
Prime Spectrum and
Primitive Leavitt Path Algebras

G. ARANDA PINO, E. PARDO & M. SILES MOLINA

ABSTRACT. In this paper a bijection between the set of prime
ideals of a Leavitt path algebra LK(E) and a certain set which in-
volves maximal tails in E and the prime spectrum of K[x,x−1]
is established. Necessary and sufficient conditions on the graph
E so that the Leavitt path algebra LK(E) is primitive are also
found.

INTRODUCTION

Leavitt path algebras of row-finite graphs have been recently introduced in [1] and
[7]. They have become a subject of significant interest, both for algebraists and
for analysts working in C*-algebras. The Cuntz-Krieger algebras C∗(E) (the C*-
algebra counterpart of these Leavitt path algebras) are described in [21]. The al-
gebraic and analytic theories, while sharing some striking similarities, they present
some remarkable differences, as was shown for instance in the “Workshop on
Graph Algebras” held at the University of Málaga (see [11]), and more deeply
in the subsequent enlightening work of Tomforde [23].

For a field K, the algebras LK(E) are natural generalizations of the algebras
investigated by Leavitt in [19], and are a specific type of path K-algebras associ-
ated to a graph E (modulo certain relations). The family of algebras which can be
realized as the Leavitt path algebras of a graph includes matrix rings Mn(K) for
n ∈ N∪{∞} (where M∞(K) denotes matrices of countable size with only a finite
number of nonzero entries), the Toeplitz algebra, the Laurent polynomial ring
K[x,x−1], and the classical Leavitt algebras L(1, n) for n ≥ 2. Constructions
such as direct sums, direct limits, and matrices over the previous examples can be
also realized in this setting. But, in addition to the fact that these structures indeed
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contain many well-known algebras, one of the main interests in their study is the
comfortable pictorial representations that their corresponding graphs provide.

A great deal of effort has been focused on trying to unveil the algebraic struc-
ture of LK(E) via the graph nature of E. Concretely, the literature on Leavitt
path algebras includes necessary and sufficient conditions on a graph E so that
the corresponding Leavitt path algebra LK(E) is simple [1], purely infinite simple
[2], exchange [10], finite dimensional [4], locally finite (equivalently noetherian)
[5] and semisimple [6]. Another remarkable approach has been the research (per-
formed quite intensively in [7], and only slightly in [6]) of their monoids of finitely
generated projective modules V(LK(E)).

The aim of this paper is to determine the prime and primitive Leavitt path
algebras, which has a twofold motivation. First, from the purely algebraic point
of view, this enterprise is a compulsory as well as a natural one. Throughout the
mathematical literature, knowing the prime and primitive spectra of rings (also
of associative, Lie and Jordan algebras, etc) has been crucial in order to succeed
to give structural theorems (or in order to simply gain a better understanding of
the given algebraic system). Classically, one of the uses of the prime spectrum for
commutative rings is to carry information over from Algebra to Topology and vice
versa via the so-called Zariski topology (several generalizations of this construction
for noncommutative rings have been achieved [17,24]). As for the primitive ideals
of a ring, they naturally correspond to the irreducible representations of it, which
in turn represent unquestionable tools in their analysis. Therefore, the knowledge
of the prime and primitive Leavitt path algebras can be regarded as a fundamental
and necessary step towards the ultimate goal of the classification of these algebras.
In addition, the prime and primitive questions are natural ones in the following
sense: it is known (see [3, Proposition 6.1] or [9, Proposition 1.1]) that every
Leavitt path algebra is semiprime, and recently it has been proved that every Leav-
itt path algebra is also semiprimitive [3, Proposition 6.3]. These results obviously
raised the questions of whether or not every Leavitt path algebra is also prime or
primitive.

The second motivation springs out of the complete description of the primi-
tive spectrum of a graph C*-algebra C∗(E) carried out by Hong and Szymański in
[16]. Concretely, in [16, Corollary 2.12], the authors found a bijection between
the set Prim(C∗(E)) of primitive ideals of C∗(E) and some sets involving max-
imal tails and points of the torus T. This result parallels one of the main result
of this article (Theorem 3.8). However, there is one subtlety here: it is known
that every primitive C*-algebra is prime and the converse holds for separable C*-
algebras [14]. It turns out that every graph C*-algebra is separable and therefore
the concepts of primeness and primitivity are indistinguishable for C∗(E). This is
no longer the case for Leavitt path algebras LK(E), and in fact Theorem 3.8 deals
with the prime spectrum of a Leavitt path algebra whereas its analytic counterpart
[16, Corollary 2.12] considers primitive ideals.

Hence, the primitive case for LK(E) deserves a different examination to the
prime case, and Theorem 4.6 states the primitive characterization for Leavitt path
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algebras. This result does not correspond verbatim to the characterization of prim-
itive (equivalently prime) graph C*-algebras, the difference being the possibility of
having cycles without exits. This difference in graph criteria of a certain property
for LK(E) and C∗(E) is not new, as it too showed up in the computation of the
stable rank for LK(E) in [10, Theorem 7.6], and of the stable rank for C∗(E) in
[13, Theorem 3.4].

The article is organized as follows. The Preliminaries section includes the basic
definitions and examples that will be used throughout. In addition, we describe
several graph constructions and more specific but general properties of LK(E) that
will be of use in the rest of the paper.

In Section 2 the first step of the investigation of prime ideals is carried out.
We start by analyzing some subsets of vertices of the graph called maximal tails
and then show that they are in one-to-one correspondence with the set of graded
prime ideals of LK(E). Further along in Section 2, several lemmas concerning
prime but not necessarily graded ideals are obtained. Those are key ingredients
in the study of the prime spectrum in the the following section. Informally, these
results tell us how to uniquely obtain, out of a graded but not necessarily prime
ideal I, two things: a maximal tail and a graded prime ideal contained in I.

The classification of all prime ideals is accomplished in Section 3. Some pre-
liminary results discussing ideals generated by Pc(E) (that is, the vertices for which
there are cycles without exits based at them) are settled. Those and other partial re-
sults finally pave the way for the proof of one of the main results of the paper (The-
orem 3.8), which exhibits a bijection between the set of prime ideals of LK(E), and
the set formed by the disjoint union of the maximal tails of the graph M(E) and
the cartesian product of maximal tails for which every cycle has an exitMτ(E) and
the nonzero prime ideals of the Laurent polynomial ring Spec(K[x,x−1]∗). As
noted before, Theorem 3.8 is the algebraic analog of the graph C*-algebra result
stated in [16, Corollary 2.12]. However, it is worth mentioning that their proofs
are certainly unrelated since they involve totally different methods and what is
more, neither can be (at least readily) obtained from the other.

The natural subsequent step is taken in Section 4, where the primitive Leavitt
path algebras are determined. In order to achieve this goal, several results on
simple right LK(E)-modules are established. Then, in the other main theorem of
this paper (Theorem 4.6), necessary and sufficient conditions are given so that a
Leavitt path algebra LK(E) is left (equivalently right) primitive. In contrast with
the prime spectrum correspondence, this characterization of primitive Leavitt path
algebras lacks a graph C*-algebra version.

1. PRELIMINARIES

A (directed) graph E = (E0, E1, r , s) consists of two countable sets E0, E1 and
maps r , s : E1 → E0. The elements of E0 are called vertices and the elements of E1

edges. If s−1(v) is a finite set for every v ∈ E0, then the graph is called row-finite.
Throughout this paper we will be concerned only with row-finite graphs. If E0 is
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finite, then, by the row-finite hypothesis, E1 must necessarily be finite as well; in
this case we say simply that E is finite.

A vertex which emits no edges is called a sink. A path µ in a graph E is a
sequence of edges µ = e1 . . . en such that r(ei) = s(ei+1) for i = 1, . . . , n − 1.
In this case, s(µ) B s(e1) is the source of µ, r(µ) B r(en) is the range of µ, and
`(µ) = n is the length of µ. For n ≥ 2 we define En to be the set of paths of
length n, and E∗ = ⋃n≥0 En the set of all (finite) paths. Throughout the paper K
will denote an arbitrary field.

Let K be a field and E a directed graph. Denote by KE the K-vector space
which has as a basis the set of paths. It is possible to define an algebra structure
on KE as follows: for any two paths µ = e1 . . . em, ν = f1 . . . fn, we define µν as
zero if r(µ) ≠ s(ν) and as e1 . . . emf1 . . . fn otherwise. This K-algebra is called
the path algebra of E over K.

We define the Leavitt path K-algebra LK(E), or simply L(E) if the base field
is understood, as the K-algebra generated by a set {v | v ∈ E0} of pairwise
orthogonal idempotents, together with a set of variables {e, e∗ | e ∈ E1}, which
satisfy the following relations:

(1) s(e)e = er(e) = e for all e ∈ E1.
(2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.
(3) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1.
(4) v =∑{e∈E1|s(e)=v} ee∗ for every v ∈ E0 that emits edges.

Relations (3) and (4) are called of Cuntz-Krieger.
The elements of E1 are called real edges, while for e ∈ E1 we call e∗ a ghost

edge. The set {e∗ | e ∈ E1} will be denoted by (E1)∗. We let r(e∗) denote s(e),
and we let s(e∗) denote r(e). If µ = e1 · · · en is a path, then we denote by µ∗
the element e∗n · · · e∗1 of L(E), and by µ0 the set of its vertices, i.e.,

{
s(µ1), r(µi) | i = 1, . . . , n

}
.

It was shown in [1, Lemma 1.5] that every monomial in L(E) is of the form:
kv, with k ∈ K and v ∈ E0, or ke1 · · · emf∗1 · · ·f∗n for k ∈ K, m, n ∈ N,
ei, fj ∈ E1. For any subset H of E0, we will denote by I(H) the ideal of L(E)
generated by H.

Note that if E is a finite graph then we have
∑
v∈E0 v = 1L(E). On the other

hand, if E0 is infinite, then by [1, Lemma 1.6] L(E) is a nonunital ring with a
set of local units. In fact, in this situation, L(E) is a ring with enough idempotents
(see e.g. [15] or [23]), and we have the decomposition L(E) = ⊕

v∈E0 L(E)v as
left L(E)-modules. (Equivalently, we have L(E) = ⊕

v∈E0 vL(E) as right L(E)-
modules.)

Examples 1.1. By considering some basic configurations one can realize many
algebras as the Leavitt path algebra of some graph. Thus, for instance, the ring of
Laurent polynomials K[x,x−1] is the Leavitt path algebra of the graph
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•��

Matrix algebras Mn(K) can be achieved by considering a line graph with n
vertices and n− 1 edges

• // • // • • // •

Classical Leavitt algebras L(1, n) for n ≥ 2 are obtained as L(Rn), where Rn
is the rose with n petals graph

• ddqq
��

QQ

Of course, combinations of the previous examples are possible. For example,
the Leavitt path algebra of the graph

• // • // • • // • dd qq
��

QQ

is Mn(L(1,m)), where n denotes the number of vertices in the graph and m
denotes the number of loops. In addition, the algebraic counterpart of the Toeplitz
algebra T is the Leavitt path algebra of the graph E having one loop and one exit

•$$ // •

It is shown in [1] that L(E) is a Z-graded K-algebra, spanned as a K-vector
space by {pq∗ | p, q are paths in E}. In particular, for each n ∈ Z, the degree n
component L(E)n is spanned by elements of the form pq∗, where `(p)−`(q) =
n. The degree of an element x, denoted deg(x), is the lowest number n for which
x ∈⊕m≤n L(E)m.

For us, by a countable set we mean a set which is either finite or countably
infinite. The symbol M∞(K) will denote the K-algebra of matrices over K of
countable size but with only a finite number of nonzero entries.

We will analyze the structure of various graphs in the sequel. An important
role is played by the following three concepts. An edge e is an exit for a path
µ = e1 . . . en if there exists i such that s(e) = s(ei) and e ≠ ei. If µ is a path in E,
and if v = s(µ) = r(µ), then µ is called a closed path based at v. If s(µ) = r(µ)
and s(ei) ≠ s(ej) for every i ≠ j, then µ is called a cycle. A graph which contains
no cycles is called acyclic.

(L) We say that a graph E satisfies Condition (L) if every cycle in E has an exit.

We define a relation ≥ on E0 by setting v ≥ w if there is a path µ ∈ E∗ with
s(µ) = v and r(µ) = w. A subset H of E0 is called hereditary if v ≥ w and
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v ∈ H imply w ∈ H. A hereditary set is saturated if every vertex which feeds
into H and only into H is again in H, that is, if s−1(v) ≠∅ and r(s−1(v)) ⊆ H
imply v ∈ H. Denote byHE the set of hereditary saturated subsets of E0.

The set T(v) = {w ∈ E0 | v ≥ w} is the tree of v, and it is the small-
est hereditary subset of E0 containing v. We extend this definition for an ar-
bitrary set X ⊆ E0 by T(X) = ⋃

x∈X T(x). The hereditary saturated closure of
a set X is defined as the smallest hereditary and saturated subset of E0 contain-
ing X. It is shown in [7, 12] that the hereditary saturated closure of a set X is
X = ⋃∞n=0Λn(X), where
• Λ0(X) = T(X), and
• Λn(X) = {y ∈ E0 | s−1(y) ≠ ∅ and r(s−1(y)) ⊆ Λn−1(X)} ∪Λn−1(X),

for n ≥ 1.
Recall that an ideal J of L(E) is graded if and only if it is generated by idem-

potents; in fact, J = I(H), where H = J ∩E0 ∈HE. (See the proofs of [7, Propo-
sition 4.2 and Theorem 4.3].) We will use this fact freely throughout.

We recall here some graph-theoretic constructions which will be of interest.
For a hereditary subset H of E0, the quotient graph E/H is defined as(

E0 \H, {e ∈ E1 | r(e) ∉ H}, r |(E/H)1 , s|(E/H)1),
and the restriction graph is

EH =
(
H,

{
e ∈ E1| s(e) ∈ H}, r |(EH)1 , s|(EH)1).

Sometimes it is useful to view L(E) constructed as the quotient of the path
algebra of a certain graph as follows: recall that given a graph E the extended graph
of E is defined as the new graph Ê = (E0, E1∪(E1)∗, r ′, s′) where (E1)∗ =
{e∗i : ei ∈ E1} and the functions r ′ and s′ are defined as

r ′|E1 = r , s′|E1 = s, r ′(e∗i ) = s(ei) and s′(e∗i ) = r(ei).

For a field K and a row-finite graph E, the Leavitt path algebra of E with
coefficients in K can also be regarded as the path algebra over the extended graph
Ê, with relations:

(CK1) e∗i ej = δijr(ej) for every ej ∈ E1 and e∗i ∈ (E1)∗.
(CK2) vi =

∑
{ej∈E1:s(ej)=vi} eje

∗
j for every vi ∈ E0 which is not a sink.

Thus, an element of L(E) will be of the form x, with x ∈ KÊ. In fact, by
[1, Lemma 1.5], x can be chosen as a linear combination of vertices and elements
of the form pq∗, with p, q ∈ E∗.

This alternative description of L(E) allows us to define, for x ∈ L(E), the
following

Rx =
{∑

piq∗i ∈ KÊ | x =
∑
piq∗i

}
.
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Consider an element a = e1 · · · erf∗1 · · ·f∗s ∈ KÊ, with ei, fj ∈ E1. We say
that s is the degree of e1 · · · erf∗1 · · ·f∗s in ghost edges, and denote it by degge(a).
If a ∈ KE, then we say that a has zero degree in ghost edges, while the degree in
ghost edges of f∗1 · · ·f∗s is s. For a ∈ KÊ, a = ∑

i piq∗i , with pi, qi ∈ E∗, the
degree of a in ghost edges is max{degge(piq∗i )}. Finally, the degree in ghost edges of
an element x of the Leavitt path algebra L(E) is defined by:

degge(x) B min
{

degge(y) | y ∈ Rx
}
.

2. PRIME IDEALS AND MAXIMAL TAILS

The main goal of this section is to study maximal tails and their relation with
prime (graded or not) ideals of L(E). These connections will be essential in the
prime spectrum correspondence results (Theorem 3.8).

Let us recall first the definition of maximal tail (which is a particular case of
that of [12]): for a graph E, a nonempty subset M ⊆ E0 is said to be a maximal
tail if it satisfies the following properties:

(MT1) If v ∈ E0, w ∈M and v ≥ w, then v ∈ M.
(MT2) If v ∈ M with s−1(v) , ∅, then there exists e ∈ E1 with s(e) = v and

r(e) ∈M.
(MT3) For every v, w ∈ M there exists y ∈ M such that v ≥ y and w ≥ y .

Lemma 2.1. Let E be a graph. Then, M ⊆ E0 satisfies Conditions (MT1) and
(MT2) if and only if H = E0 \M ∈HE.

Proof. Suppose first that M is a maximal tail. Consider v ∈ H and w ∈ E0

such that v ≥ w. If w ∉ H then w ∈ M, and by Condition (MT1) we get
v ∈ M = E0 \ H, a contradiction. This shows that H is hereditary. Now, let
v ∈ E0 with s−1(v) ≠ ∅, and suppose that r(s−1(v)) ⊆ H. If v ∉ H, then, by
Condition (MT2), there exists e ∈ s−1(v) such that r(e) ∉ H, a contradiction.
This proves that H is saturated.

Let us see the converse. Take v ∈ E0 and w ∈ M such that v ≥ w. If
v ∉ M then, as H is hereditary, we get that w ∈ H. Consider now v ∈ M with
s−1(v) ≠ ∅. If for every e ∈ s−1(v) we have that r(e) ∉ M, then that means
r(s−1(v)) ⊆ H, and by saturation we obtain v ∈ H, a contradiction. ❐

Notation. Following [12], given X ⊆ E0 we denote

Ω(X) = {w ∈ E0 \X | w � v for every v ∈ X
}
.

Lemma 2.2. If M ⊆ E0 satisfies Condition (MT1), then Ω(M) = E0 \M.

Proof. By definition Ω(M) ⊆ E0 \M. Now, let w ∈ E0 \M. If v ∈ M and
w ≥ v, by Condition (MT1) we get that w ∈ M, a contradiction, so E0 \M ⊆Ω(M), as desired. ❐
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Corollary 2.3. Let E be a graph. If M ⊆ E0 satisfies Conditions (MT1) and
(MT2), then Ω(M) ∈HE.

Proof. Apply Lemmas 2.1 and 2.2. ❐

Recall that a graded ideal I of a graded ring R is said to be graded prime if for
every pair of graded ideals J,K of R such that JK ⊆ I, it is necessary that either
J ⊆ I or K ⊆ I. The definition of prime ideal is analogous to the previous one
by eliminating the condition of being graded. It follows from [20, Proposition
II.1.4] that for an algebra graded by an ordered group (as it is the case of Leavitt
path algebras), a graded ideal is graded prime if and only if it is prime.

It will be useful to recall that in [10, Remark 5.5] it was shown that ifH1,H2 ∈
HE, then I(H1)I(H2) = I(H1 ∩H2). We will use this fact without referencing it.

For the sake of completion, we re-state here the following proposition:

Proposition 2.4 ([10, Proposition 5.6]). Let E be a graph, and let H ∈ HE.
Then, the following are equivalent:

(1) The ideal I(H) is (graded ) prime.
(2) M = E0 \H is a maximal tail.

The following definitions can be found in [12].

Definitions 2.5. Let M be a subset of E0. A path in M is a path α in E
with α0 ⊆ M. We say that a path α in M has an exit in M if there exists e ∈ E1

an exit for α such that r(e) ∈ M. For a graph E, we denote by M(E) the set
of maximal tails of E. We denote by Mγ(E) the set of maximal tails M such
that every closed simple path p in M has an exit in M. We will also denote
Mτ(E) =M(E) \Mγ(E).

The following notation will be useful throughout the sequel.

Notation. Keeping in mind that gauge-invariant ideals in graph C*-algebras
correspond to graded ideals in Leavitt path algebras, we can adapt some notation
of [16] to our situation. Concretely, given a Z-graded algebra A, we will denote by
Specγ(A) the set of all prime ideals of A which are graded, and by Specτ(A) the
set of all prime ideals of A which are not graded. Then Spec(A) = Specγ(A) ∪
Specτ(A). As usual, we denote by Spec(A)∗ the set Spec(A) \ {0}.

Lemma 2.6. Let E be a graph. Let I be an ideal of L(E). Let H = I ∩ E0 and
M = E0 \H. If M ∈Mγ(E) then I = I(H).

Proof. First we suppose that H is nonempty. By [1, Lemma 3.9] H ∈ HE,
and by [10, Lemma 2.3] L(E)/I(H) � L(E/H). Clearly I(H) ⊆ I. Suppose that
I(H) ≠ I, then 0 ≠ I/I(H) / L(E/H). Note that, as M ∈ Mγ(E) by hypothesis,
then E/H satisfies Condition (L). Thus, we are in a position to apply the same
reasoning in [10, Proposition 3.3] to reach a contradiction.

In the case when H = ∅, the conditionM ∈Mγ(E) is just having Condition
(L) in the graph E. Then, if I , 0, an application of [2, Proposition 6] yields
H ≠∅, a contradiction. ❐
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Lemma 2.7. Let E be a graph. Let I be a non-graded prime ideal of L(E). Let
H = I ∩ E0, then:

(i) I(H) / L(E) is (graded ) prime.
(ii) M = E0 \H ∈Mτ(E).

Proof. (i) By [1, Lemma 3.9] we know that H ∈ HE . Now, consider graded
ideals I1, I2 of L(E) such that I1I2 ⊆ I(H). Find Hi ∈ HE with Ii = I(Hi), for
i = 1,2. As I(H) ⊆ I and I is prime, we have that I(Hi) ⊆ I, for some i. Then,
for this i we get Hi ⊆ I(Hi) ∩ E0 ⊆ I ∩ E0 = H, so that I(Hi) ⊆ I(H), as we
wanted.

(ii) Apply (i) and Proposition 2.4 to get that M is a maximal tail. If M ∈
Mγ(E), then Lemma 2.6 gives that I = I(H), contradicting the fact that I is not
graded. ❐

We end this section by providing algebraic characterizations of Condition (L)
and Conditions (L) plus (MT3) that will appear in the sequel. First we need
the following definitions, which are particular cases of those appearing in [13,
Definition 1.3]:

Let E be a graph, and let∅ , H ∈HE. Define

FE(H) =
{
α = (α1, . . . , αn) | αi ∈ E1, s(α1) ∈ E0 \H,

r(αi) ∈ E0 \H for i < n, r(αn) ∈ H
}
.

Denote by FE(H) another copy of FE(H). For α ∈ FE(H), we write α to denote
a copy of α in FE(H). Then, we define the graph HE = (HE0, HE1, r ′, s′) as
follows:

(1) HE0 = (HE)0 = H ∪ FE(H).
(2) HE1 = (HE)1 = {e ∈ E1 | s(e) ∈ H} ∪ FE(H).
(3) For every e ∈ E1 with s(e) ∈ H, s′(e) = s(e) and r ′(e) = r(e).
(4) For every α ∈ FE(H), s′(α) = α and r ′(α) = r(α).

Proposition 2.8. Let E be a graph.
(i) E satisfies Conditions (L) and (MT3) if and only if I ∩ J ∩ E0 ≠ ∅ for every

nonzero ideals I and J of L(E).
(ii) E satisfies Condition (L) if and only if I ∩ E0 ≠ ∅ for every nonzero ideal I of

L(E).

Proof. (i). Suppose that E satisfies Conditions (L) and (MT3) and take nonzero
ideals I and J of L(E). Apply [2, Proposition 6] to find vertices v ∈ I and
w ∈ J. Use Condition (MT3) to find u ∈ E0 such that v, w ≥ u and
paths µ, ν such that s(µ) = v, s(ν) = w and r(µ) = r(ν) = u. Thus
u = µ∗vµ = ν∗wν ∈ I ∩ J ∩ E0.

Let us see the converse. By Proposition 2.4, E satisfies Condition (MT3).
Suppose now that there is a cycle without exits c based at v. Let J denote the ideal
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of L(E) generated by v + c. By a standard argument (see [1, Proof of Theorem
3.11]) v ∉ J. If w ∈ J for some w ∈ E0, as we have Condition (MT3), there
exists u such that v, w ≥ u. Because c has no exits u ∈ c0, so that for some path
τ, we have τ = wτv. This gives v = τ∗wτ ∈ J, a contradiction.

(ii). Apply [2, Proposition 6] to show that Condition (L) implies I ∩ E0 ≠∅
for every nonzero ideal I of L(E).

To see the converse, suppose that c is a cycle without exits and write H = c0.
By [8, Lemma 1.2] L(HE) � I(H) via an isomorphism Φ : L(HE) → I(H) such
that for every v ∈ I(H), v = Φ(v). Take a nonzero ideal J of L(HE), thenΦ(J) is an ideal of I(H). By [23, Lemma 3.21], Φ(J) is an ideal of L(E). Use
the hypothesis to show that Φ(J) contains a vertex w which is in I(H), hence
w ∈ J because Φ(w) = w. This shows that the graph HE satisfies that every ideal
of L(HE) contains a vertex. On the other hand, as shown in [6, Proposition 3.6
(iii)], HE is a comet tail. Thus, it satisfies Condition (MT3). Now, consider the
ideal J′ of L(HE) generated by v + c. We can prove as in (i) that J′ does not
contain vertices, a contradiction. ❐

Remark 2.9. The fact that Condition (L) implies I ∩ E0 ≠ ∅ for every
nonzero ideal I of L(E) was first proved (although not explicitly stated in this
form) in [2, Proposition 6]. Despite its simplicity, this is a recurrently invoked
fact in a great number of proofs that have followed. What Proposition 2.8 (ii)
shows then is that the converse of this well-known statement holds too. In addi-
tion, Proposition 2.8 (i) provides a generalization of this aforementioned result,
which in turn happens to be equivalent to the left (or right) semiprimitivity of
L(E), as will be shown in Theorem 4.6.

3. THE PRIME SPECTRUM CORRESPONDENCE

In this section the computation of the prime spectrum of a Leavitt path algebra is
completed. The bijection between the set of prime ideals of L(E) and certain fam-
ilies of maximal tails together with the set of nonzero prime ideals of K[x,x−1] is
fully achieved in Theorem 3.8.

First we will need some preliminary results that will be useful tools in both
directions of the correspondence of that Theorem.

As in [6], we denote by Pc(E) the set of vertices in the cycles without exits of
E.

Lemma 3.1. Let E be a graph and J an ideal of L(E) such that J ∩ E0 = ∅.
Then J ∩ KE ∩ L(E)u ⊆ I(Pc(E)) for every u ∈ E0.

Proof. We can assume J ≠ 0. Apply [22, Proposition 2.2] to find 0 ≠ x =
xu ∈ J ∩ KE. Write x = ∑ri=1 kiαi, with 0 ≠ ki ∈ K, αi = αiu ∈ E∗ for every
i and αi ≠ αj for every i ≠ j and assume that deg(αi) ≤ deg(αi+1) for every
i = 1, . . . , r − 1. We will prove that u ∈ I(Pc(E)) by induction on the number r
of summands.
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Note that r ≠ 1 as otherwise we would have k−1
1 α

∗
1 x = u ∈ J, a contradic-

tion to the hypothesis. So the base case for the induction is r = 2. Suppose first
that deg(α1) = deg(α2). In this case, since α1 ≠ α2, we get α∗1 α2 = 0 so that
k−1

1 α
∗
1 x = u ∈ J, a contradiction again. This gives deg(α1) < deg(α2) and then

α∗1 x = k1u + k2e1 · · · et for some e1, . . . , et ∈ E1. By multiplying on the left
and right hand sides by u we get

y1 B uα∗1 xu = k1u+ k2ue1 · · · etu ∈ J.

Observe that u and e1 · · · en have different degrees and since k1u ≠ 0 we ob-
tain that y1 ≠ 0. Moreover, as J does not contain vertices we have that c B
ue1 · · · etu ≠ 0 is a closed path based at u. We will prove that c does not have
exits: suppose on the contrary that there exist w ∈ T(u) and e, f ∈ E1 such that
e ≠ f , s(e) = s(f ) = w, c = aweb = aeb for some a, b ∈ E∗. Then ν = af
satisfies ν∗c = f∗a∗aeb = f∗eb = 0 so that ν∗y1ν = k1r(ν) ∈ J, again a
contradiction. This says that u ∈ Pc(E) so, in particular, x = xu ∈ I(Pc(E)).

Let us assume the result holds for r and prove it for r + 1. Assume then that
x = xu = ∑r+1

i=1 kiαi and distinguish two situations.
First, consider deg(αj) = deg(αj+1) for some j = 1, . . . , r . The element

α∗j xuαj = α∗j xuαju ∈ J is nonzero as follows: clearly each monomial re-
mains with positive degree as deg(α∗j αiαj) = deg(αi) ≥ 0. Moreover, at least
αj = α∗j αjαj appears in the expression for α∗j xuαj because if we had αj =
α∗j αiαj for some i ≠ j, then deg(αi) = deg(αj) which implies α∗j αi = 0
and therefore αi = 0, a contradiction. This shows that α∗j xuαj has at least a
nonzero monomial, and because distinct elements of KE are linearly independent
(see [22, Lemma 1.1]), then α∗j xuαj ≠ 0. Now, this element has at most r sum-
mands because α∗j αj+1αj = 0 and it satisfies the induction hypothesis, so that
u ∈ Pc(E).

The second case is when deg(αi) < deg(αi+1) for every i = 1, . . . , r . Then
0 ≠ α∗1 x = k1u+

∑r+1
i=2 kiβi with βiu = βi ∈ E∗. Multiply again as follows:

y2 B uβ∗r+1uα
∗
1 xuβr+1u = k1u+

r+1∑
i=2

uβ∗r+1uβiuβr+1u ∈ J.

A similar argument to the previous paragraph shows that y2 is nonzero so that, in
case some monomial of y2 becomes zero, then y2 satisfies the induction hypoth-
esis, therefore u ∈ Pc(E). If this is not the case, since βr+1 has maximum degree
among the βi, then

y2 = k1u+ k2γ1 + k3γ1γ2 + · · · + kr+1γ1 · · ·γr ,

where γi are closed paths based at u. Let us focus on γ1. By proceeding in a
similar fashion as before, we can conclude that it cannot have exits as otherwise
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there would exist a path δ with s(δ) = u and δ∗γ1 = 0. That would give
δ∗y2δ = k1r(δ) ∈ J, a contradiction. Then, γ1 is a cycle without exits so that
u ∈ Pc(E), and finally x = xu ∈ I(Pc(E)). ❐

Proposition 3.2. Let E be a graph and J an ideal of L(E) such that J∩E0 = ∅.
Then J ⊆ I(Pc(E)).

Proof. Let 0 ≠ x ∈ J, and write x = ∑xui for some ui ∈ E0 with 0 ≠ xui.
As J is an ideal, 0 ≠ xui ∈ J, so that we can assume without loss of generality
that 0 ≠ x = xu.

We will show, by induction on the degree in ghost edges, that if xu ∈ J, with
u ∈ E0, then xu ∈ I(Pc(E)). If degge(xu) = 0, the result follows by Lemma
3.1. Suppose the result true for degree in ghost edges strictly less than degge(xu)
and show it for degge(xu).

Write x = ∑ri=1 βie
∗
i + β, with βi ∈ L(E), β = βu ∈ KE and ei ∈ E1, being

ei ≠ ej for every i ≠ j. Then xuei = βi + βei ∈ J; since degge(xuei) <
degge(xu), by the induction hypothesis βi + βei ∈ I(Pc(E)), for every i ∈
{1, . . . , r}.

If u = ∑ri=1 eie
∗
i , then xu =∑ri=1 βie

∗
i +

∑r
i=1 βeie

∗
i =

∑r
i=1(βi+βei)e∗i ∈

I(Pc(E)), and we have finished.
If u =∑ri=1 eie

∗
i +

∑s
j=1 fjf

∗
j (where fj ∈ E1), then xufj = βfj ∈ J ∩KE.

By Lemma 3.1 βfj ∈ I(Pc(E)), for every j ∈ {1, . . . , s}, hence

xu =
r∑
i=1

(βi + βei)e∗i +
s∑
j=1

βfjf∗j ∈ I(Pc(E)) . ❐

For a graph E, let {cj}j∈Λ be the set of all different cycles without exits. By
abusing of notation, identify two cycles that have the same vertices. Then we can
obtain the following:

Corollary 3.3. Let J be a prime ideal of a Leavitt path algebra L(E) which does
not contain vertices. Then J ⊆ Mn

(
K[x,x−1]

)
.

Proof. We will show

I({c0
j }j∈Λ′) ⊆ J ⊆ I(Pc(E))

for some subset Λ′ of Λ that contains exactly one element less than Λ. Then, apply
[6, Proposition 3.6 (iii)].

Suppose that there exist z1 ∈ I(c0
1) and z2 ∈ I(c0

2), for c1 and c2 different
cycles without exits in L(E) and such that z1, z2 ∉ J. By [6, Proposition 3.6 (i)]
z1I(Pc(E))z2 = z1I(Pc(E))z2 = 0. Since J is a prime ideal and J ⊆ I(Pc(E)), by
Proposition 3.2, I(Pc(E)) B I(Pc(E))/J is a prime ring. This means z1 = 0 or
z2 = 0, that is z1 ∈ J or z2 ∈ J, a contradiction. This shows our claim (becauseΛ′ must be empty as J does not contain vertices). ❐
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Corollary 3.4. Let F be a graph such that there is a unique cycle µ without exits
(but there might be other cycles with exits).

(i) If F ∈M(F) and H ∈HF \ {∅}, then µ0 ⊆ H.
(ii) If J is an ideal of L(F) such that J ∩ F0 = ∅, then J ⊆ I(µ0).

Proof. (i) Applying [16, Lemma 2.1], we know thatΩ(F0) = Ω(µ0), but sinceΩ(F) = ∅, then this means that for every w ∈ F0 \ µ0 we have w ≥F v for some
v ∈ µ0. Now, given h ∈ H, as µ is a cycle we in fact have that h ≥ v for every
v ∈ µ0, and as H is hereditary, this means that µ0 ⊆ H. Now, because H is also
saturated we get µ0 ⊆ H.

(ii) It is a particular case of Proposition 3.2. ❐

We recall here some definitions which were introduced in [6]. We say that an
infinite path γ = (en)∞n=1 ends in a cycle if there exist m ≥ 1 and a cycle c such
that the infinite subpath (en)∞n=m is just the infinite path ccc · · · . We say that
a graph E is a comet if it has exactly one cycle c, T(v) ∩ c0 ≠ ∅ for every vertex
v ∈ E0, and every infinite path ends in the cycle c.

Next propositions will be the pieces from which the main theorem of this
section (Theorem 3.8) will rely on.

Proposition 3.5. Let E be a graph. There is a map

Θ : Specτ(L(E)) →Mτ(E)× Spec(K[x,x−1])∗.

Proof. Let J be a prime ideal of L(E) which is not graded. As the zero ideal {0}
is graded, then J ≠ 0. Consider H = E0 ∩ J, which is in HE by [1, Lemma 3.9].
Then write F = E/H so that [10, Lemma 2.1] gives that L(F) � L(E)/I(H). Note
that in the case H = ∅ we simply have F = E and we do not invoke any result.
Thus, Lemma 2.7 gives that I(H) is graded prime and that M = E0 \H = F0 ∈
Mτ(E). In particular this is saying that L(F) is a prime ring as L(F) � L(E)/I(H).

Moreover, the ideal J = J/I(H) is prime in L(F). To see this, first note
that I(H) ⊆ J but I(H) ≠ J, as J is nongraded by hypothesis. Hence J ≠ 0.
Furthermore,

L(F)
J � L(E)/I(H)

J/I(H)
� L(E)

J

is a prime ring as J is a prime ideal in L(E), so that J is a prime ideal in L(F).
Obviously it is not graded because otherwise it would imply that the ideal J to
which it lifts is graded too.

Now, since F0 ∈Mτ(E), we will prove that F0 ∈Mτ(F). Clearly F0\F0 = ∅
is hereditary and saturated in F , so that by Lemma 2.1 F0 satisfies Conditions
(MT1) and (MT2). Let us check Condition (MT3): take v,w ∈ F0. Since F0

is a maximal tail in E, there exists y ∈ F0 such that v, w ≥E y , which means
that there exist p,q ∈ E∗ such that s(p) = v, s(q) = w and r(p) = r(q) = y .
Then, since y ∉ H, by hereditariness we have that (p0 ∪ q0)∩H = ∅, and thus
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p0, q0 ⊆ F0, which implies, by the way that F is defined, that v,w ≥F y . Finally,
we can find a cycle c in F without exits in F when seen inside E, but this same
cycle will not have exits in F when regarded in F . This proves that F0 ∈Mτ(F).

Applying [16, Lemma 2.1] to F we get that there exists a unique cycle µ in
F without exits (but there could be other cycles with exists). In this case we also
have that ∅ = Ω(F) = Ω(µ0), or in other words, every vertex in F0 connects to
the cycle µ.

Note that since J∩E0 = H, then J ∩ (E/H)0 = J ∩F0 = ∅, so that we are in
a position to apply Corollary 3.4 (ii) to get that J ⊆ I(µ0). Now, by [8, Lemma
2.1] we obtain I(µ0) � L(µ0F) as nonunital rings. In the notation of [6], we
have Pµ(F) = µ0 so that µ0 = Pµ(F). First, we can show that every infinite path
in F ends in the cycle µ by just readapting the ideas in [6, Proposition 3.6 (iii)].
Moreover, this fact also implies that µ is the only cycle in µ0F , because any other
cycle would produce an infinite path which would not end in µ. Clearly, by the
way F and µ0F were constructed, every vertex in the latter connects to µ.

This proves that µ0F is in fact a comet, so that invoking [6, Proposition 3.5]
one gets that L(µ0F) � Mn(K[x,x−1]), where n ∈ N if µ0F is finite, or n = ∞
otherwise. By the composition of the two previously determined isomorphisms,
we have a univocally defined K-algebra isomorphism

φµ : I(µ0) →Mn(K[x,x−1]).

We will show now that J is a prime ideal in I(µ0). Consider A, B ideals of
I(µ0) such that J ⊆ A,B and AB ⊆ J. Since I(µ0) is (isomorphic to) the Leavitt
path algebra of µ0F , it has a set of local units so that an application of [23, Lemma
3.21] yields that A, B are ideals of L(F) as well, but J was prime in L(F) so that
A ⊆ J or B ⊆ J, as we needed.

Then, φµ(J) is a prime ideal in Mn(K[x,x−1]), and it is well known that
in this case there exists a unique ideal P of K[x,x−1] such that φµ(J) =Mn(P).
Moreover, this ideal P is prime in K[x,x−1] (see for instance [18]). Moreover,
note that P ≠ 0 because J ≠ 0.

That way we have associated a maximal tail M ∈Mτ(E) and a prime ideal P
in K[x,x−1] to J. In other words we have defined Θ(J) = (M, P). ❐

Proposition 3.6. Let E be a graph. There is a map

Λ :Mτ(E)× Spec(K[x,x−1])∗ → Specτ(L(E)).

Proof. Pick P ≠ 0 any prime ideal in K[x,x−1] and M ∈ Mτ(E). As
K[x,x−1] is an Euclidean domain, we have that every nonzero prime ideal in
K[x,x−1] is maximal.

On the other hand, by [16, Lemma 2.1], there exists a cycle µ contained
in M but without exits in M. This cycle is unique (up to a permutation of its
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edges) and Ω(M) = Ω(µ0). Let H = E0 \ M ∈ HE and F = E/H. Note that
F0 = M, and that by the way that F is defined, µ0 ⊆ F0 and µ1 ⊆ F1. The
fact that µ ⊆ E does not have exits in M translates to the fact that µ does not
have exits when seen inside the graph F . The same reasoning used in Proposition
3.5 shows that I(µ0) � L(µ0F) � Mm(K[x,x−1]) for some m ∈ N ∪ {∞}.
As in the proof of Proposition 3.5, we can consider the K-algebra isomorphism
φµ : I(µ0)→Mn(K[x,x−1]).

Clearly Mm(P) is a maximal ideal [18] in Mm(K[x,x−1]) so that
J = φ−1

µ (Mm(P)) is a maximal ideal in I(µ0). Using again [23, Lemma 3.21]
and the fact that I(µ0) has local units, we have that J is in fact an ideal of L(F).
We will show that it is prime in L(F). Consider then A, B ideals of L(F) with
J ⊆ A,B and AB ⊆ J. Write HA = A∩ F0 and HB = B ∩ F0. We know that HA,
HB ∈HF .

Suppose that HA, HB ≠ ∅, then an application of Corollary 3.4 (i) gives
that µ0 ⊆ HA ∩ HB so that I(µ0) ⊆ I(HA ∩ HB) = I(HA)I(HB) ⊆ AB ⊆ J ⊊
I(µ0), where the last containment is proper as J is a maximal ideal. This is a
contradiction so that this case cannot happen.

Without loss of generality we may assume that HA = ∅. In this case we apply
Corollary 3.4 (ii) to obtain that A ⊆ I(µ0) so that J ⊆ A ⊆ I(µ0). But J was a
maximal ideal in I(µ0) so that J = A, as needed.

Then since J = J/I(H) is prime in L(F) � L(E)/I(H), then J is certainly
prime in L(E).

If J is a graded ideal, then J would be graded too. Thus we have that J =
I(HJ) for HJ = J ∩ F0, and as P ≠ 0, we have J ≠ 0 so that HJ ≠ ∅. Thus,
an application of Corollary 3.4 (i) shows that µ0 ⊆ HJ . On the other hand, since
I(HJ) = J ⊆ I(µ0), then we have that HJ = I(HJ)∩F0 ⊆ I(µ0)∩F0 = µ0. That
is, HJ = µ0, and consequently J = I(µ0). This implies, via the isomorphism φµ,
that P = K[x,x−1], which contradicts the fact that P is prime.

Therefore we have associated a nongraded prime ideal J in L(E) to any max-
imal tail M ∈ Mτ(E) and a prime ideal P in K[x,x−1]. So that we defineΛ(M, P) = J. ❐

Proposition 3.7. Let E be a graph. There is a bijection between

Mτ(E)× Spec(K[x,x−1])∗ ←→ Specτ(L(E)).

Proof. By following the correspondences consecutively in Propositions 3.5 and
3.6 one can check that Θ and Λ are inverses one another. Concretely the equation

ΛΘ = 1|Specτ(L(E))

can be checked with no difficulty, and the only nontrivial part of proving

ΘΛ = 1|Mτ(E)×Spec(K[x,x−1])∗
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arises when we have J = Λ(M, P) and we would like to establish that, in order to
apply Θ, we obtain H′ = H and therefore M′ = M and so on. This is so because
when defining J in the Λ-process, we obtained J ∩ F0 = ∅ so that J ∩ E0 ⊆ H,
as F = E/H and J = J/I(H). But the latter implies I(H) ⊆ J, and therefore
H = I(H) ∩ E0 ⊆ J ∩ E0 ⊆ H. That is, H′ = J ∩ E0 = H, and the rest follows
trivially. ❐

Putting together Proposition 3.7 and Lemma 2.4, we obtain the main result
of this section.

Theorem 3.8. Let E be a graph. There is a bijection between

M(E)∪ (Mτ(E)× Spec(K[x,x−1])∗)←→ Spec(L(E)).

Remark 3.9. This Theorem is the algebraic version of [16, Corollary 2.12].
Note that the role of T in that result is played in Theorem 3.8 by Spec(K[x,x−1])∗.
This replacement agrees with the fact that both K[x,x−1] and T are attached to
the same underlying graph in the following sense: K[x,x−1] is the Leavitt path
algebra of the loop graph E given by

•��

whereas the continuous functions over T is precisely the graph C*-algebra of that
graph, that is, C∗(E) � C(T).

Note that although L(E) is always semiprime (see for instance [9, Proposition
1.1]), it is not necessarily prime, and in fact we can prove the following easy
corollary

Corollary 3.10. Let E be a graph. L(E) is prime if and only if E ∈ M(E) if
and only if E satisfies Condition (MT3).

Proof. L(E) is prime if and only if {0} = I(∅) ∈ Spec(E). Then by the
way the correspondence in Theorem 3.8 is defined, this occurs precisely when
E0 \ ∅ = E0 ∈ M(E). Then, as ∅ is always a hereditary and saturated subset
of E0, Lemma 2.1 yields that E0 always satisfies Conditions (MT1) and (MT2).
Hence, E0 ∈M(E) if and only if E0 satisfies Condition (MT3). ❐

4. PRIMITIVE LEAVITT PATH ALGEBRAS

Having completely determined the prime Leavitt path algebras, the natural next
step is to be able to proceed in the same way with the primitive ones (every prim-
itive algebra is in particular prime, and the reverse implication holds for instance
for the class of separable C*-algebras [17], and consequently for the class of graph
C*-algebras).

In view of Corollary 3.10, and contrasting with the graph C*-algebra situa-
tion, next lemma shows that among the class of Leavitt path algebras, the notions
of primeness and primitivity do not coincide.
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Lemma 4.1. If E ∈Mτ(E), then L(E) is not left (nor right) primitive.

Proof. Apply again [16, Lemma 2.1] to find µ the only cycle without exits of
E, and suppose that µ is based at the vertex v. By repeating the arguments in
[10, Proof of Theorem 4.3] we obtain that K[x,x−1] � vL(E)v, which is not a
primitive ring (note that a commutative ring is primitive if and only if it is a field).
Clearly, as corners of primitive rings are primitive, then we get the result. ❐

Recall that a ring R is right primitive if and only if there exists a simple and
faithful right R-module M. Given that the focus at this point is on determining
when a Leavitt path algebra L(E) is (right) primitive, it is evident that a knowledge
of the simple (and faithful) right L(E)-modules is required. This is done in the
next few results.

A vertex v in E0 is a bifurcation if s−1(v) has at least two elements. A vertex
u in E0 will be called a line point if there are neither bifurcations nor cycles at any
vertex w ∈ T(u). We will denote by P`(E) the set of all line points in E0.

Lemma 4.2. If E ∈ M(E) and P`(E) ≠ ∅, then L(E) is left (and right)
primitive.

Proof. Pick v ∈ P`(E) and use [9, Theorem 2.9] to get that M = L(E)v is
a minimal left ideal of L(E), or in other words, M is a simple left L(E)-module.
Now consider a ∈ L(E) such that aM = aL(E)v = 0. As v ≠ 0 and L(E) is
prime, we get that a = 0, so that M is a simple and faithful left L(E)-module.
This shows that L(E) is left primitive. By proceeding dually we get that L(E) is
right primitive too. ❐

Lemma 4.3. If M is a simple right L(E)-module, then M � vL(E)/J, for some
v ∈ E0 and some right L(E)-module J, maximal (as a right L(E)-module) in vL(E).

Proof. We know that M � L(E)/I for some maximal right ideal I of L(E).
Take v ∈ E0 such that v ∉ I. By the maximality of I, I + vL(E) = L(E). So,
M � L(E)/I � (I+vL(E))/I � vL(E)/(I∩vL(E)). Observe that J = I∩vL(E)
is a right L(E)-module, maximal in vL(E). ❐

We will denote by Mod-L the category of all right L(E)-modules.

Proposition 4.4. Let E be a graph. For a vertex u ∈ E0, define the set

Su =
{
M ∈Mod-L | M � uL(E)/J,

where J is a maximal right submodule of uL(E)
}
.

Let u, v ∈ E0 and α a path with s(α) = u and r(α) = v. Then:
(i) Sv = Su.

(ii) If J is a maximal right submodule of uL(E), then uL(E)/J � vL(E)/α∗J.
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Proof. Denote L(E) by L. Define the following map

ϕ : uL → vL
x , α∗x

Since α∗uα = v, ϕ is an epimorphism of right L-modules whose kernel is
(u−αα∗)L. Then, uL/Ker(ϕ) � vL via the isomorphism

ϕ : uL/Ker(ϕ) → vL
x +Ker(ϕ) , α∗x

Let us see first that Sv ⊆ Su. Let T be a maximal submodule of vL. By using
the isomorphism ϕ we know that there exists J a submodule of uL such that
Ker(ϕ) ⊆ J and J/Ker(ϕ) � T . Then we have

vL
T
� uL/Ker(ϕ)
J/Ker(ϕ)

� uL
J
.

Now we will check that Su ⊆ Sv . Suppose first that J + Ker(ϕ) = uL.
Consider

ρ : uL/(J ∩Ker(ϕ)) → vL
y + (J ∩Ker(ϕ)) , α∗y

It is well defined because y ∈ J ∩ Ker(ϕ) ⊆ Ker(ϕ) means y = (u − αα∗)y ,
which implies α∗y = 0.

Clearly, it is surjective, as α∗α = v and s(α) = u, and therefore
(uL/(J ∩Ker(ϕ)))/Ker(ρ) � vL via the isomorphism ρ given by

(y + (J ∩Ker(ϕ)))+Ker(ρ) , α∗y .

Apply twice the Third Isomorphism Theorem to obtain

uL
J
� uL/(J ∩Ker(ϕ))
J/(J ∩Ker(ϕ))

� (uL/(J ∩Ker(ϕ)))/Ker(ρ)
(J/(J ∩Ker(ϕ))+Ker(ρ))/Ker(ρ)

� vL
α∗J

since α∗J is the image of
(
J/(J ∩Ker(ϕ))+Ker(ρ)

)
/Ker(ρ) by ρ.

Suppose now that Ker(ϕ) ⊆ J. Then, (uL/Ker(ϕ))/(J/Ker(ϕ)) � uL/J.
As uL/J is a simple module, J/Ker(ϕ) is maximal inside uL/Ker(ϕ). Using the
isomorphism ϕ we have that ϕ(J/Ker(ϕ)) = α∗J is a maximal submodule of
vL and uL/J � (uL/Ker(ϕ))/(J/Ker(ϕ)) � vL/α∗J. ❐

Proposition 4.5. Let E be a graph, u a vertex with |s−1(u)| ≥ 2, and uL(E)/J
a simple right L(E)-module. Then

uL(E)
J

� vL(E)
e∗L(E)

for some e ∈ s−1(u), being v = r(e).
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Proof. Write L = L(E). Use relation (4) to write u = ee∗ +∑i fif∗i (note
that i ≥ 1). For every y ∈ J we may write y = uy = ee∗y +∑fif∗i y , so that
J ⊆ ee∗J ⊕ (⊕fif∗i J

) ⊆ uL. By the maximality of J we have two possibilities.

Case 1: ee∗J ⊕ (⊕fif∗i J
) = uL. For any l ∈ L write ee∗l = ee∗a +∑

fif∗i bi with a,bi ∈ J. Multiply on the right hand side by ee∗ to obtain
ee∗l = ee∗a ∈ ee∗J. Hence, ee∗L ⊆ ee∗J ⊆ ee∗L, that is, ee∗L = ee∗J. Apply
Proposition 4.4 (ii) for α = e to get uL(E)/J � vL(E)/e∗J = vL(E)/e∗L.

Case 2: ee∗J ⊕ (⊕fif∗i J
) = J. In this situation

uL
J
�
ee∗L⊕

(⊕
fif∗i L

)
ee∗J ⊕

(⊕
fif∗i J

)
� ee

∗L
ee∗J

⊕
(⊕

fif∗i L/fif
∗
i J
)
.

The simplicity of uL/J implies that every summand but one must be zero. We
may suppose that ee∗L/ee∗J = 0. Then, Proposition 4.4 (ii) applies again to
have uL(E)/J � vL(E)/e∗J = vL(E)/e∗L. ❐

We now have all the ingredients in hand to prove the final result of the article.

Theorem 4.6. Let E be a graph. The following conditions are equivalent.
(i) L(E) is left primitive.

(ii) L(E) is right primitive.
(iii) E satisfies Conditions (L) and (MT3).
(iv) I ∩ J ∩ E0 ≠∅ for every nonzero ideals I and J of L(E).

Proof. (ii) ⇒ (iii). If L(E) is right primitive, then it is prime so that Proposi-
tion 2.4 yields that E satisfies Condition (MT3). If E does not satisfy Condition
(L), then E ∈ Mτ(E), and by Lemma 4.1, L(E) is not right primitive, a contra-
diction.

(iii) ⇒ (ii). Denote L = L(E). If P`(E) ≠ ∅, we finish by Lemma 4.2. So,
suppose P`(E) = ∅. Since E satisfies Condition (L), there exists u ∈ E0 with
|s−1(u)| ≥ 2. Given any v ∈ E0, by Condition (MT3) there exists w ∈ E0 such
that u,v ≥ w. In this situation Proposition 4.4 (i) gives Su = Sw = Sv , so that
Sv = Su.

By Lemma 4.3 every simple right module M is isomorphic to vL/J for some
vertex v ∈ E0 and some maximal submodule J of vL. Hence, Proposition 4.5
implies that

(†)
{

Ann(M) | M is a simple right L-module
}

=
{

Ann(r(e)L/e∗L), with e ∈ s−1(u) and r(e)L/e∗L simple
}
.
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Clearly the second set is finite. If all its elements are nonzero, then we can apply
Proposition 2.8 (i) to get⋂

e∈s−1(u), r(e)L/e∗L simple

Ann(r(e)L/e∗L)∩ E0 ≠∅.

If we denote by J(L) the Jacobson radical of L, we know that J(L) = 0 by [3,
Proposition 6.3]. Now (†) gives

J(L) =
⋂

M simple

Ann(M) =
⋂

e∈s−1(u), r(e)L/e∗L simple

Ann(r(e)L/e∗L) ≠ 0,

a contradiction. Thus, Ann(r(e)L/e∗L) = 0 for some simple L-module
r(e)L/e∗L, as desired.

(i) a (iii) is proved analogously.
(iii) a (iv) is Proposition 2.8 (i). ❐

Remark 4.7. In noncommutative Ring Theory, one-sided conditions tend
not to be left-right symmetric (perhaps with the remarkable exception of semisim-
plicity). However, for Leavitt path algebras, the natural phenomena seem to be
the opposite: for instance, in [4, Theorem 3.10] it was shown that L(E) is left
noetherian if and only if it is right noetherian, and later on in [6, Theorem 2.2]
the left-right symmetry was established for the artinian condition as well. More-
over, in [6, Theorem 2.6] and [6, Theorem 3.8], similar situations arose for the
locally artinian and locally noetherian properties.

In this sense, Theorem 4.6 adds the primitive condition to the list of left-
right symmetric properties for Leavitt path algebras, and therefore yields stronger
support to the claim that L(E) carries some type of extra symmetry within.

Examples 4.8. In contrast with Remark 4.7, the containments

{R | R is simple } ⊆ {R | R is left primitive } ⊆ {R | R is prime }

are proper for Leavitt path algebras in the same way that they so are for general
rings. To exhibit such examples, one simply uses the characterizations of prime
(Corollary 3.10), left primitive (Theorem 4.6) and simple ([1, Theorem 3.11])
Leavitt path algebras in terms the properties of their underlying graphs. Thus,
perhaps the easiest examples can be built out of the following graphs:

E : •�� F : •$$ // •

By using the results above, it is straightforward to check that L(E) is prime but
not left (nor right) primitive, whereas L(F) is left (and right) primitive but not
simple. In fact L(E) � K[x,x−1] (see [1, Examples 1.4]), and L(F) � T where T
denotes the algebraic Toeplitz algebra (see [22, Theorem 5.3]).



Prime Spectrum and Primitive Leavitt Path Algebras 889

Acknowledgments. Part of this work was carried out during visits of the
second and third authors to the Centre de Recerca Matemàtica, and of the first
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