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FINITE PROJECTIONS IN MULTIPLIER ALGEBRAS

E. PARDO

A la Fina.

ABSTRACT. We give a characterization of finiteness of
projections in the multiplier algebra of a σ-unital C∗-algebra
of real rank zero and stable rank one.

1. Introduction. The behavior and properties of projections are
some of the most interesting topics in the theory of C∗-algebras and
also objects of intensive study (see [3] for a complete survey on this
topic).

This is particularly important in the case of C∗-algebras with real
rank zero, a class introduced by Brown and Pedersen in 1991, [5],
although this property, under different names, was the object of inten-
sive study some years ago (e.g., [4] or [14]). This class includes AF
C∗-algebras, von Neumann algebras, Rickart C∗-algebras, irrational
rotation algebras and purely infinite simple C∗-algebras among oth-
ers (see, for example, [5], [6], [20]), and because of [5, Theorem 2.6]
the structure of these algebras is closely related to the structure and
properties of their projections.

One of the points of interest on this topic is to know whether
projections in a C∗-algebra A are finite or not. Recall that a projection
p ∈ A is infinite if there exist p′, q′ nonzero orthogonal subprojections
of p such that p′ + q′ = p and p′ ∼ p (where “∼” means Murray-von
Neumann equivalent), and otherwise we say that p is finite. Also,
if there exists a projection q ∈ A such that 2 · p ⊕ q ∼ p (where
“⊕” means orthogonal sum, viewing the projection in M∞(A), see [2,
Chapter 5]), then we say that p is properly infinite. The existence
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2 E. PARDO

of infinite projections appears as an obstruction for the existence of
order-preserving functionals on C∗-algebras, so that some interesting
questions are to know whether the property that all projections in a
C∗-algebra A are finite is preserved by matrix rings over A, whether the
existence of a (properly) infinite projection implies that every nonzero
projection in a simple C∗-algebra A is (properly) infinite, or whether
the sum of two nonzero finite projections can be (properly) infinite in
a C∗-algebra A. So, to find criteria for deciding when a projection of
a C∗-algebra is finite becomes a main point in this context. In this
note we adapt some arguments of Kutami [9], given in the context
of von Neumann regular rings, in order to characterize when a given
projection in the multiplier algebra of a σ-unital C∗-algebra of real rank
zero and stable rank one is finite.

Now we will fix some notation. For p, q ∈ A projections, we write
p ≤ q if there exists a projection r ∈ A such that p and r are orthogonal
and p + r = q, and we write p � q if there exists a projection r ∈ A
such that p ⊕ r ∼ q. We will denote by ⊕ the orthogonal sum of two
projections, and the context will determine if the orthogonality of the
projections is the natural one (in A), or the formal one (in A ⊗ K).
Also, for a projection p and a positive integer n, we denote by n · p the
orthogonal sum of n copies of p. For a C∗-algebra A, we denote by V (A)
the abelian monoid of Murray-von Neumann equivalence classes of
projections in M∞(A) (see [2, Chapter 5]), and we consider this monoid
endowed with the so-called algebraic preordering that corresponds to
the ordering induced by the relation �. Finally, we say that a pre-
ordered abelian monoid M satisfies the Riesz decomposition property
(it is a Riesz monoid) if, for any x, y1, y2 ∈ M satisfying x ≤ y1 + y2,
there exist x1, x2 ∈ M such that x = x1 + x2 and xi ≤ yi for i = 1, 2.
If A is a C∗-algebra with real rank zero, then V (A) is a Riesz monoid,
[19, Theorem 1.1].

2. Checking finiteness of projections. We start this section
with a general result characterizing whether a projection is finite in the
multiplier algebra of a stable C∗-algebra. This result is analogous to
[10, Lemma 1], modified to be applied to the case of C∗-algebras of
real rank zero. To do that, we will need a result about cancellation of
some kind of projections in multiplier algebras. It derives directly from
results of [8, Section 1], but we include here a proof of this result for
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the convenience of the reader.

Lemma 2.1. Let A be a σ-unital C∗-algebra with real rank zero and
stable rank one, and let p ∈ A and P,Q ∈ M(A) be projections. Then:

1. If p⊕ P ∼ p⊕Q, then P ∼ Q.

2. If p⊕ P � p⊕Q, then P � Q.

Proof. (1) According to [8, Lemma 1.3], there exist {pn}n≥1 and
{qn}n≥1 approximate units for P · A · P and Q · A · Q, respectively,
consisting of increasing sequences of projections. Clearly, {p⊕ pn}n≥1

and {p⊕qn}n≥1 become approximate units for (p⊕P ) ·M2(A) · (p⊕P )
and (p ⊕ Q) · M2(A) · (p ⊕ Q), respectively, consisting of increasing
sequences of projections. Since p⊕P ∼ p⊕Q, applying recurrently [8,
Lemma 1.3(b)] and relabeling the indexes if necessary, we can assume
that

p⊕ p1 � p⊕ q1 � p⊕ p2 � · · · p⊕ pn � p⊕ qn � · · · .
Since sr (A) = 1, by [16] we can cancel the projection p in the above
inequalities and hence pi � qi and qi � pi+1 for every i ≥ 1. Thus we
get

p1 � q1 � p2 � · · · pn � qn � · · · .
Then by [8, Proposition 1.7, Theorem 1.10], we conclude that P ∼ Q.

(2) It is an analogous argument to that used to proof part (1).

Proposition 2.2. Let A be a σ-unital C∗-algebra with real rank
zero and stable rank one. For a projection P ∈ M(A) the following
conditions are equivalent:

1. P is infinite.

2. There exists a nonzero projection p ∈ A such that, for any
projection q ∈ A satisfying q ≤ P , we have p � P − q.

Proof. (1) ⇒ (2). Since P is infinite, a nonzero projection R ∈ M(A)
exists such that P ∼ P ⊕ R. Also, as A is a σ-unital C∗-algebra with
real rank zero, by [8, Lemma 1.3], R ·A ·R is a σ-unital C∗-algebra with
an approximate unit consisting of an increasing sequence of projections.
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Pick one of them, say p, that clearly is in A, and notice that p � R.
Now for any projection q ∈ A with q ≤ P , we have

q ⊕ (P − q) = P ∼ P ⊕R = q ⊕ (P − q) ⊕R.

By Lemma 2.1, q cancels from direct sums, whence P−q ∼ (P−q)⊕R.
Thus, p � R ≤ (P − q) ⊕R ∼ P − q.

(2) ⇒ (1). Assume that there exists p ∈ A, a projection satisfying
(2). By [8, Lemma 1.3] there exists {pn}n≥0, an approximate unit
of P · A · P , consisting of an increasing sequence of projections so
that, if we define p−1 = 0, then P =

∑∞
i=0(pi − pi−1). Since p � P ,

again by [8, Lemma 1.3], there is a nonnegative integer n0 such that
p � pn0 (and we can assume that n0 = 0). By hypothesis p � P − p0.
Since P − p0 =

∑∞
i=1(pi − pi−1), we have that {(pn − p0)}n≥0 is an

approximate unit consisting of an increasing sequence of projections for
(P − p0) · A · (P − p0). Thus, again by [8, Lemma 1.3], there exists
a positive integer n1 (we can assume n1 = 1) such that p � p1 − p0.
Thus, projections p′0 ≤ p0 and p′1 ≤ p1 − p0 exist with p′i ∼ p. As
p0 and p1 − p0 are orthogonal, so are p′0 and p′1. Also, p � P − p1.
Hence, applying recurrently this argument and reindexing, we show
that for any positive integer n there exists a projection p′n ≤ pn − pn−1

such that p′n ∼ p. Thus P dominates an infinite sequence of pairwise
orthogonal projections {p′n}n≥0 such that p′n ∼ p, and also p′n ∈
(pn − pn−1) ·A · (pn − pn−1), for every n ≥ 0. Since {(pn − pn−1)}n≥0

are pairwise orthogonal projections whose partial sums converge to P
in the strict topology of M(A), we conclude that Q =

∑∞
i=0 p

′
i is a

subprojection of P because of [21, Proposition 1.7]. Notice that the
same holds for {p′2n}n≥0 and {p′2n+1}n≥0 so that Q′ =

∑∞
i=0 p

′
2i and

Q′′ =
∑∞

i=0 p
′
2i+1 are pairwise orthogonal subprojections of Q with

Q = Q′ ⊕ Q′′. Moreover, as p′i ∼ p for all i ≥ 1, again by [21,
Proposition 1.7] we conclude that Q′ ∼ Q′′ ∼ Q. Hence, Q is infinite,
and therefore P is infinite.

Notice that the equivalent properties that appear in Proposition 2.2
imply that there exists a projection p ∈ A such that P dominates
an infinite family of pairwise orthogonal projections equivalent to p.
Nevertheless, the last property does not suffice, in general, to guarantee
that P is an infinite projection. For example, let H be a countable
Hilbert space, let K be the C∗-algebra of compact operators on H, and



FINITE PROJECTIONS 5

let K∼ be the unitification of K. Then RR (K∼) = 0 and sr (K∼) = 1
(so that it contains no infinite projections), but the rank one projections
of K∼ define a countable set of nonzero pairwise equivalent projections.
Clearly 1K∼ dominates this set, but it is a finite projection.

Now we will show that, in some cases, the equivalence of these three
properties holds, providing a powerful tool for checking finiteness of
projections.

Definition 2.3. Let R be a ring. The index of nilpotence of a
nilpotent element x ∈ R is the least positive integer n such that xn = 0.
The index of nilpotence of R is the supremum of the indices of all
nilpotent elements of R. If this supremum is finite, then R is said to
have bounded index of nilpotence. We denote the index of nilpotence
of R by i(R).

Now we will quote a result that we will need in the sequel.

Proposition 2.4. For a C∗-algebra A, the following are equivalent:

1. i(A) ≤ n.

2. Every irreducible representation of A has dimension less than or
equal to n.

Proof. This is a restatement of [1, Lemma 6.1.4].

As a consequence, we obtain the following results.

Corollary 2.5. If A is a C∗-algebra with bounded index of nilpotence
and k is a positive integer, then i(Mk(A)) = k · i(A).

Proof. Let i(A) = n for some positive integer n. Then, by Proposi-
tion 2.4, we have that A is isomorphic to a C∗-subalgebra of

∏
Mti

(C),
where the product ranges over the set of irreducible representations of
A, ti ≤ n for all i, there exists a subindex i such that ti = n, and
for each i there exists an epimorphism A → Mti

(C). Then Mk(A) is
isomorphic to a C∗-subalgebra of

∏
Mk·ti

(C) and for each i, there is
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an epimorphism from Mk(A) to Mk·ti
(C). Thus i(Mk(A)) ≤ k · i(A)

by Proposition 2.4, and the equality holds because A has an irreducible
representation of dimension k · n.

Corollary 2.6. If A is a C∗-algebra with real rank zero and bounded
index of nilpotence, then A has stable rank one.

Proof. Since RR(A) = 0, A is spectral in the sense of [12]. Since A
has bounded index of nilpotence, every irreducible representation of A
is finite-dimensional by Proposition 2.4, so that every primitive factor
of A is finite dimensional (e.g., [13, Theorem 5.4.2]). Thus, the result
holds because of [12, Corollary 4.6].

Examples of C∗-algebras of real rank zero with bounded index of
nilpotence are, among others:

(i) AF-C∗-algebras with bounded index of nilpotence.

(ii) Given any natural number n, the algebra Mn(C0(X)), where X
is a locally compact, Hausdorff space of (covering) dimension 0.

(iii) More in general, the C∗-algebra of a continuous field of C∗-
algebras of real rank zero with bounded index of nilpotence over locally
compact, Hausdorff spaces of (covering) dimension 0.

We will need the following result.

Proposition 2.7 [7, Theorem 7.2]. Let R be a unital ring with
index of nilpotence n < +∞. Then RR contains no direct summands
consisting of a direct sum of (n + 1) nonzero pairwise isomorphic
submodules.

The next result is analogous to [9, Lemma 1], but the proof we present
here is different from Kutami’s one.

Lemma 2.8. Let A be a unital C∗-algebra with real rank zero
and index of nilpotence n < +∞, let k be a positive integer, and let
sk = nk + 1. Let p, p1, . . . , psk

∈ Mk(A) and q2, . . . , qsk
∈ A ⊗ K be

projections. If p1 ∼ p2 ⊕ q2 ∼ · · · ∼ psk
⊕ qsk

and p1 ⊕ · · · ⊕ psk
≤ p,
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then p1 � q2 ⊕ · · · ⊕ qsk
.

Proof. Since RR(A ⊗ K) = 0, [5, Corollary 3.3], there exist sub-
projections p′j of pj and q′j of qj for j = 3, . . . , sk such that p′j−1 ∼
p′j ⊕ q′j , where p′2 = p2 because of [19, Theorem 1.1]. Notice that
{p1, p

′
2, . . . , p

′
sk
} is a family of orthogonal subprojections of p with p′sk

�
· · · � p′2 � p1. Since p is a projection of Mk(A) and i(A) = n, then
i(Mk(A)) = nk by Corollary 2.5, and hence Proposition 2.7 implies that
p′sk

= 0, so that p1 ∼ p2⊕ q2 ∼ · · · ∼ q′sk
⊕· · ·⊕ q′3⊕ q2 ≤ q2⊕· · ·⊕ qsk

,
which ends the proof.

The next result is analogous to [9, Theorem 2], slightly modified to
be applied to the case of C∗-algebras with real rank zero.

Theorem 2.9. Let A be a unital C∗-algebra with real rank zero
and bounded index of nilpotence. For a projection P ∈ M(A ⊗ K) the
following conditions are equivalent:

1. P is infinite.

2. There exists a nonzero projection p ∈ A such that n · p � P for all
n ∈ N.

3. There exists a nonzero projection p ∈ A such that, for any
projection q ∈ A⊗K satisfying q ≤ P , we have p � P − q.

Proof. Notice that (2) is equivalent to the fact that there exists a
nonzero projection p ∈ A such that P dominates an infinite family of
pairwise orthogonal projections equivalent to p, because of Corollary 2.6
and Lemma 2.1 (see, for example, [7, Proposition 4.8]).

(1) ⇒ (2). Since P is infinite, a standard argument (e.g., [7,
Proposition 5.5]) shows that it dominates a countable infinite sequence
of nonzero pairwise orthogonal projections that are pairwise equivalent.
Let Q be one of them. Since A⊗K is a σ-unital C∗-algebra with real
rank zero, by [8, Lemma 1.3], Q·(A⊗K)·Q is a σ-unital C∗-algebra with
an approximate unit consisting of an increasing sequence of projections.
Pick one of them, say q, that clearly is in A⊗K, and notice that by [19,
Theorem 1.1], q ∼ q1 ⊕ · · · ⊕ qk for q1, . . . , qk ∈ A nonzero projections.
Thus the result holds by taking p = q1.
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(2) ⇒ (3). Assume that a nonzero projection p ∈ A exists such that
P dominates an infinite sequence of pairwise orthogonal projections
equivalent to p, and let q ∈ A ⊗ K satisfy q ≤ P . By [8, Lemma 1.3]
P ·(A⊗K) ·P contains an approximate identity {pi}i≥0 consisting of an
increasing sequence of projections. Moreover, there is a positive integer
n such that p � pn and q � pn. Since sr (A) = 1 by Corollary 2.6, q
cancels from direct sums by Lemma 2.1, whence P −pn � P −q. Thus,
if we change q to pn, then there is no loss of generality assuming that
p � q. Hence there exists a decomposition q = q0⊕q(0) such that p ∼ q0.
Also we can assume that q ∈ Mk(A) for some k ∈ N. Set Q = P − q so
that p � q⊕Q. By hypothesis 2 · p � P = q⊕Q = q0 ⊕ q(0) ⊕Q. Since
p cancels from direct sums by Lemma 2.1, we have that p � q(0) ⊕ Q.
Now, as A⊗K is σ-unital with real rank zero, again by [19, Theorem
1.1] we have that V (M(A⊗K)) is a Riesz monoid. Then decompositions
q(0) = q1 ⊕ q(1) and Q = Q1 ⊕Q(1) exist such that p ∼ q1 ⊕Q1. Again
by the hypothesis we have 3 · p � P = q0 ⊕ q1 ⊕ q(1) ⊕Q1 ⊕Q(1), and
since p cancels from direct sums by Lemma 2.1, we conclude that p �
q(1) ⊕Q(1). We continue this procedure and we obtain, for each m ≥ 1,
decompositions q(m) = qm+1⊕q(m+1) and Q(m) = Qm+1⊕Q(m+1) such
that p ∼ qm+1 ⊕Qm+1. Thus, applying Lemma 2.8, we have a positive
integer m0 such that p � Q1 ⊕· · ·⊕Qm0 ≤ Q, whence the result holds.

(3) ⇒ (1). By Corollary 2.6 and Proposition 2.2.

Finally, in the case of the algebra A being simple, we can give a
characterization of finiteness of projections in M(A).

Theorem 2.10. Let A be a σ-unital, nonunital, simple C∗-algebra
of real rank zero and stable rank one. For a projection P ∈ M(A) the
following conditions are equivalent:

1. P ·A · P is stable.

2. P is properly infinite.

3. P is infinite.

4. There exists a nonzero projection p ∈ A such that n · p � P for all
n ∈ N.

5. For any projection q ∈ A⊗K we have q � P .



FINITE PROJECTIONS 9

Proof. (1) ⇔ (2) ⇔ (3). It is direct from [17, Theorem 3.5,
Proposition 3.6].

(3) ⇒ (4). It is the same proof as Theorem 2.9.

(4) ⇒ (5). Let p ∈ A satisfy (4), let q ∈ A⊗K be a nonzero projection,
and notice that by [19, Theorem 1.1], q ∼ q1⊕· · ·⊕qk for q1, . . . , qk ∈ A
nonzero projections. Since A is simple, for each i = 1, . . . , k, there
exists ni ∈ N such that qi � ni · p. Thus, if we take n = n1 + · · · + nk,
we get

q ∼ q1 ⊕ · · · ⊕ qk � n1 · p⊕ · · · ⊕ nk · p = n · p � P.

(5) ⇒ (3). Fix a nonzero projection p ∈ A, and let q ∈ A⊗K be any
nonzero projection satisfying q ≤ P . Now, since A is simple, a positive
integer n exists such that p � n · q. By hypothesis,

n · q ⊕ q = (n + 1) · q � P = q ⊕ (P − q),

whence, by Lemma 2.1, n · q � (P − q). Thus, p � (P − q), and then
we conclude the desired result because of Proposition 2.2.

Moreover, if we add to the above result the extra hypothesis of the
algebra A having V (A) strictly unperforated, then we can characterize
the existence of orthogonal finite projections whose sum is infinite in
terms of the structure of the space of states of the algebra. To do
that we recall some definitions and results of [15]. Given (M,u) an
abelian monoid with order-unit, endowed with the algebraic preorder,
we denote by Su the compact convex space of states on M , by Aff (Su)+

the monoid of positive, affine and continuous functions from Su to R,
and by φu : M → Aff (Su)+ the natural evaluation map. Also, let
LAffσ(Su)++ be the monoid of strictly positive, affine, lower semi-
continuous functions from M to R that are pointwise suprema of
increasing sequences of functions in Aff (Su)+. Thus, if A is a σ-
unital, nonunital, simple, nonelementary, C∗-algebra of real rank zero,
stable rank one and V (A) strictly unperforated, and we fix {en}n≥1 any
approximate unit of A consisting of an ascending chain of projections,
u = [e1] ∈ V (A), d = supn∈N φu([en]) (this function is the scale of
A) and W d

σ (Su) = {f ∈ LAffσ(Su)++ | f + g = nd for some g ∈
LAffσ(Su)++ and n ∈ N}, we have a normalized monoid isomorphism

ϕ(V (M(A), [1M(A)])) −→ V (A) �W d
σ (Su)
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given by the rule ϕ(p) = p for any p ∈ A ⊗ K, and by ϕ([P ]) =
supn∈N φu([pn]) for any P ∈ M(A) ⊗ K, being {pn}n≥1 any approxi-
mate unit of P · A · P consisting of an ascending chain of projections
([15, Theorem 3.10]). In this context, we say that the algebra has iden-
tically infinite scale if the function d defined above takes the value ∞
on every element of Su. Notice that, in particular, identically infinite
scale implies d = 2d, and through the above-mentioned isomorphism,
that 1M(A) ∼ 2 · 1M(A). Equivalently, this means that A is stable [17,
Proposition 3.6]. Then we have the following result.

Proposition 2.11. Let A be a unital, simple, nonelementary C∗-
algebra of real rank zero, stable rank one and V (A) strictly unperforated.
Then the following are equivalent:

1. The space state Su has more than one element.

2. There exists a projection P ∈ M(A ⊗ K) such that P and
1M(A⊗K) − P are finite.

3. There exist finite projections P,Q ∈ M(A⊗K) such that the sum
P ⊕Q is infinite.

Proof. (1) ⇒ (2). Suppose that Su does not consist of a single
element. Then at least two different extremal states s, t ∈ ∂e(Su) exist.
Thus, by [15, Proposition 4.13], there exist f, g ∈ W d

σ (Su) such that
f(s) = 1, g(t) = 1 and f + g = d. Since A ⊗ K is stable, the remark
before Proposition 2.11 shows that the scale d is identically infinite. Let
Q,Q′ ∈ M(A⊗K) be projections satisfying ϕ(Q) = f and ϕ(Q′) = g.
Then, using the above-mentioned isomorphism we conclude that both
Q and Q′ are finite. But ϕ(Q ⊕ Q′) = d = ϕ(1M(A⊗K)), whence
Q⊕Q′ ∼ 1M(A⊗K). Thus there exists a projection P such that P ∼ Q
and 1M(A⊗K) − P ∼ Q′, whence the result holds.

(2) ⇒ (3). It is immediate, because under our hypothesis, 1M(A⊗K)

is properly infinite by [17, Proposition 3.6].

(3) ⇒ (1). If Su consists of a single element, we have that W d
σ (Su) ∼=

R++�{+∞}. Hence, through the above-mentioned isomorphism, finite
projections correspond to real numbers and ϕ(1M(A⊗K)) = +∞. Thus,
for any finite projections P,Q ∈ M(A ⊗ K), ϕ(P ) = α and ϕ(Q) = β
for some α, β ∈ R, whence ϕ(P ⊕Q) = α + β �= +∞.
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We end the note by showing the application of our results to a couple
of examples. The first one is an example whose existence was quoted
implicitly by Lin (see [11]), although we will quote here an analogous
example due to Rørdam that appears explicitly in [17], of the multiplier
algebra of a simple AF C∗-algebra containing a couple of orthogonal
finite projections whose sum is properly infinite.

Example 2.12 ([11], [17]). A unital simple AF C∗-algebra A
such that M(A ⊗ K) contains a projection P such that both P and
1M(A⊗K) − P are finite, but 1M(A⊗K) ∼ 2 · 1M(A⊗K).

Proof. Let A be the unique unital AF C∗-algebra associated to the
dimension group

G = Q⊕ Q, G+ = {(s, t) ∈ G | s > 0, t > 0} ∪ {0},

with order-unit u = (1, 1). Since (G,G+) is a simple dimension group,
it follows that A is a simple C∗-algebra. Let τ1, τ2 be the (extremal)
tracial states on A given by K0(τ1)(s, t) = s and K0(τ2)(s, t) = t. Then
Su contains more than one element, and then the result holds because
of Proposition 2.11.

In [17, Example 4.3] an explicit description of a projection can be
found, as in the example above. The second example is an adaptation
of a construction given by Kutami ([9]) for von Neumann regular rings,
to the context of C∗-algebras that allows us to obtain an example of
the same pathology, but starting with a nonsimple AF C∗-algebra.

Example 2.13. A unital nonsimple AF C∗-algebra A such that
the algebra M(A ⊗ K) contains a projection P with both P and
1M(A⊗K) − P are finite, but 1M(A⊗K) ∼ 2 · 1M(A⊗K).

Proof. Consider, for each positive integer n ≥ 0, the C∗-algebra
An = ⊕2n

i=1C and the maps ϕn,n+1 : An → An+1 defined by the rule
ϕn,n+1(x) = (x, x). Let A = C∗ − lim→ An and notice that A is a unital

AF C∗-algebra so that RR(A) = 0 and sr (A) = 1. Moreover, as A is
abelian, i(A) = 1. Now consider p̄1 = (1, 0) ∈ A1 and q̄1 = (0, 1) ∈ A1,
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and define inductively the set {p̄i, q̄i}i≥2

p̄2i = (p̄i, 0) ∈ An+1, q̄2i = (0, p̄i) ∈ An+1 for p̄i ∈ An,

p̄2i+1 = (q̄i, 0) ∈ An+1, q̄2i+1 = (0, q̄i) ∈ An+1 for q̄i ∈ An.

Let ϕi : Ai → A be the canonical maps, and let pi = ϕi(p̄i), qi = ϕi(q̄i)
be the projections of A coming from the above family. Notice that for
each k ≥ 1, we have pk = p2k + q2k and qk = p2k+1 + q2k+1. Moreover,
for every k ≥ 1, pk cannot be obtained by sums of pj ’s with j > k or
by sums of qj ’s with j > k, and the same holds for qk. Now, since A is
abelian, if r � pk, then r ≤ pk, whence r ≥ pj or r ≥ qj for some pj or
qj subprojection of pk. Thus it is clear from the previous remarks that
if r � pk, then

(∗) r �� ⊕n+j+1
i=j+1 pi for any n ≥ 0.

Also observe that, for any k ≥ 1, the set {p2k−1 , . . . , p2k−1, q2k−1 , . . . ,

q2k−1} consists of pairwise orthogonal projections of A with

2k−1∑
i=2k−1

pi +
2k−1∑

i=2k−1

qi = 1.

Let {eij}i,j≥1 be a complete set of matrix units for K, choose
{∑n

i=1 1 ⊗ eii}n≥1 be an approximate unit for A ⊗ K consisting of
an increasing sequence of projections and let {p̃i}i≥1 and {q̃i}i≥1 be
projections of A⊗K defined as follows:

p̃i =
( 2i−1∑

j=2i−1

pj

)
⊗ eii,

q̃i =
( 2i−1∑

j=2i−1

qj

)
⊗ eii.

Notice that for each i ≥ 1, p̃i and q̃i are orthogonal and p̃i + q̃i = 1⊗eii,
so that p̃i, q̃i ∈ (1 ⊗ eii)(A⊗ K)(1 ⊗ eii). Since the projections 1 ⊗ eii

are pairwise orthogonal and
∑∞

i=1 1⊗eii = 1M(A⊗K), we conclude from
[21, Proposition 1.7] that P =

∑∞
i=1 p̃i and Q =

∑∞
i=1 q̃i are orthogonal
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projections of M(A ⊗ K) such that P ⊕Q = 1M(A⊗K). In particular,
the elements

∑n
i=1 p̃i form an approximate unit for P · (A ⊗ K) · P

consisting of an increasing sequence of projections, and the same holds
for the elements

∑n
i=1 q̃i of Q · (A⊗K) ·Q.

Now let r ∈ A be a projection such that r � P . Then, by [8, Lemma
1.3], r � p′n := p̃1⊕· · ·⊕p̃n for some n ∈ N. Since RR(A⊗K) = 0, there
exist r1, . . . , rn orthogonal subprojections of r such that r = r1⊕· · ·⊕rn

and ri � p̃i. Thus, in view of (∗), for each i = 1, . . . , n, there exists
ki ≥ 1 such that ri �� P − p′ki

. If we take k = min{k1, . . . , kn}, then
r = r1⊕· · ·⊕rn �� P −p′k. The same holds for Q, whence we have that
for any nonzero projection r ∈ A, projections p, q ∈ A ⊗ K exist such
that p ≤ P , q ≤ Q and r �� P − p, r �� Q− q. Thus, by Theorem 2.9,
we conclude that both P and Q are finite projections. On the other
hand, it is well known that 1M(A⊗K) ∼ 2 · 1M(A⊗K) (see, for example,
[18, Theorem 15.4.6]).
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