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Abstract. We show that the representation of the monoid of intervals of a simple refinement
monoid in terms of affine semicontinuous functions, given by Perera in 2001, fails to be faithful
in the case of strictly perforated monoids. We give some potential applications of this result
in the context of monoids of intervals and K-Theory of multiplier rings.

Introduction

Monoids of intervals of partially ordered abelian groups (or of abelian monoids) has been a
topic of interest in the last years, usually as a tool to analyze some other algebraic structures.
For example, Wehrung used intervals in [30] in order to give a complete description of the
universal theory of Tarski’s equidecomposability types semigroups. Also, he used intervals in
[31] as an instrument to obtain some extensions of Edwards’ Separation Theorem (see, e.g.
[10, Theorem 11.13]).

A place where intervals played an important role was in the context of C*-algebras. Good-
earl and Handelman [11], [12] used intervals to give a complete classification of extensions of
AF C*-algebras. Also, Goodearl [13] used intervals in order to describe the ideal structure
of the multiplier algebra M(A) of a σ-unital, non-unital C*-algebra of real rank zero and
stable rank one A. In fact, he proved that the group K0(M(A)) is order-isomorphic to the
universal group of the monoid of countable generated intervals on K+

0 (A). Recently, Perera
[19] strengthened Goodearl’s results by working with monoids of intervals over V (A), in the
particular case of a simple C*-algebra A with V (A) strictly unperforated. He showed that
V (M(A)) is isomorphic to V (A) t W d

σ (Su), where W d
σ (Su) is a semigroup of affine lower

semicontinuous functions. These results allowed to study the ideal structure of V (M(A))
and V (M(A)/A), as well as its cancellation properties, working with functions instead of
intervals, which allows to obtain interesting results in a simplest way. A relevant property
enjoyed by the C*-algebra A in the above mentioned cases is that K0(A) turns out to be a
Riesz group (see, e.g. [10]). This result, proved by Zhang [33, Theorem 3.2], endows K0(A)
with an extra structure that plays a major role in the work of Goodearl and Perera, allowing
them to obtain important results about the structure of V (M(A)).
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2 F. ORTUS AND E. PARDO

The idea of our work is to follow this line, i.e. to abstract the study to monoids of intervals
of simple, cancellative, non-atomic, refinement monoids (i.e. to positive cones of simple Riesz
groups), and to translate the results we obtain to the K-theoretical context. In this line is
essential to consider into our scope recent results of Wehrung [32], and Pardo [15], [18], where
some methods for constructing large families of strictly perforated simple Riesz groups are
introduced. The examples obtained in these works allow to construct monoids of intervals
satisfying special pathologies, such as failure of separativity of the monoid of intervals (see
[1]), among others. Also, Villadsen [25], Rørdam and Villadsen [21], Elliott and Villadsen
[7], and Toms [22] constructed examples of simple C∗-algebras of stable rank one whose K0

groups are torsion free and strictly perforated. These examples suggests the possibility of
constructing C∗-algebras A with real rank zero, stable rank one, with K0(A) being strictly
perforated. Since K0(A) is then a simple Riesz group, the connection between both kinds
of examples suggests the convenience of studying the results of Goodearl and Perera in the
strictly perforated case, in order to extend the scope of their results to a wider class. Aside
of this application, it is interesting to study monoids of intervals in this case, in order to get
new pathological examples in the monoid-theoretical context.

In this paper we study the monoids of intervals of non-atomic, simple, strictly perforated
monoids, specially in the countable case (that corresponds to separable C*-algebras or count-
able von Neumann regular rings). We center our interest in Perera’s functional representa-
tion, and we conclude that under mild hypotheses this representation is always onto. Also,
we characterize injectivity of this representation, and as a consequence we obtain a specially
interesting failure of strong separativity in a particular subsemigroup of intervals. Unfortu-
nately we haven’t been able to characterize failure of separativity of the monoid of intervals
in terms of strict perforation.

The paper is organized as follows. Section 1 is devoted to introduce the basic definitions and
results needed to develop our task. In Section 2, we study a particular kind of soft interval,
that becomes the key point for pointing out our results on Perera’s representation. This is
done in Section 3, where we outline some special applications of these results. Finally, Section
4 contains the applications to the context of multiplier rings for non-unital C*-algebras and
von Neumann regular rings.

Throughout, we will refer to [10] for the background on ordered abelian groups, to [9] for
the applications to von Neumann regular rings, and to [4], [6] and [14] for the applications to
C*-algebras.

1. Basic results

First, we recall some basics on abelian monoids. Let M be an abelian monoid; we write M∗

to denote the set of non-zero elements of M . We say that M is conical if, for all x, y in M ,
x+ y = 0 only when x = y = 0. A well-known example of conical, abelian monoid associated
to a ring R is the monoid V (R) of equivalence classes of idempotents (see Section 4). We will
use it in the last section of this paper. An element x ∈M is directly finite if for any y ∈M ,
x + y = x implies y = 0. An element x ∈ M is stably finite if nx is directly finite for any
n ∈ N. We say that M is stably finite if every element x ∈ M is stably finite. A monoid M
is cancellative if, for all x, y, z ∈M such that x+ z = y + z, we have x = y. If x, y in M , we
write x ≤ y if there exists z ∈M such that x+ z = y; if z ∈M∗, then we write x < y. Here
≤ is a translation-invariant pre-order on M . We say that M is strictly unperforated if for
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any n ∈ N and for any x, y ∈ M , nx < ny implies x < y; otherwise, M is said to be strictly
perforated. A non-zero element u of M is said to be an order-unit for M if, for each x ∈ M ,
there exists a positive integer n such that x ≤ nu. If u is an order-unit of M , then we call
the pair (M,u) a monoid with order-unit. Given (M,u) and (N, v) monoids with order-unit,
a monoid morphism f : M → N is said to be normalized provided that f(u) = v. We say
that M is simple if M is non-zero, conical, and every non-zero element is an order-unit. For
other basic definitions and results on abelian monoids, see for example [19], [28] and [29].

Now, we recall some definitions (see, e.g. [19]) about monoids of intervals of conical
monoids. Let M be a conical monoid. A non-empty subset X of M is an interval in
M if X is upwards directed and order-hereditary, i.e. if x, y ∈ M , such that x ≤ y
and y ∈ X then x ∈ X (see [11], [12]). We denote by Λ(M) the set of intervals in
M . Note that Λ(M) becomes an abelian monoid endowed with the operation defined by
X + Y = {z ∈ M | z ≤ x + y for some x ∈ X, y ∈ Y }. An interval X in M is said to be
generating if every element of M is a sum of elements from X. If X ∈ Λ(M), we say that X
is countably generated provided that X has a countable cofinal subset (i.e. there is a sequence
{xn} of elements in X such that for any x ∈ X there exists n ∈ N such that x ≤ xn). Notice
that, since any interval is upwards directed, if {xn} is a countable cofinal subset generating
an interval X, then we can choose a countable cofinal subset {yn} generating X with the
property that yn ≤ yn+1 for all n ≥ 1. We denote by Λσ(M) the set of all countably gener-
ated intervals in M . If D is a fixed interval in Λσ(M), we denote by Λσ,D(M) the submonoid
of Λσ(M) whose elements are intervals X ∈ Λσ(M) such that X ⊆ nD for some n ∈ N, and
we denote by WD

σ (M) the submonoid of Λσ,D(M) whose elements are intervals X ∈ Λσ,D(M)
such that there exists Y ∈ Λσ,D(M) with X + Y = nD for some n ∈ N.

Now, we proceed to state some basic results on intervals in a refinement monoid. They
are analogous to results of [11], [13] or [19], but the original hypotheses are reduced to the
minimum necessary.

Lemma 1.1. (c.f. [13, Lemma 3.8]) Let M be a conical, cancellative monoid, and let x ∈M .
Then:

(1) [0, x] = {y ∈M | y ≤ x} is an interval.
(2) If X ∈ WD

σ (M) and x ∈ X, then there exists an interval Y ∈ WD
σ (M) such that

[0, x] + Y = X.
(3) If D is a generating, countably generated interval, then [0, x] ∈ WD

σ (M).

Proof. It is obvious that [0, x] is an interval. To prove (2), let X ∈ WD
σ (M) and assume

that x ∈ X. Set Y = {y ∈ M | x + y ∈ X}. Clearly, Y is non-empty and hereditary.
Suppose that y1, y2 ∈ Y . Then x + y1, x + y2 ∈ X whence there exists z ∈ X such that
x + y1, x + y2 ≤ z. Let t1, t2 ∈ M such that x + y1 + t1 = z = x + y2 + t2. Since M is
cancellative, set v = y1 + t1 = y2 + t2. Then y1, y2 ≤ v. Also x + v = z ∈ X, so that v ∈ Y ,
and thus Y is an interval. Of course, [0, x] + Y ⊆ X by definition. Now, take z ∈ X, and let
w ∈ X such that x, z ≤ w. Thus there exist a, b ∈ M with x + a = w = z + b. Then a ∈ Y ,
and z ∈ [0, x] + [0, a] ⊆ [0, x] + Y . It only remains to show that Y is countably generated.
But since X is countably generated, and M is cancellative, it is a trivial computation to show
that so is Y . Hence (2) holds, and then we get (3) by taking X = nD for a suitable n ∈ N
so that x ∈ nD. �
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If M is a conical monoid, then we say that an interval X in M is soft if for each x ∈ X,
there exist y ∈ X and n ∈ N such that (n+ 1)x ≤ ny.

Lemma 1.2. (c.f. [11, Lemma 7.4]) Let M be a conical, stably finite, simple monoid, and let
D ⊆M be an interval. Then D is soft if and only if

For any x ∈ D, there exists v ∈M∗ such that x+ v ∈ D (∗)

Proof. Assume that (∗) holds and let x ∈ D. Then we have x+ v = y ∈ D. Since there exists
n ∈ N with x ≤ nv, we get (n+1)x = nx+x ≤ nx+nv = n(x+v) = ny. Thus D is soft. Now
suppose that D is soft, and x be a non-zero element of D. By definition there exist n ∈ N,
y ∈ D such that (n + 1)x ≤ ny. Since D is an interval, there exists z ∈ D with x, y ≤ z.
Thus (n + 1)x ≤ nz and x ≤ z. Let t, t′ ∈ M such that x + t = z and (n + 1)x + t′ = nz. If
t = 0, then

nx+ (x+ t′) = (n+ 1)x+ t′ = nz = nx,

whence x + t′ = 0, and thus x = t′ = 0, which is impossible. Thus t 6= 0, and x + t ∈ D, as
desired. �

Note that we use the stably finite hypothesis only to prove that condition (∗) implies that
D is soft.

Lemma 1.3. (c.f. [11, Lemma 8.1]) Let M be a conical, simple monoid, and let D1, D2 ⊆M
be intervals. If D1 is soft, then so is D1 +D2.

Proof. Let x ∈ D1 + D2. Then there exist x1 ∈ D1, x2 ∈ D2 such that x ≤ x1 + x2. Let
x = x1 + x2. Suppose that there exist n ∈ N, y ∈ D1 + D2 such that (n + 1)x ≤ ny. Then
(n + 1)x ≤ ny, so that, without loss of generality, we can assume that x = x1 + x2 with
x1 ∈ D1, x2 ∈ D2. Since M is simple, the intervals D1, D2 are generating. Then the argument
of [11, Lemma 8.1] applies, whence the desired result holds. �

Lemma 1.4. (c.f. [19, Lemma 3.4]) Let M be a conical, simple monoid. If D is an interval,
then it is either soft or of the form [0, x] for some x ∈M , but not both.

Proof. Suppose that there exists an element x ∈ D such that for every y ∈ D we have x ≮ y.
Take y ∈ D. Then there is z ∈ D such that x, y ≤ z. Since x ≮ z, we have that z = x. Thus
D = [0, x].

Take x ∈ D and find y ∈ D and t ∈M∗ such that x+ t = y ∈ D. Since M is simple, there
exists n ∈ N such that x ≤ nt. Thus, (n + 1)x = nx + x ≤ nx + nt = n(x + t) = ny. Hence
D is soft. �

An element a ∈M∗ is said to be an atom if for all b ∈M , if b ≤ a, then b = a or b = 0. A
simple monoid M is non-atomic if it has no atoms. We say that M is a refinement monoid if,
for all a, b, c, d in M such that a+ b = c+ d, there exist w, x, y, z in M such that a = w+x,
b = y + z, c = w + y and d = x + z. As we will see in Section 4, if R is a C*-algebra of real
rank zero, or a von Neumann regular ring, it is well-known that V (R) is a refinement monoid
(see, e.g. [9], [33], [1]). A special kind of soft intervals, very useful in the sequel, arises in
case that M is simple and non-atomic.
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Proposition 1.5. Let M be a conical, cancellative, non-atomic, simple, refinement monoid,
and let x ∈M∗. Then the set

[0, x) = {y ∈M | y < x}

is a soft interval. Furthermore, if X is a countably generated soft interval and x ∈ X, then
there exists a countably generated soft interval Y such that [0, x) + Y = X. In particular,
[0, x) ∈ WD

σ (M) whenever D is soft and M is countable.

Proof. The set [0, x) is non-empty by construction. Clearly, [0, x) is hereditary by definition.
Now, let y1, y2 ∈ [0, x). By [10, Proposition 14.6], there exists z ∈M∗ such that y1, y2 < z < x.
Hence z ∈ [0, x), whence [0, x) is upwards directed. Thus, [0, x) is an interval. Moreover, by
Lemma 1.2, [0, x) is soft.

Let X be a countably generated soft interval with x ∈ X, and let {xn}n≥1 be a countable
cofinal subset for X. By Lemma 1.4, we can assume that xn < xn+1 for all n ≥ 1. Since
x ∈ X, there exists m ∈ N such that x ≤ xm. Re-indexing if necessary we can assume
without loss of generality that m = 1. Let yn ∈ M be such that x + yn = xn for any n ≥ 1.
Since M is cancellative, the set {yn}n≥1 is an ascending chain. Let Y =

⋃
n≥1

[0, yn] be the

interval generated by {yn}. Notice that Y is soft because of Lemma 1.2. By construction,
we have [0, x) + Y ⊆ X. Conversely, let a ∈ X. Since X is soft, there exists b ∈ X such
that a, x < b. As b ∈ X, there is n ∈ N so that b < xn, and notice that xn = x + yn.
Since M is simple, cancellative and non-atomic, [10, Proposition 14.6] guarantees that there
exist non-zero elements b1, b2 ∈ M such that b = b1 + b2 with b1 < x and b2 < yn. Hence,
b ∈ [0, x) + [0, yn] ⊂ [0, x) + Y , and then also a ∈ [0, x) + Y . Thus [0, x) + Y = X.

Now assume that M is countable. Since M is simple, every non-zero interval is generating
and countably generated. Thus, for any non-zero element x ∈ M there is n ∈ N so that
x ∈ nD. Since D is soft, so is nD by Lemma 1.3. Then [0, x) ∈ WD

σ (M) by the first part of
the proof. �

Remark 1.6. Under the hypotheses of Proposition 1.5, for any x ∈ M∗ we have [0, x] =
[0, x) ∪ {x}. Thus, [0, x) is the biggest soft interval contained in [0, x]. Also notice that,
under the same hypotheses, we have that [0, x) + [0, y) = [0, x+ y) for any x, y ∈M .

2. Some special soft intervals

We will use some techniques for representing intervals as functions on a compact space in
order to get, in case of strictly perforated monoids, some special behaviors on soft intervals.
For this, we recall some definitions. Given an abelian monoid M and x, y ∈M , we write x ∼ y
if there exists z ∈M such that x+z = y+z. This is an equivalence relation onM , and we write
[x] for the equivalence class of an element x ∈ M . We define G(M) = {[x] − [y]|x, y ∈ M},
where [a] − [b] = [c] − [d] if and only if [a + d] = [c + b]. Endowed with the operation
[x] + [y] = [x+ y], the set G(M) becomes a group, called the Grothendieck group of M . The
submonoid G(M)+ = {[x] | x ∈ M} is called the positive cone of G(M), and induces an
order on G(M) as follows: given x, y ∈ G(M), we say that x ≤ y if there exists z ∈ G(M)+

such that x+ z = y (see [10]). If M is cancellative then G(M)+ = M . Given a monoid with
order-unit (M,u), we denote Su the compact convex space of states (i.e. the set of monoid
morphisms from M to R+ that send u to 1). Clearly, Su = S(G(M), u), the set of states
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on G(M) (see [10]). We denote by Aff(Su)
+ the monoid of positive, affine and continuous

functions from Su to R+, endowed with the supremum norm, denoted ‖f‖, and the natural
pointwise ordering of functions. Given f, g ∈ Aff(Su)

+, we write f � g if f(s) < g(s) for all
s ∈ Su. We denote by φu : M −→ Aff(Su)

+ the natural evaluation map. Also, we denote by
LAffσ(Su)

++ the semigroup of strictly positive, affine, lower semicontinuous functions from
Su to R+ that are pointwise suprema of increasing sequences of functions in Aff(Su)

+. Given
an interval X in M , we define ρ(X) = sup

x∈X
φu(x), where sup denotes the pointwise supremum.

Proposition 2.1. (c.f. [19, Lemma 3.8]) Let M be a conical, cancellative, non-atomic, simple,
refinement monoid, and let u ∈M∗. Then:

(1) If X ⊆M is a non-zero interval, then ρ(X) ∈ LAff(Su)++and it is bounded away from
zero.

(2) ρ(X) + ρ(Y ) = ρ(X + Y ) for any intervals X, Y on M .
(3) If f ∈ LAff(Su)++, then ρ′(f) = {x ∈ M | φu(x) � f} is a soft interval in M , and

ρρ′(f) = f .

Proof. (1) and (2) are proved in the same way as [19, Lemma 3.8 (1),(2)].
(3) Obviously the set ρ′(f) is non-empty and hereditary. Let x, y ∈ ρ′(f), and set g =

sup{φu(x), φu(y)}. Clearly g is an upper semicontinuous convex function, and g � f . By
[10, Theorem 11.12] and [16, Theorem 3.5], there exists z′ ∈ M such that g � φu(z

′) � f .
Since φu(x), φu(y)� φu(z

′), by [10, Theorem 4.12] there exists n ∈ N such that nx, ny < nz′.
By compactness of Su we can choose ε > 0 such that φu(z

′) + ε� f . By [16, Corollary 2.6],
there exists dε ∈ M with ‖φu(dε)‖ < ε, such that x, y < z′ + dε. Define z = z′ + dε. Then
z ∈ ρ′(f), whence it is upwards directed, and so is an interval. Clearly is soft because of
Lemma 1.2. The rest of the proof follows the argument of [19, Lemma 3.8 (3)]. �

We denote X ′ = ρ′ρ(X) for any interval X. Notice that, under the hypotheses of Propo-
sition 2.1, X ′ = ρ′ρ(X ′), because ρ′ρ(X ′) = ρ′ρρ′ρ(X) = ρ′ρ(X) = X ′. By [19, Lemma 3.8],
for any soft interval X in M we have ρ′ρ(X) = X, whenever M is strictly unperforated.
As we will see, when strict unperforation fails, we can construct soft intervals X such that
X 6= ρ′ρ(X). This is the key point of our arguments.

Lemma 2.2. Let M be a conical, cancellative, non-atomic, simple, refinement monoid, and
let u ∈M∗. Let X, Y ⊆M be intervals. Then,

ρ′(ρ(X) + ρ(Y )) = ρ′ρ(X) + ρ′ρ(Y )

Proof. Let f = ρ(X), g = ρ(Y ), and let x ∈ ρ′(f + g). Then, φu(x) � f + g, so that there
exist x0 ∈ X and y0 ∈ Y with φu(x)� φu(x0) + φu(y0). By [10, Theorem 4.12], there exists
m ∈ N with mx < mx0+my0. Let ε > 0 such that ε < min{‖f − φu(x0)‖ , ‖g − φu(y0)‖}. By
[16, Corollary 2.6] there exists t ∈ M with ‖φu(t)‖ < ε and x < (x0 + y0) + t. If t = 0, then
x < x0 + y0 ∈ ρ′ρ(X) + ρ′ρ(Y ). If t 6= 0, then since M is non-atomic, there exist tε, t

′
ε ∈ M

such that tε + t′ε = t. Thus ‖φu(tε)‖ , ‖φu(t′ε)‖ < ε, and x < (x0 + tε) + (y0 + t′ε). Moreover,
φu(x0 + tε) � f and φu(x0 + t′ε) � g. Hence x0 + tε ∈ ρ′ρ(X) and y0 + t′ε ∈ ρ′ρ(Y ), so that
ρ′(ρ(X) + ρ(Y )) ⊆ ρ′ρ(X) + ρ′ρ(Y ).

Conversely, let x ∈ ρ′(f) + ρ′(g). Then x = y + z, with y ∈ ρ′(f), z ∈ ρ′(g), i.e., φu(y) �
f, φu(z)� g. Thus, φu(x) = φu(y + z)� f + g, whence x ∈ ρ′(f + g) = ρ′(ρ(X) + ρ(Y )), as
required. �
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Proposition 2.3. Let M be a conical, cancellative, non-atomic, simple, refinement monoid,
and let u ∈M∗. If X, Y are soft intervals, then

X + Y ′ = (X + Y )′.

Proof. By Lemma 2.2 and Proposition 2.1,

X + Y ′ ⊆ X ′ + Y ′ = (X + Y )′.

Conversely, let z ∈ (X+Y )′. Then there exist x ∈ X ′ and y ∈ Y ′ such that φu(z)� φu(x)+
φu(y). By definition of X ′, φu(x) � ρ(X). Analogously φu(y) � ρ(Y ). By compactness of
Su, there exists ε > 0 such that

ε <
1

2
min{‖ρ(X)− φu(x)‖, ‖ρ(Y )− φu(y)‖}.

By [10, Theorem 4.12] and [16, Corollary 2.6], there exist d, d′ ∈M such that

‖φu(d)‖ , ‖φu(d′)‖ < ε

and z < (x+d)+(y+d′). Notice that x+d ∈ X ′ and y+d′ ∈ Y ′. By [10, Proposition 14.6], we
get decompositions z = z1 + z2 with z1 < (x+ d), z2 < (y+ d′). By the argument in the proof
of [11, Proposition 7.7], there exists t ∈ X such that φu(z1)� φu(t). Let ε′ > 0 be such that
φu(z2)+ε′ � ρ(Y ). By [16, Theorem 4.12], there exist decompositions z1 = z3+z4, t = z5+z4
with ‖φu(z3)‖ < ε′. Suppose z5 = 0. Then t = z4, and hence z1 = z3 + z4 = z3 + t. But then
φu(t) ≤ φu(z1)� φu(t), which is impossible. Thus, z = z2 + z3 + z4, with z4 < t ∈ X, and

φu(z2 + z3) = φu(z2) + φu(z3)� φu(z2) + ε′ � ρ(Y ).

Hence z4 ∈ X and z2 + z3 ∈ Y ′, as required. �

As a consequence we have

Corollary 2.4. Let M be a conical, cancellative, non-atomic, simple, refinement monoid,
and let u ∈M∗. If X is a soft interval, then

X +X ′ = 2X ′.

Let M be a monoid. In order to study the properties of a separative positively ordered
monoid, Wehrung [29] defined the equivalence relation � for a, b ∈ M : a � b if and only if
there exist m,n ∈ N such that a ≤ mb, b ≤ na.

Lemma 2.5. Let M be a conical, cancellative, non-atomic, simple, refinement monoid, and
let u ∈M∗. If x, y ∈M∗, then:

(1) [0, x) � [0, y).
(2) ρ′ρ([0, x)) � ρ′ρ([0, y)).
(3) ρ′ρ([0, x)) � [0, x) if and only if there exists n0 ∈ N such that for any n ≥ n0,

ρ′ρ([0, nx)) = [0, nx).

Proof. (1) Since M is simple, there exist m ∈ N, z, t ∈M such that x+ t = my, y+ z = mx.
Hence [0, x) + [0, t) = m[0, y) and [0, y) + [0, z) = m[0, x), as desired.

(2) Using (1), Lemma 2.2, Proposition 2.1 (2) and Proposition 2.3, we get ρ′ρ([0, x)) +
[0, t) = mρ′ρ([0, y)) and ρ′ρ([0, y)) + [0, z) = mρ′ρ([0, x)).

(3) Suppose that ρ′ρ([0, x)) � [0, x). By Proposition 1.5, [0, x) is a soft interval. Then by
Corollary 2.4, we have [0, x) + ρ′ρ([0, x)) = 2ρ′ρ([0, x)). By [5, Theorem 2.1.9] there exists
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n0 ∈ N such that, for any n ≥ n0, we have nρ′ρ([0, x)) = n[0, x). By Lemma 2.2, Proposition
2.1 (2) and Remark 1.6, we have nρ′ρ([0, x)) = ρ′(nρ([0, x))) = ρ′ρ(n[0, x)) = ρ′ρ([0, nx)).
Then, ρ′ρ([0, nx)) = [0, nx). The converse is obvious. �

The next result allows us to construct the pathological soft intervals we need in the sequel.

Lemma 2.6. Let M be a conical, cancellative, non-atomic, strictly perforated, simple, refine-
ment monoid. Then there exist n ∈ N and x ∈ G(M) such that nx and (n + 1)x ∈ G(M)+

but nx /∈ [0, (n+ 1)x).

Proof. Since M is strictly perforated, there exists x ∈ G(M) \ {0} such that x /∈ G(M)+

and nx ∈ G(M)+ for some n ∈ N. We may assume that (n + 1)x /∈ G(M)+, as otherwise
x ∈ G(M)+. As nx is an order-unit, there exists k ∈ N with (n + 1)x ≤ knx. Then,
[(k− 1)n− 1]x ∈ G(M)+. Since [(k− 1)n− 1] is 1 minus a multiple of n, we have g.c.d.([(k−
1)n − 1], n) = 1. Hence, there exist p, q ∈ N such that pn − q[(k − 1)n − 1] = 1, whence
pn = 1 + q[(k−1)n−1]. Set m = q[(k−1)n−1]. Then, mx = q[(k−1)n−1]x ∈ G(M)+ and
(m+ 1)x = (1 + q[(k − 1)n− 1])x = pnx ∈ G(M)+. On the other hand, mx /∈ [0, (m+ 1)x),
as otherwise, we get x ∈ G(M)+, which is impossible. �

Proposition 2.7. Let M be a conical, cancellative, non-atomic, strictly perforated, simple,
refinement monoid, and let u ∈M∗. Then, for any x, y ∈M∗, [0, x) 6� ρ′ρ([0, y)).

Proof. By conditions (1) and (2) in Lemma 2.5, it is enough to find an element x ∈ M∗

for which [0, x) 6� ρ′ρ([0, x)). By Lemma 2.6, there exist n ∈ N and y ∈ G(M), such that
y /∈ G(M)+ but ny, (n + 1)y ∈ G(M)+. If N = n(n + 1) − 2n − 1, then for any k ∈ N we
have (N + k)y ∈ G(M)+ (see, e.g. [21, Lemma 2.3]). Set x = (n+ 1)y.

If [0, x) � ρ′ρ([0, x)), by Lemma 2.5 there exists m0 ∈ N such that [0,mx) = ρ′ρ([0,mx))
for all m ≥ m0. Take m ≥ m0 so that (m + 1)(n + 1) ≥ N + 2. Thus, ρ′ρ([0, (m + 1)x)) =
[0, (m+ 1)x). Set z = [(m+ 1)(n+ 1)− 1]y, and notice that z ∈ G(M)+. Since y /∈ G(M)+,
we have z /∈ [0, (m + 1)x). This contradicts [0,mx) = ρ′ρ([0,mx)) for all m ≥ m0. Hence,
[0, x) 6� ρ′ρ([0, x)), as desired. �

Corollary 2.8. Let M be a conical, cancellative, non-atomic, strictly perforated, simple,
refinement monoid, and let u ∈M∗. Then, [0, x) 6= ρ′ρ([0, x)) for any x ∈M∗.

3. The functional representation

We recall the key result of Perera’s work on the structure of the monoid of intervals of a
non-atomic, strictly unperforated, simple, refinement monoid.

Theorem 3.1. ([19, Theorem 3.9]) Let M be a conical, simple, refinement monoid, let u ∈
M∗, let D be a countably generated soft interval in M, and let d = ρ(D). Define

ϕ : WD
σ (M) −→ M tW d

σ (Su)
X 7−→ ρ(X) if X is a soft interval
[0, x] 7−→ x if x ∈M.

Then ϕ is a normalized monoid morphism. Moreover, if M is non-atomic, strictly unperfo-
rated and cancellative, then ϕ is an isomorphism.
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We say that a soft interval X in M is functionally complete whenever ρ′ρ(X) = X. In-
jectivity and surjectivity of the map ϕ strongly depend on the fact that, when M is strictly
unperforated, any soft interval X in M is functionally complete ([19, Lemma 3.8 (4)]). It is
always true that X ⊆ ρ′ρ(X). Nevertheless, as we have seen in Corollary 2.8, this equality
may fail when M is strictly perforated.

Now, we will show that under some mild hypotheses, this map is a monomorphism if and
only if M is strictly unperforated, and that it is always an epimorphism. Recall that, if M
is a (semigroup) monoid, we say that M is separative if it satisfies the weak cancellation
condition that, for all a, b in M , a + a = a + b = b + b only if a = b. Similarly, we say that
M is strongly separative if it satisfies the weak cancellation condition that, for all a, b in M ,
a+ a = a+ b only if a = b.

We define Efin = {f ∈ WD
σ (M)|f∂eSu is finite}, where ∂eSu denotes the extreme boundary

of Su (see [10]).

Theorem 3.2. Let M be a countable, conical, cancellative, non-atomic, simple, refinement
monoid, and let u ∈M∗. Then the following are equivalent:

(1) M is strictly unperforated.
(2) Every soft interval X ⊆M is functionally complete.
(3) The morphism ϕ of Theorem 3.1 is injective for any soft interval D in M .
(4) For any soft interval D in M , the subsemigroup E = ϕ−1(Efin) of WD

σ (M) is strongly
separative.

(5) For any x ∈M∗, [0, x) is functionally complete.

Proof. (1)⇒ (2) This is [19, Lemma 3.8 (4)].
(2) ⇒ (1) Suppose that M is strictly perforated. By Corollary 2.8, [0, x)  ρ′ρ([0, x)) for

any x ∈M∗.
(1)⇒ (3) This is Theorem 3.1.
(3)⇒ (1) Suppose that M is strictly perforated. As in the proof of (2)⇒ (1), there exist

y, z ∈ M such that z /∈ [0, y) but φu(z) � φu(y). Let X = [0, y), X ′ = ρ′ρ(X). Fix a soft
interval D such that ρ′ρ(D) = D (take for example an interval of the form ρ′ρ(I), for any
interval I in M). By Proposition 1.5, X ∈ WD

σ (M), and thus there exist Y ∈ WD
σ (M) and

n ∈ N such that X + Y = nD. By Lemma 2.2 and Proposition 2.1,

ρ′ρ(X) + ρ′ρ(Y ) = nρ′ρ(D) = nD.

Hence X ′ ∈ WD
σ (M). Since z /∈ X, but z ∈ X ′, we have X  X ′ and by Proposition 2.1

(3),

ϕ(X ′) = ρ(X ′) = ρ(ρ′ρ(X)) = ρρ′(ρ(X)) = ρ(X) = ϕ(X),

whence ϕ is not injective.
(1)⇒ (4) It is Theorem 3.1.
(4)⇒ (1) Suppose that M is strictly perforated. As in the proof of (3)⇒ (1), there exists

x ∈ M∗ such that, if X = [0, x), then X 6= X ′. On the other hand, X + X ′ = 2X ′ by
Corollary 2.4. Moreover X ∈ E by definition, whence the result holds.

(2)⇒ (5) It is obvious, since [0, x) is a soft interval by Proposition 2.1.
(5)⇒ (1) It is the same proof as (2)⇒ (1). �
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Notice that we only need the hypothesis “M is a countable monoid” to show (3) ⇒ (1)
and (4)⇒ (1). Because of its own interest, we will state (4)⇒ (1) in Theorem 3.2 as follows:

Corollary 3.3. Let M be a countable, conical, cancellative, non-atomic, strictly perforated,
simple, refinement monoid, and let D be a non-zero functionally complete soft interval in M .
Then, the subsemigroup E = ϕ−1(Efin) of WD

σ (M) fails to be strongly separative.

Remark 3.4.

(1) Perera [19] showed that, whenever we consider a strictly unperforated simple Riesz
group, its monoid of intervals satisfy the separativity property. On the other hand,
Wehrung [32, Example 3.14] constructed a torsion free simple Riesz group G, whose
positive cone is strictly perforated, containing an interval D 6= G+ such that 2D = G+.
Thus, the monoid of intervals WD

σ (G+) fails separativity. Nevertheless, we cannot
guarantee that given a strictly perforated, simple, refinement monoid M , its monoid
of intervals WD

σ (M) will always be non-separative. For example, Pardo [15, Section 3]
gave examples of torsion free simple Riesz groups G, whose positive cones are strictly
perforated, and with the property that any interval D such that ρ(D) = ρ(G+) implies
D = G+. Then, in order to check if such examples fail separativity, we need to study
carefully the behavior of intervals D such that nD 6= G+ for every n ∈ N. Thus, it
remains as an open question

Given any countable, simple refinement monoid M that fails to be strictly
perforated, is WD

σ (M) always non-separative?
(2) Notice that, in the proof of Theorem 3.2 (3) ⇒ (1), a key point is to choose a

functionally complete interval D to show the failure of injectivity for the map ϕ.
Even if we take a non functionally complete interval D as order-unit for WD

σ (M),
it is possible to show the failure of injectivity for the map ϕ in some special cases.
Wehrung’s example [32, Example 3.14] fits one possibility. Another possibility is
the following: suppose that there exists a simple Riesz group (G,G+) containing an
interval D ⊆ G+ such that ρ(D) = ρ(G+), but for every n ∈ N, nD 6= G+ (in
particular G is strictly perforated). Then, WD

σ (G+) is stably finite, so that nD 6= mD
whenever n 6= m, but ϕ(nD) ≡ ∞. In terms of the K-Theory of multiplier algebras
(see Section 4), the existence of such a group implies that it could be possible to
construct a σ-unital, non-unital, simple C*-algebra with real rank zero and stable rank
one A, such that its multiplier algebra M(A) contains a non-zero projection P with
M(PAP ) stably finite, but with identically infinite scale ([19]). Thus, according to
[20, Proposition 3.6] (also see [17, Theorem 2.10]), PAP is not an stable algebra. The
existence of such an example will fix the exact limits of application of [17, Proposition
2.11].

Theorem 3.5. Let M be a conical, cancellative, non-atomic, simple, refinement monoid, let
u ∈M∗, and let D be a non-zero, functionally complete, countably generated, soft interval of
M . Then the normalized morphism of Theorem 3.1 is onto.

Proof. If x ∈ M , then let X = [0, x] ∈ WD
σ (M), so that ϕ(X) = x. Now, let f ∈ W d

σ (Su).
Then, there exists h ∈ W d

σ (Su) such that f + h = nd, where d = ρ(D), n ∈ N. We have
f = sup gn, where {gn} is an ascending sequence of functions in Aff(Su)

++. By [16, Theorem
3.5], there is a m ∈ N such that, for n ≥ m, there exists xn ∈ M with 0 � gn − 1

2n
�
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φu(xn)� gn+1 − 1
2n+1 . Then,

0� gn −
1

2n
� φu(xn)� gn+1 −

1

2n+1
� φu(xn+1)� gn+2 −

1

2n+2
� · · ·

By compactness of Su we get, for each n ∈ N, an εn > 0 such that φu(xn+1)+εn � gn+2− 1
2n+2

(see, e.g. [11, Proposition 7.7]). Then using [16, Theorem 4.12], we get b ∈ M such that
xn < xn+1 + b and ‖φu(b)‖ < εn. Thus,

0� gn −
1

2n
� φu(xn)� gn+1 −

1

2n+1
� φu(xn+1 + b)� gn+2 −

1

2n+2
� · · ·

Define yn = xn, yn+1 = xn+1 + b. Then, for yn+1 and xn+2 we have

· · · � gn+1 −
1

2n+1
� φu(yn+1)� gn+2 −

1

2n+2
� φu(xn+2)� gn+3 −

1

2n+3
� · · ·

By recurrence on this procedure we get an ascending sequence {yn}n∈N with f = supφu(yn).
Let X be the interval generated by {yn} (in particular, it is countably generated). Thus,
X =

⋃
n∈N

[0, yn], so that ρ(X) = f . As φu(yn)� f for all n, we have X ⊆ ρ′(f), and X is soft

by Lemma 1.4.
It only remains to show that X ∈ WD

σ (M). Since f +h = nd, we apply the same argument
to h, and we construct a countably generated, soft interval Z such that ρ(Z) = h, so that
Z ⊆ ρ′(h). By Corollary 2.4,

X + ρ′ρ(X) = 2ρ′ρ(X)

Z + ρ′ρ(Z) = 2ρ′ρ(Z)

Hence,
X + ρ′ρ(X) + Z + ρ′ρ(Z) = 2(ρ′ρ(X) + ρ′ρ(Z)),

whence by Lemma 2.2,

X + Z + ρ′(ρ(X) + ρ(Z)) = 2ρ′(ρ(X) + ρ(Z)),

that is,
X + Z + ρ′(f + h) = 2ρ′(f + h).

Since f + h = nd,
X + Z + ρ′(nd) = 2ρ′(nd).

As d = ρ(D),
X + Z + ρ′(nρ(D)) = 2ρ′(nρ(D)),

whence by Lemma 2.2,
X + Z + nρ′ρ(D) = 2nρ′ρ(D).

Since ρ′ρ(D) = D, we have
X + Z + nD = 2nD.

Finally, as Z and D are countably generated, so is Z + nD, whence X ∈ WD
σ (M). �

As an immediate consequence of Theorem 3.2 and Theorem 3.5, we get

Corollary 3.6. Let M be a countable, conical, cancellative, non-atomic, strictly perforated,
simple, refinement monoid, let u ∈ M∗, and let D ⊆ M be a non-zero functionally complete
soft interval. Then the map ϕ of Theorem 3.1 is always onto, but never injective.
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Remark 3.7.

(1) Notice that for any monoid with order-unit (M,u), we have that ρ′ρ(M) = M , and
M is a countably generated interval, because {nu | n ∈ N} generates it as an inter-
val. Then, for any monoid there is at least one interval satisfying the hypothesis of
Corollary 3.6, whence Theorem 3.5 applies at least in this case.

(2) Recall that a subset S of a monoid M is called an order-ideal, or simply an ideal,
if S is a subset of M containing 0, closed under taking sums and summands within
M ; that is, S is a submonoid such that, for all x ∈ M and e ∈ S, if x ≤ e then
x ∈ S. For any a ∈ M , the principal ideal generated by a is M(a) = {x ∈ M |
x ≤ na for some positive integer n}. We denote the set of ideals of M by L(M). If
M is a refinement monoid then, by [1, Lemma 2.1], L(M) forms a lattice under sum
and intersection. Perera used [19, Theorem 3.9] in order to describe this lattice in
terms of the behavior of the extremal states on Su. As a consequence of Corollary
2.8, even in the case of principal ideals, for any x ∈ M∗ we have WD

σ (M)([0, x)) ⊂
WD
σ (M)(ρ′ρ([0, x))). Thus, Perera’s description of L(WD

σ (M)) is no longer valid.
Nevertheless, in the case ϕ being onto, if we are able to describe the set ϕ−1(f), it
seems reasonable to recover the structure of this lattice.

Finally, even if injectivity fails, we still preserve a certain “good” behavior of divisibility
for soft intervals, in a similar way to that of [13, Lemma 4.2(b)].

Proposition 3.8. Let M be a conical, non-atomic, simple, refinement monoid. For any
n ∈ N and any non-zero soft interval X ∈ WD

σ (M), there exists Y ∈ WD
σ (M) such that

X = nY .

Proof. The proof is an adaptation of that of [35, Theorem I (ii)], using [16, Theorem 5.2].
Let X be the interval generated by the ascending sequence {xi}, let pi ∈ X such that

xi−1 + pi = xi for any i > 1, and set p1 = x1. Thus,
∑k

i=1 pi = xk. Applying [16, Theorem
5.2] to p1 and p2, we get r1, s1 ∈M with p1 = nr1 +s1 and (n−1)s1 < p2. Hence, there exists
z2 ∈M such that (n− 1)s1 + z2 = p2. Since r1, s1 ≤ p1 and z2 ≤ p2, we have r1, s1, z2 ∈ X.

Applying again [16, Theorem 5.2] to z2 and p3, we get s2, r2 ∈ M with z2 = nr2 + s2 and
(n − 1)s2 < p3. Hence, there exists z3 ∈ M such that (n − 1)s2 + z3 = p3. Since r2, s2 ≤ p2
and z3 ≤ p3, we have r2, s2, z3 ∈ X.

By recurrence on this argument we obtain

zi = nri + si with (n− 1)si + zi+1 = pi+1 , i > 1 , z1 = p1.

Defining yi =
∑i

j=1(rj + sj−1) for i ≥ 1, and s0 = 0, we get an ascending chain {yi}. Set Y

the interval generated by {yi}. Then,

nyi = n
i∑

j=1

(rj + sj−1) = ns0 + nri +
i−1∑
j=1

(nrj + sj) +
i−1∑
j=1

(n− 1)sj =

nri +
i−1∑
j=1

zj +
i−1∑
j=1

(n− 1)sj = nri + (n− 1)si−1 +
i−1∑
j=1

(zj + (n− 1)sj−1) =
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i∑
j=1

(zj + (n− 1)sj−1) =
i∑

j=1

pj = xi

so that nyi ∈ X. Also, for each i ≥ 1,

xi =
i∑

j=1

pj =
i∑

j=1

(zj + (n− 1)sj−1) =
i∑

j=1

(nrj + sj + (n− 1)sj−1) =

i∑
j=1

((n− 1)rj + rj + sj + (n− 1)sj−1) =
i∑

j=1

((n− 1)sj−1 + (n− 1)rj) +
i∑

j=1

(rj + sj) =

(n− 1)
i∑

j=1

(sj−1 + rj) +
i∑

j=1

(rj + sj) ≤ (n− 1)yi +
i∑

j=1

(rj + sj) + ri+1 =

(n− 1)yi +
i+1∑
j=1

(rj + sj−1) = (n− 1)yi + yi+1 ≤ nyi+1 ∈ nY.

Hence, X = nY , as desired. �

Notice that, in spite of [13, Lemma 4.2(b)], Proposition 3.8 does not guarantee the unique-
ness of the interval Y .

4. Applications to multiplier rings

In this section we apply the results we obtained in the previous sections to context of
non-stable K-Theory of multiplier rings for non-unital von Neumann regular rings and C*-
algebras. We start by recalling some definitions and results of [3], [13] and [19].

Given a ring R, we denote by M∞(R) = lim−→Mn(R), under the maps Mn(R) → Mn+1(R)
defined by x 7→ diag(x, 0). Notice that M∞(R) can also be described as the ring of countable
infinite matrices over R with only finitely many nonzero entries. Given p, q ∈M∞(R) idempo-
tents, we say that p and q are equivalent, denoted p ∼ q, if there exist elements x, y ∈M∞(R)
such that xy = p and yx = q. We also write p ≤ q provided that p = pq = qp, and we write
p . q if there exists an idempotent r ∈ M∞(R) such that p ∼ r ≤ q. Given idempotents

p, q ∈M∞(R), we define the direct sum of p and q as p⊕ q =

(
p 0
0 q

)
. Also, for an idempo-

tent p ∈M∞(R) and a positive integer n, we denote by n · p the direct sum of n copies of p.
For a ring R, we denote by V (R) the abelian monoid of equivalence classes of idempotents in
M∞(R) under the relation ∼ defined above, with the operation [p]+[q] = [p⊕q]. We consider
this monoid endowed with the algebraic pre-ordering, denoted by ≤, that corresponds to the
ordering induced by the relation .. Given a ring R, it is easy to see that V (R) is conical,
and if R is simple, then so is V (R). Also, if R is a separable C*-algebra or a countable ring,
then V (R) is a countable monoid. In the case of a C*-algebra A, we can also obtain a picture
of V (A) by considering the equivalence classes of projections (self-adjoint idempotents) in
M∞(A), under the same equivalence relation we introduced before (see, e.g. [4, Chapter 5]).

Given a ring R, we say that a double centralizer for R is a pair (L,R) of additive maps
L,R : R → R satisfying R(x)y = xL(y) for all x, y ∈ R. Notice that for any element
a ∈ R, the pair (La,Ra), where the maps are left/right multiplication by a respectively, is
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a double centralizer. The set of double centralizers over R, endowed with the operations
(L1,R1) + (L2,R2) = (L1 + L2,R1 + R2) and (L1,R1) · (L2,R2) = (L1 · L2,R2 · R1), has
structure of ring with unit (Id, Id), and it is called the ring of multipliers of R, denotedM(R).
Notice that R is an ideal ofM(R) through the identification of a ∈ R with (La,Ra) ∈M(R);
moreover, M(R) coincides with R whenever R is a unital ring. In the case of A being a C*-
algebra, it is well-known that M(A) is also a C*-algebra (see, e.g. [27]).

Let R be a ring, and let S be a unital ring containing R as a two-sided ideal (for example,
we can choose S =M(R)). Then we say that R has stable rank one (denoted sr(R) = 1) if,
whenever Sa + Sb = S with a − 1, b ∈ R, there exists t ∈ R such that S(a + tb) = S. This
definition does not depend on the choice of S [23]; moreover, if sr(R) = 1 and e ∈ R is an
idempotent, then sr(eRe) = 1 [24, Theorem 3.9]. Since for a unital ring R it is well-known
that sr(R) = 1 implies that V (R) is a cancellative monoid (see [8]), we conclude by [24,
Theorem 3.9] that if R is a non-unital ring, then V (R) is also a cancellative monoid.

A C*-algebra A has real rank zero provided that the set of invertible self-adjoint elements of
A is dense in the set of self-adjoint elements of A (see [6]). According to [1], this is equivalent to
the fact that the C*-algebra A is an exchange ring in the sense of Warfield [26]. A non-unital
C*-algebra A is said to be σ-unital whenever it has a countable approximate unit; in particular
every separable C*-algebra is σ-unital (see, e.g. [14]). If A has real rank zero and is σ-unital,
then it has an approximate unit consisting of an increasing sequence of projections [6, 2.9].
In fact, if A is a σ-unital C*-algebra with real rank zero, then, for any projection P ∈M(A),
we have that PAP is a σ-unital C*-algebra with real rank zero, and it has an approximate
unit consisting of an increasing sequence of projections; moreover, given projections p ∈ A
and P ∈M(A), if {pn} is an approximate unit of PAP consisting of an increasing sequence
of projections, then p . P if and only if p . pn for some n ≥ 1 [13, Lemma 1.3]. Thus,
if A is a σ-unital C*-algebra with real rank zero and stable rank one, and P ∈ M(A) \ A
is a projection with {pn} an approximate unit of PAP consisting of an increasing sequence
of projections, we define Θ([P ]) = {[p] ∈ V (A) | p is a projection in PM∞(A)P} = {[p] ∈
V (A) | [p] ≤ [pn] for some n ∈ N}. Then, Θ([P ]) is a countably generated soft interval in
V (A), and moreover, if D(A) = Θ([1M(A)]), then the map

Θ : (V (M(A)), [1M(A)])→ WD(A)
σ (V (A)) (1)

is a normalized monoid isomorphism [13, Section 1], [19, Section 2].
A ring R is said to be (von Neumann) regular provided that, for every x ∈ R, there exists

y ∈ R such that xyx = x. We say that a regular ring R has countable unit if there exists an
increasing sequence of idempotents {en} such that R =

⋃
n≥1 enRen; such a sequence {en}

is called a countable unit ; in particular every countable regular ring has countable unit [3,
Section 1]. In fact, if R is a regular ring with countable unit, then, for any idempotent
E ∈ M(R), we have that ERE is a regular ring with countable unit; moreover, given
idempotents e ∈ R and E ∈ M(R), if {en} is a countable unit of ERE, then e . E if
and only if e . en for some n ≥ 1 [3, Lemma 2.1]. Thus, if R is a regular ring with stable
rank one and countable unit, and E ∈ M(R) \ R is an idempotent with {en} a countable
unit of ERE, we define Θ([E]) = {[e] ∈ V (R) | e is an idempotent in EM∞(R)E} = {[e] ∈
V (R) | [e] ≤ [en] for some n ∈ N}. Then, Θ([E]) is a countably generated soft interval in
V (R), and moreover, if D(R) = Θ([1M(R)]), then the map
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Θ : (V (M(R)), [1M(R)])→ WD(R)
σ (V (R)) (2)

is a normalized monoid isomorphism [3, Section 2].
Thus, the results in previous sections apply for R any (separable) σ-unital, non-unital, non-

elementary, simple C*-algebra with real rank zero and stable rank one, or for any (countable)
non-unital, non-artinian, simple von Neumann regular ring of stable rank one with countable
unit, since in both cases it is well-known that the monoid V (R) is a (countable) cancellative,
non-atomic, simple, refinement monoid. Also, if d = ρ(D(R)) and u = [e] for any non-zero
idempotent e ∈ R, then by composing the map ϕ defined in Theorem 3.1 with the map
defined above, we get a normalized monoid morphism

Φ : (V (M(R)), [1M(R)])→ (V (R) tW d
σ (Su), d) (3)

which is an isomorphism if V (R) is strictly unperforated [19, Theorem 3.9], [3, Theorem 2.11].

In order to simplify the notation, throughout this section we will say that a ring R lies
in the class N if it is a non-unital, non-artinian, simple von Neumann regular ring of stable
rank one with countable unit; similarly, we will say that a C*-algebra A lies in the class N ∗ if
it is a σ-unital, non-unital, non-elementary, simple C*-algebra with real rank zero and stable
rank one.

Given R a ring in the class N , or a C*-algebra in the class N ∗, we can define a new relation
between idempotents in M(R) through the isomorphisms defined in (1) and (2), as follows:
given P,Q ∈ M(R), we say that P - Q if Θ([P ]) ⊆ Θ([Q]). Notice that, if p, q ∈ R are
idempotents, then p - q if and only if p . q.

Let R be a countable ring R in the class N , or a separable C*-algebra in the class N ∗
such that D(R) is a functionally complete interval. Given an idempotent P ∈M(R), we say
that P is functionally complete if Θ([P ]) is a functionally complete interval; in particular,
1M(R) is a functionally complete idempotent if and only if D(R) is a functionally complete

interval. Also, given an idempotent P ∈ M(R), we have that ρ′ρ(Θ([P ])) ∈ WD(R)
σ (V (R)),

so that there exists an idempotent Q ∈M(R) with Θ([Q]) = ρ′ρ(Θ([P ])). We denote such an
idempotent Q by P c. Since for any idempotents Q1, Q2 ∈M(R), we have Θ([Q1]) = Θ([Q2])
if and only if Q1 ∼ Q2, notice that P c is determined up to equivalence. Certainly P c is
functionally complete. Moreover, it is clear that P is functionally complete if and only if
P ∼ P c, and in particular, for any idempotent P in M(R), Φ([P ]) = Φ([P c]). Under the
same hypotheses on R, if e ∈ R is an idempotent, then there exists an idempotent E ∈M(R)
such that Θ([E]) = [0, [e]). As above, the idempotent E is determined up to equivalence, and
we denote it by O(e).

Thus, using the results in previous sections, we get the following results, that state the
existence of some special pathological idempotents in multiplier algebras.

Proposition 4.1. Let R be a countable ring R in the class N , or a separable C*-algebra
in the class N ∗ such that 1M(R) is functionally complete, and let e ∈ R, E,F ∈ M(R) be
non-zero idempotents. Then:

(1) O(e) - e, and is the biggest idempotent (up to equivalence) in M(R) satisfying this
property.

(2) E - Ec, and if [Ec] is stably finite, then E . Ec if and only if E ∼ Ec.
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(3) (Ec)c ∼ Ec, and E ⊕ F c ∼ Ec ⊕ F c ∼ (E ⊕ F )c.
(4) If V (R) is strictly perforated, then O(e) � O(e)c.

Proof. Notice that countability hypothesis on V (R) is required to guarantee that O(e) ∈
M(R), and 1M(R) functionally complete is required to guarantee that P c ∈ M(R) for any
idempotent P ∈M(R).

(1) It is Remark 1.6.
(2) The first part is immediate. The second one is an immediate consequence of Corollary

2.4.
(3) The first part is immediate. The second one is Proposition 2.3.
(4) It is Corollary 2.8. �

Also, as a consequence of Proposition 3.8, we have the following result about divisibility of
idempotents

Proposition 4.2. Let R be a ring R in the class N , or a C*-algebra in the class N ∗, and
let E ∈ M(R) \ R be an idempotent. Then, for every n ∈ N there exists an idempotent
En ∈M(R) \R such that E ∼ n · En.

In the case of C*-algebras, Proposition 4.2 is [35, Theorem I (ii)]. For the case of von
Neumann regular rings, this result is not known, as far as we know. Now, as a corollary of
Theorem 3.2, we get the following result.

Theorem 4.3. Let R be a countable ring R in the class N , or a separable C*-algebra in
the class N ∗, let u ∈ V (R)∗, and let d = Φ([1M(R)]). Then, the following conditions are
equivalent:

(1) V (R) is strictly unperforated.
(2) Every idempotent in M(R) \R is functionally complete.
(3) The map Φ : (V (M(R)), [1M(R)])→ (V (R) tW d

σ (Su), d) is an injective monoid mor-
phism.

(4) The subsemigroup of V (M(R)) consisting of equivalence classes of idempotents E ∈
M(R) \R such that ρ(Θ([E])) ∈ Efin is strongly separative.

(5) For any non-zero idempotent e ∈ R, O(e) is functionally complete.

Now, as a corollary of Theorem 3.5, we get the following result.

Theorem 4.4. Let R be a ring in the class N , or a C*-algebra in the class N ∗, let u ∈ V (R)∗,
and let d = Φ([1M(R)]). If 1M(R) is functionally complete, then the map

Φ : (V (M(R)), [1M(R)])→ (V (R) tW d
σ (Su), d)

is a normalized monoid epimorphism.

There is an interesting case of application for Theorem 4.4. Recall that a C*-algebra A is
said to be stable provided that A ∼= A⊗K, where K denotes the algebra of compact operators
over a countable-dimensional Hilbert space. In the case of rings, we say that a ring R is stable
provided that R ∼= M∞(R). Notice that, if A is a C*-algebra, then A ⊗ K is isomorphic to
the norm completion of the pre-C*-algebra M∞(A).

Lemma 4.5. If R is a stable ring in the class N , or a stable C*-algebra in the class N ∗,
then 1M(R) is functionally complete.
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Proof. Since R is stable, we have a countable unit {en} consisting on an increasing sequence
of idempotents such that, for every n ≥ 1, all the idempotents en+1 − en are equivalent to a
fixed non-zero projection p ∈ R. Then, Θ([1M(R)]) = {x ∈ V (R) | x ≤ n[p] for some n ≥ 1},
and since R is simple, we conclude that Θ([1M(R)]) = V (R). �

Hence, we get the following result.

Corollary 4.6. Let R be a stable ring in the class N , or a stable C*-algebra in the class N ∗.
Let u ∈ V (R)∗, and let d = Φ([1M(R)]). Then the map

Φ : (V (M(R)), [1M(R)])→ (V (R) tW d
σ (Su), d)

is a normalized monoid epimorphism. Moreover, if V (R) is strictly perforated, then Φ fails
to be injective.

Notice that, if A is a σ-unital C*-algebra of real rank zero, then the lattice of closed ideals
ofM(A) is isomorphic to the lattice of order-ideals of V (M(A)) [34, Theorem 2.3]. The same
result is true for a σ-unital von Neumann regular ring, because of [3, Theorem 2.7]. Hence, in
view of Remark 3.7(2), even if injectivity is lost in the strictly perforated case, we still could
study the structure of the lattice of (closed) ideals of M(A) using the techniques developed
by Perera [19], provided we could state the arithmetical properties of the set Φ−1(f) for any
f ∈ W d

σ (Su). Thus, to extend the results of Perera to this context, the following question
should be answered.

Problem 4.7. Let M be a (countable) conical, cancellative, non-atomic, strictly perforated,
simple refinement monoid, let u ∈M be a non-zero element, let D be a non-zero functionally
complete soft interval, and let d = ρ(D). Describe ϕ−1(f) for every function f ∈ W d

σ (Su).

In the same line, and in order to extend the scope of the results obtained in this paper,
there are two questions that should be answered.

Problem 4.8. Let M be a conical, cancellative, non-atomic, simple refinement monoid, and
let D be a countably generated soft interval. Is then ρ′ρ(D) a countably generated interval?

Problem 4.9. Can we eliminate the hypothesis “M countable” in Proposition 1.5 in order
to get [0, x) countably generated?

An affirmative answer to this question would imply that results about injectivity are also
true for arbitrary C*-algebras of real rank zero or von Neumann regular rings.
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Departamento de Matemáticas, Universidad de Cádiz, Apartado 40, 11510 Puerto Real
(Cádiz), SPAIN.

E-mail address: francisco.ortus@uca.es, enrique.pardo@uca.es


