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Abstract. Given an action α of a monoid T on a ring A by ring endomorphisms, and an
Ore subset S of T , a general construction of a fractional skew monoid ring Sop ∗α A ∗α T is
given, extending the usual constructions of skew group rings and of skew semigroup rings.
In case S is a subsemigroup of a group G such that G = S−1S, we obtain a G-graded
ring Sop ∗α A ∗α S with the property that, for each s ∈ S, the s-component contains a left
invertible element and the s−1-component contains a right invertible element. In the most
basic case, where G = Z and S = T = Z+, the construction is fully determined by a single
ring endomorphism α of A. If α is an isomorphism onto a proper corner pAp, we obtain an
analogue of the usual skew Laurent polynomial ring, denoted by A[t+, t−;α]. Examples of
this construction are given, and it is proven that several classes of known algebras, including
the Leavitt algebras of type (1, n), can be presented in the form A[t+, t−;α]. Finally, mild
and reasonably natural conditions are obtained under which Sop ∗αA∗α S is a purely infinite
simple ring.

Introduction

Let α : G → Aut(A), g 7→ αg, be an action of a group G on a unital ring A. A useful
construction attached to these data is the skew group ring A ∗α G, see [18] and [20]. This
is the ring of formal expressions

∑
g∈G agg, where ag ∈ A and almost all the coefficients

ag are 0. Addition is defined componentwise and multiplication is defined according to the
rule (ag)(bh) = (aαg(b))(gh). The skew group ring A ∗α G can also be defined as the unital
ring R such that there are a unital ring homomorphism φ : A → R and a unital monoid
homomorphism i : G→ R from G to the multiplicative structure of R, universal with respect
to the property that i(g)φ(a) = φ(αg(a))i(g) for all a ∈ A and all g ∈ G. In his pioneering
paper [19], Paschke gave a construction of a C∗-algebraic crossed product Aoα N associated
to a not necessarily unital C∗-algebra endomorphism α on a C∗-algebra A. Paschke’s C∗-
algebraic construction has been generalized to other semigroups, see [13], [14], [15] and [16].
Moreover, Rørdam [22] used Paschke’s construction together with the Pimsner-Voiculescu
exact sequence associated to an automorphism [6, Theorem 10.2.1] to realize any pair of
countable abelian groups (G0, G1) as (K0(B), K1(B)) for a certain purely infinite, simple,
nuclear separable C∗-algebra B.
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In this paper, we develop a systematic purely algebraic theory of fractional skew monoid
rings with respect to monoid actions on rings by not necessarily unital ring endomorphisms,
in which an Ore submonoid is inverted. (Recall that a monoid is a semigroup with a neutral
element.) More precisely, we assume the following data are given (see (1.1) for the detailed
definitions of the properties):

(1) A monoid T acting on a unital ring A by endomorphisms;
(2) A submonoid S of T satisfying the left denominator conditions, and such that S is

left saturated in T .

Then a fractional skew monoid ring Sop ∗αA ∗α T is constructed, with suitable maps from A,
Sop and T to Sop ∗α A ∗α T , which satisfy a universal property analogous to the one for the
skew group ring described above, see Definition 1.2. It is not difficult to show that such a ring
exists by using a construction with generators and relations, but it is rather non-obvious to
determine the algebraic structure of Sop∗αA∗αT . The ring Sop∗αA∗αT is best understood by
means of its S−1T -graded structure, obtained in Proposition 1.6. The structure is completely
pinned down in (1.12) in the case where T acts by injective endomorphisms.

The general construction of Sop ∗α A ∗α T is given in Section 1. In the other sections, we
specialize the construction to the case of a submonoid S of a group G such that G = S−1S
(taking T = S), and to an action α of S on A by corner isomorphisms, meaning that αs is
an isomorphism from A onto the corner ring αs(1)Aαs(1) for all s ∈ S. Several examples of
interest are considered in Section 2 in the case where S = T = Z+. In particular, the Leavitt
algebras V1,n(k) and U1,n(k), already considered by Leavitt, Skornyakov, Cohn, Bergman and
others, are seen here to be particular cases of our construction.

For S = T = Z+, the construction is determined by a single corner isomorphism α, and
the elements of the fractional skew monoid ring R = Z+ ∗α A ∗α Z+ can all be written as
‘polynomials’ of the form

r = ant
n
+ + . . .+ a1t+ + a0 + t−a−1 + . . . tm−a−m,

with coefficients ai ∈ A. Because of this similarity of R with a skew-Laurent polynomial
ring, we shall use the notation R = A[t+, t−;α]. Using this construction and the Bass-Heller-
Swan-Farrell-Hsiang-Siebenmann Theorem, the K1 group of these algebras is computed in
[2].

A general source of interesting examples is provided in Section 3. Namely, assume that
G is a group acting on a ring A by automorphisms, and that there are a submonoid S of
G such that G = S−1S and a non-trivial idempotent e in A such that αs(e) ∈ eAe for all
s ∈ S. Then the corner ring e(A ∗α G)e of the skew group ring A ∗α G is isomorphic as a
G-graded ring to a fractional skew monoid ring Sop ∗α′ (eAe) ∗α′ S (Proposition 3.3). Under
the standing assumption that S acts by corner isomorphisms, we prove that all Sop ∗αA ∗α S
can be exhibited in the form e(A ∗α G)e (Proposition 3.8).

Sections 4 and 5 deal with actions on simple rings. Using a suitable definition of outer
action of a monoid S on a ring A, we prove in Theorem 4.1 that Sop ∗α A ∗α S is a simple
ring for any outer action α of S on a simple ring A. This is a generalization of a well-known
sufficient condition for simplicity of skew group rings, see [18, Theorem 2.3]. Section 5 shows
that, under mild conditions on A and on the outer action α of S on A, the fractional skew
monoid ring Sop ∗α A ∗α S is a purely infinite simple ring (Theorem 5.3). In particular, this
holds whenever A is either a simple ultramatricial algebra over some field or a purely infinite
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simple ring. The class of purely infinite simple rings has been recently studied by the first,
third and fourth authors in [3], and constitute an important and large class of relatively well-
behaved simple rings. They can be thought of as the nice rings in the wild universe of the
directly infinite simple rings; see specially [3, Corollary 2.2 and Theorem 2.3] for the good
behaviour of K-theory of purely infinite simple rings. A further nice property of them has
been recently established by the first author in [1]: Every purely infinite simple ring satisfies
the exchange property.

All rings and modules in this paper will be assumed to be unital unless explicitly noted.
(The main exception is the ring S−1A constructed in Section 3.) However, many of the
subrings we deal with will have units different from the unit of the larger ring; specifically,
we will deal with many corners pAp in a ring A, where p is an idempotent. Note that any
ring endomorphism ε of A, even if not unital when considered as a map A → A, is unital
when viewed as a ring homomorphism A→ ε(1)Aε(1).

We will use the standard order structure on the set of idempotents in a ring A; that is, for
idempotents e and f in A, we have e ≤ f if and only if e = ef = fe. Two idempotents e and
f are said to be equivalent, written e ∼ f , if there are elements x, y ∈ A such that e = xy and
f = yx. This is equivalent to saying that the right A-modules eA and fA are isomorphic.
We write e . f in case e ∼ f ′ for some idempotent f ′ ≤ f . We say that an idempotent e is
infinite if there are nonzero orthogonal idempotents e′ and g such that e = e′ + g and e ∼ e′.
If no such decomposition exists, e is called a finite idempotent.

1. The general construction

We present the construction of a fractional skew monoid ring in full generality in this
section, and establish the precise graded structure of this ring. The basic data consist of a
ring A, a monoid T acting on A by ring endomorphisms, and a left denominator set S ⊆ T ;
the fractional skew monoid ring we construct is graded by S−1T , and its identity component
is the quotient of A modulo the union of the kernels of the endomorphisms by which S acts.

1.1. We begin by fixing the basic data needed for our construction; these data and conventions
will remain in force throughout the paper. Let A be a (unital) ring, and Endr(A) the monoid
of non-unital (i.e., not necessarily unital) ring endomorphisms of A.

Let T be a monoid and α : T → Endr(A) a monoid homomorphism, written t 7→ αt. In
general, we will write T multiplicatively, with its identity element denoted 1, but in some
applications it will be convenient to switch to additive notation for T . For t ∈ T , set
pt = αt(1), an idempotent in A. Then αt can be viewed as a unital ring homomorphism from
A to the corner ptApt. For s, t ∈ T , we have pst = αst(1) = αsαt(1) = αs(pt).

Let S ⊆ T be a submonoid satisfying the left denominator conditions, i.e., the left Ore
condition and the monoid version of left reversibility: whenever t, u ∈ T with ts = us for
some s ∈ S, there exists s′ ∈ S such that s′t = s′u. Then there exists a monoid of fractions,
S−1T , with the usual properties (e.g., see [7, §1.10] or [8, §0.8]).

We shall also assume that S is left saturated in T : whenever s ∈ S and t ∈ T such
that ts ∈ S, we must have t ∈ S. This assumption means that equality in S−1T can be
described as follows: if s−11 t1 = s−12 t2 for some si ∈ S and ti ∈ T , there exist u1, u2 ∈ S such
that u1s1 = u2s2 and u1t1 = u2t2. (The usual denominator conditions only yield the latter
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equations for, say, some u1 ∈ S and u2 ∈ T . But then u2s2 = u1s1 ∈ S, and left saturation
implies u2 ∈ S.)

Definition 1.2. The label Sop ∗αA∗α T stands for a (unital) ring R equipped with a (unital)
ring homomorphism φ : A → R and monoid homomorphisms s 7→ s− from Sop → R and
t 7→ t+ from T → R, universal with respect to the following relations:

(1) t+φ(a) = φαt(a)t+ for all a ∈ A and t ∈ T ;
(2) φ(a)s− = s−φαs(a) for all a ∈ A and s ∈ S;
(3) s−s+ = 1 for all s ∈ S;
(4) s+s− = φ(ps) for all s ∈ S.

Note that condition (2) follows from the others. Given a ∈ A and s ∈ S, we have s+φ(a) =
φαs(a)s+ by (1), and on multiplying each term of this equation on the left and on the right by
s−, we obtain φ(a)s− = s−φαs(a)φ(ps) = s−φ(αs(a)ps) from (3) and (4), whence (2) follows
because αs(a)ps = αs(a).

1.3. At this point, we sketch the existence of the ring R = Sop∗αA∗αT . The existence of a ring
satisfying the universal property of Definition 1.2 follows from a construction with generators
and relations, which does not use at all any property of S; in fact, S can be an arbitrary
subset of T . Take B = A ∗ Z〈t+, s− | t ∈ T, s ∈ S〉 to be the free product of A and the free
ring on the disjoint union T t S, and let i1 : A→ B and i2 : Z〈t+, s− | t ∈ T, s ∈ S〉 → B be
the canonical maps. Let J be the two-sided ideal of B generated by

(a) i2(t+)i1(a)− i1(αt(a))i2(t+) for all a ∈ A and t ∈ T ;
(b) i2((tt

′)+)− i2(t+)i2(t
′
+) for all t, t′ ∈ T ;

(c) i2(s−)i2(s+)− i1(1) for all s ∈ S;
(d) i2(s+)i2(s−)− i1(ps) for all s ∈ S.

Then R = B/J is the ring we are looking for, and φ is the composite map π ◦ i1, where
π : B → B/J is the canonical projection. (Here we identify the elements s−, for s ∈ S, with
their images πi2(s−), and similarly for the elements t+.) Note that the relations (ss′)− = s′−s−,
for all s, s′ ∈ S such that ss′ ∈ S, hold automatically from (a)–(d) above. Also, we have
already observed that condition (2) in 1.2 follows from conditions (1),(3) and (4), and so it
follows from (a)–(d) too.

Rather than introduce a notation for the product in Sop, we view the map (−)− as a monoid
anti-homomorphism S → R, so that (su)− = u−s− for s, u ∈ S.

The construction above will also be applied when A is an algebra over a field k and the ring
endomorphisms αt for t ∈ T are k-linear. In this case, it is easily checked that φ maps k = k ·1
into the center of B (use relations (1),(2) above and part (c) of the following lemma to see
that φ(k) commutes with each s− and t+), so that B becomes a k-algebra and φ becomes
a k-algebra homomorphism. The universal property of B then holds also in the category of
k-algebras.

The following lemma and subsequent results pin down the structure of R = Sop ∗α A ∗α T .
This structure simplifies considerably when the maps αs are injective – see (1.12).

Lemma 1.4. Let a, b ∈ A, s, u ∈ S, and t, v ∈ T .
(a) s+φ(a)s− = φαs(a).
(b) s−φαs(a)s+ = φ(a).
(c) s− = s−φ(ps) and t+ = φ(pt)t+.
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(d) s−φ(a)t+ = s−φ(psapt)t+.
(e) s−φ(a)t+ = (us)−φαu(a)(ut)+.
(f) There exist x ∈ S and y ∈ T such that xt = yu. For any such x, y,[

s−φ(a)t+
][
u−φ(b)v+

]
= (xs)−φ

(
αx(apt)αy(b)

)
(yv)+.

In particular, t+u− = x−pxty+.

Proof. (a) s+φ(a)s− = φαs(a)s+s− = φαs(a)φ(ps) = φ(αs(a)ps) = φαs(a).
(b) This follows from (a) because s−s+ = 1.
(c) s− = φ(1)s− = s−φαs(1) = s−φ(ps). Similarly, t+ = t+φ(1) = φαt(1)t+ = φ(pt)t+.
(d) This is clear from (c).
(e) From (b), we have φ(a) = u−φαu(a)u+, and the desired equation follows because

s−u− = (us)−.
(f) Note that (xt)+(yu)− = (xt)+(xt)− = φ(pxt) = φαx(pt). Using (e), we get[

s−φ(a)t+
][
u−φ(b)v+

]
=
[
(xs)−φαx(a)(xt)+

][
(yu)−φαy(b)(yv)+

]
= (xs)−φαx(a)φαx(pt)φαy(b)(yv)+

= (xs)−φ
(
αx(apt)αy(b)

)
(yv)+. 2

Corollary 1.5. R =
∑

s∈S, t∈T s−φ(A)t+ =
∑

s∈S, t∈T s−φ(psApt)t+.

Proof. The second equality is clear from Lemma 1.4(d). Let R′ denote the sum in question.
Clearly R′ is closed under addition, and it is closed under multiplication by Lemma 1.4(f).
Also, 1R = 1−φ(1A)1+ ∈ R′. Thus, R′ is a unital subring of R.

Since the images of φ, s 7→ s−, and t 7→ t+ are contained in R′, we can view these as
maps into R′. The universal property for R then implies that there is a unique unital ring
homomorphism ψ : R→ R′ such that ψφ = φ while ψ(s−) = s− for s ∈ S and ψ(t+) = t+ for
t ∈ T . Consequently, ψ acts as the identity on R′, whence ψ(R) = R′. Moreover, if we view
ψ as a ring homomorphism R → R, we have ψφ = idRφ while ψ(s−) = idR(s−) for s ∈ S
and ψ(t+) = idR(t+) for t ∈ T . Now the universal property for R implies that ψ = idR, and
therefore R = ψ(R) = R′. �

We next exhibit the graded ring structure of R. As the reader will note, this result can
also be obtained from the proof of Proposition 1.10 below, and so Propositions 1.6 and 1.10
could have been combined. However, we think that separating the two results is helpful in
orienting the reader.

Proposition 1.6. The ring R has an S−1T -grading R =
⊕

x∈S−1T Rx where each Rx =⋃
s−1t=x s−φ(A)t+.

Proof. We can view R as a left A-module via φ, and the relations in R imply that each
s−φ(A)t+ is a left A-submodule. If s1, s2 ∈ S and t1, t2 ∈ T such that s−11 t1 = s−12 t2, there
exist u1, u2 ∈ S such that u1s1 = u2s2 and u1t1 = u2t2, whence Lemma 1.4(e) implies that
(si)−φ(A)(ti)+ ⊆ (u1s1)−φ(A)(u1t1)+ for i = 1, 2. Thus, each Rx is a directed union of left
A-submodules of R, and so is a left A-submodule itself.

It is clear from Corollary 1.5 that R =
∑

x∈S−1T Rx, and from Lemma 1.4(f) that RxRy ⊆
Rxy for all x, y ∈ S−1T . Hence, it only remains to show that the sum of the Rx is a direct
sum.
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Let R′ denote the external direct sum of the Rx, and set E ′ = EndZ(R′). There is a unital
ring homomorphism λ : A → E ′ such that each λ(a) is the left A-module multiplication by
a ∈ A.

Given s ∈ S, observe that s−Rx ⊆ Rs−1x for all x ∈ S−1T . Hence, there exists µs ∈ E ′
such that µs(b)y = s−bsy for all b ∈ R′ and y ∈ S−1T . Since φ(a)s− = s−φαs(a) for a ∈ A, we
see that λ(a)µs = µsλαs(a) for a ∈ A. Observe also that s 7→ µs is a monoid homomorphism
Sop → E ′.

Given t ∈ T , it follows from Lemma 1.4(f) that t+Rx ⊆ Rtx for all x ∈ S−1T . Hence,
there exists νt ∈ E ′ such that νt(b)y =

∑
tx=y t+bx for b ∈ R′ and y ∈ S−1T . Since t+φ(a) =

φαt(a)t+ for a ∈ A, we see that νtλ(a) = λαt(a)νt for a ∈ A. Observe also that t 7→ νt is a
monoid homomorphism T → E ′.

Since s−s+ = 1 and s+s− = φ(ps) for s ∈ S, we see that µsνs = idR′ = 1E′ and νsµs = λ(ps)
for s ∈ S. Now by the universal property of R, there exists a unital ring homomorphism
ψ : R→ E ′ such that ψφ = λ while ψ(s−) = µs for s ∈ S and ψ(t+) = νt for t ∈ T .

Note that 1R = 1−φ(1)1+ ∈ R1, so there exists e ∈ R′ such that e1 = 1 while ez = 0 for all
z 6= 1. Given s ∈ S, a ∈ A, and t ∈ T , we observe that[

ψ(s−φ(a)t+)(e)
]
s−1t

=
[
µsλ(a)νt(e)

]
s−1t

= s−φ(a)t+

and all other components of ψ(s−φ(a)t+)(e) are zero. Hence, for x ∈ S−1T and b ∈ Rx, we
have [ψ(b)(e)]x = b while [ψ(b)(e)]y = 0 for all y 6= x. Consequently, if b1 + · · · + bn = 0 for
some bi ∈ Rxi where the xi are distinct elements of S−1T , then bi = [ψ(b1 + · · ·+ bn)(e)]xi = 0
for all i. Therefore

∑
x∈S−1T Rx =

⊕
x∈S−1T Rx, as desired. �

To completely pin down the elements of R, we need to know the relations holding in each
homogeneous component Rx. In particular, if psapt ∈ ker(φ), then s−φ(a)t+ = 0 by Lemma
1.4(d), and we would like to show that s−φ(a)t+ = 0 only when psapt ∈ ker(φ). For this
purpose, we set up another representation of R on a left A-module.

Lemma 1.7. Let u, s ∈ S and t ∈ T .
(a) The map ∗ : A × psApt → psApt given by the rule a ∗ b := αs(a)b turns the abelian

group psApt into a left A-module.
(b) The restriction of αu to psApt is a left A-module homomorphism psApt → pusAput.

Proof. Part (a) is clear because αs is a unital ring homomorphism from A to psAps, while
part (b) follows because αus = αuαs. �

Each homogeneous component Rx of R turns out to be a direct limit of the rectangular
corners psApt over pairs (s, t) such that s−1t = x. However, there is no natural partial order
on the set of these pairs – the limit has to be taken over a small category.

Definition 1.8. For x ∈ S−1T , let Dx be the small category in which the objects are all
pairs (s, t) ∈ S × T such that s−1t = x, the morphisms from an object (s, t) to an object
(s′, t′) are those elements u ∈ S such that us = s′ and ut = t′, and composition of morphisms
is given by the multiplication in S. The Ore and saturation conditions on S imply that
Dx is directed: given any objects (s1, t1) and (s2, t2) in Dx, there exist an object (s, t) and
morphisms ui : (si, ti) → (s, t) in Dx for i = 1, 2. Consequently, colimits based on Dx are
directed colimits.



FRACTIONAL SKEW MONOID RINGS 7

Taking account of Lemma 1.7, there is a functor Fx : Dx → A-Mod such that Fx(s, t) =
psApt for all objects (s, t) in Dx and Fx(u) = αu|psApt for all morphisms u : (s, t)→ (us, ut) in
Dx. Let Mx denote the colimit of Fx, with natural maps ηs,t : psApt →Mx for objects (s, t) in
Dx. Since Mx is a directed colimit, it is the union of its submodules ηs,t(psApt) for (s, t) ∈ Dx.
Note that if bi ∈ psiApti for i = 1, 2, where (si, ti) ∈ Dx, then ηs1,t1(b1) = ηs2,t2(b2) if and only
if there exist u1, u2 ∈ S such that u1s1 = u2s2 and u1t1 = u2t2 while also αu1(b1) = αu2(b2).

Lemma 1.9. Let s ∈ S, t ∈ T , and x ∈ S−1T .
(a) There exists an additive map σs : Mx → Ms−1x such that σsηu,v(b) = ηus,v(pusb) for

u−1v = x and b ∈ puApv.
(b) aσs(m) = σs(αs(a)m) for a ∈ A and m ∈Mx.
(c) There exists an additive map τt : Mx → Mtx such that τtηu,v(b) = ηw,zvαz(b) for

u−1v = x, b ∈ puApv, and w ∈ S, z ∈ T such that wt = zu.
(d) τt(am) = αt(a)τt(m) for a ∈ A and m ∈Mx.

Proof. (a) For each (u, v) ∈ Dx, we have (us, v) ∈ Ds−1x, and there is an additive map
puApv → Ms−1x given by b 7→ ηus,v(pusb). Moreover, if w ∈ S then ηwus,wv(pwusαw(b)) =
ηwus,wvαw(pusb) = ηus,v(pusb). Thus, our maps to Ms−1x are compatible with the functor Fx,
and so there exists a unique additive map σs as described.

(b) If m = ηu,v(b) for u, v, b as in (a), then

aσs(m) = aηus,v(pusb) = ηus,v(a ∗ (pusb)) = ηus,v(αus(a)pusb) = ηus,v(pusαus(a)b)

= ηus,v(pus(αs(a) ∗ b)) = σsηu,v(αs(a) ∗ b) = σs(αs(a)m).

(c) Fix (u, v) ∈ Dx, choose w ∈ S, z ∈ T such that wt = zu, and note that tx = w−1zv.
Since αz(puApv) ⊆ pzuApzv ⊆ pwApzv, the composition of ηw,zv with the restriction of αz to
puApv gives an additive map puApv → Mtx. Suppose also w1 ∈ S and z1 ∈ T such that
w1t = z1u. Then w−11 z1 = tu−1 = w−1z, so there exist r1, r ∈ S such that r1w1 = rw and
r1z1 = rz. Since also r1z1v = rzv and αr1αz1 = αrαz, it follows that ηw1,z1vαz1 = ηw,zvαz on
puApv. Thus, we obtain a well-defined additive map fu,v : puApv → Mtx which agrees with
ηw,zvαz for any w ∈ S and z ∈ T with wt = zu.

Now consider a morphism r : (u, v) → (ru, rv) in Dx. There exist w ∈ S and z ∈ T such
that wt = z(ru), so that fru,rv is given by ηw,zrvαz. Since wt = (zr)u, we also have that fu,v
is given by ηw,zrvαzr, and so fu,v equals the composition of fru,rv with the restriction of αr
to puApv. Thus, the maps f.,. are compatible with Fx, and so there exists a unique additive
map τt as described.

(d) If m = ηu,v(b) with u, v, b, w, z as in (c), then

τt(am) = τtηu,v(a ∗ b) = τtηu,v(αu(a)b) = ηw,zvαz(αu(a)b) = ηw,zv(αwαt(a)αz(b))

= ηw,zv(αt(a) ∗ αz(b)) = αt(a)ηw,zvαz(b) = αt(a)τt(m). �

Proposition 1.10. For each x ∈ S−1T , there is a left A-module isomorphism θx : Mx → Rx

such that θxηu,v(b) = u−φ(b)v+ for u−1v = x and b ∈ puApv.

Proof. In view of Lemma 1.4(e), for each x ∈ S−1T there is a unique additive map θx : Mx →
Rx as described. If m = ηu,v(b) with u, v, b as above, then for a ∈ A we have

θx(am) = θxηu,v(a ∗ b) = θxηu,v(αu(a)b) = u−φαu(a)φ(b)v+ = φ(a)u−φ(b)v+ = aθx(m).
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Thus, θx is a left A-module homomorphism. It is surjective by definition of Rx, and so it only
remains to show that ker(θx) = 0.

Form the left A-module M :=
⊕

x∈S−1T Mx, set E = EndZ(M), and for each a ∈ A
let λ(a) ∈ E be the map given by left multiplication by a. Then we have a unital ring
homomorphism λ : A→ E.

For all x ∈ S−1T , use the same notations σs and τt for the additive maps Mx →Ms−1x and
Mx → Mtx described in Lemma 1.9, and also for the corresponding homogeneous maps on
M . Thus, for s ∈ S and t ∈ T we have additive maps σs, τt ∈ E such that σs(m)y = σs(msy)
and τt(m)y =

∑
tx=y τt(mx) for m ∈ M and y ∈ S−1T . Lemma 1.9 also shows that λ(a)σs =

σsλαs(a) and τtλ(a) = λαt(a)τt for a ∈ A.
It is easily checked that s 7→ σs and t 7→ τt are monoid homomorphisms Sop → E and

T → E. Now consider m = ηu,v(b) ∈ Mx for x, u, v, b as in Lemma 1.9. There exist w ∈ S
and z ∈ T such that ws = zu, and

σsτs(m) = σsηw,zvαz(b) = ηws,zv(pwsαz(b)) = ηzu,zv(pzuαz(b))

= ηzu,zvαz(pub) = ηu,v(b) = m.

It follows that σsτs = 1E in E. Next, note that u ∈ S and 1 ∈ T with u · s = 1 · us. Hence,

τsσs(m) = τsηus,v(pusb) = ηu,vα1(pusb) = ηu,v(ps ∗ b) = psm.

It follows that τsσs = λ(ps) in E.
By the universal property of R, there is a unital ring homomorphism ψ : R→ E such that

ψφ = λ while ψ(s−) = σs for s ∈ S and ψ(t+) = τt for t ∈ T .
Define e ∈M so that e1 = η1,1(1) while ez = 0 for all z 6= 1. We claim that [(ψθx(m))(e)]x =

m for x ∈ S−1T and m ∈ Mx. Write m = ηu,v(b) where u−1v = x and b ∈ puApv. Then
ψθx(m) = ψ(u−φ(b)v+) = σuλ(b)τv and so

[(ψθx(m))(e)]x = σuλ(b)τvη1,1(1) = σuλ(b)η1,vαv(1) = σuη1,v(b ∗ pv)
= σuη1,v(b) = ηu,v(pub) = ηu,v(b) = m,

as claimed.
The claim immediately implies that ker(θx) = 0 for all x ∈ S−1T , as desired. �

Corollary 1.11. (a) Let s ∈ S, t ∈ T , and a ∈ A. Then s−φ(a)t+ = 0 if and only if
psapt ∈ ker(αs′) for some s′ ∈ S. In particular, ker(φ) =

⋃
s′∈S ker(αs′).

(b) The ideal I = ker(φ) satisfies α−1s (I) = I for all s ∈ S and αt(I) ⊆ I for all t ∈ T .
(c) α induces a monoid homomorphism α′ : T → EndZ(A/I), and α′s is injective for all

s ∈ S.
(d) Sop ∗α A ∗α T = Sop ∗α′ (A/I) ∗α′ T .

Proof. (a) By Lemma 1.4(d), s−φ(a)t+ = s−φ(b)t+ where b = psapt. Then Proposition 1.10
yields θxηs,t(b) = s−φ(a)t+ where x = s−1t. Since θx is an isomorphism, s−φ(a)t+ = 0 if and
only if ηs,t(b) = 0, which happens if and only if αs′(b) = 0 for some s′ ∈ S. This verifies the
first statement in (a). The second follows on taking s = t = 1.

(b) If t ∈ T and s ∈ S, there exist s′ ∈ S and t′ ∈ T such that s′t = t′s. Then
αs′αt(ker(αs)) = 0, and so αt(ker(αs)) ⊆ ker(αs′) ⊆ I. This shows that αt(I) ⊆ I for all
t ∈ T .
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Now if s ∈ S, the previous paragraph implies that I ⊆ α−1s (I). If a ∈ α−1s (I), then
αs(a) ∈ ker(αs′) for some s′ ∈ S, whence a ∈ ker(αs′s) ⊆ I. Therefore α−1s (I) = I.

(c)(d) These are clear from (a) and (b). �

1.12. As Corollary 1.11 shows, we can always reduce to the case where αs is injective for all
s ∈ S. In that case, φ is injective by Corollary 1.11(a), and so we can identify A with the
unital subring φ(A) ⊆ R. All of the relations in R simplify in this case:

(1) t+a = αt(a)t+ for all a ∈ A and t ∈ T ;
(2) as− = s−αs(a) for all a ∈ A and s ∈ S;
(3) s−s+ = 1 for all s ∈ S;
(4) s+s− = ps for all s ∈ S;
(5) R has an S−1T -grading R =

⊕
x∈S−1T Rx where each Rx =

⋃
s−1t=x s−At+;

(6) s−at+ = s−psaptt+ for s ∈ S, t ∈ T , and a ∈ A, and s−at+ = 0 if and only if psapt = 0;
(7) Let x = s−11 t1 = s−12 t2 ∈ S−1T for some s1, s2 ∈ S, t1, t2 ∈ T , and let a1, a2 ∈ A. Then

(s1)−a1(t1)+ = (s2)−a2(t2)+ if and only if there exist u1, u2 ∈ S such that u1s1 = u2s2
and u1t1 = u2t2 while also αu1(ps1a1pt1) = αu2(ps2a2pt2).

2. The case S = T = Z+; Examples

2.1. For the remainder of the paper, we take advantage of Corollary 1.11 and assume that
αs is injective for all s ∈ S. Thus, the relations in R = Sop ∗αA ∗α T take the simplified form
given in (1.12). Moreover, we assume that the maps αs are corner isomorphisms, that is,
each αs is an isomorphism of A onto psAps. Finally, we assume that S = T is a submonoid
of a group G which is its group of left fractions, that is, G = S−1S. These conventions are to
remain in effect for the rest of the paper.

2.2. A particularly nice setting is the case when G is a left totally ordered group with positive
cone G+ = S (thus G = S−1 ∪ S and S−1 ∩ S = {1}). In this case, the elements of R can
be expressed in a simpler way, namely in the form

∑
s∈S s−as +

∑
t∈S att+. To achieve this,

we need to be able to simplify individual terms s−at+, for s, t ∈ S and a ∈ A. If s ≤ t, then
s−1t ≥ 1, whence u := s−1t ∈ S. Then s−at+ = s−a(su)+ = s−psapss+u+. Because of our
current convention that αs : A → psAps is an isomorphism, psaps = αs(b) for some b ∈ A,
and therefore s−at+ = s−αs(b)s+u+ = bs−s+u+ = bu+. On the other hand, if s ≥ t, then
v := t−1s ∈ S and s−at+ = v−c where c = α−1t (ptapt).

2.3. We now specialize to the case where S is the additive monoid Z+, so that G = Z.
Here the monoid homomorphism α : S → Endr(A) is determined by α1, and so we change
notation, writing α and p for α1 and p1. Thus, α is now an isomorphism A→ pAp, and the
monoid homomorphism S → Endr(A) is given by the rule n 7→ αn. Let t denote the generator
1 ∈ Z+ = S. Since the maps s 7→ s± are monoid homomorphisms into the multiplicative
structure of R, we have n± = (t±)n =: tn± for n ∈ Z+, and

atn− = tn−α
n(a) and tn+a = αn(a)tn+

for all a ∈ A and n ∈ Z+.
In view of (2.2), the elements r ∈ R = Z+ ∗α A ∗α Z+ can all be written as ‘polynomials’

of the form

r = ant
n
+ + . . .+ a1t+ + a0 + t−a−1 + . . . tm−a−m,
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with coefficients ai ∈ A. Because of this similarity of R with a skew-Laurent polynomial ring,
we shall use the notation R = A[t+, t−;α]. Proposition 1.6 shows that R is a Z-graded ring
R =

⊕
i∈ZRi, and from the discussion above we see that Ri = Ati+ for i > 0 and Ri = t−i− A

for i < 0, while A0 = A.
Our construction of Z+ ∗α A ∗α Z+ is an exact algebraic analog of the construction of the

crossed product of a C*-algebra by an endomorphism introduced by Paschke [19]. In fact,
if A is a C*-algebra and the corner isomorphism α is a *-homomorphism, then Paschke’s
C*-crossed product, which he denotes A oα N, is just the completion of Z+ ∗α A ∗α Z+ in a
suitable norm.

Note again that any ring R = A[t+, t−;α] is Z-graded, with A = R0. Moreover, t+ is a left
invertible element of R1 with a particular left inverse t− ∈ R−1, and α can be recovered from
the rule α(a) = t+at−. These observations allow us to recognize rings of the form A[t+, t−;α]
among Z-graded rings, as follows.

Lemma 2.4. Let D =
⊕

i∈ZDi be a Z-graded ring containing elements t+ ∈ D1 and t− ∈ D−1
such that t−t+ = 1. Then there is a corner isomorphism α : D0 → t+t−D0t+t− given by the
rule α(d) = t+dt−, and D = D0[t+, t−;α].

Proof. It is clear that t+t− is an idempotent in D0, and that the given rule defines an
isomorphism α : D0 → t+t−D0t+t−. Hence, there exists a fractional skew monoid ring

D̃ = D0[t̃+, t̃−;α]. Since t+d = α(d)t+ and dt− = t−α(d) for all d ∈ D, the identity map on

D0 extends uniquely to a ring homomorphism φ : D̃ → D such that φ(t̃±) = t±. It remains
to show that φ is an isomorphism. Note that since ti+ ∈ Di and ti− ∈ D−i for all i ∈ N,
the map φ is a homomorphism of graded rings. Thus, we need only show that φ maps each

homogeneous component D̃i isomorphically onto Di. This is already given when i = 0.

Now let i > 0. If x ∈ D̃i, then x = dt̃i+ for some d ∈ D0, and φ(x) = dti+. If φ(x) = 0,

then dαi(1) = dti+t
i
− = 0 in D0, whence x = dαi(1)t̃i+ = 0 in D̃. Thus, the restriction of φ to

D̃i is injective. Further, if y ∈ Di, then yti− ∈ D0 and φ
(
(yti−)t̃i+

)
= yti−t

i
+ = y. Therefore φ

maps D̃i isomorphically onto Di. A symmetric argument shows that this also holds for i < 0,
completing the proof. �

Example 2.5. An algebraic version of the Cuntz-Krieger algebras. We give an algebraic
version of the C*-algebras OA introduced in [10] (now called “Cuntz-Krieger algebras” in the
literature), and show that they may be expressed in the form B[t+, t−;α] for ultramatricial
algebras B and proper corner isomorphisms α. The latter statement is parallel to the cor-
responding C*-algebra result: OA = B oα N for a suitable approximately finite dimensional
C*-algebra B (essentially in [10]; discussed explicitly in [22, Example 2.5]).

Let k be an arbitrary field and A = (aij) an n×n matrix over k, with aij ∈ {0, 1} for all i, j.
To avoid degenerate and trivial cases, we assume that no row or column of A is identically
zero, and that A is not a permutation matrix. We define the algebraic Cuntz-Krieger algebra
associated to A to be the k-algebra C = CKA(k) with generators x1, y1, . . . , xn, yn and relations

(1) xiyixi = xi and yixiyi = yi for all i;
(2) xiyj = 0 for all i 6= j;
(3) xiyi =

∑n
j=1 aijyjxj for all i;

(4)
∑n

j=1 yjxj = 1.



FRACTIONAL SKEW MONOID RINGS 11

Note that all the xiyi and yjxj are idempotents, and that the yjxj are pairwise orthogonal.
The free algebra k〈X1, Y1, . . . , Xn, Yn〉 can be given a Z-grading in which the Xi have degree
−1 while the Yi have degree 1, and the relators XiYiXi−Xi etc. corresponding to (1)–(4) are
all homogeneous. Hence, C inherits a Z-grading such that each xi ∈ C−1 and each yi ∈ C1.

Now set N = {1, . . . , n}. Given µ = (µ1, . . . , µ`) ∈ N ` for some `, we set xµ = xµ1xµ2 · · ·xµ`
and yµ = yµ1yµ2 · · · yµ` . The case ` = 0 is allowed, with the conventions that N0 = {∅} and
x∅ = y∅ = 1. The subalgebra B = C0 of C is the k-linear span of the set

{yµxν | µ, ν ∈ N `, ` ∈ Z+}.
As in [10, Proposition 2.3 and following discussion], B is an ultramatricial k-algebra, and
K0(B) is isomorphic (as an ordered group) to the direct limit of the sequence

Zn A−→ Zn A−→ Zn A−→ · · · ,
with the class [B] ∈ K0(B) corresponding to the image of the order-unit (1, 1, . . . , 1)tr in
the first Zn. (See [11, Chapter 15] for a development of ultramatricial algebras and their
classification via K0.)

For i = 1, . . . , n, let ei denote the sum of those yjxj for which yjxj ≤ xiyi but yjxj 6≤ xmym
for any m < i. These ei are pairwise orthogonal idempotents in B, with each ei ≤ xiyi. Since
the matrix A has no identically zero columns, each yjxj lies below some xiyi, and so each yjxj
lies below some ei. In fact, yjxj ≤ ei where i is the least index such that aij = 1. From relation
(4), it follows that

∑n
i=1 ei = 1. Next, note that the elements yieixi are pairwise orthogonal

idempotents in B (because eixiyi = ei for all i), whence the sum p := y1e1x1 + · · · + ynenxn
is an idempotent in B. Moreover, xip = eixi and pyi = yiei for all i. We claim that p 6= 1.

If p = 1, then each xi = eixi, whence each xiyi = ei. Then the xiyi are pairwise orthogonal.
In view of the relations (3), it follows that each column of A has only one nonzero entry.
Since A has no identically zero rows, it must be a permutation matrix, contradicting our
assumptions. Therefore p 6= 1, as claimed.

Now set t− = e1x1 + · · ·+ enxn ∈ C−1 and t+ = y1e1 + · · ·+ynen ∈ C1. Then t+t− = p, and

t−t+ =
n∑
i=1

eixiyiei =
n∑

i,j=1

aijeiyjxjei =
n∑
j=1

yjxj = 1,

because each yjxj ≤ ei for precisely one i, and aij = 1 for that i. Hence, there is a proper
corner isomorphism α : B → pBp given by the rule α(b) = t+bt−, and we conclude from
Lemma 2.4 that

C = CKA(k) = B[t+, t−;α]. �

In case the matrix A in Example 2.5 has all of its entries equal to 1, the relations for the
algebra CKA(k) reduce to

(1) xiyj = δi,j for all i, j;
(2)

∑n
j=1 yjxj = 1.

Thus in this case, CKA(k) is the Leavitt algebra V1,n(k) first studied in [17]. (The notation
V1,n was introduced in [5].) There is a related Leavitt algebra U1,n(k) which, as we now show,
can also be presented as a fractional skew monoid ring.

Example 2.6. Let k be a field and n ∈ N. The algebra U = U1,n(k) is the k-algebra with
generators x1, y1, . . . , xn, yn and relations xiyj = δi,j for all i, j. (Thus, V1,n(k) is the factor
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algebra of U1,n(k) modulo the ideal generated by 1−
∑n

j=1 yjxj.) The elements y1x1, . . . , ynxn
are pairwise orthogonal idempotents in U . As in Example 2.5, there is a Z-grading on U such
that each xi ∈ U−1 and each yi ∈ U1.

Set N = {1, . . . , n} and define xµ, yµ ∈ U for µ ∈ N ` as in Example 2.5. In U , the set

{yµxν | µ ∈ N `, ν ∈ Nm, `,m ∈ Z+}

forms a k-basis. We again set B = U0, which is the k-linear span of the set

{yµxν | µ, ν ∈ N `, ` ∈ Z+},

and as before, B is ultramatricial. It is isomorphic to a direct limit of the algebras

Mni(k)×Mni−1(k)× · · · ×Mn(k)× k,

the ordered group K0(B) is isomorphic to the direct limit of a sequence Z→ Z2 → Z3 → · · ·
where each transition map Zi → Zi+1 is given by an (i+ 1)× i matrix of the form

n 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0

...
0 0 0 · · · 1 0
0 0 0 · · · 0 1

 ,

and the class [B] ∈ K0(B) corresponds to the image of 1 ∈ Z.
Set p = y1x1 ∈ B, a proper idempotent. Then set t− = x1 ∈ U−1 and t+ = y1 ∈ U1, so

that t+t− = p and t−t+ = 1. Hence, the rule b 7→ t+bt− gives a proper corner isomorphism
α : B → pBp, and Lemma 2.4 shows that

U = U1,n(k) = B[t+, t−;α]. �

Example 2.7. Let k be a field, and note that there are natural inclusions

U1,1(k) ⊂ U1,2(k) ⊂ U1,3(k) ⊂ · · ·

among the algebras U1,n(k). Set U∞(k) =
⋃∞
n=1 U1,n(k), which is a simple algebra (e.g.,

[3, Theorem 4.3]). We may also view U∞(k) as the k-algebra with an infinite sequence of
generators x1, y1, x2, y2, . . . and relations xiyj = δi,j for all i, j. This algebra is Z-graded as
before, with the xi having degree −1 and the yi degree 1. Set B = U∞(k)0, which is the
k-linear span of the set

{yµxν | µ, ν ∈ {1, . . . , n}`, n ∈ N, ` ∈ Z+}.

In the present case, B is an ultramatricial k-algebra isomorphic to a direct limit of the algebras

Mnn(k)×Mnn−1(k)× · · · ×Mn(k)× k.
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Here K0(B) is isomorphic to the direct limit of a sequence Z2 → Z3 → Z4 → · · · with
transition maps 

n n n2 n3 · · · nn−2 nn−1

1 1 n n2 · · · nn−3 nn−2

0 1 1 n · · · nn−4 nn−3

...
0 0 0 0 · · · 1 1
0 0 0 0 · · · 0 1

 ,

and [B] corresponds to ( 1
1 ) ∈ Z2. If we define p, t±, α exactly as in Example 2.6, we conclude

from Lemma 2.4 that
U∞(k) = B[t+, t−;α]. �

3. Fractional skew monoid rings versus corners of skew group rings

Paschke [19] and Rørdam [22, Section 2] have shown that a C*-algebra crossed product by
an endomorphism corresponds naturally to a corner in a crossed product by an automorphism.
In other words, the C*-algebra versions of fractional skew monoid rings Z+ ∗α A ∗α Z+ are
isomorphic to corners e(B ∗α′ Z)e in certain skew group rings. This leads us to ask whether,
in general, our rings Sop ∗α A ∗α S should appear as corner rings e(B ∗ G)e, where B ∗ G
is some skew group ring over the group G = S−1S. This is indeed the case, as we prove
in Proposition 3.8. We prepare the way by studying corner rings of the form e(A ∗ G)e (for
G = S−1S as above), and showing that they fall into the class of fractional skew monoid rings
under appropriate conditions on the action.

3.1. Let A be a unital ring, G a group, and α : G→ Aut(A) an action. Assume that S is a
submonoid of G with G = S−1S, and let R = A ∗α G. Suppose that there exists a nontrivial
idempotent e ∈ A such that αs(e) ≤ e for all s ∈ S.

Lemma 3.2. Under the above assumptions, the following hold:
(a) The action α restricts to an action α′ : S → Endr(eAe) by corner isomorphisms.
(b) There are natural monoid morphisms Sop → eRe, given by s 7→ es−1, and S → eRe,

given by t 7→ te, satisfying the conditions (1)–(4) in Definition 1.2 with respect to α′ and the
inclusion map φ : eAe→ eRe.

Proof. (a) This is clear from the hypothesis on e.
(b) Notice that, since e ≤ α−1s (e) for all s ∈ S, we have es−1 = es−1αs(e) ∈ eRe and

(es−1)(et−1) = e(ts)−1 for s, t ∈ S. Similarly, se ∈ eRe and (se)(te) = (st)e. So, the defined
maps are monoid morphisms. It is straightforward to check conditions (1)–(4) in Definition
1.2. �

Because of Lemma 3.2, we have the data to construct a fractional skew monoid ring of the
form Sop ∗α′ (eAe) ∗α′ S. Since the maps α′s = αs|eAe are injective for all s ∈ S, the ring
homomorphism eAe→ Sop ∗α′ (eAe) ∗α′ S going with the construction of Sop ∗α′ (eAe) ∗α′ S
is injective by Corollary 1.11. Hence, we identify eAe with its image in Sop ∗α′ (eAe) ∗α′ S, as
in (1.12).

Proposition 3.3. Under the assumptions of (3.1), the rings Sop∗α′ (eAe)∗α′S and e(A∗αG)e
are isomorphic as G-graded rings.
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Proof. By the universal property of Sop ∗α′ (eAe) ∗α′ S, there exists a unique ring homomor-
phism ψ : Sop ∗α′ (eAe) ∗α′ S → e(A ∗α G)e such that ψ(s−at+) = (es−1)a(te) for all s, t ∈ S
and a ∈ eAe. Clearly, ψ is G-graded. To see that ψ is onto, consider e(ag)e ∈ e(A ∗ G)e
where a ∈ A and g ∈ G, and write g = s−1t for some s, t ∈ S. Then we have

e(ag)e = eas−1te = (es−1)(αs(ea)αt(e))(te) ∈ ψ(Sop ∗α′ (eAe) ∗α′ S),

which proves that ψ is onto. It only remains to check that ψ is one-to one.
Since ψ is G-graded, we only have to check that ψ(s−at+) = 0 implies a = 0, when s, t ∈ S

and a ∈ ps(eAe)pt. Note that ps = α′s(1eAe) = αs(e), and likewise pt = αt(e), so that
a = αs(e)aαt(e). Now

0 = (es−1)a(te) = eα−1s (aαt(e))(s
−1t) = α−1s (αs(e)aαt(e))(s

−1t) = α−1s (a)(s−1t),

whence α−1s (a) = 0 and a = 0, as desired. �

The following procedure gives a generic way to obtain a situation as in (3.1).

Example 3.4. Let α : G→ Aut(A) be an action of an abelian group G on a unital ring A, and
let e be an idempotent in A. Set S := {s ∈ G | αs(e) ≤ e}. Then S is a submonoid of G and
G′ := S−1S is a subgroup of G acting on A via α. Moreover, e(A∗αG′)e ∼= Sop ∗α′ (eAe)∗α′ S,
where α′ : S → Endr(eAe) is the induced action of S on eAe by corner isomorphisms.

Proof. It is clear that S is a submonoid of G, and we can apply Proposition 3.3 to get the
result. �

Now we go in the reverse direction, looking for a representation of a fractional skew monoid
ring Sop∗αA∗αS as a corner ring of a skew group ring. Our original approach utilized a direct
limit construction based on ideas of Rørdam [22]; that approach required S to be abelian. In
the meantime, we learned of the work of Picavet [21], whose construction we can make use
of without needing S to be abelian.

3.5. Let A be a unital ring, G a group and S a submonoid of G such that G = S−1S. Thus, S
satisfies the left Ore condition, and left reversibility holds trivially because S has cancellation.
Let α : S → Endr(A) be an action of S on A by corner isomorphisms, and for s ∈ S let ps
denote the idempotent αs(1). We construct a ring S−1A as in [21], but with some changes of
notation to fit our situation. As written, the development in [21] would require S to act on
A by unital ring endomorphisms. However, almost all the results we shall quote do not make
use of this assumption, the exception being the question of an identity – in our situation,
S−1A can be a non-unital ring.

First, define a relation ∼ on S × A as follows:
(s1, a1) ∼ (s2, a2) if and only if there exist t1, t2 ∈ S such that t1s1 = t2s2 and
αt1(a1) = αt2(a2).

This is an equivalence relation [21, Lemma 2.1], and we write [s, a] for the equivalence class
of a pair (s, a). Let S−1A = (S × A)/∼ be the set of these equivalence classes. The left
Ore condition guarantees “common denominators” in S−1A: Given any x1, x2 ∈ S−1A, there
exist s ∈ S and a1, a2 ∈ A such that each xi = [s, ai]. By [21, Lemma 2.2 ff.], there is a
well-defined associative multiplication on S−1A as follows:

Given any [s1, a1], [s2, a2] ∈ S−1A, choose t1, t2 ∈ S such that t1s1 = t2s2, and set
[s1, a1] · [s2, a2] = [t1s1, αt1(a1)αt2(a2)].
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(This multiplication rule is simpler than the Ore-Asano rule for multiplication of noncommu-
tative fractions, because the classes [s, a] model elements that would have the form α−1s (a) if
αs extended to an automorphism of an overring of A.) It is routine to build a well-defined,
commutative, associative addition on S−1A by the corresponding rule:

Given any [s1, a1], [s2, a2] ∈ S−1A, choose t1, t2 ∈ S such that t1s1 = t2s2, and set
[s1, a1] + [s2, a2] = [t1s1, αt1(a1) + αt2(a2)].

The distributive law is also routine, and so S−1A becomes a (possibly non-unital) ring. In
fact, for [s, a] ∈ S−1A we have [1, 1] · [s, a] = [s, psa] and [s, a] · [1, 1] = [a, aps].

Next, we extend α to an action of S on S−1A. Since this is done without proof in [21,
Theorem 2.4 ff.], we sketch the details.

Lemma 3.6. The action of α on A extends to an action α : S → Aut(S−1A) as follows:
Given any s ∈ S and [t, a] ∈ S−1A, choose s′, t′ ∈ S such that s′s = t′t, and set
αs([t, a]) = [s′, αt′(a)].

Proof. First, let s ∈ S and [t1, a1] = [t2, a2] in S−1A. Let s1, u1, s2, u2 ∈ S such that s1s = u1t1
and s2s = u2t2; we must show that [s1, αu1(a1)] = [s2, αu2(a2)]. There exist r1, r2 ∈ S such
that r1s1 = r2s2, and each [si, αui(ai)] = [risi, αriui(ai)]. Hence, we may assume that s1 = s2.
Note that now u1t1 = u2t2.

Since [t1, a1] = [t2, a2], there exist v1, v2 ∈ S such that v1t1 = v2t2 and αv1(a1) = αv2(a2).
Further, there are p, q ∈ S with pv1 = qu1. Then pv2t2 = pv1t1 = qu1t1 = qu2t2, and so
pv2 = qu2. After replacing s1, u1, s2, u2 by qs1, qu1, qs2, qu2, we may assume that pvi = ui
for i = 1, 2. Consequently, αu1(a1) = αu2(a2), whence [s1, αu1(a1)] = [s2, αu2(a2)]. Therefore
αs([t, a]) is well-defined.

Consider s ∈ S and [t, a1], [t, a2] ∈ S−1A. Choose s′, t′ ∈ S such that s′s = t′t; then

αs([t, a1] · [t, a2]) = αs([t, a1a2]) = [s′, αt′(a1a2)]

= [s′, αt′(a1)] · [s′, αt′(a2)] = αs([t, a1]) · αs([t, a2]),
and similarly for addition. This shows that αs is a ring endomorphism of S−1A. If αs([t, a1]) =
αs([t, a2]), there exist u1, u2 ∈ S such that u1s

′ = u2s
′ and αu1t′(a1) = αu2t′(a2). Since then

u1 = u2, it follows that [t, a1] = [t, a2]. Thus, αs is injective. Moreover, for any [t, a] ∈ S−1A
we see that αs([ts, a]) = [t, a]. Therefore αs ∈ Aut(S−1A).

It is clear that α1 is the identity map. Finally, consider s1, s2 ∈ S and [t, a] ∈ S−1A. There
exist s′2, t2 ∈ S such that s′2s2 = t2t, so that αs2([t, a]) = [s′2, αt2(a)]. There exist s′1, t1 ∈ S
such that s′1s1 = t1s

′
2, so that αs1([s

′
2, αt2(a)]) = [s′1, αt1t2(a)]. But s′1s1s2 = t1t2t, and so

αs1s2([t, a]) = [s′1, αt1t2(a)] = αs1(αs2([t, a])). Therefore the map α : S → Aut(S−1A) is a
monoid homomorphism. �

There is a shortcut that can be taken for part of the above work. The given action of
S induces on A the structure of a left module over the monoid ring ZS. Moreover, S is a
left denominator set in ZS, and the Ore localization S−1(ZS) is just the group ring ZG. By
standard localization theory, there exists a module of fractions S−1A, which is a left ZG-
module. Thus, one obtains the construction of S−1A as an additive group and the action of
S on S−1A by Z-module automorphisms.

Lemma 3.7. The rule a 7→ [1, a] defines an S-equivariant ring embedding φ : A → S−1A
with image [1, 1] · S−1A · [1, 1].
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Proof. It is clear that φ is a ring homomorphism and that it is S-equivariant, i.e., φ(αs(a)) =
αs(φ(a)) for s ∈ S and a ∈ A. If a ∈ ker(φ), then [1, a] = [1, 0], and so αs(a) = 0 for some
s ∈ S. Since αs is injective, a = 0. Thus, φ is an embedding.

Set e = [1, 1] = φ(1), and note that φ(a) = eφ(a)e for a ∈ A. Recall that e[s, a]e = [s, psaps]
for any s ∈ S and a ∈ A. Since αs(A) = psAps, there exists b ∈ A with αs(b) = psaps, whence
e[s, a]e = [s, αs(b)] = [1, b]. Therefore the image of φ equals e(S−1A)e. �

Proposition 3.8. Let G be a group and S a submonoid of G such that G = S−1S. Let
α : S → Endr(A) be an action of S on A by corner isomorphisms. Then there exist a unital
ring B, an action α̂ : G → Aut(B), and an idempotent e in B such that α̂s(e) ≤ e for all
s ∈ S and Sop ∗α A ∗α S ∼= e(B ∗α̂ G)e (as G-graded rings).

Proof. Construct S−1A as above, set e = [1, 1], and identify A with the corner e(S−1A)e via
Lemma 3.7. Let B be the unitization of S−1A; then also A = eBe. In view of Lemma 3.6,
α extends to an action G → Aut(S−1A), and thus to an action α̂ : G → Aut(B). It is
clear that α̂s(e) ≤ e for s ∈ S, and we conclude from Proposition 3.3 that e(B ∗α̂ G)e ∼=
Sop ∗α̂ (eBe) ∗α̂ S = Sop ∗α A ∗α S as G-graded rings. �

4. Simplicity

We continue the general assumptions of (1.1) and (2.1), and seek conditions on A, S, and
α under which R = Sop ∗α A ∗α S is a simple ring. In the case of a group action (i.e., S = G
and α : G → Aut(A)), sufficient conditions for simplicity are well known [18, Theorem 2.3]:
If A is simple and the action α is outer, then the skew group ring A ∗α G is simple. It turns
out that a suitable modification of the notion of an outer action also leads to simplicity in
our more general situation.

We shall say that a pair (αs, αt), where s, t ∈ S, is inner provided there exist elements
u ∈ psApt and v ∈ ptAps such that uv = ps, vu = pt and αs(x) = uαt(x)v for all x ∈ A. Note
that then αsα

−1
t (x) = uxv for every x ∈ ptApt, and αtα

−1
s (x) = vxu for all x ∈ psAps. Let us

say that α is outer in case (αs, αt) is not inner for any distinct s, t ∈ S.
We will use the following standard terminology. The support of an element r =

∑
x rx in

R =
⊕

x∈GRx is the set Supp(r) = {x ∈ G | rx 6= 0}. The length of r is the number of
elements in the support of r, and is denoted len(r).

Theorem 4.1. If A is simple and α is outer, then R = Sop ∗α A ∗α S is simple.

Proof. Suppose that R is not simple. Let I be a proper nonzero ideal of R, and let ρ ∈ I
be a nonzero element with minimal length, say length n. Write ρ =

∑n
i=1(si)−ai(ti)+ where

the s−1i ti are distinct elements of S−1S and each ai is a nonzero element of psiApti . Observe
that (s1)+ρ(t1)− = a1 +

∑n
i=2 ρi where each ρi lies in the s1s

−1
i tit

−1
1 -component of R. Hence,

(s1)+ρ(t1)− = a1 +
∑n

i=2(ui)−bi(vi)+ where the u−1i vi are distinct elements of S−1S, different
from 1, and each bi ∈ puiApvi . Moreover, a1 6= 0 implies (s1)+ρ(t1)− 6= 0, and so (s1)+ρ(t1)−
has length n by minimality. Thus, after replacing ρ by (s1)+ρ(t1)−, we may assume that
s1 = t1 = 1.

Since A is simple,
∑m

j=1 cja1dj = 1 for some cj, dj ∈ A. Then we can replace ρ by

m∑
j=1

cjρdj = 1 +
n∑
i=2

(si)−
( m∑
j=1

αsi(cj)aiαti(dj)
)
(ti)+,
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and so we may now assume that a1 = 1. Of course ρ 6= 1 because I 6= R, whence n ≥ 2. Set
s = s2, t = t2, and a = a2 ∈ psApt, so that

ρ = 1 + s−at+ +
n∑
i=3

(si)−ai(ti)+.

For any x ∈ A, we have xρ− ρx ∈ I and

xρ− ρx = s−
(
αs(x)a− aαt(x)

)
t+ +

n∑
i=3

(si)−♦i(ti)+

for some elements ♦i ∈ psiApti that we need not specify. Thus xρ− ρx has length less than
n, and so xρ− ρx = 0 by the minimality of n. Therefore

αs(x)a = aαt(x)

for all x ∈ A. In particular, psAa = psApsa = αs(A)a = aαt(A) = aApt.
Since A is simple, AptA = AaA = A, and so

aAps = aAptAps = psAaAps = psAps,

whence there is some b ∈ ptAps such that ab = ps. Similarly, there is some c ∈ ptAps such
that ca = pt. But c = cps = cab = ptb = b, so that ba = pt. Now

aαt(x)b = αs(x)ab = αs(x)ps = αs(x)

for all x ∈ A, and so we conclude that the pair (αs, αt) is inner. Since α is assumed to be
outer, we must have s = t. But then s−12 t2 = s−1t = 1 = s−11 t1, contradicting the distinctness
of the s−1i ti. Therefore R is simple. �

Corollary 4.2. If A is simple and ps 6∼ pt for all distinct s, t ∈ S, then R is simple.
�

Corollary 4.3. If A is a directly finite simple ring, p ∈ A is a proper idempotent (i.e., p 6= 1),
and α : A→ pAp is a corner isomorphism, then Z+ ∗α A ∗α Z+ is simple.

Proof. The idempotents corresponding to the monoid homomorphism Z+ → Endr(A) in this
case are the αi(1) for i ∈ Z+. Since α(1) = p 6= 1, we have 1 > α(1) > α2(1) > · · · , and it
follows from the direct finiteness of A that αi(1) 6∼ αj(1) for all distinct i, j ∈ Z+. �

5. Purely infinite simplicity

We recall from [3] that a simple ring T is said to be purely infinite if every nonzero right ideal
of T contains an infinite idempotent. This concept is left-right symmetric, as the following
characterization shows: T is purely infinite if and only if (1) T is not a division ring; (2) for
every nonzero element a ∈ T , there exist elements x, y ∈ T such that xay = 1 [3, Theorem
1.6]. For instance, the Leavitt algebras V1,n(k) and U∞(k) are purely infinite simple rings [3,
Theorems 4.2, 4.3]. As we have seen above (Examples 2.5 and 2.7), the V1,n(k) and U∞(k)
can be presented in the form Z+ ∗αB ∗α Z+. This suggests that fractional skew monoid rings
might be purely infinite simple in some generality. Our goal in this section is to establish
sufficient conditions for a fractional skew monoid ring R = Sop∗αA∗αS to be a purely infinite
simple ring, under the general assumptions of (1.1) and (2.1).
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The following concept will be needed. A ring T is said to be strictly unperforated provided
the finitely generated projective right (or left) T -modules enjoy the following property: If
mA ≺ mB for some m ∈ N, then A ≺ B. (Here mA denotes the direct sum of m copies
of A, and the notation X ≺ Y means that X is isomorphic to a proper direct summand of
Y . Similarly, e ≺ f , for idempotents e, f ∈ T , means that e ∼ e′ < f for some idempotent
e′ in T .) Stated in terms of idempotents in matrix rings over T , strict unperforation is the
condition (m·p ≺ m·q =⇒ p ≺ q), where m·p denotes the orthogonal sum of m copies of an
idempotent p. For instance, ultramatricial algebras are strictly unperforated [11, Theorem
15.24(a)]. Also, any purely infinite simple ring T is strictly unperforated, because A ≺ B for
all nonzero finitely generated projective T -modules A and B [3, Proposition 1.5].

Lemma 5.1. , Assume that A is simple and strictly unperforated, and that there exists u ∈ S
such that pu 6= 1. For any nonzero idempotent e ∈ A, there exists v = uj ∈ S for some j ∈ N
such that pv . e.

Proof. Set pi = pui = αiu(1) for i ≥ 0. Since A is simple, there exists m ∈ N such that 1 ≺ m·e
and 1 . m·(1− p1). Note that

(m+ 1)·p1 . m·p1 ⊕ 1 . m·p1 ⊕m·(1− p1) ∼ m·1.
Applying the isomorphisms αiu : A→ piApi, we obtain that (m + 1)·pi+1 . m·pi for all i. It
follows by induction that (m+ 1)i·pi . mi·1 for all i.

Now choose j ∈ N such that mj+1 < (m+ 1)j, and observe that

mj+1·pj ≺ (m+ 1)j·pj . mj·1 ≺ mj+1·e,
whence mj+1·pj ≺ mj+1·e. Therefore pj ≺ e, because A is strictly unperforated. �

The following lemma is a variation on results such as [11, Proposition 3.3].

Lemma 5.2. If T is a simple ring containing an idempotent p 6= 0, 1, then T is generated
(as a ring) by its idempotents.

Proof. Let T ′ be the subring of T generated by the idempotents. Since p + pt(1 − p) is
idempotent for any t ∈ T , we see that pT (1 − p) ⊆ T ′, and likewise (1 − p)Tp ⊆ T ′. The
simplicity of T implies that T (1− p)T = T , whence pTp = [pT (1− p)][(1− p)Tp] ⊆ T ′, and
similarly (1− p)T (1− p) ⊆ T ′. Therefore T ′ = T . �

Theorem 5.3. Assume that A is a simple, strictly unperforated ring, in which every nonzero
right (left) ideal contains a nonzero idempotent. Assume also that α is outer, and that there
exists u ∈ S with pu 6= 1. Then R = Sop ∗α A ∗α S is a purely infinite simple ring.

Proof. The hypothesis that pu 6= 1 will allow us later to apply Lemma 5.1. Moreover, it
implies that R is not a division ring.

Let ρ be an arbitrary nonzero element of R. Choose ρ′, ρ′′ ∈ R such that ρ′ρρ′′ is nonzero
and has minimal length for such nonzero products, say length n. Since it suffices to find
x, y ∈ R such that xρ′ρρ′′y = 1, we may replace ρ by ρ′ρρ′′. Thus, without loss of generality,
all nonzero products σρσ′ in R have length at least n. Now write ρ =

∑n
i=1(si)−ai(ti)+ where

the s−1i ti are distinct elements of S−1S and each ai is a nonzero element of psiApti . As in the
proof of Theorem 4.1, after replacing ρ by (s1)+ρ(t1)− we may assume that s1 = t1 = 1, so
that ρ = a1 +

∑n
i=2(si)−ai(ti)+.
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By our hypothesis on idempotents, there exists a′1 ∈ A such that a1a
′
1 is a nonzero idem-

potent. By Lemma 5.1, there exist x, y ∈ A such that xa1a
′
1y = pv for some v ∈ S. Note that

v−xa1a
′
1yv+ = 1. Hence, after replacing ρ by v−xρa

′
1yv+, we may assume that a1 = 1. We

are thus done in case n = 1.
Suppose that n ≥ 2, and set s = s2, t = t2, and a = a2 ∈ psApt. Thus,

ρ = 1 + s−at+ +
n∑
i=3

(si)−ai(ti)+

at this point. For any idempotent e ∈ A, we have

eρ(1− e) = s−αs(e)a
(
pt − αt(e)

)
t+ +

n∑
i=3

(si)−♦i(ti)+.

Since eρ(1 − e) has length less than n, it must be zero, whence αs(e)a(pt − αt(e)) = 0.
Thus, αs(e)a = αs(e)aαt(e). A symmetric argument involving (1− e)ρe shows that aαt(e) =
αs(e)aαt(e), and so αs(e)a = aαt(e).

By Lemma 5.2, A is generated by its idempotents. Hence, it follows from the equations
αs(e)a = aαt(e) that αs(x)a = aαt(x) for all x ∈ A. As in the proof of Theorem 4.1, this
implies that the pair (αs, αt) is inner, yielding s = t and s−12 t2 = s−11 t1, which contradicts our
assumptions. Therefore n = 1, and the proof is complete. �

It is perhaps not so surprising that the purely infinite simple property carries over from
A to R under suitable conditions. More interesting is that R can be purely infinite simple
even when A is directly finite. We single out an important case of this phenomenon in the
following corollary.

Corollary 5.4. Suppose that A is either a purely infinite simple ring or a simple ultrama-
tricial algebra over some field. Assume also that α is outer, and that there exists u ∈ S with
pu 6= 1. Then R = Sop ∗α A ∗α S is a purely infinite simple ring. �
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(Barcelona), Spain.

E-mail address: para@mat.uab.es
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