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Abstract. In this note we prove that, if R is a purely infinite simple unital ring, G is a
group, and α : G → Aut(R) is an outer action on R, then the skew group ring R ∗α G is a
purely infinite simple ring.

Introduction

In 1981, Cuntz [4] introduced the concept of a purely infinite simple C*-algebra. This
notion has played a central role in the development of the theory of C*-algebras in the
last two decades. A suitable notion of purely infinite simple in the algebraic context was
introduced by Ara, Goodearl and Pardo [3]. Recall that a unital simple ring R is purely
infinite if every nonzero right ideal of R contains an infinite idempotent. This concept is left-
right symmetric, and coincides with the notion of introduced by Cuntz in case of C*-algebras
(see [3]). Moreover, as as shown in [3, Theorem 1.6], it is equivalent to the following: (1) R is
not a division ring; (2) For every nonzero element a ∈ R, there exist elements x, y ∈ R such
that xay = 1.

In the context of C*-algebras, Jeong [5] and Jeong, Kodaka and Osaka [6] showed that
the reduced C*-crossed product A×α G of a purely infinite unital C*-algebra A by an outer
action α of a countable abelian group G is always purely infinite. The aim is to extend this
result to arbitrary groups acting on C*-algebras, and to the purely algebraic context.

In this note, we show that the skew group ring R ∗α G associated to an outer action of a
group G on a purely infinite ring R is always purely infinite. We recall the basic definitions we
will need in the sequel. Let R be a unital ring, let G be a group, and let α : G→ Aut(R) be an
action of G on R. If the identity is the only element of G that maps to an inner automorphism,
then the action is said to be outer. The skew group ring R ∗αG (also denoted RG) is the free
left R-module with basis G. Thus, the elements of RG are finite sums of the form Σagg, where
ag ∈ R and g ∈ G. Multiplication is defined according to the rule (ag)(bh) = aα(g)(b)(gh)
for a, b ∈ R and g, h ∈ G. The support of an element is supp(Σagg) = {g ∈ G | ag 6= 0}. The
length of Σagg is the cardinality of supp(Σagg), and is denoted len(Σagg) (see [7], [9]).
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1. The main result

The present we present here is similar to that of [2, Theorem 5.3]. The key point is [2,
Lemma 5.2], that we quote her for the sake of completeness.

Lemma 1.1. ([2, Lemma 5.2]) If R is an simple ring containing an idempotent e 6= 0, 1, then
R is generated (as ring) by its idempotents.

Theorem 1.2. Let R be a unital purely infinite simple ring, let G be a group, and let α be
an outer action of G on R. Then the skew group ring R ∗α G is purely infinite.

Proof. Since R is purely infinite, it contains an infinite idempotent, and so there exists an
idempotent e 6= 0, 1. Hence, R ∗αG cannot be a division ring, because it contains the ring R.

Let γ be an arbitrary nonzero element of R ∗α G. Choose α, β ∈ R ∗α G such that αγβ
is a nonzero element whose length is minimal for such nonzero products. Suppose that
len(αγβ) = n. Now write

αγβ =
n∑
i=1

aigi,

where the gi are distinct elements of G, and each ai is a nonzero element of R. After replacing
αγβ by αγβg−1

1 , we can assume that

αγβ = a1 +
n∑
i=2

aigi.

Since R is purely infinite and simple, there exists a, b ∈ R such that aa1b = 1. Hence, after
replacing αγβ by aαγβb, we can assume that a1 = 1. So, if n = 1, we are done.

Suppose that n ≥ 2. Thus,

αγβ = 1 + a2g2 +
n∑
i=3

aigi,

where a2 6= 0 and g2 6= 1. For any idempotent e ∈ R, we have

eαγβ(1− e) = ea2α(g2)(1− e)g2 +
n∑
i=3

eaiα(gi)(1− e)gi.

Since len(eαγβ(1 − e)) < n, we have eαγβ(1 − e) = 0. Then, ea2α(g2)(e) = ea2. A
symmetric argument, involving (1 − e)αγβe, shows that a2α(g2)(e) = ea2α(g2)(e), and so
ea2 = a2α(g2)(e). Thus, by Lemma 1.1, a2α(g2)(x) = xa2 for all x ∈ R, and so Ra2 = a2R.
Since R is simple, thus Ra2 = Ra2R = a2R = R, and so a2 is an invertible element of R.
But then α(g2) is inner, which contradicts our assumptions. Therefore n = 1, and the proof
is complete. �

In the particular case of G being a finite group, the action is G-Galois (see [1], [8]), and
then RG is Morita equivalent to the ring

RG = {a ∈ R | α(g)(a) = a for all g ∈ G}.
Then, we have the following result:

Corollary 1.3. Let R be a unital purely infinite simple ring, let G be a finite group, and let
α be an outer action of G on R. Then the fixed subring of R under G, RG, is purely infinite.
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Proof. It is a direct consequence of the above remark, Theorem 1.2 and [3, Corollary 1.7]. �
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