s∗s) = αs(D
α
fs∗s) = Dα

s(fs∗s)s∗ = Dα
sfs∗ . (5.5.1)

Therefore {Dα
sfs∗}s∈S is an open cover for the compact set Dα

e , and hence there is a finite
sub-cover, say

Dα
e ⊆

n
⋃

i=1

Dα
sifs

∗

i
.

We then conclude from (3.8) that {sifs
∗
i }1≤i≤n is an outer cover for e, hence proving

point (iii).

(iii)⇒(i): Given a nonempty open invariant subset U ⊆ Êtight, our task is to show that

necessarily U = Êtight. By [3: Theorem 12.9] there exists an ultra-filter ξ in U , and by
(2.5) there is a (necessarily nonzero) idempotent f such that

ξ ∈ Dα
f ⊆ U.

It then follows that Orb(Dα
f ) ⊆ U and, in order to complete the proof, it is enough to

prove that
Êtight ⊆ Orb(Dα

f ).

Given η ∈ Êtight, pick any e in η, and use (iii) to obtain s1, s2, . . . , sn in S, such that
{sifs

∗
i }1≤i≤n is a cover for e. Therefore

η ∈ Dα
e

(3.8)

⊆
n
⋃

i=1

Dα
sifs

∗

i

(5.5.1)
=

n
⋃

i=1

αsi(D
α
f ∩Dα

s∗
i
si
) ⊆ Orb(Dα

f ).

This concludes the proof. �
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6. Local Contractiveness.

Besides the properties of being Hausdorff, essentially principal, and minimal, a property of
étale groupoids which has attracted a fair amount of interest is local contractiveness, since
these together imply that the reduced groupoid C*-algebra is simple and purely infinite by
[4: Theorem 4.4] and [1: Proposition 2.4] (see also [2]). With this as our main motivation,
we will now discuss local contractiveness, both at the level of groupoids and of inverse
semigroup actions.

Corollary (6.6), the main result in this section, is a characterization of local contrac-
tiveness for the tight groupoid of an inverse semigroup. Unfortunately it has a little hitch,
since it relies on the assumption that every tight filter is an ultra-filter, a problem already
encountered in (4.10).

We begin by recalling Anantharaman-Delaroche’s definition of the main concept used
in the present section.

6.1. Definition. [1: 2.1] Let G be a locally compact étale groupoid. We say that G is
locally contracting if, for every nonempty open subset U ⊆ G(0), there exists an open subset
V ⊆ U and an open bissection S ⊆ G, such that V ⊆ S−1S, and SV S−1 $ V.

The appropriate definition for inverse semigroup actions seems to be the following:

6.2. Definition. We will say that an action α : S y X is locally contracting if, for every
nonempty open subset U ⊆ X , there exists an open subset V ⊆ U and an element s in S,
such that V ⊆ Dα

s∗s, and αs(V ) $ V .

6.3. Proposition. Given a locally contracting action α : S y X , one has that the
corresponding groupoid of germs Gα is locally contracting.

Proof. Let U be a nonempty open subset of the unit space of Gα, which we identify with
X via (3.9), as usual. Assuming that α is locally contracting, let V and s be as in (6.2).
Considering the bissection

S := Θ(s,Dα
s∗s),

observe that
S−1S = Dα

s∗s ⊇ V ,

and
SV S−1 = αs(V ) $ V,

proving that Gα is locally contracting. �

We have not been able to determine if the converse of the above result also holds. The
fact that the groupoid of germs has a lot more bissections than simply the Θ(s,Dα

s∗s) makes
one wonder whether local contractivity for Gα should imply the same for α. Nevertheless,
in our future application of (6.3), we will fortunately not need the converse implication.

6.4. Definition. We will say that an inverse semigroup S is locally contracting if, for
every nonzero idempotent e in S, there exists s in S, and a finite subset

F := {f0, f1, . . . , fn} ⊆ E ,
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with n ≥ 0, such that, for all i = 0, . . . , n, one has

(i) 0 6= fi ≤ es∗s,

(ii) F is an outer cover for sfis
∗,

(iii) f0sfi = 0.

The best relation we found between these homonymic conditions is as follows:

6.5. Theorem. Given an inverse semigroup S, consider the following statements:

(a) S is a locally contracting inverse semigroup,

(b) the standard action of S on Êtight is locally contracting.

Then (a)⇒(b). If moreover every tight filter on E is an ultra-filter, then also (b)⇒(a).

Proof. Suppose S is locally contracting. Given a nonempty subset U ⊆ Êtight, choose an
ultra-filter ξ in U . Employing (2.5) we then see that there is an idempotent e in E such
that

ξ ∈ Dθ
e ⊆ U.

Using hypothesis (a), let s and {f0, f1, . . . , fn} be as in (6.4), and define

V =
n
⋃

i=0
Dθ

fi
.

Since each fi ≤ e, it is clear that V ⊆ Dθ
e ⊆ U . Moreover each fi ≤ s∗s, and V is

clopen, so
V = V ⊆ Dθ

s∗s.

In order to complete the proof it is now enough to prove that θs(V ) $ V . With this
purpose in mind notice that for each idempotent f in E , one has that θs ◦ θf = θsf , so
θs(D

θ
f ) coincides with the range of θsf , also known as Dθ

sfs∗ . Therefore,

θs(V ) =
n
⋃

i=0
θs(D

θ
fi
) =

n
⋃

i=0
Dθ

sfis∗
.

By (6.4.ii) and (3.8) we have that each Dθ
sfis∗

is contained in V , hence

θs(V ) = θs(V ) ⊆ V.

We still need to show that θs(V ) is a proper subset of V , and to do so we recall from
(6.4.iii) that f0sfi = 0, for all i. Consequently f0 ⊥ sfis

∗, which implies that Dθ
f0

is

disjoint from Dθ
sfis∗

. So

Dθ
f0

⊆ V \
(

n
⋃

i=0

Dθ
sfis∗

)

= V \ θs(V ) = V \ θs(V ),

and since Dθ
f0

is nonempty (by Zorn’s Lemma it contains an ultra-filter) we see that

θs(V ) $ V . This proves that θ is a locally contracting action.



24 r. exel and e. pardo

Conversely, assume (b) and also that every tight filter in E is an ultra-filter. Given a
nonzero e in E , let U = Dθ

e , and choose s and V as in (6.2) so that, among other things,

θs(V ) $ V ⊆ U.

For each ξ in θs(V ), choose a neighborhood of ξ contained in V . By hypothesis we
have that ξ is an ultra-filter, and by (2.5) we may suppose that such a neighborhood is of
the form Dθ

fξ
, for some fξ in E , so

ξ ∈ Dθ
fξ

⊆ V.

The Dθ
fξ

then evidently form an open cover for θs(V ). Since

V ⊆ U ∩Dθ
s∗s = Dθ

e ∩Dθ
s∗s = Dθ

es∗s, (6.5.1)

we may replace each fξ by
f ′
ξ := es∗sfξ,

and hence we may assume that fξ ≤ es∗s.
Being a closed subset of Dθ

s∗s, observe that V is compact, and hence so is θs(V ). We
may then take a finite subcover of the above cover, say

θs(V ) ⊆
⋃

f∈F ′

Dθ
f ⊆ V, (6.5.2)

where F ′ is a finite set consisting of some of the fξ.
We next claim that there exists a nonzero idempotent f0 ≤ es∗s, such that

Dθ
f0

⊆ V \ θs(V ). (6.5.3)

To see this, first observe that V \θs(V ) is open and nonempty. Even without assuming
that all tight filters are ultra-filters, we may use the density of the set formed by the latter
to find some ultra-filter ξ in V \ θs(V ). An application of (2.5) then provides f0 in E such
that

ξ ⊆ Dθ
f0

⊆ V \ θs(V ), (6.5.4)

and, again by (6.5.1), we may assume that f0 ≤ es∗s. Adding f0 to F ′, we form the set

F := {f0} ∪ F ′ = {f0, f1, . . . , fn},

which is then seen to satisfy (6.4.i). Defining

W =
⋃

f∈F

Dθ
f ,

observe that W is clopen, and that W ⊆ V ⊆ Dθ
s∗s. We moreover have that

θs(W ) ⊆ θs(V )
(6.5.2)

⊆ W.
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In particular, for each i = 0, 1, . . . , n, we have

Dθ
sfis∗

= θs(D
θ
fi
) ⊆ θs(W ) ⊆ W =

⋃

f∈F

Dθ
f ,

so F is an outer cover for sfis
∗ by (3.8), proving (6.4.ii). As seen above, for all i, we have

Dθ
sfis∗

⊆ θs(W ) ⊆ θs(V ) ⊆ θs(V ),

so Dθ
sfis∗

and Dθ
f0

are disjoint by (6.5.4), and hence

∅ = Dθ
f0

∩Dθ
sfis∗

= Dθ
f0sfis∗

,

from where we conclude that f0sfis
∗ = 0, and hence also

f0sfi = f0ss
∗sfi = f0sfis

∗s = 0.

This proves (6.4.iii), and hence we are done. �

An immediate consequence is as follows:

6.6. Corollary. For every locally contracting inverse semigroup S, one has that Gtight(S)
is a locally contracting groupoid.

Proof. Follows immediately from (6.5) and (6.3). �

As we have already pointed out, both (6.5) and (6.3) do not seem to admit converses.
Therefore a converse for (6.6) seems to be even less likely.

In applications of (6.5) it is sometimes possible to verify a set of conditions which is
both stronger and formally easier to check than (6.5.i–iii), as follows:

6.7. Proposition. Suppose that, for every nonzero e ∈ E , there exists s ∈ S, and idem-
potent elements f0 and f1, such that

(i) 0 6= f0 ≤ f1 ≤ es∗s,

(ii) sf1s
∗ ≤ f1,

(iii) f0sf1 = 0.

Then S is locally contracting.

Proof. It is enough to observe that conditions (6.4.i–iii) are satisfied for F = {f0, f1}, as
the reader may easily verify. �

As a final result, let us put all of the above to work, in order to obtain a class of
simple, purely infinite C*-algebras:
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6.8. Theorem. Let S be a countable inverse semigroup (with zero) and let us consider
the following conditions:

(a) For every s in S, the ideal Js defined in (3.11) admits a finite cover,

(b) For every s in S, and for every e in E which is weakly-fixed under s, there exists a
finite cover for e consisting of fixed idempotents.

(c) For every nonzero e and f in E , there are s1, s2, . . . , sn in S, such that {sifs
∗
i }1≤i≤n

is an outer cover for e.

(d) S is locally contracting.

Then:

(i) Conditions (a+b) imply that every nonzero ideal

J E C∗
red

(

Gtight(S)
)

has a nonzero intersection with the algebra of continuous functions vanishing at infinity
on the unit space of Gtight(S).

(ii) Conditions (a+b+c) imply that C∗
red

(

Gtight(S)
)

is a simple C*-algebra.

(iii) Conditions (a+b+c+d) imply that C∗
red

(

Gtight(S)
)

is a purely infinite simple C*-
algebra.

Proof. All we now have to do is put the pieces together. By (4.11) we have that Gtight(S)
is Hausdorff and essentially principal, and it is also easy to see that it is second countable
as a consequence of the assumption that S is countable. We may then invoke [4: Theorem
4.4] to obtain (i).

Adding (c) to the above, we have by (5.5) that Gtight(S) is minimal, so a now standard
argument (see e.g. [5: Corollary 29.8]) easily implies that C∗

red

(

Gtight(S)
)

is simple.
If, on top of it all, we assume (d), then Gtight(S) is contracting by (6.6), so the result

follows from [1: Proposition 2.4]. �
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88010-970 Florianópolis SC; Brazil
(exel@mtm.ufsc.br)
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