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ABSTRACT. Given an action « of a monoid T on a ring A by ring endomorphisms, and an
Ore subset S of T', a general construction of a fractional skew monoid ring S°P %, A *, T is
given, extending the usual constructions of skew group rings and of skew semigroup rings.
In case S is a subsemigroup of a group G such that G = S~1S, we obtain a G-graded
ring S°P *, A *, S with the property that, for each s € S, the s-component contains a left
invertible element and the s~'-component contains a right invertible element. In the most
basic case, where G = Z and S = T = ZT, the construction is fully determined by a single
ring endomorphism « of A. If « is an isomorphism onto a proper corner pAp, we obtain an
analogue of the usual skew Laurent polynomial ring, denoted by A[t,,t_;«a]. Examples of
this construction are given, and it is proven that several classes of known algebras, including
the Leavitt algebras of type (1,n), can be presented in the form A[t;,t_;a]. Finally, mild
and reasonably natural conditions are obtained under which S°P %, A *, S is a purely infinite
simple ring.

INTRODUCTION

Let a: G — Aut(A), g — a4, be an action of a group G on a unital ring A. A useful
construction attached to these data is the skew group ring A x, G, see [18] and [20]. This
is the ring of formal expressions ) geG Ggg, where a; € A and almost all the coefficients
aqg are 0. Addition is defined componentwise and multiplication is defined according to the
rule (ag)(bh) = (acy(b))(gh). The skew group ring A %, G can also be defined as the unital
ring R such that there are a unital ring homomorphism ¢: A — R and a unital monoid
homomorphism 7: G — R from G to the multiplicative structure of R, universal with respect
to the property that i(g)¢(a) = ¢(ay(a))i(g) for all a € A and all g € G. In his pioneering
paper [19], Paschke gave a construction of a C*-algebraic crossed product A x, N associated
to a not necessarily unital C*-algebra endomorphism a on a C*-algebra A. Paschke’s C*-
algebraic construction has been generalized to other semigroups, see [13], [14], [15] and [16].
Moreover, Rgrdam [22] used Paschke’s construction together with the Pimsner-Voiculescu
exact sequence associated to an automorphism [6, Theorem 10.2.1] to realize any pair of
countable abelian groups (G, G1) as (Ko(B), K1(B)) for a certain purely infinite, simple,
nuclear separable C*-algebra B.
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In this paper, we develop a systematic purely algebraic theory of fractional skew monoid
rings with respect to monoid actions on rings by not necessarily unital ring endomorphisms,
in which an Ore submonoid is inverted. (Recall that a monoid is a semigroup with a neutral
element.) More precisely, we assume the following data are given (see (1.1) for the detailed
definitions of the properties):

(1) A monoid T" acting on a unital ring A by endomorphisms;
(2) A submonoid S of T satisfying the left denominator conditions, and such that S is
left saturated in 7'

Then a fractional skew monoid ring S°P %, A %, T is constructed, with suitable maps from A,
S°P and T to S°P %, A %, T, which satisfy a universal property analogous to the one for the
skew group ring described above, see Definition 1.2. It is not difficult to show that such a ring
exists by using a construction with generators and relations, but it is rather non-obvious to
determine the algebraic structure of S°Px, A*,T. The ring S°Px*, A, T is best understood by
means of its S~!T-graded structure, obtained in Proposition 1.6. The structure is completely
pinned down in (1.12) in the case where T" acts by injective endomorphisms.

The general construction of S°P %, A %, T is given in Section 1. In the other sections, we
specialize the construction to the case of a submonoid S of a group G such that G = S71S
(taking T' = 5), and to an action « of S on A by corner isomorphisms, meaning that ay is
an isomorphism from A onto the corner ring as(1)Aas(1) for all s € S. Several examples of
interest are considered in Section 2 in the case where S =T = Z™. In particular, the Leavitt
algebras V} ,,(k) and Uy ,,(k), already considered by Leavitt, Skornyakov, Cohn, Bergman and
others, are seen here to be particular cases of our construction.

For S = T = Z%, the construction is determined by a single corner isomorphism «, and
the elements of the fractional skew monoid ring R = Z%* %, A %, Z" can all be written as
‘polynomials’ of the form

r=aptl +...+aty +ag+t_a+.. " a,,

with coefficients a; € A. Because of this similarity of R with a skew-Laurent polynomial
ring, we shall use the notation R = Aft,,t_;«a]. Using this construction and the Bass-Heller-
Swan-Farrell-Hsiang-Siebenmann Theorem, the K; group of these algebras is computed in
[2].

A general source of interesting examples is provided in Section 3. Namely, assume that
G is a group acting on a ring A by automorphisms, and that there are a submonoid S of
G such that G = S7'S and a non-trivial idempotent e in A such that a,(e) € eAe for all
s € S. Then the corner ring e(A x, G)e of the skew group ring A %, G is isomorphic as a
G-graded ring to a fractional skew monoid ring S°P *, (eAe) *, S (Proposition 3.3). Under
the standing assumption that S acts by corner isomorphisms, we prove that all S°P %, A %, S
can be exhibited in the form e(A %, G)e (Proposition 3.8).

Sections 4 and 5 deal with actions on simple rings. Using a suitable definition of outer
action of a monoid S on a ring A, we prove in Theorem 4.1 that S°P x, A %, S is a simple
ring for any outer action « of S on a simple ring A. This is a generalization of a well-known
sufficient condition for simplicity of skew group rings, see [18, Theorem 2.3]. Section 5 shows
that, under mild conditions on A and on the outer action a of S on A, the fractional skew
monoid ring S %, A x, S is a purely infinite simple ring (Theorem 5.3). In particular, this
holds whenever A is either a simple ultramatricial algebra over some field or a purely infinite
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simple ring. The class of purely infinite simple rings has been recently studied by the first,
third and fourth authors in [3], and constitute an important and large class of relatively well-
behaved simple rings. They can be thought of as the nice rings in the wild universe of the
directly infinite simple rings; see specially [3, Corollary 2.2 and Theorem 2.3] for the good
behaviour of K-theory of purely infinite simple rings. A further nice property of them has
been recently established by the first author in [1]: Every purely infinite simple ring satisfies
the exchange property.

All rings and modules in this paper will be assumed to be unital unless explicitly noted.
(The main exception is the ring S™'A constructed in Section 3.) However, many of the
subrings we deal with will have units different from the unit of the larger ring; specifically,
we will deal with many corners pAp in a ring A, where p is an idempotent. Note that any
ring endomorphism € of A, even if not unital when considered as a map A — A, is unital
when viewed as a ring homomorphism A — ¢(1)Ae(1).

We will use the standard order structure on the set of idempotents in a ring A; that is, for
idempotents e and f in A, we have e < f if and only if e = ef = fe. Two idempotents e and
f are said to be equivalent, written e ~ f, if there are elements =,y € A such that e = zy and
f = yx. This is equivalent to saying that the right A-modules eA and fA are isomorphic.
We write e < f in case e ~ f’ for some idempotent " < f. We say that an idempotent e is
infinite if there are nonzero orthogonal idempotents ¢’ and ¢ such that e = ¢’ + g and e ~ €.
If no such decomposition exists, e is called a finite idempotent.

1. THE GENERAL CONSTRUCTION

We present the construction of a fractional skew monoid ring in full generality in this
section, and establish the precise graded structure of this ring. The basic data consist of a
ring A, a monoid 7" acting on A by ring endomorphisms, and a left denominator set S C T’
the fractional skew monoid ring we construct is graded by S='T, and its identity component
is the quotient of A modulo the union of the kernels of the endomorphisms by which S acts.

1.1. We begin by fixing the basic data needed for our construction; these data and conventions
will remain in force throughout the paper. Let A be a (unital) ring, and Endr(A) the monoid
of non-unital (i.e., not necessarily unital) ring endomorphisms of A.

Let T be a monoid and « : T' — Endr(A) a monoid homomorphism, written ¢ — a;. In
general, we will write 7" multiplicatively, with its identity element denoted 1, but in some
applications it will be convenient to switch to additive notation for 7. For t € T, set
pt = a¢(1), an idempotent in A. Then «; can be viewed as a unital ring homomorphism from
A to the corner p;Ap;. For s,t € T, we have py = au(1l) = asau (1) = as(py)-

Let S C T be a submonoid satisfying the left denominator conditions, i.e., the left Ore
condition and the monoid version of left reversibility: whenever ¢,u € T with ts = us for
some s € S, there exists s’ € S such that st = s'u. Then there exists a monoid of fractions,
S~IT, with the usual properties (e.g., see [7, §1.10] or [8, §0.8]).

We shall also assume that S is left saturated in T: whenever s € S and t € T such
that ts € S, we must have ¢ € S. This assumption means that equality in S~'7T can be
described as follows: if sfltl = sgltg for some s; € S and t; € T, there exist uy, us € S such
that u;s; = usse and ujt; = ugts. (The usual denominator conditions only yield the latter



4 P. ARA, M.A. GONZALEZ-BARROSO, K.R. GOODEARL, AND E. PARDO

equations for, say, some u; € S and us € T. But then usss = uys; € S, and left saturation
implies uy € S.)

Definition 1.2. The label S° x, Ax, T stands for a (unital) ring R equipped with a (unital)
ring homomorphism ¢ : A — R and monoid homomorphisms s — s_ from S°°® — R and
t—t, from T'— R, universal with respect to the following relations:

1) tyo(a) = pay(a)ty foralla € Aand t € T,

2) ¢(a)s— = s_¢as(a) for all a € A and s € 5

3) s_sy =1forall s €S;

4) sis_ = ¢(ps) for all s € S.

Note that condition (2) follows from the others. Given a € A and s € S, we have s, ¢(a) =
¢pas(a)sy by (1), and on multiplying each term of this equation on the left and on the right by
s_, we obtain ¢(a)s_ = s_¢as(a)p(ps) = s—od(as(a)ps) from (3) and (4), whence (2) follows
because a;(a)ps = as(a).

NN AN N

1.3. At this point, we sketch the existence of the ring R = S°Px,Ax,T. The existence of a ring
satisfying the universal property of Definition 1.2 follows from a construction with generators
and relations, which does not use at all any property of S; in fact, S can be an arbitrary
subset of T. Take B =A% Z{t,,s_ |t €T, s € S) to be the free product of A and the free
ring on the disjoint union 7U S, and let i;: A — B and iy: Z{t,,s_ |t €T, s € S) — B be
the canonical maps. Let J be the two-sided ideal of B generated by

(a) ig(ty)ir(a) — i1 (au(a))ia(ty) for all a € A and t € T

(b) ia((tt') ) — ia(t4)ia(t),) for all t, ¢ € T}

(¢) ia(s_)ia(sy) —i1(1) for all s € S;

(d) ig(sy)ia(s_) —i1(ps) for all s € S.
Then R = B/J is the ring we are looking for, and ¢ is the composite map 7 o iy, where
m: B — B/J is the canonical projection. (Here we identify the elements s_, for s € S, with
their images mis(s_), and similarly for the elements ¢, .) Note that the relations (ss'). =" s_,
for all s,s" € S such that ss’ € S, hold automatically from (a)-(d) above. Also, we have
already observed that condition (2) in 1.2 follows from conditions (1),(3) and (4), and so it
follows from (a)—(d) too.

Rather than introduce a notation for the product in S°P, we view the map (—)_ as a monoid
anti-homomorphism S — R, so that (su)_ =u_s_ for s,u € S.

The construction above will also be applied when A is an algebra over a field k and the ring
endomorphisms «; for ¢t € T" are k-linear. In this case, it is easily checked that ¢ maps k = k-1
into the center of B (use relations (1),(2) above and part (c) of the following lemma to see
that ¢(k) commutes with each s_ and t.), so that B becomes a k-algebra and ¢ becomes
a k-algebra homomorphism. The universal property of B then holds also in the category of
k-algebras.

The following lemma and subsequent results pin down the structure of R = S°P %, A x, T
This structure simplifies considerably when the maps «; are injective — see (1.12).

Lemma 1.4. Leta,be A, s,u e S, andt,v eT.
(a) s1o(a)s— = das(a).
(b) s_¢as(a)sy = ¢(a).
(c) s- =s_-0(ps) and t; = ¢(pe)t+.
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(d) s—g(a)ty = s_g(psap;)ts.
() s_d(a)ts = (us)_ou,(a)(ut);.
(f) There exist x € S and y € T' such that xt = yu. For any such x,y,

[s-b(a)ts] [up(B)s] = (s) (s (apr)o () (90):.
In particular, tyu_ = T_puy..

Proof. (a) 5,6(a)s_ = da(a)sss_ = das(@)o(p,) = o(as(@)ps) = da(a).

(b) This follows from (a) because s_s;, = 1.

(c) s— = @(L)s— = s_das(1) = s_¢(ps). Similarly, ¢4 = t,¢(1) = gau(1)t4 = d(pe)i+
(d) This is clear from (c).

(e) From (b), we have ¢(a) = u_¢ay(a)uy, and the desired equation follows because
s_u_ = (us)_.
f) Note that (xt), (yu)_ = (a;t) (xt)_ zcﬁ(pxt) (bax(pt) Using (e), we get
[s—p(a)ty] [u—p(b)vy] = [(x5)—daa(a)(at) ] [(yu)-day (b)(yv)+]
= (25)-¢as(a )(b%(pt)éb y(0)(yv)+
= (z3)-¢(az(api)ay (b)) (yv)+. O

Corollary 1.5. R = ZSGS, rer S—O(A)t, = Zses,teT S_d(psApy )ty .

Proof. The second equality is clear from Lemma 1.4(d). Let R’ denote the sum in question.
Clearly R’ is closed under addition, and it is closed under multiplication by Lemma 1.4(f).
Also, 1 = 1_¢(14)1; € R'. Thus, R’ is a unital subring of R.

Since the images of ¢, s — s_, and ¢t — t, are contained in R’, we can view these as
maps into R’. The universal property for R then implies that there is a unique unital ring
homomorphism ¢ : R — R’ such that ¢)¢ = ¢ while ¥/(s_) = s_ for s € S and ¥(t,) =t for
t € T. Consequently, ¥ acts as the identity on R’, whence 1)(R) = R'. Moreover, if we view
Y as a ring homomorphism R — R, we have ©¥¢ = idgr¢ while ¢¥(s_) = idg(s_) for s € S
and ¢ (ty) = idg(ty) for t € T. Now the universal property for R implies that ¢ = idg, and
therefore R = ¢¥(R) = R'. O

We next exhibit the graded ring structure of R. As the reader will note, this result can
also be obtained from the proof of Proposition 1.10 below, and so Propositions 1.6 and 1.10
could have been combined. However, we think that separating the two results is helpful in
orienting the reader.

Proposition 1.6. The ring R has an S™'T-grading R = D,cs-1r Re where each R, =
Us*lt:z S*Qb(A)tJr

Proof. We can view R as a left A-module via ¢, and the relations in R imply that each
s_p(A)t, is a left A-submodule. If s;,5, € S and t,,t, € T such that s;'t; = s,'ts, there
exist uy,us € S such that u;s; = ussy and wuyt; = uste, whence Lemma 1.4(e) implies that
(si)-p(A)(t:)+ C (urs1)-o(A)(usty)4 for i = 1,2. Thus, each R, is a directed union of left
A-submodules of R, and so is a left A-submodule itself.

It is clear from Corollary 1.5 that R = Y _< 1, R,, and from Lemma 1.4(f) that R, R, C
Ry, for all z,y € S™'T. Hence, it only remains to show that the sum of the R, is a direct
sum.
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Let R’ denote the external direct sum of the R,, and set £’ = Endz(R’). There is a unital
ring homomorphism A : A — E’ such that each A(a) is the left A-module multiplication by
a€ A.

Given s € S, observe that s_R, C Ry, for all # € S™'T. Hence, there exists pu, € E’
such that pu(b), = s_bs, for all b € R and y € S™'T. Since ¢(a)s_ = s_¢as(a) for a € A, we
see that A(a)us = psAas(a) for a € A. Observe also that s — g is a monoid homomorphism
S°P — F.

Given t € T, it follows from Lemma 1.4(f) that ¢, R, C Ry, for all x € S™'T. Hence,
there exists v, € E' such that v;(b), = >_,,_ t1b, for b€ R and y € S™'T. Since t, ¢(a) =
day(a)ty for a € A, we see that v A(a) = Aay(a)y, for a € A. Observe also that ¢ — 1, is a
monoid homomorphism 7" — E’.

Since s_s; = 1l and s;s_ = ¢(ps) for s € S, we see that p,vs = idrp = 1 and veus = A(ps)
for s € S. Now by the universal property of R, there exists a unital ring homomorphism
1 : R — E' such that 1»¢ = X\ while (s_) = pu, for s € S and ¥(t,) =y, fort € T.

Note that 1z = 1_¢(1)1, € Ry, so there exists e € R’ such that e; = 1 while e, = 0 for all
z# 1. Given s € S, a € A, and t € T, we observe that

[W(s-g(a)ts)(e)] -, = [usA)mi(e)] ., = s—d(a)ts

and all other components of ¥(s_¢(a)t,)(e) are zero. Hence, for x € S™'T and b € R,, we
have [1)(b)(e)], = b while [¢(b)(e)], = 0 for all y # =. Consequently, if by + --- 4+ b, = 0 for
some b; € R,, where the z; are distinct elements of S™'T', then b; = [t)(by+ - -+ b,)(€)],, =0
for all i. Therefore Y 17 Re = @, cq-11 Ra, as desired. O

zeS—

To completely pin down the elements of R, we need to know the relations holding in each
homogeneous component R,. In particular, if psap; € ker(¢), then s_¢(a)t; = 0 by Lemma
1.4(d), and we would like to show that s_¢(a)t; = 0 only when pgap, € ker(¢). For this
purpose, we set up another representation of R on a left A-module.

Lemma 1.7. Let u,s € S andt e T.

(a) The map x : A X psApy — psApy given by the rule a x b := as(a)b turns the abelian
group psAp; into a left A-module.

(b) The restriction of cv, to psAp is a left A-module homomorphism psAp; — PusAPut-

Proof. Part (a) is clear because «a; is a unital ring homomorphism from A to ps;Aps, while
part (b) follows because ays = ay . O

Each homogeneous component R, of R turns out to be a direct limit of the rectangular
corners p,Ap; over pairs (s,t) such that s~'t = z. However, there is no natural partial order
on the set of these pairs — the limit has to be taken over a small category.

Definition 1.8. For + € S™!T, let D, be the small category in which the objects are all
pairs (s,t) € S x T such that s7't = z, the morphisms from an object (s,t) to an object
(s',t') are those elements u € S such that us = s’ and ut = t’, and composition of morphisms
is given by the multiplication in S. The Ore and saturation conditions on S imply that
D, is directed: given any objects (s1,t1) and (sg,t3) in D,, there exist an object (s,t) and
morphisms u; : (8;,t;) — (s,t) in D, for i = 1,2. Consequently, colimits based on D, are
directed colimits.
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Taking account of Lemma 1.7, there is a functor F, : D, — A-Mod such that Fj(s,t) =
psApy for all objects (s,t) in D, and F,(u) = ovlp,ap, for all morphisms u : (s,t) — (us, ut) in
D,. Let M, denote the colimit of F,, with natural maps 7, : psAps — M, for objects (s,t) in
D,. Since M, is a directed colimit, it is the union of its submodules 7, +(psAp:) for (s,t) € D,.
Note that if b; € ps, Apy, for i = 1,2, where (s;,t;) € D,, then ns, 4, (b1) = s, 1,(b2) if and only
if there exist uy, us € S such that uys; = ugsy and uit; = usty while also ay, (b1) = u, (b2).

Lemma 1.9. Lets€ S, t €T, and v € S7'T.
(a) There exists an additive map o5 : My, — Mg, such that o40y(b) = Nysw(Pusb) for
v =2 and b € p,Ap,.
(b) aos(m) = o5(as(a)m) fora € A and m € M,.
c) There exists an additive map 7 : M, — My, such that Ti1y,(b) = Ny o0 (b) for
wlv=2x,b€p,Ap,, andw €S, z €T such that wt = zu.

(d) Tt(am) = ay(a)r(m) fora € A and m € M,.

u

Proof. (a) For each (u,v) € D,, we have (us,v) € D,1,, and there is an additive map
Pulp, — M1, given by b — nys o (push). Moreover, if w € S then Muuswo (Puwusw(b)) =
Nwus,wo0w (Pusb) = Nusv(Pusb). Thus, our maps to M1, are compatible with the functor F,
and so there exists a unique additive map o, as described.

(b) If m = 1,,,(b) for u, v, b as in (a), then

a0 s (m) = anus,v(pusb) = nus,v<a * (pusb)) - nus,v(aus(a)pusb) = nus,v(pusaus(a)b)
= nus,v(pus(as(a) * b)) = USUU,U(O‘S(G) * b) = 08(a8<a)m)'

(c) Fix (u,v) € D,, choose w € S, z € T such that wt = zu, and note that tx = w™'zv.
Since o (puApy) C powApsy € puwAp.y, the composition of 7, ., with the restriction of a, to
PuAp, gives an additive map p,Ap, — M;,. Suppose also w; € S and z; € T such that
wit = zyu. Then wl_lzl = tu ! = w 'z, so there exist r1,7 € S such that rjw; = rw and
r1z1 = rz. Since also r1z1v = rzv and o, o, = a,a, it follows that 7y, 2,0z = Ny 0. 0D
puAp,. Thus, we obtain a well-defined additive map f,, : puAp, — M, which agrees with
Nw,2v for any w € S and z € T with wt = zu.

Now consider a morphism r : (u,v) — (ru,rv) in D,. There exist w € S and z € T such
that wt = z(ru), so that f,, ., is given by 1y ... Since wt = (zr)u, we also have that f,,
is given by 0y .rysr, and so f,, equals the composition of f,,, with the restriction of a,
to p,Ap,. Thus, the maps f  are compatible with F}, and so there exists a unique additive
map 7; as described.

(d) If m = 1y,(b) with u, v, b, w, z as in (c), then

Tt(am> = Ttnu,v(a * b) = Ttnu,v(au(a>b) = Uw,széz(Oéu(@)b) = nw,zv<awat<a>az(b))
= Nuzo(e(a) * (b)) = (@) Ny 0z (b) = au(a)m(m). O

Proposition 1.10. For each x € S™'T, there is a left A-module isomorphism 0, : M, — R,
such that 0,m,.,(b) = u_¢(b)vy for u'v =x and b € p,Ap,.

Proof. In view of Lemma 1.4(e), for each z € S™!T there is a unique additive map 0, : M, —
R, as described. If m = n,,(b) with u, v, b as above, then for a € A we have

0z (am) = 0:1u,0(a % b) = 0,10 (u(a)b) = u_gay(a)d(b)vy = ¢p(a)u_p(b)vy = ab(m).
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Thus, 6, is a left A-module homomorphism. It is surjective by definition of R,, and so it only
remains to show that ker(6,) = 0.

Form the left A-module M = @, g1y M,, set £ = Endz(M), and for each a € A
let A(a) € E be the map given by left multiplication by a. Then we have a unital ring
homomorphism A\ : A — E.

For all x € S™'T, use the same notations o, and 7; for the additive maps M, — M,-1, and
M, — M,, described in Lemma 1.9, and also for the corresponding homogeneous maps on
M. Thus, for s € S and t € T we have additive maps o, 73 € E such that o5(m), = o5(msy)
and 7(m), = >,,_, i(m,) for m € M and y € S7'T. Lemma 1.9 also shows that \(a)o, =
s as(a) and mA(a) = Aay(a)m for a € A.

It is easily checked that s +— o, and ¢t — 7, are monoid homomorphisms S°° — E and
T — E. Now consider m = n,,(b) € M, for x, u, v, b as in Lemma 1.9. There exist w € S
and z € T such that ws = zu, and

OsTs (m) = Usnw,zvaz(b) = nws,zv(pwsaz(b)) = Nzu,zv (pzuaz(b))
- nzu,zvaz(pub) - nu,v(b) =m.
It follows that 0,7, = 1g in E. Next, note that u € S and 1 € T with u-s =1 -us. Hence,

Tsas(m) == Tsnus,v(pusb) = Nu,v?1 (pusb) = 77u,v(ps * b) = psn.

It follows that 7,05 = A(ps) in E.

By the universal property of R, there is a unital ring homomorphism v : R — E such that
¢ = X while Y(s_) =05 forse Sand ¢(t,) =7 fort € T.

Define e € M so that e; = 1, ;(1) while e, = 0 for all z # 1. We claim that [(¢0,(m))(e)]. =
m for x € S7'T and m € M,. Write m = n,,(b) where u"'v = z and b € p,Ap,. Then

0, (m) = Y(u_p(b)vy) = g, A(b)T, and so

[(¥0-(m))(e)]e = oA (D) Ty (1) = Ou)‘(b)nl,vav(l) = 0y, (b * py)
- Uunl,v(b> = nu,v(pub> = nu,v(b> =m,

as claimed.
The claim immediately implies that ker(6,) = 0 for all x € ST, as desired. O

Corollary 1.11. (a) Let s € S, t € T, and a € A. Then s_¢(a)ty = 0 if and only if
psap; € ker(avy) for some s’ € S. In particular, ker(¢) = J, g ker(ay).

(b) The ideal I = ker(p) satisfies a;*(I) =1 for all s € S and () C I for allt € T.

(¢) a induces a monoid homomorphism o : T — Endz(A/I), and o is injective for all
s5€S.

(d) SP sy Ao T = SPxy (A/I) %o T
Proof. (a) By Lemma 1.4(d), s_¢(a)ty = s_¢(b)ty where b = psap;. Then Proposition 1.10
vields 6,ns.(b) = s_¢(a)t; where z = s~'t. Since 6, is an isomorphism, s_¢(a)t; = 0 if and
only if ns(b) = 0, which happens if and only if ay(b) = 0 for some s’ € S. This verifies the
first statement in (a). The second follows on taking s =t = 1.

(b) If t € T and s € S, there exist s € S and ¢ € T such that st = t’s. Then
agag(ker(as)) = 0, and so ay(ker(as)) C ker(ay) C I. This shows that ay(I) C I for all
tefT.
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Now if s € S, the previous paragraph implies that I C a;'(I). If a € a;'(I), then
as(a) € ker(ay) for some s’ € S, whence a € ker(ays) C I. Therefore a; (1) = 1.
(c)(d) These are clear from (a) and (b). O

1.12. As Corollary 1.11 shows, we can always reduce to the case where «; is injective for all
s € S. In that case, ¢ is injective by Corollary 1.11(a), and so we can identify A with the
unital subring ¢(A) C R. All of the relations in R simplify in this case:

(1) tya = ay(a)ty foralla € Aand t € T

(2) as_- = s_ag(a) for all a € A and s € S;

(3) s_s; =1forall s €S,

(4) sy s_ = p, for all s € S;

(5) R has an S™'T-grading R = @, g1 Rx where each R, = (J,-1,_, s_At.;

(6) s_aty = s_psapsty fors € S;t € T,and a € A, and s_at, = 0 if and only if p;ap, = 0;

(7) Let x = sy 't = s, 'ty € S™'T for some 81,59 € S, t1,15 € T, and let ay,as € A. Then
(s1)_ai(t1)+ = (s2)_as(ta)y if and only if there exist uy, us € S such that u1s; = ugsy
and wuyty = usty while also av,, (ps,a1ps,) = uu, (Psya2p1,)-

2. THE CASE S =T = Z*; EXAMPLES

2.1. For the remainder of the paper, we take advantage of Corollary 1.11 and assume that
o is injective for all s € S. Thus, the relations in R = S°P %, A %, T take the simplified form
given in (1.12). Moreover, we assume that the maps a, are corner isomorphisms, that is,
each ay is an isomorphism of A onto psAps. Finally, we assume that S = T is a submonoid
of a group G which is its group of left fractions, that is, G = S~1S. These conventions are to
remain in effect for the rest of the paper.

2.2. A particularly nice setting is the case when G is a left totally ordered group with positive
cone Gt = S (thus G = S7'US and S7' NS = {1}). In this case, the elements of R can
be expressed in a simpler way, namely in the form ) _¢s_as + ), g ast4. To achieve this,
we need to be able to simplify individual terms s_at,, for s,t € S and a € A. If s <, then
s~ > 1, whence u := st € S. Then s_aty = s_a(su)y = s_psapss4u,. Because of our
current convention that ay : A — psAp, is an isomorphism, psaps = a(b) for some b € A,
and therefore s_at, = s_ag(b)siuy = bs_s, u, = buy. On the other hand, if s > ¢, then
v:=t"1s € S and s_at, =v_c where c = o; ' (piap;).

2.3. We now specialize to the case where S is the additive monoid Z*, so that G = Z.
Here the monoid homomorphism « : S — Endr(A) is determined by a1, and so we change
notation, writing « and p for a; and p;. Thus, « is now an isomorphism A — pAp, and the
monoid homomorphism S — Endr(A) is given by the rule n — a”. Let ¢ denote the generator
1 € Z+ = S. Since the maps s — si are monoid homomorphisms into the multiplicative
structure of R, we have ny = (t4)" =: t} for n € Z*, and

at” =t"a"(a) and tha=a"(a)t}

forall a € A and n € Z*.
In view of (2.2), the elements r € R = Z %, A %, Z" can all be written as ‘polynomials’
of the form

r=aytl +...taty +ag+toa+ . t"a,,



10 P. ARA, M.A. GONZALEZ-BARROSO, K.R. GOODEARL, AND E. PARDO

with coefficients a; € A. Because of this similarity of R with a skew-Laurent polynomial ring,
we shall use the notation R = A[t,,t_;al]. Proposition 1.6 shows that R is a Z-graded ring
R = @iez R;, and from the discussion above we see that R; = Atﬁr for i >0 and R; = t_*A
for ¢ < 0, while Ag = A.

Our construction of Z* %, A *, Z* is an exact algebraic analog of the construction of the
crossed product of a C*-algebra by an endomorphism introduced by Paschke [19]. In fact,
if A is a C*-algebra and the corner isomorphism « is a *-homomorphism, then Paschke’s
C*-crossed product, which he denotes A x, N, is just the completion of Z* *x, A *, Z" in a
suitable norm.

Note again that any ring R = A[t,,t_; ] is Z-graded, with A = Ry. Moreover, ¢, is a left
invertible element of R; with a particular left inverse t_ € R_;, and « can be recovered from
the rule a(a) = tyat_. These observations allow us to recognize rings of the form At t_; ]
among Z-graded rings, as follows.

Lemma 2.4. Let D = @, D; be a Z-graded ring containing elementst, € Dy andt_ € D_,

such that t_t, = 1. Then there is a corner isomorphism « : Dy — t t_Dyt t_ given by the
rule a(d) =tydt_, and D = Dylt,,t_; .

Proof. Tt is clear that t,¢_ is an idempotent in Dy, and that the given rule defines an
isomorphism « : Dy — ty t_ Dot t_. Hence, there exists a fractional skew monoid ring
D = Dylt;,t_;a]. Since tod = a(d)t, and dt_ = t_a(d) for all d € D, the identity map on
Dy extends uniquely to a ring homomorphism ¢ : D — D such that B(tL) = t+. It remains
to show that ¢ is an isomorphism. Note that since t € D; and t*. € D_; for all ¢« € N,
the map ¢ is a homomorphism of graded rings. Thus, we need only show that ¢ maps each
homogeneous component ZAjZ isomorphically onto D;. This is already given when i = 0.

Now let i > 0. If z € D;, then = = dt’. for some d € Dy, and P(x) = di'.. If ¢(x) =
then da'(1) = ahfZ t* =0 in Dy, whence z = da‘(1 )tZ —0in D. Thus, the restriction of qb to
D; is injective. Further, if y € D;, then yt° € Dy and o((yt)t') = yt' t’. = y. Therefore ¢
maps D; isomorphically onto D;. A symmetric argument shows that this also holds for i < 0,
completing the proof. O

Example 2.5. An algebraic version of the Cuntz-Krieger algebras. We give an algebraic
version of the C*-algebras Q4 introduced in [10] (now called “Cuntz-Krieger algebras” in the
literature), and show that they may be expressed in the form B[t,,t_;«] for ultramatricial
algebras B and proper corner isomorphisms «. The latter statement is parallel to the cor-
responding C*-algebra result: O4 = B %, N for a suitable approximately finite dimensional
C*-algebra B (essentially in [10]; discussed explicitly in [22, Example 2.5]).

Let k be an arbitrary field and A = (a;;) an n X n matrix over k, with a;; € {0, 1} for all ¢, 5.
To avoid degenerate and trivial cases, we assume that no row or column of A is identically
zero, and that A is not a permutation matrix. We define the algebraic Cuntz-Krieger algebra
associated to A to be the k-algebra C' = CK 4 (k) with generators z1,y1, . . ., T,, Y, and relations

(1) zyx; = x; and y;zy; = y; for all ;
(2) z;y; = 0 for all ¢ # j;

(3) ziys = D), aijy;x; for all 4;

(4) ZJ Ly = 1.
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Note that all the x;y; and y;z; are idempotents, and that the y;x; are pairwise orthogonal.
The free algebra k(X;,Y1,...,X,,Y,) can be given a Z-grading in which the X; have degree
—1 while the Y; have degree 1, and the relators X;Y; X; — X, etc. corresponding to (1)—(4) are
all homogeneous. Hence, C' inherits a Z-grading such that each z; € C'_; and each y; € C4.

Now set N = {1,...,n}. Given u = (py, ..., ue) € N* for some ¢, we set x, = x,,T,, - T,
and Y, = Yu, Yy -+ - Yu,- The case £ = 0 is allowed, with the conventions that N° = {&} and
Ty = Yy = 1. The subalgebra B = Cj of C' is the k-linear span of the set

{yllw’/ ‘ M?I/E NE) £€Z+}

As in [10, Proposition 2.3 and following discussion], B is an ultramatricial k-algebra, and
Ky (B) is isomorphic (as an ordered group) to the direct limit of the sequence

zn Lygn Avgn A,
with the class [B] € Ky(B) corresponding to the image of the order-unit (1,1,...,1)" in
the first Z". (See [11, Chapter 15] for a development of ultramatricial algebras and their
classification via Kj.)

Fori=1,...,n, let e; denote the sum of those y;z; for which y;z; < z;y; but y;x; £ 2,,ym
for any m < i. These e; are pairwise orthogonal idempotents in B, with each e; < x;y;. Since
the matrix A has no identically zero columns, each y;z; lies below some z;y;, and so each y;z;
lies below some e;. In fact, y;z; < e; where 7 is the least index such that a,; = 1. From relation
(4), it follows that ), e; = 1. Next, note that the elements y;e;x; are pairwise orthogonal
idempotents in B (because e;x;y; = e; for all i), whence the sum p := yje1xq + -+ + ypenxy,
is an idempotent in B. Moreover, x;p = e;x; and py; = y;e; for all 7. We claim that p # 1.

If p = 1, then each x; = e;x;, whence each z;y; = e;. Then the z;y; are pairwise orthogonal.
In view of the relations (3), it follows that each column of A has only one nonzero entry.
Since A has no identically zero rows, it must be a permutation matrix, contradicting our
assumptions. Therefore p # 1, as claimed.

Nowsett_ =ex1+---+ex, € C_yand ty =yre1+---+ype, € Cy. Thent t_ = p, and

tty = Z €;TYi€; = Z Aij€iY;jT;€; = Z?Jﬂj =1,
i=1 ij=1 j=1
because each y;z; < e; for precisely one i, and a;; = 1 for that 7. Hence, there is a proper
corner isomorphism « : B — pBp given by the rule «(b) = t,bt_, and we conclude from
Lemma 2.4 that
C =CKa(k) = Blty,t_;q]. O
In case the matrix A in Example 2.5 has all of its entries equal to 1, the relations for the

algebra CIC 4 (k) reduce to

(1) zy; =6, for all 4, j;

(2) iy =1
Thus in this case, CIC4(k) is the Leavitt algebra Vi (k) first studied in [17]. (The notation

Vi was introduced in [5].) There is a related Leavitt algebra U; ,,(k) which, as we now show,
can also be presented as a fractional skew monoid ring.

Example 2.6. Let k be a field and n € N. The algebra U = Uy, (k) is the k-algebra with
generators Ty, yi, ..., Tn, Y, and relations x;y; = 6;; for all 4, j. (Thus, Vi ,(k) is the factor
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algebra of Uy ,(k) modulo the ideal generated by 1", y;x;.) The elements y121, ..., ynZy
are pairwise orthogonal idempotents in U. As in Example 2.5, there is a Z-grading on U such
that each x; € U_; and each y; € U.

Set N ={1,...,n} and define z,,y, € U for u € N* as in Example 2.5. In U, the set

{yyz, |p € N, veN™, t,meZ'}
forms a k-basis. We again set B = Uy, which is the k-linear span of the set
{yury | pv € N°, L€ Z7},
and as before, B is ultramatricial. It is isomorphic to a direct limit of the algebras
M,i(k) X Myi-1(k) x -+ x M, (k) x k,

the ordered group Ky(B) is isomorphic to the direct limit of a sequence Z — 72 =73 — -
where each transition map Z' — Z! is given by an (i + 1) x i matrix of the form

n 00 -+ 00
100 -+ 00
010 -+~ 00
000 -+ 10
000 -+ 01

and the class [B] € Ky(B) corresponds to the image of 1 € Z.

Set p = y1x1 € B, a proper idempotent. Then set ¢ = x; € U_y and t, = y; € Uy, so
that t,¢t_ = p and t_t, = 1. Hence, the rule b — t,bt_ gives a proper corner isomorphism
a: B — pBp, and Lemma 2.4 shows that

U= U n(k) =Bty t_;al O
Example 2.7. Let k be a field, and note that there are natural inclusions
Upa(k) CUo(k) CUps(k) C---

among the algebras Uy (k). Set Us(k) = U,—, Uin(k), which is a simple algebra (e.g.,
[3, Theorem 4.3]). We may also view Uy (k) as the k-algebra with an infinite sequence of
generators i, Y1, T2, Y2, ... and relations x;y; = 0, ; for all 4, j. This algebra is Z-graded as
before, with the x; having degree —1 and the y; degree 1. Set B = Uy(k)y, which is the
k-linear span of the set

{ypz, | v e{l,...,n}, neN, L€ Z"}.
In the present case, B is an ultramatricial k-algebra isomorphic to a direct limit of the algebras

Myn (k) X Mpn-1(k) x -+ x M, (k) x k.
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Here Ky(B) is isomorphic to the direct limit of a sequence Z? — Z* — Z* — ... with
transition maps

n n 7L2 n3 . nn—2 nn—l

1 1 n n? o nv3 nn?

01 1 nnt pne3

o0 0 0 -- 1 1

o0 o0 0 --- 0 1

and [B] corresponds to (1) € Z2. If we define p, t1, a exactly as in Example 2.6, we conclude
from Lemma 2.4 that

Us(k) = Blty,t_;ql. O
3. FRACTIONAL SKEW MONOID RINGS VERSUS CORNERS OF SKEW GROUP RINGS

Paschke [19] and Rgrdam [22, Section 2] have shown that a C*-algebra crossed product by
an endomorphism corresponds naturally to a corner in a crossed product by an automorphism.
In other words, the C*-algebra versions of fractional skew monoid rings Z* x, A x, Z" are
isomorphic to corners e(B #*, Z)e in certain skew group rings. This leads us to ask whether,
in general, our rings S°P %, A %, S should appear as corner rings e(B * G)e, where B x G
is some skew group ring over the group G = S~'S. This is indeed the case, as we prove
in Proposition 3.8. We prepare the way by studying corner rings of the form e(A x G)e (for
G = 57185 as above), and showing that they fall into the class of fractional skew monoid rings
under appropriate conditions on the action.

3.1. Let A be a unital ring, G' a group, and « : G — Aut(A) an action. Assume that S is a
submonoid of G with G = S~1S, and let R = A *, G. Suppose that there exists a nontrivial
idempotent e € A such that as(e) < e for all s € S.

Lemma 3.2. Under the above assumptions, the following hold:

(a) The action « restricts to an action o : S — Endr(eAe) by corner isomorphisms.

(b) There are natural monoid morphisms S°° — eRe, given by s — es™', and S — eRe,
given by t — te, satisfying the conditions (1)—(4) in Definition 1.2 with respect to ' and the
inclusion map ¢ : eAe — eRe.

Proof. (a) This is clear from the hypothesis on e.

(b) Notice that, since e < a;'(e) for all s € S, we have es™! = es 'a,(e) € eRe and
(es™H)(et™) = e(ts)™! for s,t € S. Similarly, se € eRe and (se)(te) = (st)e. So, the defined
maps are monoid morphisms. It is straightforward to check conditions (1)—(4) in Definition
1.2. U

Because of Lemma 3.2, we have the data to construct a fractional skew monoid ring of the
form S°P %, (eAe) %o S. Since the maps o) = agleae are injective for all s € 5, the ring
homomorphism eAe — S°P %,/ (eAe) xS going with the construction of S %, (eAe) %4 S
is injective by Corollary 1.11. Hence, we identify eAe with its image in S°P x,/ (eAe) %/ S, as
in (1.12).

Proposition 3.3. Under the assumptions of (3.1), the rings SP . (eAe) %o S and e(Ax,G)e
are isomorphic as G-graded rings.
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Proof. By the universal property of S° %, (eAe) %, S, there exists a unique ring homomor-
phism 1) : S %, (eAe) ¥ S — e(A *, G)e such that ¥(s_aty) = (es™')a(te) for all s,t € S
and a € eAe. Clearly, ¥ is G-graded. To see that 1 is onto, consider e(ag)e € e(A * G)e
where a € A and g € G, and write g = s~ !t for some s, € S. Then we have

e(ag)e = eas 'te = (es ) (as(ea)ay(e))(te) € Y(SP o (eAe) o S),

which proves that 1) is onto. It only remains to check that v is one-to one.

Since 1 is G-graded, we only have to check that ¢ (s_at;) = 0 implies @ = 0, when s, € S
and a € ps(eAe)p,. Note that ps = o (lese) = as(e), and likewise p; = ay(e), so that
a = ag(e)aay(e). Now

0 = (es Hal(te) = ea; *(aay(e))(s7't) = a; (as(e)aay(e))(s™'t) = o (a)(s7t),

S

whence a;1(a) = 0 and a = 0, as desired. O
The following procedure gives a generic way to obtain a situation as in (3.1).

Example 3.4. Let a: G — Aut(A) be an action of an abelian group G on a unital ring A, and
let e be an idempotent in A. Set S := {s € G | as(e) < e}. Then S is a submonoid of G and
G’ := 8718 is a subgroup of G acting on A via a. Moreover, e(A*,G')e =2 SP x . (eAe) %4 S,
where o : S — Endr(eAe) is the induced action of S on eAe by corner isomorphisms.

Proof. 1t is clear that S is a submonoid of GG, and we can apply Proposition 3.3 to get the
result. 0

Now we go in the reverse direction, looking for a representation of a fractional skew monoid
ring S°Px, A%, S as a corner ring of a skew group ring. Our original approach utilized a direct
limit construction based on ideas of Rgrdam [22]; that approach required S to be abelian. In
the meantime, we learned of the work of Picavet [21], whose construction we can make use
of without needing S to be abelian.

3.5. Let A be a unital ring, G a group and S a submonoid of G such that G = S71S. Thus, S
satisfies the left Ore condition, and left reversibility holds trivially because S has cancellation.
Let a : S — Endr(A) be an action of S on A by corner isomorphisms, and for s € S let pj
denote the idempotent a(1). We construct a ring S~ A as in [21], but with some changes of
notation to fit our situation. As written, the development in [21] would require S to act on
A by unital ring endomorphisms. However, almost all the results we shall quote do not make
use of this assumption, the exception being the question of an identity — in our situation,
S~!A can be a non-unital ring.
First, define a relation ~ on S x A as follows:
(s1,a1) ~ (sg,a9) if and only if there exist t;,t; € S such that t;8; = ¢35, and
ay, (a1) = ay,(az).
This is an equivalence relation [21, Lemma 2.1}, and we write [s, a] for the equivalence class
of a pair (s,a). Let ST'A = (S x A)/~ be the set of these equivalence classes. The left
Ore condition guarantees “common denominators” in S™'A: Given any x, 7, € S1A, there
exist s € S and aj,ay € A such that each z; = [s,a;]. By [21, Lemma 2.2 ff.], there is a
well-defined associative multiplication on S~'A as follows:
Given any [s1,a1], [s2,as] € STTA, choose t1,t, € S such that t1s; = tysy, and set
[s1,a1] - [s2, az] = [t1s1, o, (ar) o, (a2)].
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(This multiplication rule is simpler than the Ore-Asano rule for multiplication of noncommu-
tative fractions, because the classes [s, a] model elements that would have the form o *(a) if
a;s extended to an automorphism of an overring of A.) It is routine to build a well-defined,
commutative, associative addition on S~!A by the corresponding rule:

Given any [s1,a1], [s2,as] € STTA, choose t1,t, € S such that t1s; = tysy, and set

[s1,a1] + [s2, as] = [t151, o, (a1) + au, (a2)].
The distributive law is also routine, and so S™'A becomes a (possibly non-unital) ring. In
fact, for [s,a] € ST'A we have [1,1] - [s,a] = [s, psa] and [s,a] - [1,1] = [a, ap,].

Next, we extend a to an action of S on S™'A. Since this is done without proof in [21,
Theorem 2.4 ff.], we sketch the details.

Lemma 3.6. The action of a on A extends to an action o : S — Aut(S™'A) as follows:
Given any s € S and [t,a] € ST'A, choose s',t' € S such that s's = t't, and set
Oés([t, a]) = [8/7 at’(a)]'

Proof. First, let s € S and [ty, a1] = [t2, as] in STLA. Let sy, uy, s9,us € S such that s;s = ut;

and s9s = ugte; we must show that [sy, oy, (a1)] = [s2, au,(az)]. There exist 71,79 € S such
that 7181 = 7289, and each [s;, ay, (a;)] = [riSi, @y, (a;)]. Hence, we may assume that s; = so.
Note that now Ultl = Ugtg.

Since [t1, a1] = [t2, as], there exist vy, ve € S such that vit; = vaty and v, (a1) = au,(as).

Further, there are p,q € S with pv; = qu;. Then puvsty = puvity = quit; = qusts, and so
puy = quo. After replacing si,uq, So, us by ¢si, qui, qss, qus, we may assume that pv; = u;
for i = 1,2. Consequently, a,, (a1) = ay,(as), whence [s1, ay, (a1)] = [s2, au,(a2)]. Therefore
as([t, a)) is well-defined.

Consider s € S and [t,ay], [t,as] € ST'A. Choose §',t' € S such that s's = t't; then

as([t, a1] - [t, ag]) = as([t, arag]) = [¢', aw(aras)]
= [, ap(ar)] - [s', av(az)] = as([t, a1]) - as([t, aa)),

and similarly for addition. This shows that a is a ring endomorphism of St A. If a([t, a1]) =
as([t, as]), there exist uy,us € S such that u;s’ = uas’ and ay,p(a1) = e (az). Since then
Uy = uy, it follows that [t,ai] = [t, as]. Thus, ay is injective. Moreover, for any [t,a] € S~'A
we see that a,([ts,a]) = [t,a]. Therefore a, € Aut(S—tA).

It is clear that o is the identity map. Finally, consider s1,s, € S and [t,a] € S™tA. There
exist sh,to € S such that sys9 = taot, so that a,([t,a]) = [sh, au,(a)]. There exist s7,t; € S

such that s{s; = t15), so that ag, ([sh, ay,(a)]) = [s], au,(a)]. But s\ sise = titat, and so
Qs ([t a]) = [8], iy, (@)] = s, (s, ([t a])). Therefore the map o : S — Aut(S™'A) is a
monoid homomorphism. Il

There is a shortcut that can be taken for part of the above work. The given action of
S induces on A the structure of a left module over the monoid ring ZS. Moreover, S is a
left denominator set in ZS, and the Ore localization S™(ZS) is just the group ring ZG. By
standard localization theory, there exists a module of fractions S~!'A, which is a left ZG-
module. Thus, one obtains the construction of S™'A as an additive group and the action of
S on S7'A by Z-module automorphisms.

Lemma 3.7. The rule a w [1,a] defines an S-equivariant ring embedding ¢ : A — S™'A
with image [1,1] - ST1A - [1,1].
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Proof. 1t is clear that ¢ is a ring homomorphism and that it is S-equivariant, i.e., ¢p(a (a)) =
as(¢(a)) for s € S and a € A. If a € ker(¢), then [1,a] = [1,0], and so as(a) = 0 for some
s € S. Since «y is injective, a = 0. Thus, ¢ is an embedding.

Set e = [1,1] = ¢(1), and note that ¢(a) = ep(a)e for a € A. Recall that e[s, ale = [s, psaps]
for any s € S and a € A. Since ag(A) = psAps, there exists b € A with a,(b) = psaps, whence
e[s,ale = [s,as(b)] = [1,b]. Therefore the image of ¢ equals (S~ A)e. O

Proposition 3.8. Let G be a group and S a submonoid of G such that G = S™'S. Let
a:S — Endr(A) be an action of S on A by corner isomorphisms. Then there exist a unital
ring B, an action & : G — Aut(B), and an idempotent e in B such that as(e) < e for all
s €S and S x, Ax, S = e(B x4 G)e (as G-graded rings).

Proof. Construct S™'A as above, set e = [1,1], and identify A with the corner e(S™1A)e via
Lemma 3.7. Let B be the unitization of S™'A; then also A = eBe. In view of Lemma 3.6,
« extends to an action G — Aut(S7'A), and thus to an action @ : G — Aut(B). It
clear that as(e) < e for s € S, and we conclude from Proposition 3.3 that e(B %4 G)e
S x4 (eBe) %4 S = S %, A %, S as G-graded rings.

0 IR &

4. SIMPLICITY

We continue the general assumptions of (1.1) and (2.1), and seek conditions on A, S, and
a under which R = S° %, A %, S is a simple ring. In the case of a group action (i.e., S = G
and « : G — Aut(A)), sufficient conditions for simplicity are well known [18, Theorem 2.3]:
If A is simple and the action « is outer, then the skew group ring A %, G is simple. It turns
out that a suitable modification of the notion of an outer action also leads to simplicity in
our more general situation.

We shall say that a pair («g, aq), where s,t € S, is inner provided there exist elements
u € psApy and v € p;Aps such that uwv = p,, vu = py and as(z) = uay(x)v for all z € A. Note
that then a,a; ' (z) = uav for every x € p,Ap;, and oya; (x) = vau for all € pyAp,. Let us
say that « is outer in case (s, oy) is not inner for any distinct s,t € S.

We will use the following standard terminology. The support of an element r = " r, in
R = @, R, is the set Supp(r) = {x € G | r, # 0}. The length of r is the number of

elements in the support of r, and is denoted len(r).
Theorem 4.1. If A is simple and « is outer, then R = S x, A x, S is simple.

Proof. Suppose that R is not simple. Let I be a proper nonzero ideal of R, and let p € [
be a nonzero element with minimal length, say length n. Write p = > | (s;)—a;(¢;)+ where
the s; ¢, are distinct elements of S~'S and each a; is a nonzero element of Ds; Apr,. Observe
that (s1)+p(t1)- = a1 + Y 1, pi where each p; lies in the s1s; 't;t;'-component of R. Hence,
(s1)+p(t1)- = a1 + 31 5(u;)—bi(vi)+ where the u; 'v; are distinct elements of S~19, different
from 1, and each b; € p,, Ap,,. Moreover, a; # 0 implies (s1)p(t1)- # 0, and so (s1)p(t1)-
has length n by minimality. Thus, after replacing p by (s1).p(t1)—, we may assume that
S1 = tl = 1.

Since A is simple, Y|

m
=1

Do cipdy =1+ 3 (51)- (3 i (eg)asen, (7)) (1)

cjard; = 1 for some ¢;,d; € A. Then we can replace p by
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and so we may now assume that a; = 1. Of course p # 1 because I # R, whence n > 2. Set
§ =89, t =1y, and a = ay € p;Apy, so that

p=1+s_at, + Z(si)—ai(ti)+-
i=3

For any x € A, we have xp — pxr € I and
xp — pr = s_(as(x)a — aoy())ty + Z(Si)_oi(ti)Jr
i=3

for some elements ¢; € p,, Ap;, that we need not specify. Thus xp — px has length less than
n, and so zp — pr = 0 by the minimality of n. Therefore

as(r)a = aay(x)

for all € A. In particular, p;Aa = psApsa = as(A)a = aay(A) = aAp;.
Since A is simple, Ap;A = AaA = A, and so

CLAps = aAptAps = psAaAps = psAp37

whence there is some b € p,Aps such that ab = p,. Similarly, there is some ¢ € p;Ap, such
that ca = p;. But ¢ = e¢ps = cab = p;b = b, so that ba = p;. Now

ac ()b = as(x)ab = as(x)ps = as(T)

for all z € A, and so we conclude that the pair (as, o) is inner. Since « is assumed to be
outer, we must have s = t. But then s, 'ty = s7't = 1 = s, 't;, contradicting the distinctness
of the s; 't;. Therefore R is simple. O

Corollary 4.2. If A is simple and p, # p; for all distinct s,t € S, then R is simple.
O

Corollary 4.3. If A is a directly finite simple ring, p € A is a proper idempotent (i.e., p # 1),
and o : A — pAp is a corner isomorphism, then 7+ x, A xo Z is simple.

Proof. The idempotents corresponding to the monoid homomorphism Z* — Endr(A) in this
case are the o'(1) for i € ZT. Since a(1) = p # 1, we have 1 > a(1) > o*(1) > ---, and it
follows from the direct finiteness of A that o*(1) ¢ o’(1) for all distinct 4,j € Z*. O

5. PURELY INFINITE SIMPLICITY

We recall from [3] that a simple ring T is said to be purely infinite if every nonzero right ideal
of T contains an infinite idempotent. This concept is left-right symmetric, as the following
characterization shows: 7T is purely infinite if and only if (1) 7" is not a division ring; (2) for
every nonzero element a € T, there exist elements z,y € T such that zay = 1 [3, Theorem
1.6]. For instance, the Leavitt algebras V; (k) and Uy (k) are purely infinite simple rings [3,
Theorems 4.2, 4.3]. As we have seen above (Examples 2.5 and 2.7), the V},,(k) and Uy (k)
can be presented in the form Z* %, B *, Z". This suggests that fractional skew monoid rings
might be purely infinite simple in some generality. Our goal in this section is to establish
sufficient conditions for a fractional skew monoid ring R = S°Px, A*, S to be a purely infinite
simple ring, under the general assumptions of (1.1) and (2.1).
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The following concept will be needed. A ring T is said to be strictly unperforated provided
the finitely generated projective right (or left) T-modules enjoy the following property: If
mA < mB for some m € N, then A < B. (Here mA denotes the direct sum of m copies
of A, and the notation X < Y means that X is isomorphic to a proper direct summand of
Y. Similarly, e < f, for idempotents e, f € T', means that e ~ ¢ < f for some idempotent
e’ in T.) Stated in terms of idempotents in matrix rings over 7', strict unperforation is the
condition (m-p < m-g = p < q), where m-p denotes the orthogonal sum of m copies of an
idempotent p. For instance, ultramatricial algebras are strictly unperforated [11, Theorem
15.24(a)]. Also, any purely infinite simple ring 7" is strictly unperforated, because A < B for
all nonzero finitely generated projective T-modules A and B [3, Proposition 1.5].

Lemma 5.1. , Assume that A is simple and strictly unperforated, and that there exists u € S
such that p, # 1. For any nonzero idempotent e € A, there exists v =u’ € S for some j € N
such that p, < e.

~

Proof. Set p; = pyi = a!,(1) for i > 0. Since A is simple, there exists m € N such that 1 < m-e
and 1 < m-(1 —p;). Note that

(m+1)pr Smpr®1 Smpr®@m-(1—py) ~ml.

Applying the isomorphisms o, : A — p;Ap;, we obtain that (m + 1)-pi1 S mep; for all i. It
follows by induction that (m + 1)%p; < m‘-1 for all 4.
Now choose j € N such that m’*! < (m + 1)?, and observe that

m/ T, < (m+ 1) p; Smf- 1 <mithe,
whence m?™t-p; < m/*t.e. Therefore p; < e, because A is strictly unperforated. O
The following lemma is a variation on results such as [11, Proposition 3.3].

Lemma 5.2. If T' is a simple ring containing an idempotent p # 0,1, then T is generated
(as a ring) by its idempotents.

Proof. Let T" be the subring of T generated by the idempotents. Since p + pt(1 — p) is
idempotent for any t € T, we see that pT(1 — p) C 7", and likewise (1 — p)Tp C T'. The
simplicity of T" implies that T'(1 — p)T' = T, whence pT'p = [pT'(1 — p)][(1 — p)Tp] C T’, and
similarly (1 —p)T'(1 —p) C T". Therefore 7" =T. O

Theorem 5.3. Assume that A is a simple, strictly unperforated ring, in which every nonzero
right (left) ideal contains a nonzero idempotent. Assume also that « is outer, and that there
exists u € S with p, # 1. Then R = S°P %, A %, S is a purely infinite simple ring.

Proof. The hypothesis that p, # 1 will allow us later to apply Lemma 5.1. Moreover, it
implies that R is not a division ring.

Let p be an arbitrary nonzero element of R. Choose p/, p” € R such that p'pp” is nonzero
and has minimal length for such nonzero products, say length n. Since it suffices to find
x,y € R such that xp'pp”y = 1, we may replace p by p'pp”. Thus, without loss of generality,
all nonzero products opo’ in R have length at least n. Now write p = Y, (s;)_a;(t;)+ where
the s;lti are distinct elements of S™1S and each a; is a nonzero element of p,, Ap;,. As in the
proof of Theorem 4.1, after replacing p by (s1)4p(t1)- we may assume that s; = ¢; = 1, so

that p = ay + 3 7, (si)-ai(t:)+-
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By our hypothesis on idempotents, there exists a}j € A such that a;a] is a nonzero idem-
potent. By Lemma 5.1, there exist x,y € A such that za,ajy = p, for some v € S. Note that
v_zajajyvy = 1. Hence, after replacing p by v_zpa)yv,, we may assume that a; = 1. We
are thus done in case n = 1.

Suppose that n > 2, and set s = 59, t = t9, and a = as € p;Ap;. Thus,

p=1+s_at, + Z(si)—ai(ti)+
=3

at this point. For any idempotent e € A, we have
ep(l —e) = s_a,(e)a(ps — au(e))ty + Z(si)_oi(ti)Jr.
=3

Since ep(1 — e) has length less than n, it must be zero, whence as(e)a(p; — ay(e)) = 0.
Thus, as(e)a = as(e)aay(e). A symmetric argument involving (1 — e)pe shows that aay(e) =
as(e)aay(e), and so as(e)a = aay(e).

By Lemma 5.2, A is generated by its idempotents. Hence, it follows from the equations
as(e)a = aay(e) that as(z)a = aay(x) for all z € A. As in the proof of Theorem 4.1, this
implies that the pair (a, o) is inner, yielding s = ¢ and s, 'ty = s;'t;, which contradicts our
assumptions. Therefore n = 1, and the proof is complete.

It is perhaps not so surprising that the purely infinite simple property carries over from
A to R under suitable conditions. More interesting is that R can be purely infinite simple
even when A is directly finite. We single out an important case of this phenomenon in the
following corollary.

Corollary 5.4. Suppose that A is either a purely infinite simple ring or a simple ultrama-
tricial algebra over some field. Assume also that o is outer, and that there exists u € S with
pu # 1. Then R = S°P x, A x, S is a purely infinite simple ring. O
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