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Abstract. We extend both Dobbertin’s characterization of primely generated regular re-
finement monoids and Pierce’s characterization of primitive monoids to general primely gen-
erated refinement monoids.

Introduction

The class of abelian monoids satisfying the Riesz refinement property –refinement monoids
for short– has been largely studied over the last decades in connection with various problems,
as non-stable K-Theory of rings and C∗-algebras (see e.g. [2, 4, 5, 10, 11]), classification of
Boolean algebras (see e.g. [13]), or its own structure theory (see e.g. [7, 8, 14]). Recall that an
element p in a monoid M is a prime element if p is not invertible in M , and, whenever p ≤ a+b
for a, b ∈M , then either p ≤ a or p ≤ b (where x ≤ y means that y = x+ z for some z ∈M).
The monoid M is primely generated if every non-invertible element of M can be written as a
sum of prime elements. Primely generated refinement monoids enjoy important cancellation
properties, such as separative cancellation and unperforation, as shown by Brookfield in [7,
Theorem 4.5, Corollary 5.11(5)]. It was also shown by Brookfield that any finitely generated
refinement monoid is automatically primely generated [7, Corollary 6.8].

Recently, the class of refinement monoids has been separated into subclasses of tame and
wild refinement monoids, where the tame ones are the direct limits of finitely generated
refinement monoids, and the rest are wild. This has been motivated by problems in non-
stable K-theory, where many of the monoids that appear in connection with von Neumann
regular rings and C*-algebras of real rank zero are indeed tame refinement monoids. It has
been asked in [3, Open Problem 5.3] whether all primely generated refinement monoids are
tame.

Two classes of primely generated refinement monoids have been completely classified. The
first one is the class of primitive monoids, i.e. antisymmetric primely generated refinement
monoids, see [13]. These monoids are described by means of a set I endowed with an anti-
symmetric transitive relation C. Given such a pair (I,C), the primitive monoid associated to
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it is the monoid generated by I with the relations i+ j = j if and only if i C j. We observe
that this is the same as giving a partial order ≤ on I and a decomposition I = Ifreet Ireg into
free and regular elements, the free elements corresponding to the elements i such that i 6 i,
and the regular ones corresponding to the elements i such that i C i. Using this structure,
tameness of primitive monoids has been verified in [3, Theorem 2.10]. The second class where
a satisfactory description has been obtained is that of primely generated regular conical re-
finement monoids. These monoids were characterized by Dobbertin in [8] in terms of partial
orders of abelian groups.1 It has been shown by the second-named author and Wehrung [12,
Theorem 4.4] that all regular conical refinement monoids are tame.

In the present paper, we obtain a common generalization of both results, obtaining a
representation of primely generated conical refinement monoids in terms of certain partial
orders of semigroups. The basic data are a poset I, together with a partition I = Ifree t Ireg,
a family of abelian groups Gi for i ∈ Ireg, and a family of semigroups of the form N × Gi,
where Gi is an abelian group, for i ∈ Ifree (see Definition 1.1 below for the precise definition).
To each one of these I-systems J we associate a conical monoid M(J ).

With this notation and terminology at hand, we can state the main results of the paper as
follows:

Theorem 0.1.

(1) Given any primely generated conical refinement monoid M , there is a poset I and an
I-system J such that M ∼= M(J ).

(2) For any I-system J , the monoid M(J ) is a primely generated conical refinement
monoid. Moreover, M(J ) is a tame monoid.

Note that this result gives a complete description of primely generated conical refinement
monoids. It also gives an affirmative answer to [3, Open Problem 5.3]. In the particular case
where all the above groups Gi are trivial, we recover Pierce’s characterization of primitive
monoids. In the case that Ifree = ∅, our result reduces to Dobbertin’s characterization of
primely generated regular conical refinement monoids. Theorem 0.1(1) will be proven in
Section 2 (see Theorem 2.7).

It is readily checked that M(J ) is a primely generated conical monoid for every I-system
J (Remark 2.8). It will be shown in Sections 3 and 4 that M(J ) is a tame refinement
monoid, thus completing the proof of Theorem 0.1. We point out that one of the main
difficulties in showing the refinement property for M(J ), when Ifree 6= ∅, lies in the fact that
the archimedian components of this monoid do not satisfy refinement in general.

Section 3 is devoted to the proof of the refinement property of M(J ) for finitely generated
I-systems. We show this result first in the case where all the upper subsets I ↑ i := {j ∈
I : i ≤ j}, for i ∈ I, are chains (Proposition 3.2), and then we adapt a technique introduced
in [2] to solve the general case of a finitely generated I-system (Theorem 3.15). We believe
that, in analogy with [2], the methods developed in this section will be useful in the study of

1It should be pointed out that the definition of refinement monoid given in [8] includes the condition of
being conical (condition (1) in [8, p. 166]). Following modern convention, refinement monoids are defined here
just in terms of the accomplishment of the Riesz refinement property (see Section 1 for the precise definitions
of these conditions).
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the realization problem for finitely generated conical refinement monoids (see [1] for a survey
on this problem).

For a general I-system J , we prove in Section 4 that M(J ) can be written as a direct
limit of monoids of the form M(J ′), where J ′ are finitely generated systems. By Proposition
2.9 and Theorem 3.15, all these monoids M(J ′) are finitely generated conical refinement
monoids, so we obtain at once that M(J ) is a refinement monoid, and that it is tame.

We work with conical monoids because these are the monoids that appear in non-stable
K-theory. However, similar results can be obtained for non-conical refinement monoids M by
considering the conical refinement monoid M t{0} obtained by adjoining a new zero element
to M .

1. I-systems and their monoids

In this section we will define I-systems –a structure extending the notion of partial order
of groups– by replacing the groups by some special semigroups. Using this structure, we
will construct an associated monoid in a way that extends Dobbertin’s construction [8] and
Pierce’s construction [13]. First, we will recall some basic definitions.

Given a poset (I,≤), we say that a subset A of I is a lower set if x ≤ y in I and y ∈ A
implies x ∈ A. For any i ∈ I, we will denote by I ↓ i = {x ∈ I : x ≤ i} the lower subset
generated by i. We will write x < y if x ≤ y and x 6= y.

All semigroups considered in this paper are abelian. We will denote by N the semigroup of
positive integers, and by Z+ the monoid of non-negative integers.

Given an abelian monoid M , we set M∗ := M \ {0}. We say that M is conical if M∗ is a
semigroup, that is, if, for all x, y in M , x + y = 0 only when x = y = 0. We say that M is
separative provided 2x = 2y = x + y always implies x = y; there are a number of equivalent
formulations of this property, see e.g. [4, Lemma 2.1]. We say that M is a refinement monoid
if, for all a, b, c, d in M such that a + b = c + d, there exist w, x, y, z in M such that
a = w + x, b = y + z, c = w + y and d = x + z. It will often be convenient to present this
situation in the form of a diagram, as follows:

c d
a w x
b y z

.

If x, y ∈ M , we write x ≤ y if there exists z ∈ M such that x + z = y. Note that ≤ is a
translation-invariant pre-order on M , called the algebraic pre-order of M . An element x ∈M
is regular if 2x ≤ x. An element x ∈ M is an idempotent if 2x = x. An element x ∈ M is
free if nx ≤ mx implies n ≤ m. Any element of a separative monoid is either free or regular.
In particular, this is the case for any primely generated refinement monoid, by [7, Theorem
4.5].

A subset S of a monoid M is called an order-ideal if S is a subset of M containing 0, closed
under taking sums and summands within M ; that is, S is a submonoid such that, for all
x ∈ M and e ∈ S, if x ≤ e then x ∈ S. If (Sk)k∈Λ is a family of (commutative) semigroups,⊕

k∈Λ Sk (resp.
∏

k∈Λ Sk) stands for the coproduct (resp. the product) of the semigroups Sk,
k ∈ Λ, in the category of commutative semigroups. If the semigroups Sk are subsemigroups
of a semigroup S, we will denote by

∑
k∈Λ Sk the subsemigroup of S generated by

⋃
k∈Λ Sk.
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Note that
∑

k∈Λ Sk is the image of the canonical map
⊕

k∈Λ Sk → S. We will use the notation
〈X〉 to denote the semigroup generated by a subset X of a semigroup S.

Given a semigroup M , we will denote by G(M) the Grothendieck group of M . There exists
a semigroup homomorphism ψM : M → G(M) such that for any semigroup homomorphism
η : M → H to a group H there is a unique group homomorphism η̃ : G(M) → H such that
η̃ ◦ ψM = η. G(M) is abelian and it is generated as a group by ψ(M). If M is already a
group then G(M) = M . If M is a semigroup of the form N × G, where G is an abelian
group, then G(M) = Z × G. In this case, we will view G as a subgroup of Z × G by means
of the identification g ↔ (0, g). These are the only cases where we will need to consider
Grothendieck groups in this article.

The following definition is crucial for this work:

Definition 1.1. Let I = (I,≤) be a poset. An I-system J = (I,≤, (Gi)i∈I , ϕji (i < j)) is
given by the following data:

(a) A partition I = Ifree t Ireg (we admit one of the two sets Ifree or Ireg to be empty).
(b) A family {Gi}i∈I of abelian groups. We adopt the following notation:

(1) For i ∈ Ireg, set Mi = Gi, and Ĝi = Gi = Mi.

(2) For i ∈ Ifree, set Mi = N×Gi, and Ĝi = Z×Gi

Observe that, in any case, Ĝi is the Grothendieck group of Mi.
(c) A family of semigroup homomorphisms ϕji : Mi → Gj for all i < j, to whom we

associate, for all i < j, the unique extension ϕ̂ji : Ĝi → Gj of ϕji to a group homo-
morphism from the Grothendieck group of Mi to Gj (we look at these maps as maps

from Ĝi to Ĝj). We require that the family {ϕji} satisfies the following conditions:
(1) The assignment {

i 7→ Ĝi

(i < j) 7→ ϕ̂ji

}
defines a functor from the category I to the category of abelian groups (where
we set ϕ̂ii = idĜi for all i ∈ I).

(2) For each i ∈ Ifree we have that the map⊕
k<i

ϕik :
⊕
k<i

Mk → Gi

is surjective.

We say that an I-system J = (I,≤, (Gi)i∈I , ϕji (i < j)) is finitely generated in case I is a
finite poset and all the groups Gi are finitely generated.

Remark 1.2. Note that, if i ∈ Ifree and i is a minimal element of I, then Gi = {ei}, and so
Mi = N, by condition (c2) in Definition 1.1. Indeed the map appearing there in this special
case should be interpreted as the map {0} → {ei}. For i being not minimal, the inclusion of
{0} in the domain of the map makes no difference.

Given a poset I, and an I-system J , we construct a semilattice of groups based on the

partial order of groups (I,≤, Ĝi), by following the model introduced in [8]. Let A(I) be the
semilattice (under set-theoretic union) of all the finitely generated lower subsets of I. These
are precisely the lower subsets a of I such that the set Max(a) of maximal elements of a is
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finite. In case I is finite, and since the intersection of lower subsets of I is again a lower

subset, A(I) is a lattice. For any a ∈ A(I), we define Ĥa =
⊕

i∈a Ĝi, and we define f ba (a ⊆ b)

to be the canonical embedding of Ĥa into Ĥb. Given a ∈ A(I), i ∈ a and u ∈ Ĝi, we define

χ(a, i, u) ∈ Ĥa by

χ(a, i, u)j =

{
u if j = i,
0j if j 6= i.

Let Ua be the subgroup of Ĥa generated by the set

{χ(a, i, u)− χ(a, j, ϕ̂ji(u)) : i < j ∈ Max(a), u ∈ Ĝi}.

Now, for any a ∈ A(I), set G̃a = Ĥa/Ua, and let Φa : Ĥa → G̃a be the natural onto
map. Then, for any a ⊆ b ∈ A(I) we have that f ba(Ua) ⊆ Ub, so that there exists a unique

homomorphism f̃ ba : G̃a → G̃b which makes commutive the diagram

Ĥa

fba //

Φa
��

Ĥb

Φb
��

G̃a
f̃ba

// G̃b

Hence, (A(I), (G̃a)a∈A(I), f̃
b
a(a ⊂ b)) is a semilattice of groups. Thus, the set

M̃(J ) :=
⊔

a∈A(I)

G̃a,

endowed with the operation x + y := f̃a∪ba (x) + f̃a∪bb (y) for any a, b ∈ A(I) and any x ∈
G̃a, y ∈ G̃b, is a primely generated regular refinement monoid by [8, Proposition 1]. Note

that Ĥ∅ = G̃∅ = {0}. We refer the reader to [8] for further details on this construction.

In order to attain our goal, we define a convenient substructure of Ĥa. Let Ha be the

subsemigroup of Ĥa defined by

Ha =

{
(zi)i∈a ∈ Ĥa : zi ∈

{
N×Gi for i ∈ Max(a)free

{(0, 0i)} ∪ N×Gi for i ∈ afree \Max(a)free

}}
.

In what follows, whenever i < j ∈ I with j a free element, x = (n, g) ∈ N×Gj and y ∈Mi,
we will see x + ϕji(y) as the element (n, g + ϕji(y)) ∈ N × Gj. This is coherent with our

identification of Gj as the subgroup {0} ×Gj of Ĝj = Z×Gj.

Lemma 1.3. If x ∈ Ha and y ∈ Hb, then

fa∪ba (x) + fa∪bb (y) ∈ Ha∪b.

Proof. This follows from the fact that Max(a ∪ b) ⊆ Max(a) ∪Max(b). �

Lemma 1.3 implies that we can define a semilattice of semigroups

(A(I), (Ha)a∈A(I), f
b
a(a ⊂ b)).

Now, we will construct a monoid associated to it. For, consider the congruence ∼ defined on
Ha, for a ∈ A(I), given by

x ∼ y ⇐⇒ x− y ∈ Ua.
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Lemma 1.4. Let a ∈ A(I). The congruence ∼ on Ha agrees with the congruence ≡, generated
by the pairs (x+ χ(a, i, α), x+ χ(a, j, ϕji(α))), for x ∈ Ha, i < j ∈ Max(a) and α ∈Mi.

Proof. It is clear that if x ≡ y then x ∼ y.
Assume that x ∼ y. Then there exist a finite subset A consisting of pairs (i, j) ∈ I2 such

that i < j for all (i, j) ∈ A and j ∈ Max(a), and elements α
(j)
i , β

(j)
i ∈Mi such that

x+
∑

(i,j)∈A

(χ(a, j, ϕji(α
(j)
i )) + χ(a, i, β

(j)
i )) = y +

∑
(i,j)∈A

(χ(a, j, ϕji(β
(j)
i )) + χ(a, i, α

(j)
i )). (1.1)

Observe that

x+
∑

(i,j)∈A

(χ(a, j, ϕji(β
(j)
i )) + χ(a, i, α

(j)
i )) ≡ y +

∑
(i,j)∈A

(χ(a, j, ϕji(β
(j)
i )) + χ(a, i, α

(j)
i )) ,

so that it is enough to show that for all z = χ(a, i, α) and all z = χ(a, j, ϕji(α)), i < j ∈
Max(a), α ∈Mi, and for all x, y ∈ Ha, we have x+ z ≡ y + z =⇒ x ≡ y.

Assume that for x, y ∈ Ha, i < j ∈ Max(a) and α ∈Mi we have x+χ(a, i, α) ≡ y+χ(a, i, α).
We then have

x+ χ(a, j, ϕji(α)) ≡ x+ χ(a, i, α) ≡ y + χ(a, i, α) ≡ y + χ(a, j, ϕji(α)),

so that it suffices to show that x + χ(a, j, u) ≡ y + χ(a, j, u) implies x ≡ y for u ∈ Gj, j ∈
Max(a). But this is easy: let x(0), x(1), . . . , x(n) be elements in Ha such that x(0) = x+χ(a, j, u)
and x(n) = y+χ(a, j, u), and such that, for m = 0, . . . , n−1, either x(m) = (x(m))′+χ(a, k, αm)
and x(m+1) = (x(m))′ + χ(a, l, ϕlk(αm)), or x(m) = (x(m))′ + χ(a, l, ϕlk(αm)) and x(m+1) =
(x(m))′ + χ(a, l, αm), for some (x(m))′ ∈ Ha, αm ∈ Mk, and some pair k < l ∈ Max(a). Then,
setting

z(m) = x(m) − χ(a, j, u) = x(m) + χ(a, j,−u) ∈ Ha, (m = 0, 1, . . . , n)

we get that z(0) = x, z(n) = y and z(m) are elements in Ha satisfying relations analogous to
the ones satisfied by x(m) (with (x(m))′′ := (x(m))′ − χ(a, j, u) in place of (x(m))′). This shows
that x ≡ y. �

Corollary 1.5. For every a ∈ A(I), Ma := Ha/ ∼= Ha/ ≡ is a submonoid of G̃a.

Proof. By Lemma 1.4, we have Ha/ ∼= Ha/ ≡. Clearly, Ma = Ha/ ∼ is a submonoid of

Ĥa/ ∼. �

Definition 1.6. Given an I-system J = (I,≤, Gi, ϕji(i < j)), we denote by M(J ) the set⊔
a∈A(I) Ma. By Lemma 1.3 and Corollary 1.5, M(J ) is a submonoid of M̃ .

Remark 1.7. If I = Ireg, then M(J ) is the monoid constructed by Dobbertin [8]. If all
groups Gi are trivial, then we recover Pierce’s primitive monoids [13].

Observe that Lemma 1.4 gives:

Corollary 1.8. M(J ) is the monoid generated by Mi, i ∈ I, with respect to the defining
relations

x+ y = x+ ϕji(y), i < j, x ∈Mj, y ∈Mi.

Proof. This follows from the fact that Ma = Ha/ ≡ for all a ∈ A(I) (Lemma 1.4). �
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Notation. Assume J is an I-system. For i ∈ I and x ∈ Mi we will denote by χi(x) the
element [χ(I ↓ i, i, x)] ∈ M(J ). Note that, by Corollary 1.8, M(J ) is the monoid generated
by χi(x), i ∈ I, x ∈Mi, with the defining relations

χj(x) + χi(y) = χj(x+ ϕji(y)), i < j, x ∈Mj, y ∈Mi.

We will denote by L(M) the lattice of order-ideals of a monoid M and by L(I) the lattice
of lower subsets of a poset I.

Proposition 1.9. Let J be an I-system. Then there is a lattice isomorphism

L(I) ∼= L(M(J )).

More precisely, given a lower subset J of I, the restricted J-system is

JJ := (J,≤, (Gi)i∈J , ϕji, (i < j ∈ J)),

and the map J 7→M(JJ) defines a lattice isomorphism from L(I) onto L(M(J )).

Proof. Since J is a lower subset, we see that JJ is a J-system (of course, we set Jfree = J∩Ifree

and Jreg = J ∩ Ireg). Given a ∈ A(J), we also have that a ∈ A(I), and moreover Ma only
depends on the system restricted to a, therefore we get an embedding

M(JJ) =
⊔

a∈A(J)

Ma ↪→M(J ) =
⊔

a∈A(I)

Ma.

Clearly M(JJ) is an order-ideal of M(J ).
The map J 7→ M(JJ) is clearly injective. To show surjectivity, let N be an order-ideal of

M(J ), and let J be the subset of elements i of I such that χi(x) ∈ N for some x ∈ Mi. We
claim that M(JJ) = N . If x ∈ N then there is a ∈ A(I) such that x =

∑
i∈Max(a) χi(xi) for

some xi ∈ Mi. Since N is an order-ideal, we get χi(xi) ∈ N , and so i ∈ J . This shows that
N ⊆ M(JJ). Conversely, M(JJ) is generated as a monoid by the elements χi(x) for i ∈ J
and x ∈Mi, so it suffices to show that all these elements belong to N . If i ∈ J then there is
an element z ∈ Mi such that χi(z) ∈ N . Observe that the archimedian component of χi(z)
in M(J ) is precisely χi(Mi). Therefore, being N an order ideal of M(J ), we must have that
χi(Mi) ⊆ N .

We have shown that the map J 7→M(JJ) is a bijection. It is easily checked that this map
is a lattice isomorphism. �

Observe that the map defined in Proposition 1.9 restricts to a semilattice isomorphism
from A(I) to the semilattice of finitely generated order-ideals of M(J ).

2. The I-system of a primely generated refinement monoid

In this section we will show that for any primely generated conical refinement monoid M
there exist a poset I and an I-system JM such that M and M(JM) are isomorphic.

The set of primes of an abelian monoid M is denoted by P(M). Two primes p, q ∈ M are
incomparable if p � q and q � p. Let M be the antisymmetrization of M , i.e. the quotient
monoid of M by the congruence given by x ≡ y if and only if x ≤ y and y ≤ x (see [7,
Notation 5.1]). We will denote the class of an element x of M in M by x.

The following facts are easily proven.
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Lemma 2.1. If p ∈M , then:

(1) p ∈M is regular if and only if so is p.
(2) p ∈M is free if and only if so is p.
(3) p ∈M is prime if and only if so is p.

For x, y ∈ M , we will write x <∗ y when x < y in M . We write x ≤∗ y if either x <∗ y or
x = y.

Lemma 2.2. Let p, q ∈M primes, and suppose that q <∗ p. Then, p+ q = p.

Proof. We have p = q + a for a nonzero a ∈ M , and thus either p ≤ q or p ≤ a. The first
case implies that p = q, contradicting the assumption. Hence, p + q ≤ a + q = p. and thus
p+ q = p, as desired. �

For a ∈M , we denote by Ma the archimedian component of a, so that x ∈Ma if and only
if a ≤ nx and x ≤ ma for some positive integers n,m.

Lemma 2.3. Let M be a primely generated refinement monoid, and let p ∈ P(M)free. If
x ∈Mp, then there exists a unique n ∈ N such that x = np.

Proof. By [7, Theorem 5.8], there are unique pairwise incomparable primes q1, . . . , qs and
uniquely determined positive integers n1, . . . , ns, with ni = 1 if qi is regular, such that

x = n1q1 + · · ·+ nsqs.

Since x ≤ np for some n ∈ N, we get that qi ≤ p for all i = 1, . . . , s, and since p ≤ mx
for some m ∈ N we must have p ≤ qi for some i. Therefore p = qi and, since the qj are
incomparable we must have s = i = 1. This gives the result. �

We are now ready to define the I-system associated to a primely generated conical refine-
ment monoid M :

(1) By [7, Theorem 5.2], M is a primitive monoid. We will choose, for each prime p of M , a
representative p of p in M , and we will consider the set P formed by the set of all the elements
p obtained in this way; notice that, by Lemma 2.1, P ⊆ P(M). We will refer to these elements
as the primes of M , although any element p′ such that p = p′ will be also prime of course.
Note that, again by Lemma 2.1, p is regular or free according to whether p is regular or free
in M .

The chosen poset is P endowed with the partial order ≤∗. Note that (P,≤∗) is order-
isomorphic with (P,≤) = (P(M),≤).

(2) For each p ∈ P, let Mp be the archimedian component of p. We separate two cases:

(i) If p is regular then Mp is an abelian group (see e.g. [7, Lemma 2.7]), denoted by
Gp. In this case, we choose as the canonical representative of p the only idempotent
element lifting p, i.e. the unit of the group Mp.

(ii) If p is free, we define

G′p = {p+ α : α ∈M and p+ α ≤ p}.
Then G′p is a group with respect to the operation ◦ given by:

(p+ α) ◦ (p+ β) = p+ (α + β)

(see [7, Definition 2.8 & Lemma 2.9]).
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In order to complete the picture for the case (ii), we need to prove the following result.

Lemma 2.4. Let p ∈ P be a free prime. Then

Mp
∼= N× (G′p, ◦).

Proof. If p + α ∈ G′p, then for any n ∈ N we have np + α ∈ Mp. Thus, we can define a map
ϕ : N×G′p →Mp by the rule

ϕ(n, p+ α) = np+ α.

We have

ϕ((n, p+α)+(m, p+β)) = ϕ(n+m, p+α+β) = (n+m)p+α+β = ϕ(n, p+α)+ϕ(m, p+β),

showing that ϕ is a homomorphism.
Now we show that ϕ is injective. Suppose that np + α = mp + β for some n ∈ N and

p + α, p + β ∈ G′p. Passing to M and using that p is free, we get n = m. Now by separative
cancellation ([7, Theorem 4.5]), we get p+ α = p+ β.

To show that ϕ is surjective, take any x ∈ Mp. By Lemma 2.3, x = np for some positive
integer n, so that x + α = np and np + β = x for some α, β ∈ M . We thus obtain np =
np+α+β, which again by separative cancellation gives p = p+α+β, showing that p+β ∈ G′p.
We obtain x = ϕ(n, p+ β). �

Remark 2.5. Observe that, for p free, the group (G′p, ◦) is identified with a subgroup Gp of
G(Mp) ∼= Z× (G′p, ◦) by the rule (p + α)↔ (p + α)− p ∈ G(Mp) for p + α ∈ G′p. With this
identification, Mp is naturally identified with N × Gp through the map ψp : N × Gp → Mp

given by ψp((n, (p+ α)− p)) = np+ α, and so is G(Mp) with Z×Gp.

The groups (Gp)p∈P constructed above are the groups for our P-system.

(3) We now define maps ϕpq : Mq → Gp for q <∗ p, p, q ∈ P. First we need the following fact

Lemma 2.6. If q <∗ p ∈ P and x ∈Mq, then p+ x ≤ p.

Proof. We separate two cases:

(1) If q is regular, then for any x ∈ Mq we have q + x ≤ nq ≤ q. By Lemma 2.2
p ≤ p+ q ≤ p, and thus p+ x ≤ (p+ q) + x = p+ (q + x) ≤ p+ q ≤ p.

(2) If q is free, then by Lemma 2.4 there exist n ∈ N, a ∈M with q+a ≤ q and x = nq+a.
Again by Lemma 2.2, p+ q ≤ p, and thus p+ x = p+ nq + a ≤ p+ nq ≤ p.

�

For x ∈Mq, set

ϕpq(x) = (p+ x)− p ∈ Gp ⊆ G(Mp).

Observe that this map is well-defined by Lemma 2.6. Also, it is clearly a semigroup ho-

momorphism. It is straightforward to show that the induced maps ϕ̂pq : Ĝq → Ĝp satisfy
condition (c1) of Definition 1.1. We finally look at condition (c2). Let p be a free prime in
P and let α ∈ M be a nonzero element such that p + α ≤ p. By [7, Theorem 5.8], there
exists pairwise incomparable primes q1, . . . , qr ∈ P such that qi <

∗ p for all i, and uniquely
determined positive integers ni, with ni = 1 if qi is regular, such that

α = n1q1 + · · ·+ nrqr.
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Since α ≤ n1q1 + · · ·+ nrqr, we can apply refinement to get α = α1 + · · ·+ αr with αi ≤ niqi
for all i. Observe that we obtain αi = niqi, as otherwise we would arrive to a contradiction
with the uniqueness of the expression of α as a sum of primes in M . In particular we obtain
αi ∈Mqi , and

(p+ α)− p =
r∑
i=1

ϕp,qi(αi) ∈ (
⊕
q<p

ϕq,p)(
⊕
q<p

Mq),

as desired.

We have thus built a P-system JM = (P,≤∗, (Gp)p∈P, ϕpq(q <
∗ p)) associated to the monoid

M .

Theorem 2.7. With the above notation, we have that there is a natural isomorphism of
monoids

M(JM) −→M.

Proof. For each p ∈ P, there is a natural map

ψp : M(JM)p →Mp,

which coincides with the identity map when p is regular, and with the map (n, (p+a)−p) 7→
np + a when p is free and p + a ∈ G′p. As observed in Remark 2.5, the map ψp is an
isomorphism. Now, let q <∗ p ∈ P, let x ∈Mp and y ∈Mq. By Lemmas 2.4 and 2.6, we have
x+ y ∈Mp, and so x+ y = x+ y+ 0p = x+ [(p+ y)− p] = x+ϕpq(y) holds in M , where 0p is

the identity of the group Ĝp. By Corollary 1.8, there exists a unique monoid homomorphism
ψ : M(JM) → M which restricts to ψp for every p ∈ P. Since M is primely generated and
conical, ψ is a surjective map.

To show that ψ is injective, we use the description of M(JM) obtained above and an
argument of Dobbertin [8, pp. 172–173]. Since ψp is an isomorphism for all p ∈ P, and in
order to simplify the notation, we will identify M(JM)p and Mp for the rest of the proof.

Let x̃, ỹ ∈M(JM) be such that ψ(x̃) = ψ(ỹ). Adopting the notation introduced in Section
1, we may assume that x̃, ỹ have representatives x ∈ Ha and y ∈ Hb, respectively, for
a, b ∈ A(I), of the form

x =
∑

p∈Max(a)

χ(a, p, xp), y =
∑

q∈Max(b)

χ(b, q, yq),

where xp ∈Mp for all p ∈ Max(a) and yq ∈Mq for all q ∈ Max(b).
Observe that ∑

p∈Max(a)

xp = ψ(x̃) = ψ(ỹ) =
∑

q∈Max(b)

yq

in M . Applying [7, Theorem 5.8], we deduce that Max(a) = Max(b), and so a = b.
Since M has refinement, there are elements zpq in M such that xp =

∑
q∈Max(b) zpq and

yq =
∑

p∈Max(a) zpq. Since M is primely generated, we can write

zpq =

npq∑
l=1

wpql,
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where wpql ∈ Ml for l ∈ P. Observe that, looking at xp as an element of Ĝp, we have

xp =
∑

q(
∑

l ϕ̂p,l(wpql)), and similarly, looking at yq as an element of Ĝq, we have yq =∑
p(
∑

l ϕ̂q,l(wpql)).

The following computation is performed in the group Ĥa (cf. [8]):∑
p,q,l

(
χ(a, p, ϕ̂pl(wpql))− χ(a, l, wpql)

)
+
∑
p,q,l

(
χ(a, l, wpql)− χ(a, q, ϕ̂q,l(wpql))

)
=
∑
p,q,l

χ(a, p, ϕ̂p,l(wpql))− χ(a, q, ϕ̂q,l(wpql))

=
∑
p

(
χ(a, p,

∑
q

(
∑
l

ϕ̂p,l(wpql)))
)
−
∑
q

(
χ(a, q,

∑
p

(
∑
l

ϕ̂q,l(wpql)))
)

=
(∑

p

χ(a, p, xp)
)
−
(∑

q

χ(a, q, yq)
)

= x− y.

This shows that x− y ∈ Ua, and so x̃ = ỹ in Ma = Ha/ ∼ (see Corollary 1.5). This concludes
the proof. �

Remark 2.8. It can be easily checked that, for any I-system J , the primes of M(J ) are
precisely the elements of the form χi(x), for i ∈ Ireg and x ∈ Gi and the elements of the form
χj((1, x)) for j ∈ Ifree and x ∈ Gj. So, M(J ) is always a primely generated monoid.

Proposition 2.9. An I-system J is finitely generated if and only if M(J ) is a finitely
generated monoid.

Proof. Assume first that J = (I,≤, (Gi)i∈I , ϕji(i < j)) is a finitely generated I-system. By
Remark 1.2, for every i ∈ Ifree minimal, the semigroup Mi is generated by (1, ei), and thus it
is finitely generated. Then, using condition (c2) in Definition 1.1, it is easily seen that M(J )
is generated as a monoid by the elements of the form χi(1, ei), for i ∈ Ifree and the elements of
the form χi(xi,t), for i ∈ Ireg, where {xi,1, . . . , xi,li} is a finite family of semigroup generators
of Gi.

Conversely, suppose that M(J ) is finitely generated. We first show that I is finite. Indeed
consider the I-system J ≡, with the same partition of I as disjoint union of free and regular
elements, and with G≡i = {ei} for all i ∈ I. Then M(J ≡) is the antisymmetrization of M(J ),
and so is a finitely generated monoid. It is readily seen that a minimal set of generators of the
primely generated refinement monoidM(J ≡) [13] is precisely the set of primes P(M(J ≡)) = I
of M(J ≡). Therefore I is finite.

Now, let i ∈ Ireg, and let G be a finite family of semigroup generators of M(J ). If g ∈ G
and χi(ei) + g ≤ χi(ei), then there is an element gi ∈ Gi such that χi(gi) = χi(ei) + g. It is
easy to check that the finite family

{gi : g ∈ G and χi(ei) + g ≤ χi(ei)}
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generates Gi as a semigroup. Therefore, Gi is a finitely generated group if i ∈ Ireg. Now, if
i ∈ Ifree then one shows using (c2) in Definition 1.1 and induction that Gi is also a finitely
generated abelian group. �

3. The refinement property of M(J ) for finitely generated I-systems

In this section we show that, for any finitely generated I-system J , the monoid M(J )
has the refinement property. Indeed, we prove more generally this result for arbitrary I-
systems over finite posets I. This will be used in the next section to show the refinement
property for the monoids associated to arbitrary I-systems. We remark that a main difficulty
in establishing the refinement property for M(J ) is that the components Ma, for a ∈ A(I),
do not satisfy refinement in general.

The first step is to show that the result holds when I satisfies the additional condition
that, for every p ∈ I, the set I ↑ p = {i ∈ I : p ≤ i} is a chain (Proposition 3.2). For
this result, we do not require I to be finite. Given i ∈ I, we will denote the lower subset
I ↓ i = {x ∈ I : x ≤ i} by a(i).

We establish in the next result one of the crucial steps for proving the refinement property.

Lemma 3.1. Let J = (I,≤, Gi, ϕji(i < j)) be an I-system. Let i ∈ I and consider elements
x1, x2, y1, y2 ∈ Mi such that x1 + x2 = y1 + y2 in Mi. Then there are elements z(ij) such
that z(11) = χ(a(i), i, z11), z(22) = χ(a(i), i, z22), for some elements z11, z22 in Mi, z

(12), z(21) ∈⊔
b⊆a(i) Hb such that the identities [χ(a(i), i, xr)] =

∑
s[z

(rs)] for r = 1, 2 and [χ(a(i), i, ys)] =∑
r[z

(rs)] for s = 1, 2 hold in M(J ).

Proof. If i ∈ Ireg, then Mi is a group, whence the result is clear. So assume that i ∈ Ifree.
Write xr = (nr, gr) ∈ N × Gi and ys = (ms, hs) ∈ N × Gi, for r, s ∈ {1, 2}. Consider a
refinement of the equality n1 + n2 = m1 +m2 of the form

m1 m2

n1 α1,1 α1,2

n2 α2,1 α2,2

with α1,1 and α2,2 positive integers and α1,2 and α2,1 non-negative integers. On the other
hand we may consider a refinement

h1 h2

g1 β1,1 β1,2

g2 β2,1 β2,2

of the identity g1 + g2 = h1 + h2 in the group Gi. For the indices (r, s) such that αr,s = 0,

use condition (c2) in Definition 1.1 to find finitely many elements δ
(rs)
k ∈ Mk, with k < i,

satisfying that
∑

k ϕik(δ
(rs)
k ) = βr,s. Now take z11 = (α1,1, β1,1), z22 = (α2,2, β2,2), and for

r 6= s, take z(rs) = χ(a(i), i, (αr,s, βr,s)) in case αr,s 6= 0 and z(r,s) =
∑

k χ(a(k), k, δ
(rs)
k ) ∈ Hb

in case αr,s = 0, where b ∈ A(I) and b ⊂ a(i). It is then clear by Lemma 1.4 that the
identities [χ(a(i), i, xr)] =

∑
s[z

(rs)] for r = 1, 2 and [χ(a(i), i, ys)] =
∑

r[z
(rs)] for s = 1, 2

hold in M(J ). �

Now, we are ready to prove the desired result for a special kind of posets.
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Proposition 3.2. Let J = (I,≤, Gi, ϕji(i < j)) be an I-system. Assume that, for every
p ∈ I, the set I ↑ p = {i ∈ I : p ≤ i} is a chain. Then, the associated monoid M(J ) is a
refinement monoid.

Proof. Assume that x(1) + x(2) = y(1) + y(2) in M := M(J ), where x(r) ∈Mar and y(s) ∈Mbs

for ar, bs ∈ A(I). Then a := a1 ∪ a2 = b1 ∪ b2. Write Ar = Max(ar), Bs = Max(bs), and
A = Max(a). Observe that A1 ∩ A2 ⊆ A ⊆ A1 ∪ A2 and similarly B1 ∩B2 ⊆ A ⊆ B1 ∪B2.

We first reduce to the case where A is a singleton. For, observe that, because of our
hypothesis that I ↑ p is a chain for every p ∈ I, the sets a(k), for k ∈ A, are mutually
disjoint. Indeed, if k, l ∈ A and x ∈ a(k) ∩ a(l), then k, l ∈ I ↑ x, which by hypothesis is
a chain. Then, k ≤ l or l ≤ k, and since both are maximal we conclude that k = l. Now,
for each k ∈ A, let Nk =

⊔
b⊆a(k) Mb be the order-ideal of M generated by the archimedian

component Ma(k). By the above remark, we have that the internal direct sum of order-ideals

N :=
⊕∑
k∈A

Nk is the order ideal of M generated by x(1) + x(2) = y(1) + y(2). Restricting the

equality x(1) + x(2) = y(1) + y(2) to each Nk, k ∈ A, we may thus assume that A = {k}
for a single element k ∈ I (and consequently a = a(k)). Note that there exist r, s ∈ {1, 2}
such that k ∈ Ar ∩ Bs. Without loss of generality, we shall assume that r = s = 1, so that
k ∈ A1 ∩B1.

By Lemma 1.4, for r = 1, 2 we can take representatives x̃(r) of x(r) in Har of the form

x̃(r) =
∑

i∈Ar x̃
(r)
i , where x̃

(r)
i ∈ Mi for i ∈ Ar (and where x̃

(r)
i = 0i ∈ Ĝi if i ∈ ar \ Ar).

Similarly, we can take representatives ỹ(s) of y(s) in Hbs of the form ỹ(s) =
∑

i∈Bs ỹ
(s)
i , where

ỹ
(s)
i ∈Mi for i ∈ Bs.

Since x̃(1) + x̃(2) ∼ ỹ(1) + ỹ(2) in Ha, it follows that there are elements ui ∈ Ĝi for i < k
such that

x̃(1) + x̃(2) − (ỹ(1) + ỹ(2)) =
∑
i<k

(
χ(a, i, ui)− χ(a, k, ϕ̂ki(ui))

)
. (3.1)

For i ∈ a \ (A1 ∪ A2 ∪B1 ∪B2) we thus obtain that ui = 0i.
We now proceed to obtain the refinement. We need to distinguish several cases. To start

with, observe that the refinement is trivial in case x(2) = 0 or y(2) = 0, so we will assume that
A2 6= ∅ and B2 6= ∅.

Since for any i = 1, 2 we have ai ⊆ a1 ∪ a2 = a(k) and bi ⊆ b1 ∪ b2 = a(k), we have that
y ≤ k for every y ∈ Ai and for every y ∈ Bi (i = 1, 2).

Assume first that k ∈ A1∩A2∩B1∩B2. Then we have A1 = A2 = B1 = B2 = {k}. So, we

obtain from (3.1) that x̃
(1)
k + x̃

(2)
k = ỹ

(1)
k + ỹ

(2)
k in Mk, and the result follows from Lemma 3.1.

A second case appears when k ∈ A1 ∩A2 ∩B1 but k /∈ B2. Then we have A1 = A2 = B1 =
{k}, and b2 =

⋃
d∈B2

a(d) ( a. From (3.1), we get

x̃
(1)
k + x̃

(2)
k − ỹ

(1)
k = −

∑
d∈B2

ϕ̂kd(ud), ỹ
(2)
d = −ud (d ∈ B2). (3.2)

Set

z(22) = ỹ(2), z(12) = 0, z(11) = x̃(1), z(21) = χ(a, k, x̃
(2)
k −

∑
d∈B2

ϕ̂kd(ỹ
(2)
d )). (3.3)
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Then it follows from (3.2) that x(r) =
∑

s[z
(rs)] and y(s) =

∑
r[z

(rs)] in M(J ), giving the
desired refinement. The case where k ∈ A1 ∩B1 ∩B2 and k /∈ A2 is treated similarly.

Finally we consider the case where k /∈ A2 ∪B2. (Recall that we are assuming throughout
that k ∈ A1 ∩B1). Then we have A1 = B1 = {k} and a2, b2 ( a. We have from (3.1):

x̃
(1)
k − ỹ

(1)
k = −

∑
d∈A2∪B2

ϕ̂kd(ud), ud = x
(2)
d for d ∈ A2 \B2, (3.4)

ud =− y(2)
d for d ∈ B2 \ A2, ud = x

(2)
d − y

(2)
d for d ∈ A2 ∩B2, (3.5)

Set z(22) = 0, z(12) = ỹ(2) =
∑

d∈B2
ỹ

(2)
d , z(21) = x̃(2) =

∑
d∈A2

x̃
(2)
d , and

z(11) = χ
(
a(k), k, x̃

(1)
k −

∑
d∈B2

ϕ̂kd(ỹ
(2)
d )
)
.

It is clear that x(2) = [z(21)] + [z(22)], y(2) = [z(12)] + [z(22)] and x(1) = [z(11)] + [z(12)]. Using
equations (3.4) and (3.5), we also obtain y(1) = [z(11)] + [z(21)]. This concludes the proof. �

Now we start our approach to the proof of the refinement property for the monoids associ-
ated to systems over finite posets. We first analyze the functoriality of our main construction.

Definition 3.3. Let I(t) be posets (t = 1, 2), and let Jt = (I(t),≤, G(t)
i , ϕ

(t)
ji (i < j)) be

I(t)-systems. A homomorphism of systems f : J1 → J2 consists of an order-preserving map

ψ : I1 → I2 such that ψ(i) < ψ(j) whenever i < j (that is, it is injective on chains), ψ(I
(1)
free) ⊆

I
(2)
free and ψ(I

(1)
reg) ⊆ I

(2)
reg, and a family of group homomorphisms fi : G

(1)
i → G

(2)
ψ(i) such that for

i < j in I(1) the following diagram is commutative:

M
(1)
i

ϕ
(1)
ji−−−→ G

(1)
j

f i

y yfj
M

(2)
ψ(i)

ϕ
(2)
ψ(j),ψ(i)−−−−−→ G

(2)
ψ(j)

(3.6)

where for i ∈ I
(1)
reg, f i = fi, and, for i ∈ I

(1)
free, f i : M

(1)
i → M

(2)
ψ(i) is defined by f i(n, h) =

(n, fi(h)), for n ∈ N and h ∈ G(1)
i .

We have the following result:

Lemma 3.4. Let I(t) be posets (t = 1, 2), and let Jt be I(t)-systems. Then, any homomor-
phism of systems f : J1 → J2 induces a monoid homomorphism M(f) : M(J1)→M(J2).

Proof. We set M(f)(χi(x)) = χψ(i)(f i(x)) for all x ∈ M
(1)
i , i ∈ I(1). By Corollary 1.8, to

show that this is a well-defined homomorphism, it is enough to show that, if i < j in I(1),

x ∈M (1)
j and y ∈M (1)

i , then

χψ(j)(f j(x)) + χψ(j)(f i(y)) = χψ(j)(f j(x+ ϕ
(1)
ji (y))).
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For this, observe that

χψ(j)(f j(x+ ϕ
(1)
ji (y))) = χψ(j)(f j(x) + fj(ϕ

(1)
ji (y)))

= χψ(j)(f j(x) + ϕ
(2)
ψ(j),ψ(i)(f i(y))) = χψ(j)(f j(x)) + χψ(i)(f i(y)) ,

where we have used the commutativity of the diagram (3.6) for the second equality. �

Recall that given a poset I, and an element i ∈ I, the lower cover of i in I is the set

L(I, i) = {j ∈ I : j < i and [j, i] = {j, i}}.

Under certain circumstances we can pullback an I-system, as follows.

Lemma 3.5. Let I(1), I(2) be finite posets, let J2 = (I(2),≤, G(2)
i , ϕ

(2)
ji (i < j)) be an I(2)-

system, and let ψ : I(1) → I(2) be an order-preserving surjective map such that ψ(i) < ψ(j)
for i < j in I(1). Assume moreover that ψ induces a bijection from L(I(1), i) onto L(I(2), ψ(i))

for all i ∈ I(1). Set G
(1)
i = G

(2)
ψ(i) for all i ∈ I(1), and ϕ

(1)
ji = ϕ

(2)
ψ(j),ψ(i) for all i, j ∈ I(1)

with i < j. Then, J1 = (I(1),≤, G(1)
i , ϕ

(1)
ji (i < j)) is an I(1)-system, and there is a nat-

ural homomorphism of systems f : J1 → J2 inducing a surjective monoid homomorphism
M(f) : M(J1)→M(J2).

Proof. The proof is straightforward. The only thing to be remarked is that property (c2)
for the I(1)-system J1 follows from the condition that ψ induces a bijection from L(I(1), i) to

L(I(2), ψ(i)) for all i ∈ I(1). Indeed, assume that i ∈ I(1)
free. It suffices to note that, given any

j′ ∈ I(2) such that j′ < ψ(i), there exists j ∈ I(1) such that j < i and ψ(j) = j′. For this,
take a chain j′ = j′0 < j′1 · · · < j′l = ψ(i) in I(2) such that j′t ∈ L(I(2), j′t+1) for t = 0, . . . , l− 1.

Then, by using our hypothesis, we can build a sequence j0 < j1 · · · < jl = i in I(1) such that
jt ∈ L(I(1), jt+1) for t = 0, . . . , l − 1 and ψ(jt) = j′t for all t. Now set j = j0. �

To obtain the refinement of M(J ) for a general I-system J over a finite poset I, we will
use a technique introduced in [2, Section 6]. In that paper, given a finite poset P with a
greatest element, another poset F is constructed with the property that F ↑ i is a chain for
every i ∈ F, such that there is a surjective order-preserving map Ψ: F→ P satisfying certain
properties [2, Proposition 6.1]. Denoting by M(P) the monoid generated by P with the only
relations given by the rules p + q = p whenever q < p, it was shown in [2, Proposition 6.5]
that M(P) is obtained from M(F) by a sequence of crowned pushouts (see below for the
definition). We aim here to obtain a corresponding result for the monoids M(J ), which in
particular will provide a proof of the refinement property for them.

We will use here [2, Proposition 6.1] and the order-theoretic method behind the proof of
[2, Proposition 6.5]. The monoid content of [2, Proposition 6.5] needs to be adapted in order
to be applied to our situation. We proceed to do that adaptation, in various steps.

Let us recall from [2, Section 4] the definition of a crowned pushout.



16 P. ARA AND E. PARDO

Definition 3.6. Let P be a conical monoid. Suppose that P contains order-ideals I and I ′,
with I ∩ I ′ = 0, such that there is an isomorphism ϕ : I → I ′. We have a diagram

I
=−−−→ I

ϕ

y yι1
I ′

ι2−−−→ P
which is not commutative.

The crowned pushout Q of (P, I, I ′, ϕ) is the coequalizer of the maps ι1 : I → P and
ι2 ◦ ϕ : I → P , so that there is a map f : P → Q with f(ι1(x)) = f(ι2(ϕ(x))) for all x ∈ I
and given any other map g : P → Q′ such that g(ι1(x)) = g(ι2(ϕ(x))) for all x ∈ I, we have
that g factors uniquely through f .

Proposition 3.7 ([2, Proposition 4.2]). Let P be a conical refinement monoid. Suppose that
P contains order-ideals I and I ′, with I∩I ′ = 0, such that there is an isomorphism ϕ : I → I ′.
Let Q be the crowned pushout of (P, I, I ′, ϕ). Then, Q is the monoid P/ ∼ where ∼ is the
congruence on P generated by x + i ∼ x + ϕ(i) for i ∈ I and x ∈ P . Moreover Q is a
conical refinement monoid, and Q contains an order-ideal Z, isomorphic with I, such that
the projection map π : P → Q induces an isomorphism P/(I + I ′) ∼= Q/Z.

It was observed in the proof of [2, Proposition 4.2] that the equivalence relation ∼ on P
is refining, that is, if x ∼ y + z then there is a decomposition x = x1 + x2 such that x1 ∼ y
and x2 ∼ z. In the terminology of [8], this means that the quotient map π : P → Q is a
V-homomorphism. The refinement of Q follows from this fact.

3.8. Let I be a finite poset, let J = (I,≤, Gi, ϕji(i < j)) be an I-system, and let i be a
maximal element of I. Since I ↓ i is a finite poset, we can take the (I ↓ i)-system

Ji = (I ↓ i,≤, (Gj)j∈I↓i, ϕjk(k < j, j ∈ I ↓ i))
obtained by restricting J to I ↓ i. Since i is a greatest element for the poset I ↓ i, we can use
the construction in [2, Proposition 6.1] to obtain a poset F(i) and a surjective order-preserving
map ψ : F(i)→ I ↓ i satisfying the following properties:

(1) The map ψ preserves chains, that is, if S is a chain in F(i) then ψ restricts to a
bijection from S to ψ(S).

(2) The map S → ψ(S) is a bijection from the set of maximal chains of F(i) onto the set
S0(i) of maximal chains of I ↓ i.

(3) For every t ∈ F(i), the interval [t, i] is a chain [2, Proposition 6.1].
(4) For t1, t2 ∈ F(i), if ψ([t1, i]) = ψ([t2, i]) then t1 = t2. (This follows directly from the

construction of F(i)).
(5) For every q ∈ F(i), the map Ψ induces a bijection from L(F(i), q) onto L(I ↓ i,Ψ(q))

[2, Lemma 6.4].

Definition 3.9. Let I be a finite poset and let J = (I,≤, Gi, ϕji(i < j)) be an I-system. A
J -compatible pair of I is a pair of lower subsets I1 and I2 of I such that I1∩ I2 = ∅, and such
that there is an isomorphism of posets ψ : I1 → I2 satisfying the following conditions:

(1) ψ((I1)reg) = (I2)reg and ψ((I1)free) = (I2)free.
(2) Gi = Gψ(i) for all i ∈ I1.
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(3) ϕji = ϕψ(j),ψ(i) if i < j and i, j ∈ I1.
(4) ϕji = ϕj,ψ(i) if i ∈ I1, j ∈ I \ (I1 ∪ I2), i < j, and ψ(i) < j.

We have the following easy fact.

Lemma 3.10. Let (I1, I2) be a J -compatible pair of lower subsets, and for t = 1, 2, let
Jt be the It-system obtained by restricting the I-system J to It. Then, M(Jt) are order-
ideals of M(J ) for t = 1, 2, with M(J1) ∩M(J2) = 0, and there is a monoid isomorphism
ψ : M(J1)→M(J2) sending χi(x) to χψ(i)(x) for all i ∈ I1 and all x ∈Mi.

Proof. By Proposition 1.9, M(Jt) are order-ideals of M(J ) and, since I1 ∩ I2 = ∅, we have
that M(J1) ∩M(J2) = {0}. By Lemma 3.4, the poset isomorphism ψ : I1 → I2 induces a
monoid isomorphism ψ : M(J1)→M(J2) with the desired properties. �

Using a compatible pair of I, we can construct a new system, as follows.

Definition 3.11. Let I be a finite poset, let J = (I,≤, Gi, ϕji(i < j)) be an I-system, and let
(I1, I2) be a J -compatible pair of lower subsets of I. We define J ′ = (I ′,≤′, G′i, ϕ′ji(i < j)),
where:

(1) I ′ = I \ I2.
(2) ≤′ is the order relation obtained by setting i ≤′ j if and only if either i ≤ j in I or

i ∈ I1, j ∈ I \ (I1 ∪ I2), and ψ(i) < j in I.
(3) G′i = Gi for i ∈ I ′.
(4) For i <′ j in I ′, we have ϕ′ji = ϕji if i < j in I, and ϕ′ji = ϕj,ψ(i) if i ∈ I1, j ∈ I\(I1∪I2)

and ψ(i) < j in I.

Lemma 3.12. Let I be a finite poset, let J = (I,≤, Gi, ϕji(i < j)) be an I-system, and let
(I1, I2) be a J -compatible pair of lower subsets of I. Then, J ′ = (I ′,≤′, G′i, ϕ′ji(i < j)) is an
I ′-system.

Proof. Note that condition (4) in Definition 3.9 says that ϕ′ji is well-defined for i <′ j.
To show condition (c1) in Definition 1.1, take i, j, k in I ′ such that i <′ j <′ k. We have to

show that ϕ̂′ki = ϕ̂′kjϕ̂
′
ji.

If i < j < k in I, then the condition follows from the corresponding condition for J . If
i, j ∈ I1, k ∈ I \ (I1 ∪ I2), and ψ(j) < k, then ψ(i) < ψ(j) because ψ is order-preserving, and
thus ψ(i) < k. Therefore,

ϕ̂′ki = ϕ̂k,ψ(i) = ϕ̂k,ψ(j)ϕ̂ψ(j),ψ(i) = ϕ̂′kjϕ̂ji = ϕ̂′kjϕ̂
′
ji,

where we have used condition (3) in Definition 3.9 for the third equality. A similar proof
applies in the case where i ∈ I1, j ∈ I \ (I1 ∪ I2) and ψ(i) < j.

We show now condition (c2) in Definition 1.1. For this observe that, given i ∈ I ′, we have⊕
{k∈I′:k<′i}

ϕ′ik =
( ⊕
{k∈I′:k<i}

ϕki

)⊕( ⊕
{k∈I1:ψ(k)<i and k�i}

ϕi,ψ(k)

)
.

Since ϕi,ψ(k) = ϕik for all k ∈ I1 such that k < i and ψ(k) < i, we obtain that⊕
{k∈I′:k<′i}

ϕ′ik :
( ⊕
{k∈I′:k<′i}

M ′
ik

)
−→ G′i

is surjective. �
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The following result plays a central role in the proof of the main result of this section.

Lemma 3.13. Let I be a finite poset, let J = (I,≤, Gi, ϕji(i < j)) be an I-system, and let
(I1, I2) be a J -compatible pair of lower subsets of I. Then, the crowned pushout of M(J )
with respect to ψ : M(J1)→M(J2) is the monoid M(J ′), where J ′ is the system introduced
in Definition 3.11.

Proof. Let Q be the crowned pushout of M(J ) with respect to ψ : M(J1)→M(J2), and let
f : M(J )→ Q be the canonical homomorphism.

There is a surjective homomorphism π : M(J ) → M(J ′) which sends χi(x) to χi(x) if
i ∈ I \ I2 and x ∈ Mi, and sends χψ(i)(y) to χi(y) if i ∈ I1 and y ∈ Mψ(i) = Mi. Obviously
this homomorphism equalizes ι1 and ι2◦ψ, so there is a unique homomorphism π : Q→M(J ′)
such that π = π ◦ f . Note that π is surjective.

To show that π is an isomorphism, we only need to build a homomorphism ρ : M(J ′)→ Q
such that ρ ◦ π = IdQ. We define ρ(χi(x)) = f(χi(x)) for i ∈ I ′ and x ∈ M ′

i = Mi. We have
to check that ρ is well-defined. By Corollary 1.8, it suffices to check that

f(χj(x)) + f(χi(y)) = f(χj(x+ ϕ′ji(y)))

for i, j ∈ I ′ with i <′ j, x ∈M ′
j and y ∈M ′

i .
Assume first that i < j in I. Then,

f(χj(x)) + f(χi(y)) = f(χj(x) + χi(y)) = f(χj(x+ ϕji(y))) = f(χj(x+ ϕ′ji(y)).

Suppose now that i ∈ I1, j ∈ I \ (I1 ∪ I2) and ψ(i) < j. Note that, since f equalizes ι1 and
ι2 ◦ ψ, we have

f(χi(y)) = f(ι1(χi(y))) = f(ι2ψ(χi(y))) = f(χψ(i)(y)).

Hence,

f(χj(x)) + f(χi(y)) = f(χj(x)) + f(χψ(i)(y)) = f(χj(x) + χψ(i)(y))

= f(χj(x+ ϕj,ψ(i)(y))) = f(χj(x+ ϕ′ji(y))).

It is clear that ρ ◦ π = IdQ. This concludes the proof. �

The proof of the following lemma is contained in the proof of [2, Proposition 6.5].

Lemma 3.14. Let I be a finite poset and let k ∈ Max(I). Then, there exist a positive integer
n, a family (I t)0≤t≤n of finite posets, and a family ψt : I t → I t+1 of surjective order-preserving
maps such that, if we denote Ψt = ψn−1 ◦ · · · ◦ ψt (0 ≤ t ≤ n− 1), then:
(1) I0 = F(k), In = I ↓ k, and Ψ0 is the map ψ : F(k)→ I ↓ i in 3.8.
(2) For t = 0, 1, . . . , n− 1, there exist disjoint lower subsets I t1 and I t2 of I t such that:

(a) Ψt|Its : I ts → Ψt(I
t
s) is an isomorphism for s = 1, 2.

(b) Ψt(I
t
1) = Ψt(I

t
2), whence one obtains an isomorphism of posets τt : I

t
1 → I t2 by setting

τt = (Ψt|It2)
−1 ◦ (Ψt|It1).

(c) Ψt factors as Ψt = Ψt+1 ◦ ψt, where I t+1 = I t \ I t2, with the order in I t+1 defined
by i <′ j if either i < j in I t or i ∈ I t1, j ∈ I t \ (I t1 ∪ I t2) and τt(i) < j, the map
ψt : I

t → I t+1 is the natural identification map, and the map Ψt+1 : I t+1 → I ↓ k is the
restriction of Ψt to I t+1.
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The following pictures illustrate the procedure described in Lemma 3.14 in a basic case:
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In these pictures, I is a poset with a maximum element, and F is the corresponding poset
having the property that all the subsets F ↑ p are chains. In this case, the process described
in Lemma 3.14 enables us to pass from F to I in two steps. In the first step, we identify the
elements 112 and 121 to obtain the poset I1. In the second step, we identify (I1) ↓ (12) with
(I1) ↓ (21) to get I2 = I from I1.

Now, we are ready to prove the main result in this section.

Theorem 3.15. Let I be a finite poset and let J = (I,≤, Gi, ϕji(i < j)) be an I-system.
Then, M(J ) is a conical refinement monoid.

Proof. We will show that M(J ) enjoys the refinement property.
For this, we will follow the process used in the proof of [2, Proposition 6.5], using Lem-

mas 3.13 and 3.14. Given k ∈ Max(I), let F(k) be the poset constructed in [2, Proposition
6.1] from I ↓ k. By 3.8, there is a surjective order-preserving map ψ : F(k) → I ↓ k satis-
fying the conditions stated in Lemma 3.5. Therefore, there is an F(k)-system JF(k) and a
homomorphism of systems, also denoted by ψ,

ψ : JF(k) −→ Jk,
where Jk is the (I ↓ k)-system obtained by restricting J to I ↓ k, which induces a surjective
monoid homomorphism M(JF(k)) → M(Jk). Note that M(Jk) is an order-ideal of M(J )
(see Proposition 1.9).

Take the sequence of posets I t (t = 0, 1, . . . , n) such that I0 = F(k) and In = I ↓ k, and
surjective maps ψt : I

t → I t+1, for t = 0, 1, . . . , n− 1, such that ψ = ψn−1 ◦ · · · ◦ψ1 ◦ψ0, given
by Lemma 3.14. For each t = 0, . . . , n − 1, the map Ψt : I t → I ↓ k satisfies the properties
required in the statement of Lemma 3.5; this follows by induction and Lemma 3.14. Indeed,
assuming the result is true for Ψt, it follows from Lemma 3.14(2c) that i <′ j in I t+1 implies
that Ψt+1(i) < Ψt+1(j) in M ↓ k. On the other hand, if i ∈ I t+1 = I t \ I t2 then, by induction,
Ψt induces a bijection from L(I t, i) onto L(I ↓ k,Ψt(i)). Now, if j ∈ L(I t, i) ∩ I t2, then there
is a unique j′ ∈ I t1 such that τt(j

′) = j. Then, we have j′ <′ i in I t+1 (see Lemma 3.14(2c)),
and it easily follows that j′ ∈ L(I t+1, i). Note that j′ /∈ L(I t, i), because Ψt(j

′) = Ψt(j) and
Ψt is injective on L(I t, i). It follows that

L(I t+1, i) =
(

L(I t, i) \ I t2
)⊔(

τ−1
t (L(I t, i) ∩ I t2)

)
,

and that Ψt+1 induces a bijection from L(I t+1, i) onto L(I ↓ k,Ψt+1(i)) = L(I ↓ k,Ψt(i)).
Hence, by Lemma 3.5, we can construct the I t-system J t by taking the pullback of the

I ↓ k-system Jk through Ψt, for all t = 0, . . . , n − 1. It is easily seen that the pair (I t1, I
t
2) is

a compatible J t-system with respect to the isomorphism τt : I
t
1 → I t2 (see Definition 3.9).

Notice that J t+1 coincides with the I t+1-system (J t)′ described in Definition 3.11 (using
the J t-compatible pair (I t1, I

t
2)). Therefore, by Lemma 3.13, M(J t+1) is a crowned pushout

of M(J t). Observe that M(J n) = M(Jk).
So, M(Jk) can be obtained from M(JF(k)) by a sequence of crowned pushouts. Since the

poset F(k) satisfies the condition that [p, k] is a chain for every p ∈ F(k) (3.8), Proposition
3.2 proves that M(JF(k)) is a refinement monoid. Therefore, by Proposition 3.7, M(J t) is a
conical refinement monoid for all t = 0, 1, . . . , n. In particular M(Jk) is a refinement monoid.

In order to extend this result to I, we will apply a similar strategy to the onto poset
map Ψ :

⊔
k∈Max(I)(I ↓ k) → I. For, we produce, by recurrence on t, a family (I t)0≤t≤s of
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posets and a family ψt : I t → I t+1 of onto poset maps, starting with I0 =
⊔
k∈Max(I)(I ↓ k)

and ending with Is = I, satisfying the properties stated in Lemma 3.14. Let us illustrate
the procedure with the first step. For, we enumerate Max(I) = {k0, k1, . . . , ks}. We define
I0

1 = (I ↓ k0) ∩ (I ↓ k1) ⊂ (I ↓ k0) and I0
2 = (I ↓ k0) ∩ (I ↓ k1) ⊂ (I ↓ k1) (that is, we

look at this intersection, first in the disjoint copy of I ↓ k0 in
⊔
k∈Max(I)(I ↓ k), and then in

the disjoint copy of I ↓ k1 in
⊔
k∈Max(I)(I ↓ k)). Clearly, I0

1 and I0
2 are disjoint lower sets of⊔

i∈Max(I)(I ↓ i), the map Ψ restricted to I0
j (j = 1, 2) is injective, and Ψ(I0

1 ) = Ψ(I0
2 ). So,

τ0 = (Ψ|−1
I02
◦Ψ|I01 ) : I0

1 → I0
2 is an isomorphism. Now we define I1 = (I0)′ = I0 \ I0

2 , with the

order ≤′ determined as in Lemma 3.14(c2). Let ψ0 : I0 → I1 be the canonical identification
map, and let Ψ1 : I1 → I be the restriction map. Proceeding in this way, we obtain the
desired family of posets and the desired family of onto poset maps.

Note that the pullback of J with respect to Ψ is precisely
⊔
k∈Max(I) Jk, and that the

corresponding monoid is

M(
⊔

k∈Max(I)

Jk) =
∏

k∈Max(I)

M(Jk).

Moreover, the map induced by Ψ is just the natural map
∏

k∈Max(I)M(Jk)→M(J ) induced

by the inclusions of the order-ideals M(Jk) into M(J ). Now, the same proof that we have
used above shows that M(J ) can be obtained from

∏
k∈Max(I) M(Jk) by a finite sequence

of crowned pushouts. By the above argument, M(Jk) is a refinement monoid for every
k ∈ Max(I), and thus so is

∏
k∈Max(I) M(Jk). Therefore, we can conclude from Proposition

3.7 that M(J ) has refinement. This concludes the proof. �

4. Tameness and refinement property of M(J ) for arbitrary I-systems

In this section we will prove that the monoids associated to I-systems are tame refinement
monoids (Theorem 4.6). We will proceed to develop the proof through several intermediate
steps. We seek to apply [3, Theorem 2.6], so our aim is to build, given an I-system J and
a finitely generated submonoid M ′ of M(J ), a finitely generated refinement monoid M and
monoid homomorphisms γ : M ′ → M and δ : M → M(J ) such that δ ◦ γ = IdM ′ . Note
that, in order to achieve this, we can replace M ′ be any larger submonoid of M(J ). The
larger submonoid needed for the proof will be of the form considered in Lemma 4.1. Lemmas
4.2 and 4.5 provide the technical ingredients needed to build a suitable finitely generated
refinement monoid M and suitable maps γ, δ.

Lemma 4.1. Let I be an arbitrary poset, let J be an I-system, let M := M(J ) be the
associated conical monoid, and let M ′ be a finitely generated submonoid of M . Then, there
exists a finite subset K of I and a family of subsemigroups Si of Mi for all i ∈ K such that:

(1) M ′ ⊆ {0} t
(∑

i∈K χi(Si)
)

.

(2) There exist finitely generated subgroups Xi of Gi, i ∈ K, such that

Si =

{
Xi, if i ∈ Kreg

N×Xi, if i ∈ Kfree

Proof. This is clear from Corollary 1.8 and the form of the semigroups Mi for i ∈ I. �
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We want to enlarge the data in Lemma 4.1 to a larger set of data, so that the relations

satisfied by the monoid {0}t
(∑

i∈K χi(Si)
)

are “explained” by the new monoid we are going

to build. For this, it is convenient to use the associated partial order of groups ((Ĝi)i∈I , ϕ̂ji(i <

j)) (see Section 1). For any poset Λ and any Λ-system J, denote by M̃(J) the conical

regular monoid associated to the partial order of groups ((Ĝi)i∈I , ϕ̂ji(i < j)). Recall that

M(J) ⊆ M̃(J) (see Definition 1.6 and Corollary 1.5).

Recall the semilattice of abelian groups
(

(Ĥa)a∈A(I), f
b
a (a ⊂ b)

)
associated in Section 1

to the partial order of groups ((Ĝi)i∈I , ϕ̂ji). There is a corresponding associated monoid

MH(J ) =
⊔
a∈A(I) Ĥa, and a canonical surjective monoid homomorphism

Φ: MH(J )→ M̃(J ).

Let K be a finite subset of I, and let (Xi)i∈K be a family of finitely generated groups,

with Xi a subgroup of Gi for each i ∈ K. Let X̂i be the corresponding (finitely generated)

subgroup of Ĝi (so that X̂i = Xi if i ∈ Ireg and X̂i = Z×Xi if i ∈ Ifree). Consider the monoid

F = {0}
⊔(⊕

i∈K

X̂i

)
.

We have an obvious homomorphism f : F →MH(J ) sending x ∈ X̂i to χ(↓i, i, x) ∈ Ĥ↓i.

Lemma 4.2. In the situation described before, there exists a finite subset I ′ of I containing
K, and a family of finitely generated subgroups G′i of Gi, for i ∈ I ′, with Xi ⊆ G′i for i ∈ K,
such that ker(Φ◦f) is generated by a finite set of elements F satisfying the following property:

For each (x, y) ∈ F there is a unique a ∈ A(I) such that f(x), f(y) ∈ Ĥa, and f(x) − f(y)

belongs to the subgroup of Ĥa generated by the elements χ(a, i, g)−χ(a, j, ϕ̂ji(g)), with g ∈ Ĝ′i
and i, j ∈ I ′, i < j ∈ a.

Proof. Since F is a finitely generated abelian monoid, it follows from Redei’s Theorem [9]
that ker(Φ ◦ f) is a finitely generated congruence. So, there is a finite set F of elements

generating ker(Φ ◦ f). For (x, y) ∈ F , Φ(f(x)) = Φ(f(y)) ∈ Ĥa/Ua for a unique a ∈
A(I). Therefore f(x), f(y) ∈ Ĥa, and f(x) − f(y) is a finite sum of elements of the form

±(χ(a, i, u) − χ(a, j, ϕ̂ji(u))), for u ∈ Ĝi and i < j ∈ a. Now, let I ′ be the union of K and
the (finite) support of all these elements. For i ∈ K, let G′i be the subgroup of Gi generated

by Xi and the Gi-components of the elements of Ĝi appearing in the above expressions

(that is, elements u in Ĝi such that χ(a, i, u) − χ(a, j, ϕ̂ji(u)) appears in the expression of

f(x) − f(y) for some (x, y) ∈ F , and elements of the form ϕ̂ij(u), where u ∈ Ĝj, j < i,
and χ(a, j, u)− χ(a, i, ϕ̂ij(u)) appears in the expression of f(x)− f(y) for some (x, y) ∈ F).
Similarly, for i ∈ I ′ \K, let G′i be the subgroup of Gi generated by the Gi-components of the

elements of Ĝi appearing in the above expressions. �

The subset I ′ of I obtained in Lemma 4.2 will be considered as a poset with the order ≤
inherited from (I,≤). Now, for any pair i, j ∈ I with j < i, we define an auxiliary subgroup
Sij of Gi.
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Definition 4.3. Let I be a poset, and let J = (I, (Gi)i∈I , ϕij(j < i)) be a I-system. Then,
for any i, j ∈ I with j < i, we define a group Sij as follows:

(1) If j is regular, we define Sij to be the trivial subgroup of Gi.
(2) If i is regular and j is free, we define Sij to be the subgroup of Gi generated by

ϕij(1, ej).
(3) If both i and j are free then, by condition (c2) in Definition 1.1, there are a finite

subset Tij ⊂ I and elements {z(ij)
t : t ∈ Tij} with t < i, and z

(ij)
t ∈ Mt for all t ∈ Tij,

such that
−ϕij(1, ej) =

∑
t∈Tij

ϕit(z
(ij)
t ).

We define Sij to be the subsemigroup of Gi generated by

{ϕij(1, ej)}
⋃(
{ϕit(z(ij)

t ) : t ∈ Tij}
)
.

Note that Sij is indeed a finitely generated subgroup of Gi, since it contains the inverse
of each one of its generators.

Remark 4.4. Observe that we can assume, without loss of generality, that the finitely gen-
erated subgroups G′i, for i ∈ I ′, obtained in Lemma 4.2, satisfy that

∑
j<i,j∈I′ Sij ⊆ G′i.

We now state a crucial lemma.

Lemma 4.5. Let I ′ and {G′i : i ∈ I ′} be as stated in Lemma 4.2, and assume that
∑

j<i,j∈I′ Sij ⊆
G′i for all i ∈ I ′. Then, there exists a finite poset

(I ′′,≤′) = (I ′
⊔

J ′,≤′)

such that

(1) The elements of J ′ are pairwise incomparable minimal elements of I ′′,
(2) The order ≤′ agrees with the original order ≤ on I ′,

and there exist a family of finitely generated subgroups (G′′i )i∈I′, with G′i ⊆ G′′i ⊆ Gi for all
i ∈ I ′, a map τ : J ′ → (I \ I ′) such that, for j ∈ J ′ and i ∈ I ′, we have j ≤′ i =⇒ τ(j) < i
in I, and elements xj ∈Mτ(j), j ∈ J ′, such that

(a) G′′i =
∑

j<i, j∈I′ ϕij(M
′′
j ) +

∑
j≤′i, j∈J ′〈ϕi,τ(j)(xj)〉 for all i ∈ I ′free

(b) G′′i ⊇
∑

j<i, j∈I′ ϕij(M
′′
j ) +

∑
j≤′i, j∈J ′〈ϕi,τ(j)(xj)〉 for all i ∈ I ′reg

where, for i ∈ I ′, we set

M ′′
i =

{
G′′i , if i ∈ (I ′)reg

N×G′′i , if i ∈ (I ′)free

Proof. We will show by (order-)induction the following statement:

Let U be an upper subset of I ′. Then there exists a finite poset

(IU ,≤U) = (I ′
⊔

JU ,≤U)

such that

(1) The elements of JU are pairwise incomparable minimal elements of IU ,
(2) The order ≤U agrees with the original order ≤ on I ′,
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(3) For j ∈ JU and i ∈ I ′ we have j ≤U i =⇒ i ∈ U ,

and there exist a family of finitely generated subgroups (GUi )i∈I′, with G′i ⊆ GUi ⊆ Gi for all
i ∈ I ′, a map τU : JU → (I\I ′) such that, for j ∈ JU and i ∈ I ′, we have j ≤U i =⇒ τU(j) ≤ i
in I, and elements xj ∈MτU (j), j ∈ JU , such that

(a) GUi =
∑

j<i, j∈I′ ϕij(M
U
j ) +

∑
j≤U i, j∈JU 〈ϕi,τU (j)(xj)〉 for all i ∈ Ufree

(b) GUi ⊇
∑

j<i, j∈I′ ϕij(M
U
j ) +

∑
j≤U i, j∈JU 〈ϕi,τU (j)(xj)〉 for all i ∈ Ureg

where, for i ∈ I ′, we set

MU
i =

{
GUi , if i ∈ (I ′)reg

N×GUi , if i ∈ (I ′)free

Once this is done, the statement in the lemma follows by taking J ′ := JI′ , ≤′:=≤U , τ := τI′ ,
and G′′i := GI′

i for all i ∈ I ′.

We start with U = ∅. In this case we set J∅ = ∅, so that I∅ = I ′ with the order ≤ induced
from I, and we set G∅i = G′i.

Assume that U is an upper subset of I ′ for which we have defined IU = I ′
⊔
JU , together

with the partial order ≤U which satisfies the stated conditions (1)–(3), the map τU , subgroups
GUi , i ∈ I ′ and elements xj ∈MτU (j), j ∈ JU satisfying conditions (a),(b). Let i0 be a maximal
element in I ′ \U . We will build the corresponding objects for the upper subset U ′ := U ∪{i0}.

Assume first that i0 is regular. Then, we set JU ′ = JU , τU ′ = τU , ≤U ′=≤U , and GU
′

i = GUi
for i ∈ I ′ \ U ′.

We define

GU
′

i0
= GUi0 +

∑
i<i0,i∈I′

ϕ̂i0,i(G
U ′
i ).

For i ∈ U , we define inductively GU
′

i by

GU
′

i = GUi +
∑

j<i,j∈I′
ϕ̂i,j(G

U ′
j ).

We have to check condition (b) for i0 and conditions (a) or (b) for i ∈ U according to whether
i is free or regular respectively.

Note that condition (b) for i0 reads

GU
′

i0
⊇

∑
j<i0,j∈I′

ϕi0,j(M
U
j ).

(Use condition (3) and the facts that JU ′ = JU and ≤U ′=≤U). For j ∈ I ′ with j < i0, since
Si0,j ⊆ G′i0 ⊆ GU

′
i0

, we only need to show that ϕ̂i0,j(G
U
j ) ⊆ GU

′
i0

, but this is obvious from the
definition.

If i ∈ Ufree, then (a) follows from the induction hypothesis and the observation that, for
j < i, j ∈ I ′, we have Sij + ϕij(M

U ′
j ) = Sij + ϕ̂ij(G

U ′
j ). The proof of (b) in case i ∈ Ureg is

similar.
We now consider the case where i0 is free. Since J is an I-system and GUi0 is finitely

generated, there is a finite subset I(i0) of {j ∈ I : j < i0} and finitely generated subsemigroups
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N ′j of Mj, for j ∈ I(i0), such that

GUi0 ⊆
∑
j∈I(i0)

ϕij(N
′
j). (4.1)

Recall from the construction of Sij for j < i with i, j ∈ Ifree (Definition 4.3(3)), that Sij is

the semigroup generated by the elements ϕij(1, ej) and ϕit(z
(ij)
t ), where z

(ij)
t ∈ Mt, t ∈ Tij,

and that this semigroup is indeed a group. We denote by z̃
(ij)
t the group component of

z
(ij)
t ∈Mt, that is z

(ij)
t = (n

(ij)
t , z̃

(ij)
t ) ∈ N×Gt if t is free and z

(ij)
t = z̃

(ij)
t ∈Mt if t is regular.

We use a similar notation for the generators of each N ′j, so letting xj,1, . . . , xj,nj be a finite
set of semigroup generators of N ′j, we denote by x̃j,t ∈ Gj the group component of each xj,t,
so that xj,t = (nj,t, x̃j,t) if j is free and xj,t = x̃j,t if j is regular.

Let Ji0 :=
⋃
j∈I(i0)free

Ti0,j be the support of the elements z
(i0j)
t with j ∈ I(i0)

free . Note that Ji0 is

a finite subset of I, and that t < i0 for all t ∈ Ji0 .
We first define GU

′
j for j ∈ I ′ \ U ′. We use the notation Gp(X) to denote the subgroup

generated by a subset X of a group G.
• If j ∈ I ′ \ U ′ and j /∈ Ji0 ∪ I(i0), then set GU

′
j := GUj .

• If j ∈ I ′ \ U ′, j /∈ Ji0 , and j ∈ I(i0), then set GU
′

j := GUj + Gp(Ñ ′j).

• If j ∈ I ′\U ′, j ∈ Ji0 and j /∈ I(i0), then set GU
′

j := GUj +Gp({z̃(i0,j′)
j : j′ ∈ I(i0)

free , j ∈ Ti0,j′}).
• If j ∈ I ′ \ U ′ and j ∈ Ji0 ∩ I(i0), then set

GU
′

j := GUj + Gp(Ñ ′j) + Gp({z̃(i0,j′)
j : j′ ∈ I(i0)

free , j ∈ Ti0,j′}).

It is convenient at this point to introduce the following set:

Zi0 := {(j, s) ∈ I(i0)
free × (Ji0 \ I ′) : s ∈ Ti0,j}.

In words, Zi0 is the set of all ordered pairs (j, s) such that j ∈ I(i0)
free and s ∈ Ti0,j \ I ′.

Now, we define

JU ′ := JU
⊔( ⊔

j∈I(i0)\I′
{vj,±t : 1 ≤ t ≤ nj}

) ⊔( ⊔
j∈I(i0)free \I′

{uj}
) ⊔( ⊔

(j,s)∈Zi0

{w(j,s)}
)
.

The new order ≤U ′ on IU ′ := I ′
⊔
JU ′ is defined by extending the order ≤U on IU and adding

the new relations:

(i) vj,±t <U ′ i, when j ∈ I(i0) \ I ′, i ∈ I ′ and i0 ≤ i,.

(ii) uj <U ′ i, when j ∈ I(i0)
free \ I ′, i ∈ I ′ and i0 ≤ i.

(iii) w(j,s) <U ′ i, when (j, s) ∈ Zi0 and i0 ≤ i.

Note that the new order enjoys (1− 3).
Define τU ′ : JU ′ → I \ I ′ by:

(i) τU ′ = τU on JU .
(ii) τU ′(vj,±t) = j for j ∈ I(i0) \ I ′.
(ii) τU ′(uj) = j for j ∈ I(i0)

free \ I ′.
(iv) τU ′(w(j,s)) = s for (j, s) ∈ Zi0 .



26 P. ARA AND E. PARDO

Observe that, for α ∈ JU ′ and i ∈ U ′, we have α ≤U ′ i =⇒ τU ′(α) < i. Indeed, this is clear
by induction on JU , and for vj,t, uj, and w(j,s) follows from the facts that j < i0 ≤ i whenever

j ∈ I(i0) and that s < i0 ≤ i whenever s ∈ Ji0 \ I ′.
The elements xj for j ∈ JU are defined to be the same elements xUj which were previously

defined by induction, and

xvj,±t := (nj,t,±x̃j,t), xuj = (1, ej), xw(j,s)
:= z(i0,j)

s .

Note that xα ∈MτU′ (α) for all α ∈ JU ′ .
Finally, we set

GU
′

i0
= GUi0 +

∑
j<i0,j∈I′

ϕ̂i0,j(G
U ′
j ) +

∑
j∈I(i0)\I′

nj∑
t=1

〈ϕ̂i0,j(±x̃j,t)〉+

+
∑

j∈I(i0)free \I′

〈ϕi0,j(1, ej)〉+
∑

(j,t)∈Zi0

〈ϕi0,t(z
(i0,j)
t )〉.

Note that Si0,j ⊆ GU
′

i0
for all j ∈ I(i0). So, GU

′
i0

is a group.

We have to verify condition (a) in Lemma 4.5 for GU
′

i0
. Let us denote by A the right hand

side of that formula. Note that

A =
∑

j<i0, j∈I′
ϕi0,j(M

U ′
j ) +

∑
α∈JU′\JU

〈ϕi0,τU′ (α)(xα)〉,

because if α ∈ JU then τU ′(α) 6< i0. We first check that A ⊆ GU
′

i0
. For j ∈ I ′ with j < i0,

since Si0,j and ϕ̂i0,j(G
U ′
j ) are contained in GU

′
i0

, we get that ϕi0,j(M
U ′
j ) ⊆ GU

′
i0

. Similarly, for

j ∈ I(i0) \ I ′, we have that Si0,j ⊆ GU
′

i0
, and so

ϕi0,j(xvj,±t) = ϕi0,j((nj,t,±x̃j,t)) ∈ GU
′

i0
.

It is obvious that ϕi0,j(xuj) = ϕi0,j(1, ej) for j ∈ I(i0)
free \ I ′, and ϕi0,t(xw(j,t)

) = ϕi0,t(z
(i0,j)
t ) for

j ∈ I(i0)
free and t ∈ Ji0 \ I ′, belong to GU

′
i0

.

Conversely, we now show that GU
′

i0
⊆ A. Again, the choice of the groups GU

′
j and the

elements xα makes it clear that Si0,j ⊆ A for all j ∈ I(i0). Indeed, given j ∈ I(i0)
free , we have

two possibilities:

(i) If j ∈ I ′, then (1j, ej) ∈MU ′
j , and thus ϕi0,j(1, ej) ∈ A.

(ii) If j /∈ I ′, then xuj = (1, ej), and thus ϕi0,j(1, ej) ∈ A.

Now, if t ∈ Ti0,j ∩ I ′, then z
(i0,j)
t ∈MU ′

t , as z̃
(i0j)
t ∈ GU ′t , while if t ∈ Ti0,j \ I ′, then (j, t) ∈ Zi0

and so z
(i0,j)
t = xw(j,t)

and ϕi0,t(z
(i0,j)
t ) ∈ A.

By (4.1) and the choice of the groups GU
′

j for j ∈ I(i0) ∩ I ′, we have

GUi0 ⊆
∑
j∈I(i0)

ϕi0,j(N
′
j) ⊆

∑
j∈I(i0)∩I′

(
Si0,j + ϕ̂i0,j(Ñ

′
j)
)

+
∑

j∈I(i0)\I′
ϕi0,j(N

′
j) ⊆ A.

In particular, we obtain that Si0,j ⊆ A for all j ∈ I(i0) and for all j ∈ I ′ such that j < i0 (use
that Si0,j ⊆ G′i0 ⊆ GUi0 for j ∈ I ′ with j < i0). From this we easily obtain that ϕ̂i0,j(G

U ′
j ) ⊆ A

for all j ∈ I ′ such that j < i0, and that ϕ̂i0,j(±x̃j,t) ∈ A for all j ∈ I(i0)\I ′ and all t = 1, . . . , nj.
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The elements ϕi0,j(1, ej), for j ∈ I(i0)
free \ I ′, and ϕi0,t(z

(i0,j)
t ), for (j, t) ∈ Zi0 , trivially belong to

A. This concludes the proof of (a) for i0 and U ′.
Now define inductively GU

′
i for i ∈ U by the formula

GU
′

i := GUi +
∑

j<i,j∈I′
ϕ̂ij(G

U ′
j ).

We have to show condition (a) or (b) for i ∈ U and GU
′

i , depending on whether i is free or
regular. Assume that i is free. Then (a) reads

GU
′

i =
∑

j<i, j∈I′
ϕij(M

U ′
j ) +

∑
j≤U′ i, j∈JU′

〈ϕi,τU′ (j)(xj)〉.

Now, for j ∈ JU ′ \ JU , we have that j ≤U ′ i if and only if i0 < i, and, in this case, we have
τU ′(j) < i0 < i. Therefore, we get

ϕi,τU′ (j)(xj) = ϕ̂i,i0(ϕi0,τU′ (j)(xj)) ∈ ϕ̂i,i0(G
U ′
i0

) ⊆ GU
′

i .

Using this and induction, it is easy to verify (a). If i is regular, a similar argument shows
that (b) holds for i and U ′. This concludes the proof. �

Now, we are ready to prove the main result in this section.

Theorem 4.6. Let I be an arbitrary poset, and let J be an I-system. Then, the monoid
M(J ) is a tame refinement monoid.

Proof. Let I be an arbitrary poset, let J be an I-system, and let M := M(J ) be the
associated conical monoid.

Now, we will show that for any finitely generated submonoid M ′ of M there exist a finite
poset I ′′, a finitely generated I ′′-system J ′′ and monoid homomorphisms γ : M ′ → M(J ′′)
and δ : M(J ′′) → M(J ) such that δ ◦ γ = IdM ′ . By Proposition 2.9, Theorem 3.15 and [3,
Theorem 2.6], this implies that M is a tame refinement monoid.

Let M ′ be a finitely generated submonoid of M(J ). We can assume that M ′ = {0} t(∑
i∈K χi(Si)

)
, where Si are as described in Lemma 4.1. Let I ′ and (G′i)i∈I′ be the larger

finite subset of I, and the family of groups, respectively, built in Lemma 4.2. We will also
assume that

∑
j<i,j∈I′ Sij ⊆ G′i for all i ∈ I ′ (see Remark 4.4).

Consider the poset (I ′′,≤′) = (I ′
⊔
J ′,≤′), the family of groups (G′′i )i∈I′ , the map τ : J ′ →

(I \ I ′), and the elements xj ∈ Mτ(j), j ∈ J ′, obtained in Lemma 4.5. Now, we will define
an I ′′-system J ′′. First, we set I ′′free = I ′free

⊔
J ′ and I ′′reg = I ′reg. The groups corresponding

to i ∈ I ′ are the groups G′′i . For i ∈ J ′, set G′′i = {ei} (the trivial group). For i, j ∈ I ′ with
j < i, we define

ϕ′′ij : M ′′
j −→ G′′i

by ϕ′′ij = ϕij|M ′′j . Observe that this is well defined by (a) and (b) in Lemma 4.5. If j ≤′ i for

j ∈ J ′ and i ∈ I ′ then, again by Lemma 4.5, we must have τ(j) < i in I, so that we may
define

ϕ′′ij : N = M ′′
j −→ G′′i

by ϕ′′ij(1) = ϕi,τ(j)(xj). By (a) and (b) in Lemma 4.5, we have that J ′′ is an I ′′-system.
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Now, we shall use Lemma 4.2 to show that there is a well defined monoid homomorphism

φ : {0} t
(∑
i∈K

χi(X̂i)
)
−→ M̃(J ′′),

sending χi(g) ∈ χ(X̂i) to χi(g) ∈ Ĝ′′i for g ∈ X̂i (where we look {0} t
(∑

i∈K χi(X̂i)
)

as a

submonoid of M̃(J )). Indeed, we have a monoid homomorphism

φF : F = {0} t
(⊕
i∈K

X̂i

)
−→ M̃(J ′′)

sending g ∈ X̂i to χi(g) ∈ M̃(J ′′) for i ∈ K, and by the choice of the groups G′i, i ∈ I ′,
we have that φF (x) = φF (y) for all (x, y) ∈ F , where F is the finite set of generators of
ker(Φ ◦ f) coming from Lemma 4.2. Therefore, the map φF factorizes through (Φ ◦ f)(F ) =

{0} t
(∑

i∈K χi(X̂i)
)

, and we obtain a well-defined monoid homomorphism φ from {0} t(∑
i∈K χi(X̂i)

)
to M̃(J ′′) as claimed. Observe that φF restricts to a monoid homomorphism

from M ′ ⊆ {0} t
(∑

i∈K χi(X̂i)
)

to M(J ′′) ⊆ M̃(J ′′), sending χi(x) ∈ χi(Si) to χi(x) ∈
M(J ′′) for all i ∈ K and all x ∈ Si. Let γ : M ′ →M(J ′′) be this homomorphism.

Finally, we define a monoid homomorphism δ : M(J ′′) → M by δ(χi(mi)) = χi(mi) for
mi ∈ M ′′

i and δ(χj(1)) = χτ(j)(xj) ∈ Mτ(j) for j ∈ J ′. If j ∈ J ′, i ∈ I ′, and j <′ i, then
τ(j) < i in I so that, for x ∈M ′′

i we have

δ(χi(x))+δ(χj(1)) = χi(x)+χτ(j)(xj) = χi(x+ϕi,τ(j)(xj)) = χi(x+ϕ′′ij(1)) = δ(χi(x+ϕ′′ij(1))).

By Corollary 1.8, we thus get that δ is a well-defined monoid homomorphism. Clearly δ ◦γ =
ιM ′ . This concludes the proof. �
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