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Abstract. TO BE FILLED IN.

1. Basic concepts

For abelian groups A and B, let A 6 B (resp., A 6ess B) hold, if A is a subgroup (resp.,
an essential subgroup) of B.

Every commutative monoid M is endowed with its algebraic preordering, defined by x ≤ y
iff there exists z ∈M such that x+z = y, for all x, y ∈M . Then let x ≡ y hold, if x ≤ y ≤ x.
We denote by Λ(M) the (∨, 0)-semilattice of all idempotent elements of M . For an element
x in M , we denote by ε(x) the unique u ∈ Λ(M), if it exists, such that x ≡ u. We put

GM [u] = {x ∈M | x ≡ u} , for all u ∈ Λ(M).

A non-unit element p of M is prime, if p ≤ x + y implies that either p ≤ x or p ≤ y, for all
x, y ∈ M . We say that M is regular, if 2x ≤ x holds for all x ∈ M . Equivalently, M is a
disjoint union of groups (which turn out to be the GM [a], where a ranges over Λ(M)), see
[14, Theorem 2.1] or [9, Lemma 2.1]. We say that M is conical, if 0 is the only unit of M .
An o-ideal of M is a nonempty subset I of M such that x + y ∈ I iff x ∈ I and y ∈ I,
for all x, y ∈ M , and we denote by IdM the lattice of all ideals of M , partially ordered by
containment. We say that M is a refinement monoid, if for any elements a0, a1, b0, b1 ∈ M
such that a0 + a1 = b0 + b1, there are elements ci,j ∈M , for i, j < 2, such that ai = ci,0 + ci,1
and bi = c0,i + c1,i for all i < 2. For regular commutative monoids, the refinement property
can be conveniently characterized by the distributivity of the semilattice of idempotents
together with the so-called Mayer-Vietoris Property (see [9, Theorem 3.2]), which consists of
the conjunction of the two following properties:

(MVP∨) GM [a+ b] = GM [a] +GM [b], for all a, b ∈ Λ(M).
(MVP∧) For all a, b ∈ Λ(M) and all (x, y) ∈ GM [a]×GM [b], if x+ b = y+ a, then there exists

z ∈M such that x = z + a and y = z + b.

For a semigroup S, we set St0 = S t{0}, where t stands for disjoint union and the new zero
element is the new unit element.

We put P ↓ a = {x ∈ P | x ≤ a}, for any element a in a partially ordered set P . A nonzero
element p in a (∨, 0)-semilattice S is join-irreducible, if p = x∨ y implies that either p = x or
p = y, for all x, y ∈ S. We denote by J(S) the partially ordered set of join-irreducible elements
of S. In case S is finite, J(S) consists exactly of those p ∈ S \ {0} such that {x ∈ S | x < p}
has a largest element, then denoted by p∗.

We put ker f = {(x, y) ∈ X ×X | f(x) = f(y)}, for every function f with domain X.
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2. Partial orders of abelian groups and the monoids Mon G

We recall some concepts used in [3]. A partial order of abelian groups is a poset-indexed
direct system of abelian groups, that is, a system of the form

G =
(
Gi, g

i′

i | i ≤ i′ in I
)
, (2.1)

where I is a partially ordered set, (Gi | i ∈ I) is a family of abelian groups, and
(
gi

′
i | i ≤ i′ in I

)
is a family of group homomorphisms such that gii = idGi

and gki = gkj ◦ g
j
i , for all i ≤ j ≤ k

in I; we say that G is based on I. For partial orders of abelian groups G =
(
Gi, g

i′
i | i ≤ i′ in I

)
and H =

(
Hj, h

j′

j | j ≤ j′ in J
)
, a morphism from G to H consists of an order-preserving map

ϕ : I → J together with a family (ψi | i ∈ I) of group homomorphisms ψi : Gi → Hϕ(i) such

that the equality h
ϕ(i′)
ϕ(i) ◦ ψi = ψi′ ◦ gi

′
i holds for all i ≤ i′ in I. This way the class of partial

orders of abelian groups becomes a category, introduced in [3]. With a partial order of abelian
groups G as in (2.1) we associate the commutative monoid Mon(G) defined by the generators
(i, x), where i ∈ I and x ∈ Gi, and the relations

(i, x) + (j, y) = (j, gji (x) + y), for all i ≤ j in I and all (x, y) ∈ Gi ×Gj. (2.2)

An explicit description of Mon(G) is given in [3, p. 166–167]. For calculating in these monoids,
it is important to observe that an equality of the form

(i, x) =
∑

((ik, xk) | k < n)

holds in Mon G iff i = max {ik | k < n} and x =
∑(

giik(xk) | k < n
)

in Gi. It is also proved

there [3, Proposition 1] that Mon(G) is a primely generated regular refinement monoid, and
that every primely generated regular refinement monoid is isomorphic to Mon(G) for some
partial order of abelian groups G (see [3, Theorem 2]). In fact, the latter result is given by
an equivalence between the category of partial orders of abelian groups and the category
of regular refinement monoids with suitably defined morphisms. In particular, the finitely
generated, regular, conical refinement monoids are exactly the monoids of the form Mon G,
for partial orders G of abelian groups based on finite partially ordered sets. We apply these
results in the following lemma.

Lemma 2.1. Every regular refinement monoid M with finite semilattice of idempotents is
a direct limit of finitely generated regular refinement monoids with the same semilattice of
idempotents as M .

Proof. Put Λ = Λ(M), I = J(Λ), Gi = GM [i], and gji : Gi → Gj, x 7→ x + j, for all i ≤ j
in I. Define G as in (2.1). As Λ is finite, every element of Λ is a (finite) join of elements
of I. As Ga =

∑
i∈J(a) Gi holds for all a ∈ Λ and every element of

⋃
i∈I Gi is prime, M is

primely generated. It follows from [3, Theorem 2] that there exists a unique isomorphism
from Mon(G) onto M that sends (i, x) to x, for i ∈ I and x ∈ Gi.

Now let J be the set of all families ξ = (Xi | i ∈ I) such that

(i) Xi is a finitely generated subgroup of Gi, for all i ∈ I;
(ii) i ≤ j implies that gji (Xi) 6 Xj, for all i ≤ j in I,
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and then put Gξ =
(
Xi, g

j
i [ξ] | i ≤ j in I

)
where gji [ξ] denotes the restriction of gji from Xi

to Xj, for i ≤ j. It is straightforward to verify that J is an upwards directed partially ordered
set and that G is the direct limit of (Gξ | ξ ∈ J) with the obvious transition morphisms and
limiting morphisms. Hence Mon(G) is the direct limit of (Mon(Gξ) | ξ ∈ J) with the obvious
transition morphisms and limiting morphisms. Observe that each monoid Mon(Gξ) is finitely
generated. �

Lemma 2.2. For any prime number p, there are an abelian group G of exponent p with
infinite subgroups A0, A1, A2, A3 such that G = A0⊕A3=A1⊕A2 but for any finitely generated
X 6 G, X = (X ∩ A0) + (X ∩ A3) = (X ∩ A1) + (X ∩ A2) implies that X ∩ A0 = {0}.

Proof. Denote by Fp the p-element field and put G = F(Z)
p , the free Fp-vector space on Z.

Denote the canonical basis of G by (δn | n ∈ Z), and denote by f the automorphism of G
defined by f(δn) = δn+1, for all n ∈ Z. We put

A0 = 〈δ2n | n ∈ Z〉 ,
A1 = f(A0) = 〈δ2n+1 | n ∈ Z〉 ,
A2 = (idG − f)(A0) = 〈δ2n − δ2n+1 | n ∈ Z〉 ,
A3 = (f − f 2)(A0) = 〈δ2n+1 − δ2n+2 | n ∈ Z〉 .

Of course, G = A0⊕A3 = A1⊕A2. Now let X be a subgroup of G such that X = (X ∩Ai)⊕
(X∩Aj) holds for all (i, j) ∈ {(0, 3), (1, 2)}; put Xi = X∩Ai, for all i ∈ {0, 1, 2, 3}. We claim
that f 2(X0) 6 X0. Indeed, let x ∈ X0. As x ∈ X = X1⊕X2 and x = f(x) + (x− f(x)) with
f(x) ∈ A1 and x− f(x) ∈ A2, we get f(x) ∈ X1 and x− f(x) ∈ X2. As f(x) ∈ X = X0⊕X3

and f(x) = f 2(x)+(f(x)−f 2(x)) with f 2(x) ∈ A0 and f(x)−f 2(x) ∈ A3, we get f 2(x) ∈ X0,
thus establishing our claim.

In particular, if X is finite-dimensional, then, as G does not have any nonzero finitely
generated subgroup which is closed under f 2, we obtain that X0 = {0}. �

The following result shows that one cannot replace “direct limit” by “directed union” in
the statement of Lemma 2.1. Because of [17, Theorem 4.3], the situation is different with
monoids satisfying the embedding condition (emb).

Proposition 2.3. There exists a regular conical refinement monoid with finitely many idem-
potents which is not a directed union of finitely generated refinement submonoids.

Proof. Let G, A0, A1, A2, A3 be abelian groups satisfying the conditions of Lemma 2.2, denote
by Λ∗ the powerset of {0, 1, 2, 3}, and set Λ = Λ∗ ∪ {⊥} where ⊥ is a new zero element. We
put G⊥ = {0} (the element ⊥ is put there only to ensure conicality of the monoid), and

Au =
∑
i∈p

Ai and Gu = G/Au, for all u ∈ Λ∗,

where we identify G/A∅ = G/{0} with G. Next, we define a group homomorphism gvu : Gu →
Gv, for all u ≤ v in Λ. For u = ⊥ there exists a unique homomorphism gv⊥ : {0} → Gv. For
u ≤ v in Λ∗, let gvu be the canonical projection from G/Au onto G/Av. The desired monoid is

M =
⋃
u∈Λ

({u} ×Gu),
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endowed with the addition given by (u, x) + (v, y) = (u ∨ v, gu∨vu (x) + gu∨vv (y)), for all
(u, x), (v, y) ∈ M . It is straightforward to verify, for example by using [9, Theorem 3.2],
that M is a regular conical refinement monoid.

Fix any element a ∈ A0 \ {0}, and let N be a refinement submonoid of M containing
Λ(M)∪{(∅, a)}. Suppose that N is finitely generated. As Λ(M) ⊆ N , there are submonoids
Hu ⊆ Gu, for all u ∈ Λ, such that

N =
⋃
u∈Λ

({u} ×Hu).

As all groups Gu have finite exponent, Hu is, in fact, a subgroup of Gu, for all u ∈ Λ, and
hence N is regular. As N is finitely generated, all Hu, for u ∈ Λ, are finitely generated.

We claim that H∅ ∩ (Ai + Aj) = (H∅ ∩ Ai) + (H∅ ∩ Aj), for all (i, j) ∈ {(0, 3), (1, 2)}.
Indeed, let x ∈ H∅ ∩ (Ai +Aj). As ({i} , x+Ai) = (∅, x) + ({i} , 0) belongs to N , we obtain

that x+ Ai ∈ H{i}. Similarly, 0 + Aj belongs to H{j}, and g
{i,j}
{i} (x+ Ai) = g

{i,j}
{j} (0 + Aj) = 0

in H{i,j}. Hence (we use here the assumption that N satisfies refinement), there exists,
by [9, Theorem 3.2], y ∈ H∅ such that x + Ai = y + Ai and 0 + Aj = y + Aj, and so
x ∈ (H∅ ∩ Ai) + (H∅ ∩ Aj), therefore establishing our claim.

As H∅ is finitely generated and by the properties required from G and the Ais, it follows
that H∅ ∩ A0 = {0}, a contradiction as a ∈ H∅ ∩ A0. �

3. Approximating regular conical refinement monoids from below

The present section will be devoted to the proof of the following result.

Theorem 3.1. Every regular conical refinement monoid is a direct limit of finitely generated
regular conical refinement monoids.

Let M be a regular conical refinement monoid. In order to prove that M is a direct limit of
finitely generated regular conical refinement monoids, we apply Lemma 4.1 and Remark 4.3
of [9], with B defined as the class of all finitely generated regular conical refinement monoids.
Observe that B is, indeed, closed under finite direct sums, so the abovecited results apply.

We first need to verify that every a ∈ M belongs to some submonoid B of M belonging
to B. It suffices to put B = G∪ {0}, where G is defined as the subgroup of GM [a] generated
by a. Hence the main part of the proof of Theorem 3.1 consists of verifying the “Triangle
Lemma”, which is item (2) of [9, Lemma 4.1]. So let B be a finitely generated regular conical
refinement monoid and let f : B →M be a monoid homomorphism, we must prove that there
are C ∈ B and monoid homomorphisms ϕ : B → C and g : C → M such that f = g ◦ ϕ and
ker f = kerϕ.

Put Λ = Λ(M) and Ga = GM [a], for all a ∈ Λ. We shall abbreviate ↓a = Λ↓a, for all a ∈ Λ.
As B is finitely generated, ε ◦ f(B) is a finite join-subsemilattice of Λ. Put ex = ε ◦ f(x),
for all x ∈ B, and denote by D the sublattice of Id Λ generated by {↓ex | x ∈ B}. As Id Λ is
a distributive lattice and B is finitely generated, D is a finite distributive lattice. Define a
choice function on D as a map γ : D→ Λ such that γ(A) ∈ A, for all A ∈ D.

Lemma 3.2. For any choice function γ on D, there exists a (∨, 0)-embedding η : D ↪→ Λ such
that the following conditions hold:

(i) η is a choice function on D.



REGULAR REFINEMENT MONOIDS 5

(ii) η(↓ex) = ex, for all x ∈ B.
(iii) γ ≤ η, that is, γ(A) ≤ η(A) for all A ∈ D.

Outline of proof. As in the construction of ϕ in the proof of [9, Theorem 6.1]. As, for all
x ∈ B, the principal ideal ↓ex is the join of all join-irreducible elements of D below it, there
are elements uP ∈ P , for P ∈ J(D), such that

ex =
∨

(uP | P ∈ JD(↓ex)) , for all x ∈ B.

Denote by P † the largest element of D such that P 6⊆ P † (see [9, Lemma 5.1]). By possibly
enlarging the elements uP , we may assume that uP ∈ P \P †, for all P ∈ J(D). Finally, for all
A ∈ D, the element γ(A) belongs to A =

∨
(P | P ∈ JD(A)), hence we may further enlarge

the elements uP in such a way that

γ(A) ≤
∨

(uP | P ∈ JD(A)) , for all A ∈ D.

The map η : D→ Λ defined by the rule

η(A) =
∨

(uP | P ∈ JD(A)) , for all A ∈ D,

is as required. �

For all a ≤ b in Λ, set τ ba : Ga → Gb, x 7→ x + b, the canonical group homomorphism
from Ga to Gb. For any A ∈ Id Λ, let(

GA, τ
A
a | a ∈ A

)
= lim−→

(
Gb, τ

b
a | a ≤ b in A

)
,

where the direct limit is evaluated in the category of abelian groups. We may assume that
G↓a = Ga and τ ↓aa = idGa , for all a ∈ Λ.

Let A ⊆ B in Id Λ. It follows from the universal property of the direct limit that there
exists a unique group homomorphism τBA : GA → GB such that the equality τBa = τBA ◦ τAa
holds for all a ∈ A. Hence τAA = idGA

and τCA = τCB ◦ τBA holds for all A ⊆ B ⊆ C in Id Λ. We
define a submonoid M of D×GΛ (where D is viewed as a join-semilattice) by

M =
⋃
A∈D

({A} ×GA),

endowed with the addition defined by the rule

(A, x) + (B, y) =
(
A ∨B, τA∨BA (x) + τA∨BB (y)

)
, for all (A, x), (B, y) ∈M.

Lemma 3.3. The monoid M is a regular conical refinement monoid, with semilattice of
idempotents isomorphic to D.

Proof. It is obvious that M is regular and that Λ(M) = D × {0} ∼= D. In order to verify
that M is a refinement monoid, it suffices, by [9, Theorem 3.2], to verify the Mayer-Vietoris
property.

(MVP∨) We must verify that GA∨B = τA∨BA (GA) + τA∨BB (GB), for all A,B ∈ D. Let
x ∈ GA∨B. There are c ∈ A∨B and y ∈ Gc such that x = τA∨Bc (y). By possibly enlarging c, we
may assume that c = a∨b, for some (a, b) ∈ A×B. As y belongs to Gc = τa∨ba (Ga)+τa∨bb (Gb),
there exists (u, v) ∈ Ga ×Gb such that y = τa∨ba (u) + τa∨bb (v). Hence,

x = τA∨Ba (u) + τA∨Bb (v) = τA∨BA (τAa (u)) + τA∨BB (τBb (v)) ∈ τA∨BA (GA) + τA∨BB (GB).
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(MVP∧) We must verify that for all A,B ∈ D and all (x, y) ∈ GA×GB such that τA∨BA (x) =
τA∨BB (y), there exists z ∈ GA∩B such that x = τAA∩B(z) and y = τBA∩B(z). There are (a′, b′) ∈
A×B and (u′, v′) ∈ Ga′ ×Gb′ such that x = τAa′ (u′) and y = τBb′ (v′). As τA∨Ba′ (u′) = τA∨Bb′ (v′),
there exists c ∈ A ∨ B such that τ ca′(u′) = τ cb′(v

′). By possibly enlarging c, we may assume
that c = a ∨ b, for some (a, b) ∈ A × B such that a ≥ a′ and b ≥ b′. So u = τaa′(u′) belongs
to Ga, v = τ bb′(v

′) belongs to Gb, x = τAa (u), y = τBb (v), and τa∨ba (u) = τa∨bb (v). By (MVP∧)
for M , there are d ≤ a, b in Λ and w ∈ Gd such that u = τad (w) and v = τ bd(w). Hence, putting
z = τA∩Bd (w), we obtain that x = τAa (u) = τAd (w) = τAA∩B(z), and, similarly, y = τBA∩B(z). �

As f(x) ∈ Gε◦f(x) = Gex for all x ∈ B, we can define a map f : B → M, x 7→ (↓ex, f(x)).

It is obvious that f is zero-preserving. For all x, y ∈ B, we compute

f(x) + f(y) =
(
↓ex ∨ ↓ey, τ ↓ex∨↓ey

↓ex
(f(x)) + τ

↓ex∨↓ey

↓ey
(f(y))

)
=
(
↓ex+y, τ

ex+y
ex

(f(x)) + τ ex+y
ey

(f(y))
)

= (↓ex+y, f(x+ y) + ex+y)

= (↓ex+y, f(x+ y))

= f(x+ y),

and so f is a monoid homomorphism from B to M. Trivially, ker f = ker f .
Now it follows from Lemmas 2.1 and 3.3 that M is a direct limit of finitely generated

regular conical refinement monoids. In particular, by Lemma 4.1 and Remark 4.3 in [9], the
Triangle Lemma holds for M. By applying this to the homomorphism f : B →M, we obtain
a finitely generated regular conical refinement monoid C and homomorphisms ϕ : B → C
and g : C → M such that f = g ◦ ϕ and ker f = kerϕ. Observe that kerϕ = ker f as well.
Let g(y) = (Ky, g̃(y)), for all y ∈ C. In particular, the map C → D, y 7→ Ky is a monoid
homomorphism.

By Redei’s Theorem (see [19], or [7] for a simple proof), every finitely generated commu-
tative monoid is finitely presented. In particular, C is finitely presented. Thus, by possibly
enlarging a given generating subset of C, we may assume that C has a presentation of the
form

yk = yi + yj, for all (i, j, k) ∈ Γ, (3.1)

where {yi | i < m} is a finite generating subset of C and Γ is a set of triples of elements
of {0, 1, . . . ,m− 1}. For all i < m, as g̃(yi) belongs to GKyi

, there are bi ∈ Kyi
and zi ∈ Gbyi

such that g̃(yi) = τ
Kyi
bi

(zi). For each (i, j, k) ∈ Γ, it follows from the equality g(yk) =
g(yi) + g(yj) that

Kyk
= Kyi

∨Kyj
(3.2)

and g̃(yk)τ
Kyk
Kyi

(g̃(yi)) + τ
Kyk
Kyj

(g̃(yj)). The latter equation can be written

τ
Kyk
bk

(zk) = τ
Kyk
bi

(zi) + τ
Kyk
bj

(zj),

and thus there exists b′i,j,k ∈ Kk such that bi ∨ bj ∨ bk ≤ b′i,j,k and

τ
b′i,j,k

bk
(zk) = τ

b′i,j,k

bi
(zi) + τ

b′i,j,k

bj
(zj).
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For fixed k, we can replace b′i,j,k by the join b′k of all b′i,j,k such that (i, j, k) ∈ Γ, thus obtaining
the equation

τ
b′k
bk

(zk) = τ
b′k
bi

(zi) + τ
b′k
bj

(zj),

that is,

zk + b′k = zi + zi + b′k, for all (i, j, k) ∈ Γ. (3.3)

An easy application of Lemma 3.2 yields a (∨, 0)-embedding η : D ↪→ Λ such that

(i) η is a choice function on D.
(ii) η(↓ex) = ex, for all x ∈ B.

(iii) b′i ≤ η(Kyi
), for all i < m.

In particular, it follows from (3.2) and (3.3) that η(Kyk
) = η(Kyi

)∨η(Kyj
) and zk +η(Kyk

) =
zi + zj + η(Kyk

), for all (i, j, k) ∈ Γ. Hence,

zk + η(Kyk
) = (zi + η(Kyi

)) + (zj + η(Kyj
)).

Hence, as (3.1) is a presentation of C, there exists a unique monoid homomorphism g : C →M
such that g(yi) = zi + η(Kyi

) for all i < m.

Lemma 3.4. The equality g̃(y) = τ
Ky

η(Ky)(g(y)) holds, for all y ∈ C.

Proof. There are I ⊆ {0, 1, . . . ,m− 1} and a family (ki | i ∈ I) of positive integers such that
y =

∑
i∈I kiyi. We first observe that g(y) =

∑
i∈I kig(yi) =

∑
i∈I kizi + η(Ky), and so

g(y) =
∑
i∈I

ki(zi + η(Ky)). (3.4)

Now we can compute

g̃(y) =
∑
i∈I

ki · τKy

Kyi
(g̃(yi)) (because g is a monoid homomorphism)

=
∑
i∈I

ki ·
(
τ
Ky

Kyi
◦ τKyi

bi
(zi)

)
(by the definition of bi and zi)

=
∑
i∈I

ki · τKy

bi
(zi)

=
∑
i∈I

ki · τKy

η(Kyi )(zi + η(Kyi
)) (because τ

η(Kyi )

bi
(zi) = zi + η(Kyi

))

=
∑
i∈I

ki · τKy

η(Kyi )(g(yi)) (by the definition of g)

= τ
Ky

η(Ky)

(∑
i∈I

ki · τ η(Ky)
η(Kyi )(g(yi))

)
(because η(Kyi

) ≤ η(Ky) for all i ∈ I)

= τ
Ky

η(Ky)

(∑
i∈I

ki · (zi + η(Ky))

)
(by the definition of τ

η(Ky)
η(Kyi ))

= τ
Ky

η(Ky)(g(y)) (by (3.4)). �

Now for all x ∈ B, we obtain, using Lemma 3.4, that

(↓ex, f(x)) = f(x) = g ◦ ϕ(x) = (Kϕ(x), τ
Kϕ(x)

η(Kϕ(x))
(g ◦ ϕ(x)).
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In particular, Kϕ(x) = ↓ex, thus η(Kϕ(x)) = ex, and thus τ
Kϕ(x)

η(Kϕ(x))
= idGex

, and so

f(x) = τ
Kϕ(x)

η(Kϕ(x))
(g ◦ ϕ(x)) = g ◦ ϕ(x).

Therefore, f = g ◦ ϕ. As we have already observed that ker f = kerϕ, this concludes the
proof of Theorem 3.1.
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