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STABLE RANK OF LEAVITT PATH ALGEBRAS

P. ARA AND E. PARDO

(Communicated by Birge Huisgen-Zimmerman)

Abstract. We characterize the values of the stable rank for Leavitt path
algebras by giving concrete criteria in terms of properties of the underlying

graph.

Introduction and background

Leavitt path algebras have been recently introduced in [1] and [5]. Given an
arbitrary (but fixed) field K and a row-finite graph E, the Leavitt path algebra
LK(E) is the algebraic analogue of the Cuntz-Krieger algebra C∗(E) described in
[11]. Several interesting ring-theoretic properties have been characterized for this
class of algebras. For instance, the Leavitt path algebras which are purely infinite
simple have been characterized in [2], and [7] contains a characterization of the
Leavitt path algebras which are exchange rings in terms of condition (K), a purely
graph-theoretic condition defined below.

In this paper, we show that the only possible values of the (Bass) stable rank of a
Leavitt path algebra are 1, 2 and ∞. Moreover a precise characterization in terms of
properties of the graph of the value of the stable rank is provided (Theorem 2.8). A
similar result was obtained in [7, Theorem 7.6] under the additional hypothesis that
the graph satisfies condition (K) (equivalently, L(E) is an exchange ring). Many
tools of the proof of that result must be reworked in our general situation. We have
obtained in several situations simpler arguments that work without the additional
hypothesis of condition (K) on the graph. Another new feature of our approach is a
detailed analysis of the stable rank in extensions of Leavitt path algebras of stable
rank 2, in order to show that the stable rank of these extensions cannot shift to 3.
Our main tool for this study is the well-known concept of elementary rank; see for
example [10, Chapter 11].
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The (topological) stable rank of the Cuntz-Krieger algebras C∗(E) was computed
in [8]. This paper has been the inspiration for the general strategy of the proof here.
Note that, by a result of Herman and Vaserstein [9], the topological and the Bass
stable ranks coincide for C∗-algebras. For the sake of comparison, let us mention
that, although the possible values of the stable rank of C∗(E) are also 1, 2 and ∞,
it turns out that there are graphs E such that the stable rank of C∗(E) is 1 while
the stable rank of L(E) is 2. Concretely, if E is a graph such that no cycle has an
exit and E contains some cycle, then the stable rank of C∗(E) is 1 by [8, Theorem
3.4], but the stable rank of L(E) is 2 by Theorem 2.8.

In this paper, we describe the Leavitt path algebras following the presentation
of [5, Sections 3 and 5], but using the notation of [1] for the elements.

A (directed) graph E = (E0, E1, r, s) consists of two countable sets E0, E1 and
maps r, s : E1 → E0. The elements of E0 are called vertices and the elements of
E1 edges.

A vertex which emits no edges is called a sink. A graph E is finite if E0 and E1

are finite sets. If s−1(v) is a finite set for every v ∈ E0, then the graph is called
row-finite. A path µ in a graph E is a sequence of edges µ = (µ1, . . . , µn) such that
r(µi) = s(µi+1) for i = 1, . . . , n − 1. In such a case, s(µ) := s(µ1) is the source of
µ and r(µ) := r(µn) is the range of µ. If s(µ) = r(µ) and s(µi) �= s(µj) for every
i �= j, then µ is called a cycle. We say that a cycle µ = (µ1, . . . , µn) has an exit if
there is a vertex v = s(µi) and an edge f ∈ s−1(v) \ {µi}. If v = s(µ) = r(µ) and
s(µi) �= v for every i > 1, then µ is a called a closed simple path based at v. We
denote by CSPE(v) the set of closed simple paths in E based at v. For a path µ
we denote by µ0 the set of its vertices, i.e., {s(µ1), r(µi) | i = 1, . . . , n}. For n ≥ 2
we define En to be the set of paths of length n, and E∗ =

⋃
n≥0 En the set of all

paths. We define a relation ≥ on E0 by setting v ≥ w if there is a path µ ∈ E∗

with s(µ) = v and r(µ) = w. A subset H of E0 is called hereditary if v ≥ w and
v ∈ H imply w ∈ H. A set is saturated if every vertex which feeds into H and
only into H is again in H, that is, if s−1(v) �= ∅ and r(s−1(v)) ⊆ H imply v ∈ H.
Denote by H (or by HE when it is necessary to emphasize the dependence on E)
the set of hereditary saturated subsets of E0. We denote by E∞ the set of infinite
paths γ = (γn)∞n=1 of the graph E and by E≤∞ the set E∞ together with the set of
finite paths in E whose end vertex is a sink. We say that a vertex v in a graph E
is cofinal if for every γ ∈ E≤∞ there is a vertex w in the path γ such that v ≥ w.
We say that a graph E is cofinal if so are all the vertices of E. According to [7,
Lemma 2.8], this is equivalent to the fact that H = {∅, E0}.

Let E = (E0, E1, r, s) be a graph, and let K be a field. We define the Leavitt path
algebra LK(E) associated with E as the K-algebra generated by a set {v | v ∈ E0}
of pairwise orthogonal idempotents, together with a set of variables {e, e∗ | e ∈ E1},
which satisfy the following relations:

(1) s(e)e = er(e) = e for all e ∈ E1.
(2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.
(3) e∗e′ = δe,e′r(e) for all e, e′ ∈ E1.
(4) v =

∑
{e∈E1|s(e)=v} ee∗ for every v ∈ E0 that emits edges.

Note that the relations above imply that {ee∗ | e ∈ E1} is a set of pairwise
orthogonal idempotents in LK(E). Note also that if E is a finite graph, then we
have

∑
v∈E0 v = 1. In general the algebra LK(E) is not unital, but it can be written

as a direct limit of unital Leavitt path algebras (with nonunital transition maps),
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so that it is an algebra with local units (recall that a local unit in a ring R is an
increasing net of idempotents {eλ}λ∈Λ ⊂ R such that for each a ∈ R there exists
µ ∈ Λ with a = aeµ = eµa). In this paper, we will be concerned only with row-finite
graphs E, and we will work with Leavitt path algebras over an arbitrary but fixed
field K. We will usually suppress the field from the notation.

Recall that L(E) has a Z-grading. For every e ∈ E1, set the degree of e as 1, the
degree of e∗ as −1, and the degree of every element in E0 as 0. Then we obtain a
well-defined degree on the Leavitt path K-algebra L(E); thus, L(E) is a Z-graded
algebra:

L(E) =
⊕

n∈Z

L(E)n, L(E)nL(E)m ⊆ L(E)n+m, for all n, m ∈ Z.

An ideal I of a Z-graded algebra A =
⊕

n∈Z
An is a graded ideal in case I =⊕

n∈Z
(I ∩ An). By [5, Proposition 5.2 and Theorem 5.3], an ideal J of L(E) is

graded if and only if it is generated by idempotents; in fact, J is a graded ideal
if and only if J coincides with the ideal I(H) of L(E) generated by H, where
H = J ∩ E0 ∈ HE . Indeed, the map H 
→ I(H) defines a lattice isomorphism
between HE and Lgr(L(E)).

Recall that a graph E satisfies condition (L) if every closed simple path has an
exit, and satisfies condition (K) if for each vertex v on a closed simple path there
exist at least two distinct closed simple paths α, β based at v.

Section 1 contains some basic information on the structure of Leavitt path alge-
bras, which will be very useful for the computations in Section 2 of the stable rank
of such algebras. Finally, Section 3 contains some illustrative examples of Leavitt
path algebras.

1. Basic facts

For a graph E and a hereditary subset H of E0, we denote by EH the restriction
graph

(H, {e ∈ E1 | s(e) ∈ H}, r|(EH)1 , s|(EH)1).
Observe that if H is finite, then L(EH) = pHL(E)pH , where pH =

∑
v∈H v ∈ L(E).

On the other hand, for X ∈ HE , we denote by E/X the quotient graph

(E0 \ X, {e ∈ E1 | r(e) /∈ X}, r|(E/X)1 , s|(E/X)1).

By [7, Lemma 2.3(i)] we have a natural isomorphism L(E)/I(X) ∼= L(E/X) for
X ∈ HE . Our next result shows that I(X) is also a Leavitt path algebra.

Definition 1.1 ([8, Definition 1.3]). Let E be a graph, and let ∅ �= X ∈ HE .
Define

FE(X) = {α = (α1, . . . , αn) ∈ En | n ≥ 1, s(α1) ∈ E0 \ X, r(αi) ∈ E0 \ X

for every i < n, r(αn) ∈ X}.

Let FE(X) = {α | α ∈ FE(X)}. Then, we define the graph XE = (XE0, XE1, s′, r′)
as follows:

(1) XE0 = X ∪ FE(X).
(2) XE1 = {e ∈ E1 | s(e) ∈ X} ∪ FE(X).
(3) For every e ∈ E1 with s(e) ∈ X, s′(e) = s(e) and r′(e) = r(e).
(4) For every α ∈ FE(X), s′(α) = α and r′(α) = r(α).
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Lemma 1.2. Let E be a graph, and let ∅ �= X ∈ HE . Then, I(X) ∼= L(XE) (as
nonunital rings).

Proof. We define a map φ : L(XE) → I(X) by the following rule: (i) for every
v ∈ X, φ(v) = v; (ii) for every α ∈ FE(X), φ(α) = αα∗; (iii) for every e ∈
E1 with s(e) ∈ X, φ(e) = e and φ(e∗) = e∗; (iv) for every α ∈ FE(X), φ(α) = α
and φ(α∗) = α∗.

By definition, it is clear that the images of the generators of L(XE) satisfy the
relations defining L(XE). Thus, φ is a well-defined K-algebra morphism.

To see that φ is onto, it is enough to show that every vertex of X and every finite
path α of E which ranges in X are in the image of φ. For any v ∈ X, φ(v) = v,
so that this case is clear. Now, let α = (α1, . . . , αn) with αi ∈ E1. If s(α1) ∈ X,
then α = φ(α1) · · ·φ(αn). Suppose that s(α1) ∈ E0 \ X and r(αn) ∈ X. Then,
there exists 1 ≤ j ≤ n − 1 such that r(αj) ∈ E0 \ X and r(αj+1) ∈ X. Thus,
α = (α1, . . . , αj+1)(αj+2, . . . , αn), where β = (α1, . . . , αj+1) ∈ FE(X). Hence,
α = φ(β)φ(αj+2) · · ·φ(αn).

To show injectivity, notice that, for every α ∈ FE(X), α = αα∗. Hence, every
element t ∈ L(XE) can be written as

(1) t =
∑

α,β∈FE(X)

αaα,ββ
∗
,

where aα,β ∈ L(EX). Suppose that 0 �= Ker(φ), and let 0 �= t ∈ Ker(φ) be written
as in (1). By definition of the map φ,

(2) 0 = φ(t) =
∑

α,β∈FE(X)

αaα,ββ∗.

Let α0 ∈ FE(X) with maximal length among those appearing (with a nonzero
coefficient) in the expression (2). Then, for any other α ∈ FE(X) appearing in the
same expression, α∗

0 · α is 0 if α �= α0 or r(α0) if α = α0. Thus,

(3) 0 =
∑

α,β∈FE(X)

α∗
0αaα,ββ∗ =

∑

β∈FE(X)

aα0,ββ∗.

Now, let β0 ∈ FE(X) with maximal length among those appearing in the expression
(3). The same argument as above shows that

(4) 0 =
∑

β∈FE(X)

aα0,ββ∗β0 = aα0,β0 .

But 0 �= aα0,β0 by hypothesis, and we reach a contradiction. Thus, we conclude
that φ is injective. �

Lemma 1.3. Let R be a ring, and let I �R an ideal with local unit. If there exists
an ideal J �I such that I/J is a unital simple ring, then there exists an ideal M �R
such that R/M ∼= I/J .

Proof. Given a ∈ J , there exists x ∈ I such that a = ax = xa. Thus, J ⊆ JI, and
J ⊆ IJ . Hence, J � R.

By hypothesis, there exists an element e ∈ I such that e ∈ I/J is the unit.
Consider the set C of ideals L of R such that J ⊆ L and e �∈ L. If we order C by
inclusion, it is easy to see that it is inductive. Thus, by Zorn’s Lemma, there exists
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a maximal element of C, say M . Then, J ⊆ M ∩ I � I, whence J = M ∩ I by the
maximality of J in I. Thus,

I/J = I/(M ∩ I) ∼= I + M/M � R/M.

Suppose that R �= I + M . Clearly, e ∈ I + M/M is a unit. Thus, e is a central
idempotent of R/M generating I + M/M . So, L = {a − ae | a ∈ R/M} is an ideal
of R/M , while

R/M = e(R/M) + L,

the sum being an internal direct sum. If π : R � R/M is the natural projection
map, then π−1(L) = M + {a − ae | a ∈ R} is an ideal of R containing M (and so
J). If e ∈ π−1(L), then L = R/M , which is impossible. Hence, π−1(L) ∈ C, and
contains strictly M , contradicting the maximality of M in C. Thus, I + M = R,
and so R/M ∼= I/J , as desired. �

Corollary 1.4. Let E be a graph, and let H ∈ HE. If there exists J � I(H) such
that I(H)/J is a unital simple ring, then there exists an ideal M � L(E) such that
L(E)/M ∼= I(H)/J .

Proof. By Lemma 1.2, I(H) ∼= L(HE), whence I(H) has a local unit. Thus, the
result holds by Lemma 1.3. �

Recall that an idempotent e in a ring R is called infinite if eR is isomorphic as
a right R-module to a proper direct summand of itself. A simple ring R is called
purely infinite in case every nonzero right ideal of R contains an infinite idempotent.
See [4] for some basic properties of purely infinite simple rings and [2, Theorem 11]
for a characterization of purely infinite simple Leavitt path algebras in terms of
properties of the graph.

Proposition 1.5. Let E be a row-finite graph, and let J be a maximal two-sided
ideal of L(E). If L(E)/J is a unital purely infinite simple ring, then J ∈ Lgr(L(E)).

Proof. Let a be an element of L(E) such that a + J is the unit in L(E)/J . There
are v1, . . . , vn ∈ E0 such that a ∈ pL(E)p, where p = v1 + · · · + vn ∈ L(E). Since
av = va = 0 for all v ∈ E0\{v1, . . . , vn}, it follows that the hereditary saturated set
X = {v ∈ E0 | v ∈ J} is cofinite in E0 and thus passing to L(E)/I(X) ∼= L(E/X),
we can assume that E is a finite graph and that E0 ∩ J = ∅.

Since E is finite, the lattice Lgr(L(E)) of graded ideals (equivalently, idempotent-
generated ideals) of L(E) is finite by [5, Theorem 5.3], so that there exists a
nonempty H ∈ HE such that I = I(H) is minimal as a graded ideal. Since
I + J = L(E) by our assumption that J ∩ E0 = ∅, we have

I/(I ∩ J) ∼= L(E)/J,

so that I has a unital purely infinite simple quotient. Since I ∼= L(HE) and J ∩ I
does not contain nonzero idempotents, it follows from our previous argument that
HE is finite and so I is unital. So I = eL(E) for a central idempotent e in L(E).
Since I is graded-simple, [5, Remark 6.7] and [2, Theorem 11] imply that I is either
Mn(K) or Mn(K[x, x−1]) for some n ≥ 1 or it is simple purely infinite. Since I
has a quotient algebra which is simple purely infinite, it follows that I ∩ J = ∅ and
J = (1 − e)L(E) is a graded ideal. Indeed we get e = 1 because we are assuming
that J does not contain nonzero idempotents. �
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Notice that, as a consequence of Proposition 1.5 and [2, Theorem 11], we get the
following generalization of [7, Lemma 7.2], which is analogous to [8, Proposition 3.1].

Lemma 1.6. Let E be a row-finite graph. Then, L(E) has a unital purely infinite
simple quotient if and only if there exists H ∈ HE such that the quotient graph
E/H is nonempty, finite, cofinal, contains no sinks and each cycle has an exit.

2. Stable rank for Leavitt path algebras

Let S be any unital ring containing an associative ring R as a two-sided ideal.
The following definitions can be found in [13]. A column vector b = (bi)n

i=1 is called
R-unimodular if b1 − 1, bi ∈ R for i > 1 and there exist a1 − 1, ai ∈ R (i > 1) such
that

∑n
i=1 aibi = 1. The stable rank of R (denoted by sr(R)) is the least natural

number m for which for any R-unimodular vector b = (bi)m+1
i=1 there exist vi ∈ R

such that the vector (bi + vibm+1)m
i=1 is R-unimodular. If such a natural m does

not exist, we say that the stable rank of R is infinite.

Lemma 2.1 (cf. [7, Lemma 7.1]). Let E be an acyclic graph. Then, the stable rank
of L(E) is 1.

Lemma 2.2. Let E be a graph. If there exists a unital purely infinite simple
quotient of L(E), then the stable rank of L(E) is ∞.

Proof. If there exists a maximal ideal M�L(E) such that L(E)/M is a unital purely
infinite simple ring, then sr(L(E)/M) = ∞ (see e.g. [4]). Since sr(L(E)/M) ≤
sr(L(E)) (see [13, Theorem 4]), we conclude that sr(L(E)) = ∞. �

We adapt the following terminology from [8]: we say that a graph E has isolated
cycles if whenever (a1, . . . , an) and (b1, . . . , bm) are closed simple paths such that
s(ai) = s(bj) for some i, j, then ai = bj . Notice that, in particular, if E has isolated
cycles, the only closed simple paths it can contain are cycles.

Lemma 2.3 (cf. [8, Lemma 3.2], [7, Lemma 7.4]). Let E be a graph. If L(E) does
not have any unital purely infinite simple quotient, then there exists a graded ideal
J �L(E) with sr(J) ≤ 2 such that L(E)/J is isomorphic to the Leavitt path algebra
of a graph with isolated cycles. Moreover sr(J) = 1 if and only if J = 0.

Proof. Set

X0 = {v ∈ E0 | ∃e �= f ∈ E1 with s(e) = s(f) = v, r(e) ≥ v, r(f) ≥ v},

and let X be the hereditary saturated closure of X0. Consider J = I(X). Then J
is a graded ideal of L(E) and L(E)/J ∼= L(E/X) by [7, Lemma 2.3(1)]. It is clear
from the definition of X0 that E/X is a graph with isolated cycles.

It remains to show that sr(J) ≤ 2 and that sr(J) = 2 if J �= 0. The proof of these
facts follows the lines of the proof of [7, Lemma 7.4], using Corollary 1.4 instead of
[7, Proposition 5.4] and Lemma 1.2 instead of [7, Lemma 5.2]. �

Definition 2.4. Let A be a unital ring with stable rank n. We say that A has
stable rank closed by extensions in case for any unital ring extension

0 −−−−→ I −−−−→ B −−−−→ A −−−−→ 0

of A with sr(I) ≤ n we have sr(B) = n.
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Recall that a unital ring R has elementary rank n, denoted by er(R) = n, in case
that, for every t ≥ n + 1, the elementary group Et(R) acts transitively on the set
Uc(t, R) of t-unimodular columns with coefficients in R; see [10, 11.3.9].

In the next lemma, we collect some properties that we will need in the sequel.

Lemma 2.5. Let A be a unital ring. Assume that sr(A) = n < ∞.
(1) If er(A) < n, then Mm(A) has stable rank closed by extensions for every

m ≥ 1.
(2) Let D be any (commutative) Euclidean domain such that sr(D) > 1 and

let m be a positive integer. Then sr(Mm(D)) = 2 and er(Mm(D)) = 1. In
particular Mm(D) has stable rank closed by extensions.

(3) Let
0 −−−−→ I −−−−→ B −−−−→ A −−−−→ 0

be a unital extension of A. If er(A) < n and I has a local unit (gi) such that
sr(giIgi) ≤ n and er(giIgi) < n for all i, then sr(B) = n and er(B) < n.

Proof. (1) This is essentially contained in [13]. We include a sketch of the proof
for the convenience of the reader. Assume that we have a unital extension B
of A with sr(I) ≤ n. Let a = (a1, . . . , an+1)t ∈ Uc(n + 1, B). Then a =
(a1, . . . , an+1)t ∈ Uc(n+1, A). Since sr(A) = n, there exist b1, . . . , bn ∈ B such that
(a1+b1an+1, . . . , an +bnan+1)t ∈ Uc(n, A). Replacing a with (a1+b1an+1, . . . , an +
bnan+1, an+1), we can assume that (a1, . . . , an)t ∈ Uc(n, A).

Since er(A) ≤ n − 1, there exists E ∈ E(n, B) such that E · (a1, . . . , an)t =
(1, 0, . . . , 0)t. Since a is reducible if and only if diag(E, 1) · a is reducible, we can
assume that (a1, . . . , an)t = (1, 0, . . . , 0)t. Finally, replacing an+1 with an+1 −
a1an+1, we can assume that a = (1, 0, . . . , 0)t, that is, a ∈ Uc(n + 1, I). Now, as
sr(I) ≤ n, a is reducible in I, and so in B, as desired.

Given any positive integer m ≥ 1, sr(Mm(A)) = �(sr(A) − 1)/m� + 1 by [13,
Theorem 3] and er(Mm(A)) ≤ �er(A)/m� by [10, Theorem 11.5.15]. So, it is clear
that er(A) < sr(A) implies er(Mm(A)) < sr(Mm(A)). Hence, by the first part of
the proof, Mm(A) has stable rank closed by extensions, as desired.

(2) It is well known that a Euclidean domain has stable rank less than or equal
to 2, and that it has elementary rank equal to 1; see e.g. [10, Proposition 11.5.3].
So, the result follows from part (1).

(3) Since sr(I) ≤ n, the fact that sr(B) = n follows from part (1). Now, take
m ≥ n, and set a = (a1, . . . , am)t ∈ Uc(m, B). Since er(A) < n, there exists
E ∈ E(m, B) such that E ·a = (1, 0, . . . , 0)t. So, b := E ·a ≡ (1, 0, . . . , 0)t(mod I).
Let g ∈ I be an idempotent in the local unit such that b1−1, b2, . . . , bm ∈ gIg. Since
er(gIg) < n by hypothesis, there exists G ∈ E(m, gIg) such that (G + diag(1 − g,
. . . , 1 − g)) · b = (1, 0, . . . , 0)t. �
Corollary 2.6. Let A be a unital K-algebra with sr(A) = n ≥ 2 and er(A) < sr(A).
Then, for any not necessarily unital K-algebra B and two-sided ideal I of B such
that B/I ∼= A and sr(I) ≤ n, we have sr(B) = n.

Proof. Given any K-algebra R, we define the unitization R1 = R × K, with the
product

(r, a) · (s, b) = (rs + as + rb, ab).
Consider the unital extension

0 −−−−→ I −−−−→ B1 −−−−→ A1 −−−−→ 0.
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Notice that A1 ∼= A × K, because A is unital. So, sr(A1) = sr(A) and er(A1) =
er(A). Now, by Lemma 2.5(1), sr(B1) ≤ n. Since n ≤ sr(B) ≤ sr(B1) ≤ n, the
result holds. �

Proposition 2.7. Let E be a finite graph with isolated cycles. Then sr(L(E)) ≤ 2
and er(L(E)) = 1. Moreover, sr(L(E)) = 1 if and only if E is acyclic.

Proof. We proceed by induction on the number of cycles of E. If E has no cycles,
then sr(L(E)) = 1 by Lemma 2.1, so that er(L(E)) = 1 by [10, Proposition 11.3.11].
Assume that E has cycles C1, . . . , Cn. Define a binary relation on the set of cycles
by setting Ci ≥ Cj iff there exists a finite path α such that s(α) ∈ C0

i and r(α) ∈ C0
j .

Since E is a graph with isolated cycles, ≥ turns out to be a partial order on the set
of cycles. Since the set of cycles is finite, there exists a maximal one, say C1. Set
A = {e ∈ E1 | s(e) ∈ C1 and r(e) �∈ C1}, let S(E) denote the set of sinks of E, and
define B = {r(e) | e ∈ A}∪S(E)∪

⋃n
i=2 C0

i . Let H be the hereditary and saturated
closure of B. By construction of H, C1 is the unique cycle in E/H, and it has no
exits. Moreover, E/H coincides with the hereditary and saturated closure of C1.
Then, L(E/H) ∼= Mk(K[x, x−1]) for some k ≥ 1. Consider the extension

0 −−−−→ I(H) −−−−→ L(E) −−−−→ L(E/H) −−−−→ 0.

Now, by Lemma 2.5(2), sr(L(E/H)) = 2 and er(L(E/H)) = 1. Consider the local
unit (pX) of L(HE) ∼= I(H) consisting of idempotents pX =

∑
v∈X v where X

ranges over the set of vertices of HE containing H. Since these sets are hereditary
in (HE)0, we get that pXI(H)pX = pXL(HE)pX = L((HE)X) is a path algebra
of a graph with isolated cycles, containing exactly n − 1 cycles. By the induction
hypothesis, sr(pXI(H)pX) ≤ 2 and er(pXI(H)pX) = 1. So, by Lemma 2.5(3), we
conclude that sr(L(E)) = 2 and er(L(E)) = 1. Hence, the induction step works, so
we are done. �

We are now ready to obtain our main result.

Theorem 2.8. Let E be a row-finite graph. Then the values of the stable rank of
L(E) are:

(1) sr(L(E)) = 1 if E is acyclic;
(2) sr(L(E)) = ∞ if there exists H ∈ HE such that the quotient graph E/H is

nonempty, finite, cofinal, contains no sinks and each cycle has an exit;
(3) sr(L(E)) = 2 otherwise.

Proof. (1) derives from Lemma 2.1, while (2) derives from Lemma 2.2 and Lem-
ma 1.6. We can thus assume that E contains cycles and, using Lemma 1.6, that
L(E) does not have any unital purely infinite simple quotient.

By Lemma 2.3, there exists a hereditary saturated set X of E0 such that
sr(I(X)) ≤ 2, while E/X is a graph having isolated cycles. By [5, Lemma 3.1],
there is an ascending sequence (Ei) of complete finite subgraphs of E/X such that
E/X =

⋃
i≥1 Ei. So, by [5, Lemma 3.2], L(E/X) ∼= lim−→L(Ei). For each i ≥ 1,

there is a natural graded K-algebra homomorphism φi : L(Ei) → L(E/X). The
kernel of φi is a graded ideal of L(Ei) whose intersection with E0

i is empty, so φi

is injective and the image Li of L(Ei) through φi is isomorphic with L(Ei). It
follows from Proposition 2.7 that, for every i ≥ 1, sr(Li) ≤ 2 and er(Li) = 1. If
π : L(E) → L(E/X) denotes the natural epimorphism (see [7, Lemma 2.3(1)]),
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then given any i ≥ 1, we have

0 −−−−→ I(X) −−−−→ π−1(Li) −−−−→ Li −−−−→ 0.

If sr(Li) = 1, then sr(π−1(Li)) ≤ 2 by [13, Theorem 4]. If sr(Li) = 2, then it
follows from Corollary 2.6 that sr(π−1(Li)) = 2. Since L(E) =

⋃
i≥1 π−1(Li) we

get that sr(L(E)) ≤ 2. Since E contains cycles we have that either I(X) �= 0
or E/X contains cycles. If I(X) �= 0, then sr(I(X)) = 2 by Lemma 2.3 and so
sr(L(E)) = 2 by [13, Theorem 4]. If I(X) = 0, then E has isolated cycles. Take a
vertex v in a cycle C of E and let H be the hereditary subset of E generated by
v. Observe that L(EH) = pL(E)p for the idempotent p =

∑
w∈H0 w ∈ M(L(E)),

where M(L(E)) denotes the multiplier algebra of L(E); see [6]. Let I be the ideal
of pL(E)p generated by all the basic idempotents r(e) where e ∈ E1 is such that
s(e) ∈ C and r(e) /∈ C. Since E has isolated cycles it follows that I is a proper
ideal of pL(E)p and moreover pL(E)p/I ∼= Mk(K[x, x−1]), where k is the number
of vertices in C. We get

sr(pL(E)p) ≥ sr(pL(E)p/I) = 2.

It follows that 1 < sr(L(E)) ≤ 2 and thus sr(L(E)) = 2, as desired. �

3. Some remarks and examples

In this section we present several examples of Leavitt path algebras, and we com-
pute their stable rank by using Theorem 2.8. Several remarks on the relationship
with the stable rank of graph C∗-algebras are also included.

Examples 3.1. The basic examples to illustrate Theorem 2.8 coincide with those
given in [1, Example 1.4]:

(1) The Leavitt path algebra associated with the acyclic graph E

•v1 �� •v2 �� •v3 •vn−1 �� •vn

satisfies L(E) ∼= Mn(K). Thus, sr(L(E)) = 1 by Theorem 2.8(1) (in this
particular case, the original result is due to Bass).

(2) For n ≥ 2, the Leavitt path algebra associated with the graph F

• f1��

f2

��

f3

��

fn

��. . .

is an example of a unital purely infinite simple algebra, because of [2, The-
orem 11]; in fact, L(F ) ∼= L(1, n) (the nth Leavitt algebra) by [2, Exam-
ple 12(ii)]. Thus, sr(L(F )) = ∞ by Theorem 2.8(2) (in this particular case,
one can also trace this fact using [12, Proposition 6.5]).

(3) Finally, the Leavitt path algebra associated with the graph G

•��
satisfies L(G) ∼= K[z, z−1] by [1, Example 1.4(ii)]. Thus, sr(L(G)) = 2 by
Theorem 2.8(3).

Examples 3.2. We show some further examples that illustrate the complexity of
the models of Leavitt path algebras:
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(1) On the one hand, stable rank 2 examples can be obtained as more or less
complex extensions of the ring of Laurent polynomials, as we can see with
the Leavitt path algebra of the graph E

•�� •�� ��
		�� •v�� 



Here the ideal I in Lemma 2.3 is I = I(E0\{v}), since L(E)/I ∼= K[x, x−1].
Notice that, because of Lemma 2.3, sr(I) = 2, while sr(L(E)) = sr(L(E)/I)
= 2 by Theorem 2.8(3). The remarkable fact behind Theorem 2.8 is that
in the context of Leavitt path algebras, extensions of stable rank 2 rings
by stable rank 2 ideals cannot attain stable rank 3 (in general this is not
true).

(2) On the other hand, unital purely infinite simple Leavitt path algebras turn
out to be more complex than the classical Leavitt algebras, so that there
are plenty of unital Leavitt path algebras with infinite stable rank different
from the classical examples. For example, the Leavitt path algebra of the
graph F

•��
�� • ��

�� •�� 

is unital purely infinite simple by [2, Theorem 11], but (K0(L(F )), [1]) ∼=
(Z, 0) by [5, Theorem 3.5] and [4, Corollary 2.2], while (K0(L(1, n)), [1]) ∼=
(Z/(n − 1)Z, 1) (see [4, Theorem 4.2]). Taking the graph G

•

���
��

��
��

��
•

���������
�� •��

��

instead of F , we get a unital purely infinite simple Leavitt path algebra
such that

(K0(L(G)), [1]) ∼= ((Z/2Z) ⊕ (Z/2Z), (0, 0)).

An extra example is that associated with the graph H

(5) •��
(2)

�� •
(4)

�� (3)

(here the (n)s denote the number of parallel edges), which is again unital
purely infinite simple, and such that

(K0(L(H)), [1]) ∼= (Z ⊕ (Z/2Z), (1, 1)).

Not one of them can be, then, isomorphic to any classical Leavitt algebra.

Remark 3.3. Fix K = C, the field of complex numbers, and let E be any row-finite
graph. Then:

(1) It follows from [8, Proposition 3.1 and Theorem 3.4(2)] that sr(C∗(E)) = ∞
if and only if there exists H ∈ HE such that the quotient graph E/H is
nonempty, finite, cofinal, contains no sinks and each cycle has an exit.
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By using this and Theorem 2.8, we see that sr(L(E)) = ∞ if and only if
sr(C∗(E)) = ∞.

(2) Since any acyclic graph is a graph whose cycles have no exits, we have that
sr(L(E)) = 1 implies that sr(C∗(E)) = 1.

(3) So, the only difference occurs when sr(L(E)) = 2 and all the cycles in
E have no exits, since then sr(C∗(E)) = 1 by [8, Theorem 3.4(1)]. The
simplest example of this situation is the graph G in Example 3.1(3). As we
noticed, L(G) ∼= C[z, z−1] and sr(L(G)) = 2. It is clear that

(1 + z)C[z, z−1] + (1 + z2)C[z, z−1] = C[z, z−1],

and it is straightforward to see that there is no element v ∈ C[z, z−1] such
that (1 + z) + v(1 + z2) is invertible in C[z, z−1]. On the other hand, if we
take the completion of L(G), we get the graph C∗-algebra C∗(G) ∼= C(T),
which has stable rank 1 by [12, Proposition 1.7]. Because of [9], there
exists v ∈ C∗(E) such that (1 + z) + v(1 + z2) is invertible in C(T). Since
a continuous function in C(T) is invertible if and only if it has no zeroes in
T, we see that we can take v = 1.

Remark 3.4. Stable rank is not Morita invariant in general, but in the case of
Leavitt path algebras some interesting phenomena arise:

(1) Suppose that E, F are finite graphs such that L(E) and L(F ) are Morita
equivalent. Thus, L(E) ∼= P · Mn(L(F )) · P for some n ∈ N and some full
idempotent P ∈ Mn(L(F )). Since the values 1 and ∞ in the stable rank
are preserved by passing to matrices [13, Theorem 4] and full corners [3,
Theorem 7 and Theorem 8], Theorem 2.8 implies that sr(L(E)) = sr(L(F )).
So, stable rank is a Morita invariant for unital Leavitt path algebras.

(2) This is no longer true when L(E) is nonunital. To see an example, let F
be the graph in Example 3.1(2), and F∞ be the rose of n petals

· · · · · · • �� • �� • · · · · · · • �� • f1��

f2

��

f3

��

fn

��

with an infinite tail added. As we have seen before, L(F ) ∼= L(1, n) (the
nth Leavitt algebra) with sr(L(F )) = ∞, while an easy induction argument
using [2, Proposition 13] shows that L(F∞) ∼= M∞(L(1, n)). Hence these
two algebras are Morita equivalent. On the other hand, L(F∞) has no
unital purely infinite simple quotients (as it is simple and nonunital), so
that sr(L(F∞)) = 2 by Theorem 2.8(3).

Moreover, the graph F∞ is a direct limit (see [5, Section 3]) of the graphs
Em

n

•v1 �� •v2 �� •v3 •vm−1 �� •vm f1



f2

��

f3

��

fn

��
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introduced in [2, Example 12]. Since L(F∞) ∼= lim−→L(Em
n ) and L(Em

n ) ∼=
Mm(L(1, n)), we get sr(L(Em

n )) = ∞ by the above remark, whence

2 = sr(L(F∞)) = sr(lim−→L(Em
n )) < lim inf sr(L(Em

n )) = ∞.

So, this inequality can be strict when we work with Leavitt path algebras.
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