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METRIC COMPLETIONS OF ORDERED GROUPS

AND K0 OF EXCHANGE RINGS

E. PARDO

Abstract. We give a description of the closure of the natural affine contin-
uous function representation of K0(R) for any exchange ring R. This goal is
achieved by extending the results of Goodearl and Handelman, about metric
completions of dimension groups, to a more general class of pre-ordered groups,
which includes K0 of exchange rings. As a consequence, the results about K+

0

of regular rings, which the author gave in an earlier paper, can be extended
to a wider class of rings, which includes C∗-algebras of real rank zero, among
others. Also, the framework of pre-ordered groups developed here allows other
potential applications.

1. Introduction

Goodearl and Handelman [22] studied the representation Φ : G→ Aff(S(G, u))
of a dimension group with order-unit (G, u) into the space Aff(S(G, u)) of affine
and continuous functions on its state space, as well as its completion in order-unit
norm. In particular, they proved that the completion of a dimension group with
order-unit in this norm is an archimedean, norm-complete dimension group with
order-unit, and in fact that it is isomorphic (as ordered group) to the closure of the
image of G into Aff(S(G, u)). These results are applied successfully to describe K0

in the case of unperforated, unit-regular rings, as well as to determine properties
of some subclasses of this class of rings. Lately, Ara and Goodearl, in [2], used
the representation of K0(R) into the space of affine and continuous functions on
S(K0(R), [R])), in order to determine how far a non-artinian, simple regular ring
R is from being a matrix ring of every dimension, and how far K0(R) is from
being a dimension group. The key aspect of their proof is the property which they
called condition (D): Φ(K0(R)+) is dense in Aff(S(K0(R), [R]))+. They showed
that any non-artinian, strictly unperforated, simple unit-regular ring satisfies this
condition. Subsequently, the author, in [29], proved that these results generalize to
all non-artinian simple regular rings, and characterized the regular rings that satisfy
condition (D) as those that have no nontrivial artinian homomorphic images; in fact,
a somewhat more technical version of the result is obtained, which applies even if
there are artinian homomorphic images, which gives a description of Φ(K0(R)+)

Received by the editors October 12, 1995.
1991 Mathematics Subject Classification. Primary 16D70, 19K14, 20K20; Secondary 16A50,

46L55.
Key words and phrases. Exchange ring, asymptotic refinement group, refinement monoid.
Partially supported by DGICYT Grant PB-93-0900 and by the Comissionat per Universitats i

Recerca de la Generalitat de Catalunya. This paper is part of the author’s Ph.D.Thesis, written
under the supervision of Professor P. Ara.

c©1998 American Mathematical Society

913



914 E. PARDO

for any regular ring R. We prove this by considering the N∗-metric completion of R
– which is an unperforated, unit-regular ring, as shown by Burgess and Handelman
([10]) and Torrens ([34]) – and then using the results about representations of
dimension groups given by Goodearl and Handelman in [22]. We can do this because
there exists an affine homeomorphism between S(K0(R), [R]) and P(R) – the space
of pseudo-rank functions over a regular ring R (see [16, Proposition 17.12]).

Our goal is to prove the analogous result for exchange rings. Exchange rings, a
class of rings with the property that direct sums of projective modules have common
refinements, have been widely studied (see [36], [27], [23], [33], [13], [3], [1]). In fact,
it is a large class, which includes regular rings ([27] or [23]), strongly π-regular rings
([33]), and, as recently shown by Ara, Goodearl, O’Meara and Pardo, unital C∗-
algebras of real rank zero ([3, Theorem 7.2]), so that our results generalize those
of [29] to a more general class of rings containing C∗-algebras of real rank zero,
among others.

There are some problems to solve in order to achieve our goal. On the one hand,
in contrast with the case of regular rings or C∗-algebras of real rank zero, no theory
of pseudo-rank functions has been developed for exchange rings. In fact, it seems a
difficult task to extend that theory to this larger class of rings. Even in the case of
C∗-algebras of real rank zero, where this theory has been developed ([9]), analogs
of the results about N∗-metric completions for regular rings do not exist. Thus, the
technique used in [29] does not work in this general context. On the other hand,
K0 of an exchange ring can fail to be a dimension group, since Moncasi, in [26]
constructed a stably finite regular ring R whose K0(R) fails to be a Riesz group;
moreover, tor(K0(R)) 6= 0. Goodearl, in [20], constructed an analogous example
for the case of C∗-algebras of real rank zero. Thus, it is not possible to prove the
desired results within the framework of Riesz groups.

Nevertheless, we are able to avoid these difficulties by working with asymptotic
versions (in a metric sense) of the Riesz refinement and interpolation properties.
(Notice that, by dealing with ordered groups, we implicitly avoid the problem of
defining pseudo-rank functions on exchange rings.) The point is that the monoid of
isomorphism classes of finitely generated projective right modules for an exchange
ring R – denoted by V (R) – is a refinement monoid, as shown by Ara, Goodearl,
O’Meara and Pardo in [3, Proposition 1.1] (As finitely generated projective right
modules over an exchange ring satisfy the finite exchange property, this result is,
in fact, a restatement in monoid language of the exchange property for modules,
introduced by Crawley and Jónsson in [14]) . Thus, the asymptotic properties
are available in the applications of interest to us, since we will prove that the
Grothendieck group of a refinement monoid has these properties. In this note, we
prove that the results about representations and metric completions of dimension
groups are also true in the context of these weaker “asymptotic” properties. Some
additional applications are developed using the main result. Namely, the framework
of pre-ordered groups we develop here gives an affirmative answer to Open Problems
1, 7 and 8 of [17]. Moreover, in [30], we obtain, as an application of the main result
of this paper, a version of the theorem of representation of dimension groups ([15])
for simple Riesz groups, as well as an affirmative answer to Open Problem 2 of [17]
for the case of simple groups.

Here is a brief outline of the paper. In Section 2, we introduce the notion of
asymptotic interpolation group, and we show that the Grothendieck group of a
refinement monoid lies in this class. Also, we show some “asymptotic” versions
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of the results of [22] that we need to prove the main result. This is contained in
Section 3, where we show that the completion of an asymptotic refinement group
G in its order-unit norm is an archimedean, norm-complete dimension group with
order-unit, and in fact that it is isomorphic (as ordered group) to the closure of the
image ofG in Aff(S(G, u)) (that is, the analog of Goodearl and Handelman’s result).
Section 4 is devoted to applying these results to give a description of the closure
of the natural affine continuous function representation of K0(R) for any exchange
ring R, as well as some other applications, as to obtain a result of comparability of
finitely generated projective modules on exchange rings in terms of comparability of
elements of Φ(K0(R)). In Section 5 we give a generalization of the result of Zhang
about “halving projections” in simple C∗-algebras of real rank zero ([41, Theorem
I(i)]), as well as those of Ara and Goodearl about approximation of simple regular
rings by matrix rings ([2, Corollary 2.8]) in the context of refinement monoids, that
allows us to avoid the specific techniques of both classes of rings.

Throughout this note we will refer to [17] for the background on ordered abelian
groups, to [36], [23], [27] and [3] for the background on exchange rings, and to [16]
and [6] for the concrete applications to the field of regular rings and C∗-algebras
respectively.

2. Asymptotic properties for ordered groups

In this section we will define a property somewhat weaker than interpolation for
ordered groups, and we will prove some results on groups satisfying this property
that will be necessary to show that the results about representations of dimension
groups, given by Goodearl and Handelman in [22], also hold for groups with fewer
restrictions. As we shall see, important key examples of pre-ordered groups sat-
isfying this property are K0 of exchange rings. We will start by showing a useful
result, that is analogous to [17, Proposition 2.1], and that allows us to define this
new class.

Given a pre-ordered abelian group with order-unit (G, u), we denote by S(G, u)
the space of (normalized) states on (G, u). This is a convex compact subset of a
locally compact real vector space ([17, Chapter 4]). Also, we denote by Aff(S(G, u))
the space of affine and continuous real-valued functions on S(G, u), which has a
natural structure of partially ordered abelian group with order-unit ([17, Chapter
7]). We denote by Φ the natural evaluation map from (G, u) to Aff(S(G, u)).
Recall that the order-unit norm on (G, u) can be defined as ‖x‖u = ‖Φ(x)‖∞ ([17,
Proposition 7.12]).

Proposition 2.1. Let (G, u) be a pre-ordered group with order-unit, and let ‖.‖ =
‖.‖u be its order-unit norm. Then, the following are equivalent:

(a) For all x1, x2, y1, y2 ∈ G be such that {x1, x2} ≤ {y1, y2} and for all ε > 0
there exist z ∈ G and d ∈ G+ such that {x1, x2} ≤ z ≤ {y1 +d, y2 +d} and ‖d‖ < ε.

(b) For all x, y1, y2 ∈ G+ such that x ≤ y1 + y2 and for all ε > 0 there exist
x1, x2, d ∈ G+ such that x+ d = x1 + x2 and xi ≤ yi + d ∀i, while ‖d‖ < ε.

Proof. First, assume that G satisfies (b), and let x1, x2, y1, y2 ∈ G be such that
{x1, x2} ≤ {y1, y2}. Then yj − xi ∈ G+ ∀i, j, and y2 − x1 ≤ (y2 − x1) + (y1 −
x2) = (y1 − x1) + (y2 − x2). So, given ε > 0, there exist z1, z2, d ∈ G+ such that
(y2−x1)+d = z1 + z2 and zj ≤ (yj −xj)+d with ‖d‖ < ε. Set z = x1 + z1. Hence,
x1 ≤ z, and as z1 ≤ (y1−x1)+d we have that z ≤ y1+d. Since (y2−x1)+d = z1+z2,
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we have that z = (y2 − z2) + d ≤ y2 + d. As z2 ≤ (y2 − x2) + d, we obtain x2 ≤ z.
Thus, we conclude that {x1, x2} ≤ z ≤ {y1 + d, y2 + d}.

Now assume that G satisfies (a), and let x, y1, y2 ∈ G+ be such that x ≤ y1 + y2.
Thus it is easy to see that {0, x− y2} ≤ {x, y1}, and hence, given ε > 0, ∃x1 ∈ G,
∃d ∈ G+ such that {0, x− y2} ≤ x1 ≤ {x + d, y1 + d} and ‖d‖ < ε. So, x + d =
x1 + x2 for some x2 ∈ G+, x1 ≤ y1 + d, and x − y2 ≤ x1 = x + d − x2, whence
x2 ≤ x+ d− x+ y2 = y2 + d. �

Observe that if the conditions in Proposition 2.1 hold, then by induction, the
corresponding conditions for larger numbers of elements also hold.

Definition. A pre-ordered abelian group with order-unit (G, u) is said to satisfy
the asymptotic interpolation property (and so we say that G is an asymptotic
interpolation group) provided G satisfies the condition given in Proposition 2.1(a),
and it is said to satisfy the asymptotic refinement property (and so we say
that G is an asymptotic refinement group) provided G satisfies the condition given
in Proposition 2.1(b).

Observe that, as all order-unit norms are equivalent, the properties we have
defined above do not depend of the choice of the order-unit.

Clearly, the interpolation groups lies in this new class. Another family of pre-
ordered groups which satisfy asymptotic interpolation is that of finite tensor prod-
ucts of interpolation groups with order-unit, as pointed out by Wehrung in [39] (in
that paper, Wehrung constructed some examples of this kind – see [39, Examples
1.4 and 1.5] – that fail to be interpolation groups). We will show that the class
of Grothendieck groups of refinement monoids with order-unit also lies in this new
class. Recall that an abelian monoid M is said to be a refinement monoid provided
that whenever x1, x2, y1, y2 ∈ M are such that x1 + x2 = y1 + y2, then ∃zij ∈ M
such that

∑
j zij = xi and

∑
i zij = yj for i, j = 1, 2. We will define the following

pre-ordering ≤ for any abelian monoid M : for any x, y ∈ M , we will say that
x ≤ y if and only if there exists z ∈ M such that x + z = y. It is sometimes
called the algebraic ordering, but since it is the only ordering we will use, we do
not use any special notation. An element u ∈ M is said to be an order-unit if,
whenever x ∈ M , there exists n ∈ N such that x ≤ nu. By using this order-unit,
the state space S(M,u) and the natural evaluation map Φ : M −→ Aff(S(M,u))
of a monoid M with order-unit u are defined in the same way as for a pre-ordered
abelian group with order-unit. Given any abelian monoid M , we will denote by
G(M) the universal group – or Grothendieck group – of M , and we will use [x] to
denote the class of x ∈ M inside G(M) (Recall that the equivalence relation on
M is given by the following rule: for any two elements x, y ∈ M , [x] = [y] if there
exists z ∈M such that x+ z = y+ z.) G(M) will be viewed as a pre-ordered group
with positive cone G(M)+ = {[x] | x ∈M}.
Lemma 2.2. Let (M,u) be a refinement monoid with order-unit, and let a0, a1, b0,
b1 ∈ M be such that {a0, a1} ≤ {b0, b1}. Then, ∀ε > 0 ∃cε, dε ∈ M with ‖dε‖ < ε,
such that {a0, a1} ≤ cε ≤ {b0 + dε, b1 + dε}.
Proof. Assume that we have {a0, a1} ≤ {b0, b1}. Thus, for all n ∈ N we have,

by [38, Lemma 2.8], that there exist c, d, d0, d1 ∈ M and m,m0,m1 ∈ N such
that a0 ≤ c, a1 ≤ c + d, c ≤ bi + di and 2m+n+1d ≤ 2mc, 2n+midi ≤ 2mibi.
Set c = c + d and d = d + d0 + d1. Hence, {a0, a1} ≤ c ≤ {b0 + d, b1 + d}.
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Observe that ‖d‖ ≤ ‖c‖
2n+1 and that ‖di‖ ≤ ‖bi‖

2n . Thus, if k = max{‖b0‖, ‖b1‖}, then

‖c‖ ≤ ‖c‖ + ‖d‖ ≤ ‖c‖ + 1
2n+1 ‖c‖ = (1 + 1

2n+1 )‖c‖ ≤ (1 + 1
2n+1 )(‖bi‖ + 1

2n ‖bi‖) =

(2n+1+1
2n+1

2n+1
2n )‖bi‖ ≤ 2k, whence ‖d‖ ≤ ‖d‖+ ‖d0‖+ ‖d1‖ ≤ 3k

2n < k
2n−2 , and taking

n > 2 + log2(
k
ε ) we obtain the desired result. �

Our next result constitutes the main motivation for our definition of asymptotic
refinement groups.

Proposition 2.3. Let (M,u) be a refinement monoid with order-unit, and let G
be its Grothendieck group. Then:

(a) If x, y1, y2 ∈ G+ and x ≤ y1 + y2, then ∀ε > 0 ∃d ∈ M with ‖[d]‖ < ε and
x1, x2 ∈ G+ such that x = x1 + x2 and x1 ≤ y1, x2 ≤ y2 + [d].

(b) G is an asymptotic refinement group.

Proof. First of all, notice that if x, y ∈M and [x] ≤ [y], then ∀ε > 0 ∃d ∈M with
‖[d]‖ < ε such that x ≤ y + d. To see this, observe that there exists z ∈ M such
that x + z ≤ y + z. Applying [37, Lemma 1.11], ∃d ∈ M with ‖[d]‖ < ε such that
x ≤ y + d, which ends the proof of the claim. Now,

(a) holds by the claim and the fact that M is a refinement monoid.
(b) is easy to see by noticing that ∃m ∈ N such that xi +mu ≥ 0, yj +mu ≥ 0

for i, j ∈ {1, 2}, and using the claim and Lemma 2.2. �

In fact, as we will see now, the asymptotic refinement groups are, in some sense,
asymptotic dimension groups.

Lemma 2.4. Let (G, u) be an asymptotic refinement group. If x ≤ my for some
x, y ∈ G+ and some m ∈ N, then ∀ε > 0 there exists a decomposition x + d =
x1 + · · · + xm with xi ∈ G+ and d ∈ G+ such that x1 ≤ x2 ≤ · · · ≤ xm ≤ y + d,
and ‖d‖ < ε.

Proof. We will prove it by induction on m. For m = 1 it is trivial; so we assume
that it holds for m − 1, and we will check it for m. If x ≤ my, then we have
x + d1 = z1 + · · · + zm, zi ≤ y + d1 for zi ∈ G+ and d1 ∈ G+ with ‖d1‖ < ε

5 . So
zi ≤ {x+d1, y+d1} ∀i, and thus ∃x′ ∈ G such that zi ≤ x′ ≤ {x+d1+d2, y+d1+d2}
∀i, d2 ∈ G+ with ‖d2‖ < ε

5 . Now set z = x+(d1+d2)−x′. Then, z = x+(d1+d2)−
x′ ≤ x+(d1 + d2)− zm = z1 + · · ·+ zm−1 + d2 ≤ (m− 1)x′ + d2 ≤ (m− 1)(x′ + d2).
By the induction hypothesis, z + d3 = x1 + · · · + xm−1 with x1 ≤ · · · ≤ xm−1 ≤
x′ + d2 + d3 for d3 ∈ G+ with ‖d3‖ < ε

5 . Set xm = x′ + d2 + d3, and observe that
x + (d1 + 2d2 + 2d3) = x1 + · · · + xm and x1 ≤ · · · ≤ xm ≤ y + (d1 + 2d2 + 2d3).
Set d = d1 + 2d2 + 2d3. Then the induction step works. �

Lemma 2.5. Let (G, u) be an asymptotic refinement group, let a, b ∈ G+ and let
m,n ∈ N. If ma ≤ mb, then ∀ε > 0 ∃dn, dn′ ∈ G+ with {‖dn‖, ‖dn′‖} < ε such
that a + dn = an + wn for some an, wn ∈ G+ satisfying nan ≤ (m − 1)wn and
wn ≤ b+ dn

′.

Proof. We will prove it by induction on n. If n = 1, by Lemma 2.4, a + d =
x1 + · · · + xm for some xi ∈ G+ with x1 ≤ x2 ≤ · · · ≤ xm ≤ b + d with ‖d‖ < ε.
Set a1 = x1 + · · ·+ xm−1 and w1 = xm; then a+ d = a1 +w1 with w1 ≤ b+ d and
a1 ≤ (m− 1)w1.

Now assume that for some n ∈ N we have a+d1 = an+wn and b+d2 = bn+wn

for some an, bn, wn, d1, d2 ∈ G+ with nan ≤ (m − 1)wn and {‖d1‖, ‖d2‖} < ε
4 .
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Then, man ≤ m(bn + d1) and so, by the result of the previous paragraph, we get
an+d3 = an+1+zn+1 and bn+d1+d3 = bn+1+zn+1 for some an+1, bn+1, zn+1, d3 ∈
G+ with an+1 ≤ (m− 1)zn+1 and ‖d3‖ < ε

2(n+1) . Setting wn+1 = zn+1 +wn +nd3,

we obtain a+(d1 +(n+1)d3) = an+1 +wn+1 with wn+1 ≤ b+(d1 +d2 +(n+1)d3)
and

(n + 1)an+1 ≤ an+1 + nan+1 ≤ (m− 1)zn+1 + (m− 1)wn + nd3

≤ (m− 1)(zn+1 + wn + nd3) = (m− 1)wn+1;

thus, setting dn = d1 + (n+ 1)d3, dn
′ = d1 + d2 + (n+ 1)d3, we end the proof. �

In particular, we have the following result:

Corollary 2.6. Let (G, u) be an asymptotic refinement group, and let a, b ∈ G and
m ∈ N be such that ma ≤ mb. Then, ∀ε > 0 ∃d ∈ G+ with ‖d‖ < ε such that
a ≤ b+ d.

Proof. First, notice that taking a suitable n ∈ N, we have {a + nu, b+ nu} ∈ G+,
whence we can assume that a, b ∈ G+. Thus, by Lemma 2.5, a ≤ a + dn =
an + wn ≤ b + d′n + an, where ‖d′n‖ could be chosen arbitrarily small and ‖an‖ <
m−1
n (‖b‖+‖d′n‖) for arbitrarily big n ∈ N. Thus the result holds by taking ‖d′n‖ < ε

2

and n >
2(m−1)(‖b‖+ ε

2 )

ε . �

Corollary 2.6 means that any asymptotic refinement group is “asymptotically un-
perforated”, so that, as we observed above, there are asymptotic dimension groups.
Now, in order to show the main result, we will prove a number of results that are
“asymptotic” versions of those that Goodearl and Handelman showed in [22] (and
we will give, for each one, the reference which appears in [17]). To prove it, we use
essentially the same techniques that they used in that paper, except that various
norm-estimates need to be computed since the results only hold asymptotically.
Remember that this difficulty cannot be avoided to give an answer to the question
of describing K0 of exchange rings, as we noticed in the Introduction.

Lemma 2.7 (cf. [17, Lemma 2.18]). Let (G, u) be an asymptotic refinement group.
Let p ∈ G, z ∈ G+. If p ≤ z and 2p ≤ z, then ∀ε > 0 ∃q, s ∈ G+ such that p ≤ q,
2q ≤ z + s and ‖s‖ < ε.

Proof. We have {0, p} ≤ {z, z−p}, and hence, by definition, there exist r ∈ G, s1 ∈
G+ such that ‖s1‖ < ε

2 and {0, p} ≤ r ≤ {z + s1, z + s1 − p}. It follows that
{0, p} ≤ {r, z + s1 − r}, and again by definition there exist q ∈ G, s2 ∈ G+ such
that ‖s2‖ < ε

4 and {0, p} ≤ q ≤ {r + s2, z + (s1 + s2) − r}. Then, q ∈ G+, p ≤ q
and 2q ≤ z+(s1 + s2)− r+ r+ s2 = z+(s1 +2s2). Set s = s1 +2s2, and the proof
is complete. �

Proposition 2.8 (cf. [17, Proposition 2.19]). Let (G, u) be an asymptotic refine-
ment group. Let x, y, z ∈ G+ and let n ∈ N. If 2nx ≤ 2ny + z, then for all ε > 0
there exist v, w, d, d′ ∈ G+ such that d ≤ d′, ‖d′‖ < ε, x+ d = v+w, v ≤ y+ d and
2nw ≤ z + d′.

Proof. First assume that n = 1, so that 2x ≤ 2y+ z. Set p = x− y, whence 2p ≤ z.
As 2p ≤ z ≤ 2z, we have that ∃d1 ∈ G+ with ‖d1‖ < ε

4 and p ≤ z + d1 (because

of Corollary 2.6). Now, by Lemma 2.7, ∃q, d2 ∈ G+ with ‖d2‖ < ε
4 such that p ≤ q

and 2q ≤ z+(d1 +d2). Then x ≤ y+q, and hence ∃v, w, d ∈ G+ with ‖d‖ < ε
4 such
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that x+d = v+w, v ≤ y+d and w ≤ q+d. Also, 2w ≤ 2q+2d ≤ z+(d1+d2+2d).
Take d′ = d1 + d2 + 2d.

Now let n > 1, and assume that the result holds for lower powers of 2. Since
2n−1(2x) ≤ 2n−1(2y) + z, the induction hypothesis implies that 2x + d1 = p + q
for some p, q, d1, d1

′ ∈ G+ with d1 ≤ d1
′ and ‖d1

′‖ < ε
2 such that p ≤ 2y + d1 and

2n−1q ≤ z + d1
′. Then, 2x + d1 ≤ 2y + d1 + q, i.e., 2x ≤ 2y + q. By the first case

proved, x + d2 = v + w for some v, w, d2, d2
′ ∈ G+ with d2 ≤ d2

′ and ‖d2
′‖ < ε

2n

such that v ≤ y+d2, 2w ≤ q+d2
′. As 2nw ≤ 2n−1q+2n−1d2

′ ≤ z+(d1
′+2n−1d2

′),
by taking d = d2, d

′ = d1
′ + 2n−1d2

′, we complete the induction step. �

Corollary 2.9 (cf. [17, Corollary 2.20]). Let (G, u) be an asymptotic refinement
group. Let x, y ∈ G and z ∈ G+, and let n ∈ N. If 2nx ≤ 2ny + z, then for all
ε > 0 there exist v ∈ G, w, d, d′ ∈ G+ such that d ≤ d′, ‖d′‖ < ε, x + d = v + w,
v ≤ y + d and 2nw ≤ z + d′.

Proof. Since G is directed, ∃t ∈ G such that t ≤ x, t ≤ y. Set x′ = x− t, y′ = y− t.
Then x′, y′ ∈ G+ and 2nx′ ≤ 2ny′ + z. By Proposition 2.8, x′ + d = v′ + w,
v′, w ∈ G+ such that v′ ≤ y′+ d and 2nw ≤ z+ d′, where 0 ≤ d ≤ d′ with ‖d′‖ < ε.
Set v = v′ + t. Then x+ d = v + w and v ≤ y + d. �

Proposition 2.10 (cf. [17, Proposition 2.21]). Let (G, u) be an asymptotic refine-
ment group. Let z ∈ G+ and let n ∈ N. Set X = {x ∈ G+ | 2nx ≤ z}. Then, for
all ε > 0 and for all x1, x2, . . . , xk ∈ X there exist elements x, d ∈ G+ such that
‖d‖ < ε, {x1, . . . , xk} ≤ x and 2nx ≤ (z + d).

Proof. It is enough to consider the case k = 2. Given x1, x2 ∈ X , set z′ = z−2nx2.
Then z′ ∈ G+ and 2nx1 ≤ 2nx2 + z′. By Proposition 2.8, x1 + d = v + w, where
v, w ∈ G+ are such that v ≤ x2 + d and 2nw ≤ z′ + d′ for some 0 ≤ d ≤ d′

with ‖d′‖ < ε
2n+1 . Set x = x2 + w + d, and observe that each xi ≤ x. Since

2nw ≤ z′ + d′ = z + d′ − 2nx2, we have 2nx ≤ z + (2nd+ d′). �

Lemma 2.11 (cf. [17, Lemma 7.14]). Let (G, u) be an asymptotic refinement group.
Let x ∈ G, and assume that ‖x‖ < k

2n for some positive integers k, n. Then, for
all ε > 0 there exist u, y, z ∈ G+ such that u ≤ u, ‖u − u‖ < ε, x = y − z and
2ny ≤ ku, 2nz ≤ ku.

Proof. Without loss of generality, we can assume that G is nonzero. By [17, Lemma
7.13] and Corollary 2.6, ∃d1 ∈ G+ with ‖d1‖ < ε

3 such that

−k(u+ d1) ≤ 2nx ≤ k(u+ d1).

Set u1 = u + d1, and notice that, in particular, 2nx ≤ 2n0 + ku1. According to
Corollary 2.9, x + d2 = v + w, where v ∈ G, w ∈ G+ are such that v ≤ 0 + d2

and 2nw ≤ ku1 + d2
′, where 0 ≤ d2 ≤ d2

′ and ‖d2
′‖ < ε

6 . Set u2 = u1 + d2 + d2
′.

Now, −ku2 ≤ 2nx, whence −ku2 + 2nd2 ≤ 2n(x + d2) = 2nv + 2nw, and hence
2n(−v + d2) ≤ 2nw + ku2. As −v + d2, w, ku2 ∈ G+, Proposition 2.8 says that
−v+d2 +d3 = a+z, where a, z ∈ G+ are such that a ≤ w+d3 and 2nz ≤ ku2 +d3

′

for 0 ≤ d3 ≤ d3
′ and ‖d3

′‖ < ε
3·(2n+2) . Set u3 = u2 + d3 + d3

′, y = w + d3 − a, so

that y ∈ G+ and x = v +w − d2 = w + d3 + v − d2 − d3 = w + d3 − a− z = y − z.
As a ≥ 0, we also have 2ny ≤ 2nw + 2nd3 ≤ k(u3 + 2nd3). Set u = u3 + 2nd3. �

An immediate application of these results allows us to adapt the proof of [17,
Proposition 7.15] to the case of asymptotic refinement groups. This result, which
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we enunciate without proof, gives an affirmative answer to [17, Open Problem 7].
In order to state this result, recall that a subgroup H of a preordered abelian group
G is an ideal if is a convex, directed subgroup.

Proposition 2.12. Let (G, u) be an asymptotic refinement group, and let H be an
ideal of G. Then

‖x+H‖ = inf{‖y‖ | y ∈ x+H}
for any x ∈ G.

3. The main result

In this section, we will use the results of the above section to obtain results about
representation of asymptotic refinement groups analogous to those that Goodearl
and Handelman obtained in [22]. Our results, in fact, follow from these of Goodearl
and Handelman, once we are able to show that the completion of an asymptotic
refinement group with respect to its order-unit norm is an archimedean, norm-
complete dimension group with order-unit. We will use a functional-like method to
obtain this result.

Lemma 3.1. Let (G, u) be an asymptotic refinement group, let S := S(G, u) be

its state space, and let Φ : G → Aff(S) be the natural map. Then, Φ(G+) =

Φ(G) ∩Aff(S)+.

Proof. Clearly, Φ(G+) ⊆ Φ(G)∩Aff(S)+. Conversely, take any element f ∈ Φ(G)∩
Aff(S)+. Now, given n ∈ N, there exists an element x ∈ G such that ‖Φ(x)− f‖∞
< 1

2n . In particular, since f ≥ 0, we have that

−1

2n
� Φ(x),

and so 0 � Φ(2nx+ u). We know, by [17, Theorem 4.12], that there exists m ∈ N
such that 0 ≤ m(2nx+ u). Set x = y − z, where y, z ∈ G+. Thus,

m2nz ≤ m(2ny + u).

By Corollary 2.6 there is a d1 ∈ G+ with ‖d1‖ < 1
2n+1 such that

2nz ≤ 2ny + (u + d1),

and by Proposition 2.8 there exist elements v, w, d2, d
′
2 ∈ G+ such that d2 ≤ d′2

with ‖d′2‖ < 1
2n+1 such that z + d2 = v + w, v ≤ y + d2 and 2nw ≤ u + d1 + d′2.

Hence, if we define t = y + d2 − v (and notice that t ∈ G+), we have that

x = y − z = (y + d2)− (z + d2) = (y + d2 − v)− w = t− w

with t, w ∈ G+ and ‖x− t‖ = ‖w‖ ≤ 1
2n ‖u+ d1 + d′2‖ ≤ 1

2n (1 + 1
2n ). Thus,

‖f − Φ(t)‖∞ < ‖f − Φ(x)‖∞ + ‖Φ(x)− Φ(t)‖∞

<
1

2n
+

1

2n
(1 +

1

2n
) =

1

2n
(2 +

1

2n
) =

2n+1 + 1

22n
<

1

2n−2
. �

Notation. Let (G, u) be an asymptotic refinement group, let G be the completion
of G in the order-unit norm, and let φ : G → G be the natural morphism. G is
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an abelian group, endowed with the ordering induced by the positive cone G
+

:=
φ(G+). We will endow G with a norm ‖.‖∗ defined by the rule

‖x‖∗ = lim
n→∞ ‖xn‖,

where (xn)n≥1 ⊆ G is a Cauchy sequence (in the order-unit norm) such that
φ(xn) → x. With this norm, the morphism φ is an isometry.

Let S =: S(G, u) be the space of states on G, and let Φ : G → Aff(S) be the

natural affine representation of G. If Φ(G) is the closure of Φ(G) ⊆ Aff(S) in
the supremum norm, then we will endow it with an ordering compatible with the
inclusion, defining

Φ(G)
+

= Φ(G) ∩ Aff(S)+.

Proposition 3.2. Let (G, u) be an asymptotic refinement group, and let G be its

completion in the order-unit norm. Then, G ∼= Φ(G) as pre-ordered groups.

Proof. Let S =: S(G, u) be the space of states on G. Since Φ : G → Aff(S) and
φ : G→ G are both isometries, and Aff(S) is complete in its own norm, there exists
a unique isometry f : G→ Aff(S) such that the following diagram commutes:

G //

φ

""

Φ E
E
E
E
E
E
E
E
E G

��

f

Aff(S)

Clearly, f is a group morphism by definition. Suppose that we have an element
x ∈ G such that f(x) = 0. Then, take a Cauchy sequence (xn)n≥1 ⊆ G such that
φ(xn) → x. As f is an isometry (and thus a continuous map with respect to the
metric of G and Aff(S)), we have Φ(xn) = f(φ(xn)) → f(x) = 0. Since Φ is an
isometry, we have that (xn)n≥1 is a nullsequence, and hence x = 0. Then, f is
one-to-one. Moreover, as the three maps are isometries, we have that

Φ(G) = f(φ(G)) = f(φ(G)) = f(G),

and thus f is onto Φ(G). Similarly,

f(G
+
) = f(φ(G+)) = f(φ(G+)) = Φ(G+).

Since Φ(G+) = Φ(G) ∩Aff(S)+ by Lemma 3.1, we have f(G
+
) = Φ(G)

+
. �

Corollary 3.3. Let (G, u) be an asymptotic refinement group, let G be its comple-
tion in the order-unit norm, let φ : G → G be the natural morphism, and let u :=
φ(u). Then, (G, u) is a partially ordered abelian group with order-unit, unperforated
and archimedean. Moreover, ‖.‖∗ = ‖.‖u, and the map S(φ) : S(G, u) → S(G, u) is
an affine homeomorphism.

Proof. Let S =: S(G, u) be the space of states on G. By Proposition 3.2, the natural
ordering of G coincides with the ordering induced by the map Φ : G → Aff(S) on
the closure of Φ(G) (that is, the map f defined in Proposition 3.2 is an order-
embedding). Thus, G is isomorphic to a closed subgroup of Aff(S), whence it is
partially ordered, archimedean, unperforated, and u is an order-unit, showing the
first part of the result.
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Now, given x ∈ G, we have ‖x‖u = inf{ kn | k, n ∈ N and − nu ≤ kx ≤ nu}. As

f : G→ Aff(S) is an order-embedding, the last expression equals

inf{k
n
| k, n ∈ N and − n · 1 ≤ kf(x) ≤ n · 1} = ‖f(x)‖∞ = ‖x‖∗,

where the last equality derives from the fact that f is an isometry with the norm
‖.‖∗.

Finally, consider the affine continuous map S(φ) : S(G, u) → S(G, u). Clearly,
S(φ) is onto, because each s ∈ S(G, u) extends by continuity to s ∈ S(G, u). Also,
as we observed in the last paragraph, ‖x‖u = lim

n→∞ ‖xn‖u for any x = lim
n→∞ φ(xn),

and thus every s ∈ S(G, u) is continuous with respect to the metric inherited from
G by the completion process. Hence, s = s|G , showing that S(φ) is one-to-one.

Since S(G, u) is compact, S(φ) is a homeomorphism. �

Theorem 3.4. Let (G, u) be an asymptotic refinement group, let G be its com-
pletion in the order-unit norm, let φ : G → G be the natural morphism, and let
u =: φ(u). Then, (G, u) is an archimedean, norm-complete dimension group with
order-unit.

Proof. According to Lemma 3.3, we only need to prove that G is an interpolation
group. We will give a proof of this analogous to that of Goodearl and Handelman
([17, Theorem 15.3]).

To see that G is an interpolation group, let f1, f2, g1, g2 be any elements in G sat-
isfying fi ≤ gj for all i, j. Choose sequences {x11, x12, . . . }, {x21, x22, . . . }, {y11, y12,
. . . }, {y21, y22, . . . } in G such that ‖φ(xin)− fi‖ < 1

2n+2 and ‖φ(yjn)− gj‖ < 1
2n+2

∀i, j, n. For all i, n, observe that

‖xi,n+1 − xin‖ = ‖φ(xi,n+1)− φ(xin)‖ ≤ ‖φ(xi,n+1)− fi‖+ ‖φ(xin)− fi‖
<

1

2n+3
+

1

2n+2
<

1

2n+1
.

Similarly, ‖yj,n+1 − yjn‖ < 1
2n+1 ∀j, n. We shall construct Cauchy sequences {en}

and {zn} in G such that en → 0 and xin ≤ zn ≤ yjn + en ∀i, j, n. The limit

of the sequence {φ(zn)} will then provide an element of G to interpolate between
f1, f2, g1, g2.

We first construct elements a1, a2, . . . in G+ such that ‖an‖ < 1
2n ∀n, while

also xin − an ≤ xi,n+1 ≤ xin + an and yjn − an ≤ yj,n+1 ≤ yjn + an ∀i, j, n.
For each i, n, we have ‖xi,n+1 − xin‖ < 1

2n+1 , whence by Lemma 2.11 ∃u ≥ u

with ‖u− u‖ < 1
4 and xi,n+1 − xin = pin − qin for some pin, qin ∈ G+ satisfying

2n+1pin ≤ u and 2n+1qin ≤ u. Similarly, each yj,n+1 − yjn = rjn − sjn for some
rjn, sjn ∈ G+ satisfying 2n+1rjn ≤ ũ and 2n+1sjn ≤ ũ for some ũ ≥ u ≥ 0 satisfying
‖ũ− u‖ < 1

4 . As u = u + v, ũ = u + w, taking u′ = u + v + w we can change u
and ũ to u′ in these expressions while preserving the desired properties, and notice
that ‖u′−u‖ ≤ ‖u−u‖+ ‖ũ−u‖ < 1

2 . By Proposition 2.10, ∃û ≥ u′ with ‖û− u′‖
< 1

2 and an ∈ G+ such that {pin, qin, rjn, sjn} ≤ an ∀i, j and 2n+1an ≤ û. So,

as ‖û‖ ≤ ‖û − u′‖ + ‖u′ − u‖ + ‖u‖ < 2, we have that ‖an‖ < 1
2n . The required

properties of an are clear.
Next, we construct elements b1, b2, . . . in G+ such that ‖bn‖ < 1

2n ∀n, while also

xin ≤ yjn + bn ∀i, j, n. Fix n for a while, and let f : G→ Aff(S) be as in the proof
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of Proposition 3.2. For each i, j we have

(fφ)(xin)− 1

2n+2
� f(fi) ≤ f(gj) � (fφ)(yjn) +

1

2n+2
,

whence Φ(xin) � Φ(yjn) + 1
2n+1 , and so Φ(2n+1xin) � Φ(2n+1yjn + u). So, by

[17, Theorem 7.8] and Corollary 2.6 we have that ∃d ∈ G+ with ‖d‖ < 1
6 and

2n+1xin < 2n+1yjn + (u + d). According to Proposition 2.8, xin + dijn = pij + qij
for some pij , qij ∈ G+ satisfying pij ≤ yjn+dijn and 2n+1qij ≤ u+d+d′ijn for some

0 ≤ dijn ≤ d′ijn with ‖dijn ′‖ < 1
6 . Using Proposition 2.10 we obtain an element

bn ∈ G+ such that 2n+1bn ≤ u+ (d+ d+ d′11n + d′12n + d′21n + d′22n), where d ∈ G+

with ‖d‖ < 1
6 , and bn ≥ qij ∀i, j. Then ‖bn‖ < 1

2n and xin + dijn = pij + qij ≤
yjn + bn + dijn, i.e., xin ≤ yjn + bn for all i, j.

Finally, we construct elements z1, z2 · · · ∈ G such that xin ≤ zn ≤ yjn + bn + dn
∀i, j, n, where dn ∈ G+, ‖dn‖ < 1

2n , while also ‖zn+1 − zn‖ < 3
2n ∀n. As xi1 ≤

yj1+b1 ∀i, j, by asymptotic interpolation there exist elements z1 ∈ G, d1 ∈ G+ with
‖d1‖ < 1

2 , such that xi1 ≤ z1 ≤ yj1 + b1 + d1. Now suppose that z1, d1, . . . , zn, dn
have been constructed for some n. Then, xi,n+1 ≤ yj,n+1+bn+1, xi,n+1 ≤ xin+an ≤
zn + an and zn − (bn + dn)− an ≤ yjn − an ≤ yj,n+1 ≤ yj,n+1 + bn+1 ∀i, j. Hence
∃zn+1 ∈ G, ∃dn+1 ∈ G+ with ‖dn+1‖ < 1

2n+1 such that

x1,n+1 y1,n+1 + (bn+1 + dn+1)
x2,n+1 ≤ zn+1 ≤ y2,n+1 + (bn+1 + dn+1)

zn − (bn + dn)− an zn + (an + dn+1)
.

Since −(an + bn + dn) ≤ zn+1 − zn ≤ an + dn+1, we conclude that

‖zn+1 − zn‖ ≤ max{‖an + bn + dn‖, ‖an + dn+1‖} < 3

2n
.

This completes the induction step.
The zn form a Cauchy sequence in G, and hence there exists h ∈ G such that

φ(zn) → h. Note also that, if we define en =: bn + dn, then φ(en) → 0. Since
φ(xin) ≤ φ(zn) ≤ φ(yjn) + φ(en) ∀i, j, n, we conclude that fi ≤ h ≤ gj ∀i, j.
Therefore G has interpolation, as desired. �

In particular, Theorem 3.4 gives an affirmative (partial) answer to [17, Open
Problem 8], in the case that the group G satisfies the asymptotic refinement prop-
erty. Now, using [17, Corollary 13.6], we can compute the closure of Φ(G) in
Aff(S(G, u)).

Theorem 3.5. Let (G, u) be an asymptotic refinement group. Let Φ denote the
natural representation map of G, and consider

A = {p ∈ Aff (S(G, u)) | p(s) ∈ s(G) for every discrete state s ∈ ∂eS(G, u)}.
Then, Φ(G+) is dense in A+, and Φ(G) is dense in A.

Proof. Let G be the completion of G, let φ : G → G be the natural map, and let
S = S(G, u), S = S(G, u). If Φ : G → Aff (S) and Φ : G → Aff (S) denote the
natural representation maps of G and G respectively, and A denotes the analog

of the set A corresponding to the group G, then Φ(G+) ⊆ A+ and Φ(G
+
) ⊆ A

+
.

In fact, Φ(G
+

) = A
+

by [17, Theorem 15.7], because G is an archimedean norm-
complete dimension group by Theorem 3.4.
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Now, given the following commutative diagram:

Aff (S)
Aff(S(φ))−→ Aff (S)

Φ ↑ ↑ Φ

G
φ−→ G,

observe that Aff(S(φ)) is an isometric isomorphism of partially ordered Banach
spaces with order-unit. Notice that, by definition of the morphism S(φ) : S(G, u) →
S(G, u) (explicitly, for all s ∈ S(G, u) we have S(φ)(s) = sφ), s discrete implies
S(φ)(s) discrete. Conversely, if s = S(φ)(s), then s( lim

n→∞ φ(xn)) = lim
n→∞ s(xn)

for any Cauchy sequence (xn)n≥1. Hence, if s(G) is discrete, then by uniform

continuity, s(G) = s(G); thus, S(φ) preserves discrete states and their ranges,

whence Aff (S(φ))(A+) = A
+
. As a result, A

+
= Φ(G

+
) = Aff(S(φ))(A+).

Since φ(G+) is dense in G
+

, then Φ(G+) = Aff(S(φ))−1 ◦ Φ ◦ φ(G+) is dense

in Aff(S(φ))−1 ◦Φ(G
+
) = A+. �

In particular we give an affirmative answer to [17, Open Problem 1]. Also, an
argument similar to that in the proof of Theorem 3.4 allows us to adapt the proof of
[17, Theorem 12.7] to obtain a description of what kinds of properties are satisfied
by the completion of an asymptotic refinement group with respect to the norm
associated to any state on the group. We enunciate the result without proof.

Theorem 3.6. Let (G, u) be an asymptotic refinement group. Let s ∈ S(G, u) be
any state on G, and set G equal to the s-metric completion of G. Then, G is a
Dedekind-complete lattice-ordered abelian group.

4. A description of K0 for exchange rings

This section is mainly devoted to obtain a description of the closure of the natural
affine continuous function representation of K0(R) for any exchange ring R. This
work was done for the concrete case of C∗-algebras of real rank zero and stable
rank one with K0 unperforated by Blackadar and Handelman in [9], and for any
regular ring by Pardo in [29]. The line of the proof for the second one is, essentially,
the use of the results and techniques of [22] on the N∗-metric completion of regular
rings. Nevertheless, as we noted in the Introduction, the results of [22] cannot be
applied directly in the general case of exchange rings, because K0 usually fails to
be a dimension group, and also because there does not exist an analog of the metric
completion of regular rings in the general case of exchange rings. Namely, in the
regular case, Moncasi, in [26], gave an example of a stably finite regular ring R
of stable rank 2 such that K0(R) does not satisfy the interpolation property. In
fact, for each n ∈ N, he constructed such an example whose K0 is isomorphic to
Z ⊕ Z ⊕ Z/nZ, whence K0(R) also fails to be unperforated. Lately, Goodearl, in
[20], inspired by Moncasi, obtained an analogous example in the case of C∗-algebras
of real rank zero.

So, we will deal with asymptotic refinement groups, in order to obtain a back-
ground framework that allows us to describe K0 in this case. The key point is the
fact that V (R) – the monoid of isomorphism classes of finitely generated projective
right R-modules – for an exchange ring R is a refinement monoid. The particular
case of regular rings was proved by Goodearl and Handelman ([21, Lemma 3.8]),
and the case of C∗-algebras of real rank zero by Zhang ([40]). The exchange case



K0 OF EXCHANGE RINGS 925

(which covers these cases) was proved by Ara, Goodearl, O’Meara and Pardo ([3,
Proposition 1.1]), by doing a restatement in monoid language of the exchange prop-
erty for modules, introduced by Crawley and Jónsson in [14]. So, Proposition 2.3
can be applied in this context, and thus we obtain the following result.

Lemma 4.1. If R is an exchange ring, then (K0(R), [R]) is an asymptotic refine-
ment group.

Notice that this result applies, in fact, to any ring R whose monoid V (R) turns
out to be a refinement monoid. Nevertheless, as it is observed in [3], in the case of
exchange rings there is a faithful connexion between the properties of such a ring
and those of its associated monoid. Now, by using the results of the last section, we
can obtain a description of K0 for exchange rings. Namely, we have the following
result.

Theorem 4.2. Let R be an exchange ring, let K0(R) be its Grothendieck group,
let S := S(K0(R), [R]) be the state space on K0(R), and let Φ : K0(R) → Aff(S),
the natural map. For each s ∈ S, set Bs = s(K0(R)) if s is discrete, and Bs = R
otherwise. Set A = {p ∈ Aff(S) | p(s) ∈ Bs ∀s ∈ ∂eS}. Then, Φ(K0(R)

+
) is dense

in A+, and Φ(K0(R)) is dense in A.

Proof. The result is a direct consequence of Lemma 4.1 and Theorem 3.5. �
Theorem 4.2 allows us to characterize when an exchange ring satisfies condition

(D) of [2]: Φ(K0(R)+) is dense in Aff(S(K0(R), [R]))+.

Corollary 4.3. An exchange ring R satisfies condition (D) if and only if the space
of states on K0(R) contains no discrete extremal states.

In fact, Corollary 4.3 can be stated in terms of algebraic properties of exchange
rings. This was shown by the author in the particular case of regular rings ([29,
Corollary 2.5]), and also it is easy to show this result in the case of unital C∗-
algebras of real rank zero, by using some results from [9, Section III]. In both cases,
we use the good relationship that exists between states on the Grothendieck group
and pseudo-rank functions in the regular case (see [16, Chapter 17]), or with lower
semi-continuous dimension functions in the case of C∗-algebras of real rank zero
(see [9]). Unfortunately, in the general case of exchange rings, it is not known if
such a good relation exists, so this technique cannot be applied. Nevertheless, when
we were finishing this paper, Ken Goodearl communicated to us that it is possible
to avoid this difficulty. We thank Ken Goodearl, who allows us to include his result
here.

In order to state this result, recall that, if R is an exchange ring, L(R) is the
lattice of two-sided ideals of R, and L(V (R)) is the lattice of order-ideals – convex
submonoids – of V (R), then by [3, Proposition 1.4], the map φ : L(R) → L(V (R))
given by φ(I) = V (I) is a surjective lattice morphism. In fact, for any S ∈ L(V (R)),
the fibre φ−1 equals the interval [I0(S), I1(S)], where I0(S) is the ideal generated
by {e = e2 ∈ R | 〈eR〉 ∈ S}, and I1(S) is the ideal of R containing I0(S) such that
I1(S)/I0(S) = J(R/I0(S)) (here J(−) denotes the Jacobson radical). Also, notice
that S(K0(R), [R]) ∼= S(V (R), 〈R〉), whence we can identify the states of the group
and those of the monoid. Moreover, if s ∈ S(V (R), 〈R〉), then ker s ∈ L(V (R)).

Lemma 4.4. Let R be an exchange ring, and let s ∈ S(V (R), 〈R〉). Then s is a
discrete state (on the Grothendieck group of R) if and only if s is a rational convex
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combination of discrete extremal states and R/I1(ker s) is a semisimple artinian
ring.

Proof. Necessity is clear. To see sufficiency, suppose that s is a discrete state
on K0(R). Then, s is a rational convex combination of extremal discrete states,
because of Corollary 3.3, Theorem 3.4 and [17, Proposition 6.22]. Now, if we look
at s as a state on V (R), we have that ker s ∈ L(V (R)). Set K = I1(ker s), and
observe that K 6= R, as otherwise s(〈R〉) = 0, which is impossible. We claim that
R := R/K is semisimple artinian.

First notice that J(R/K) = 0, whence R is semiprimitive. Moreover, by [3,
Proposition 1.4], V (R) ∼= V (R)/ ker s. Thus, the state s ∈ S(V (R), 〈R〉), given
by s(〈eR〉) = s(〈eR〉) for any idempotent e ∈ R, is a discrete state on K0(R)
such that ker s = 0 in V (R). So, without lose of generality, we can assume that
R is semiprimitive and ker s = 0. Notice that, according to [28, Proposition 2.1],
any idempotent e in an exchange ring R is primitive if and only if e is local. As
eJ(R)e = J(eRe), if R is semiprimitive and e2 = e ∈ R is local, then eRe is a
division ring, whence eR is a minimal right ideal of R. Hence, to prove the claim it
suffices to show that there exists a finite sequence of nonzero orthogonal primitive
idempotents e1, . . . , en such that e1 + · · ·+ en = 1.

Observe that, as s is a discrete state, there exists an idempotent e1 ∈ R such
that s(〈e1R〉) takes the minimum nonzero value in the range of s. Suppose that
there exist orthogonal idempotents f, g ∈ R such that e1 = f +g. Since s(〈e1R〉) =
s(〈fR〉) + s(〈gR〉), we have either s(〈fR〉) = 0 or s(〈gR〉) = 0; that is, f = 0 or
g = 0. Thus, e1 ∈ R is a primitive idempotent.

Now suppose that e1 6= 1, and take R̃ := (1 − e1)R(1 − e1). R̃ is an exchange

ring, and if f is an idempotent in R̃, then the map s̃ : V (R̃) → R+ given by

s̃(〈fR̃〉) = s(〈fR〉)/s(〈(1 − e1)R〉) is a discrete state on V (R̃) with ker s̃ = 0.

The same argument as above shows that there exists an idempotent e2 ∈ R̃ such

that s̃(〈e2R̃〉) takes the minimum nonzero value in the range of s̃. Hence, e2 is a

primitive idempotent in R̃, and so in R. Also, s(〈e1R〉) ≤ s(〈e2R〉). By recurrence,
we can construct primitive orthogonal idempotents e1, . . . , ek such that s(〈e1R〉) ≤
s(〈eiR〉) for all i ≤ k. Then, as

1 = s(〈R〉) ≥ s(〈(
k∑

i=1

ei)R〉) =

k∑
i=1

s(〈eiR〉) ≥ ks(〈e1R〉) > 0,

this process must terminate in a finite number of steps, and so there exist primitive
orthogonal idempotents e1, . . . , en such that

1 = s(〈R〉) = s(〈(
n∑
i=1

ei)R〉) =

n∑
i=1

s(〈eiR〉).

Thus, s(〈(1 −
n∑
i=1

ei)R〉) = 0, whence e1 + · · ·+ en = 1, which ends the proof. �

As a consequence we obtain

Corollary 4.5. If R is an exchange ring, then R has no nontrivial artinian homo-
morphic images if and only if S(K0(R), [R]) has no discrete states.

Thus, by joining Corollary 4.3 and Corollary 4.5, we obtain the following result.



K0 OF EXCHANGE RINGS 927

Corollary 4.6. Let R be an exchange ring. Then R satisfies condition (D) if and
only if R has no nontrivial artinian homomorphic images.

In the particular case of any non-artinian simple exchange ring R, we have that
V (R) – and so K0(R) – is simple (that is, is a nonzero monoid such that every
nonzero element is an order-unit) by [21, Proposition 1.2], and atomless because of
simplicity and non-artinianity (where an atom of a monoid M is a nonzero element
a ∈M such that there cannot exist any other element b satisfying 0 < b < a). Thus
K0(R) has no discrete states, and so Corollary 4.6 has the following consequence.

Corollary 4.7. If R is a non-artinian simple exchange ring, then it satisfies con-
dition (D).

Corollary 4.7, together with Corollary 2.6 and [2, Lemma 2.3], implies that
Given any stably finite, non-artinian, simple exchange ring R and any nonzero

finitely generated projective right R-module A, n ∈ N, ε > 0, there exist finitely
generated projective right R-modules B,C such that nC . A . nB, while

‖n[B]− [A]‖[R] < ε and ‖n[C]− [A]‖[R] < ε.

So, we obtain a general version of [2, Proposition 2.4]. This result presents some
similarities with [41, Theorem I(i)], where Zhang shows that nonelementary simple
C∗-algebras of real rank zero have approximate halving projections. In the last
section of this paper we will give a result that generalizes those of Zhang ([41]) and
Ara and Goodearl ([2]), in a more general context.

On the other side, Corollary 4.7 and [17, Proposition 14.15] imply that the group
(Φ(K0(R)),�) is a simple dimension group. This means that, in the case of sim-
ple groups, there exists a close connexion between unperforation and interpolation
properties (this is false in general, as we can see in [17, Example 2.7]).

Our next result shows that, if (G, u) is strictly unperforated (that is, for any
x ∈ G, if nx ≥ 0 and nx 6= 0 for some n ∈ N, then x ≥ 0), then G is an
interpolation group under mild (but unavoidable) hypothesis.

Proposition 4.8 ([29, Proposition 2.7]). Let (G, u) be a simple, strictly unperfo-
rated, pre-ordered abelian group with order-unit such that S(G, u) 6= ∅, let Φ : G→
Aff(S(G, u)) be the natural homomorphism, and suppose that G satisfies condition
(D). Assume also that S(G, u) is a Choquet simplex. Then G is an interpolation
group.

In the case of abstract pre-ordered groups, the author, in [30], applied Proposi-
tion 4.8 to show that, given a torsionfree simple Riesz group (G, u), if we add to
its positive cone all the elements x ∈ G such that nx ∈ G+ for some n ∈ N, then
G with this new cone is a simple dimension group. In particular, this result gives
an affirmative answer to [17, Open Problem 2] in the simple case, and also allows
us to obtain a version of the theorem of representation of dimension groups ([15];
see [17, Theorem 3.19]) in the case of torsionfree simple Riesz groups. In the case
of simple exchange rings, Proposition 4.8 applies in the following form:

Corollary 4.9. Let R a stably finite, non-artinian, simple exchange ring such that
K0(R) is strictly unperforated. Then, K0(R) is a simple Riesz group.

Proof. By hypothesis, (K0(R), [R]) is a partially ordered abelian group with order-
unit, simple and strictly unperforated. By Corollary 4.7, K0(R) satisfies condition
(D), and since by Theorem 3.4 the norm-completion is a dimension group with
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affinely homeomorphic state space, S(K0(R), [R]) is a nonempty Choquet simplex.
Thus the result holds because of Proposition 4.8. �

A particular case of this situation appears with the following construction: Given
any field F , set TF = lim−→Mn(F ), where the ordering in N is given by “m ≤ n when

m divides n”. Thus, if A is a F -algebra, then K0(A ⊗ TF ) ∼= K0(A) ⊗ Q. In
particular, if K0(A) is simple, so is K0(A⊗TF ); but the latter is also unperforated.
Thus we have the following result:

Corollary 4.10. Let R be a simple ring, let F = Z(R) be its center, and let
S = R⊗ TF . Suppose that S(K0(R), [R]) 6= ∅. Then:

(a) If R satisfies condition (D), then K0(S) is a dimension group if and only if
S(K0(R), [R]) is a Choquet simplex.

(b) If R is an exchange ring, then S is an exchange ring, and K0(S) is a simple
dimension group.

Proof. (a) Necessity is clear by [17, Theorem 10.17]. To prove sufficiency, simply
notice that, as S(K0(R), [R]) ∼= S(K0(S), [S]), K0(S) is a simple unperforated
group satisfying condition (D) with S(K0(S), [S]) being a Choquet simplex, so that
Proposition 4.8 applies in this case.

(b) Since S = R ⊗ TF = lim−→Mn(R) and R is an exchange ring, so are Mn(R)

for all n ∈ N, and thus the direct limit is an exchange ring. As S is non-artinian,
it satisfies condition (D) by Corollary 4.7, so that the result holds by part (a). �

To end this section, we will show that elements of a refinement monoid which are
comparable by the order into the space of affine and continuous functions on the
space of states of its Grothendieck group are “almost” comparables. First we will
state a result analogous to Proposition 2.8 for Grothendieck groups of refinement
monoids.

Proposition 4.11. Let (M,u) be a refinement monoid with order-unit, and (G, [u])
its Grothendieck group. Let x, y, z ∈ M and n ∈ N. If 2n[x] ≤ 2n[y] + [z], then
for all ε > 0 there exist v, w, d ∈ M such that ‖[d]‖ < ε, x = v + w, v ≤ y and
2nw ≤ z + d.

Proof. Suppose that we have x, y, z ∈ M and n ∈ N such that 2n[x] ≤ 2n[y] + [z].
Since M → G+ is a monoid epimorphism, by Proposition 2.8 there exist r, s, d1, d2 ∈
M with [d1] ≤ [d2], ‖d2‖ < ε

5·2n such that [x] + [d1] = [r] + [s], [r] ≤ [y] + [d1] and
2n[s] ≤ [z] + [d2]. Now, by definition of G there exist d3, d4, d5 ∈ M such that
x + d1 + d3 = r + s + d3, r + d4 ≤ y + d1 + d4 and 2ns + d5 ≤ z + d2 + d5. So,
by [37, Lemma 1.11], we can assume that x ≤ r + s + d3, r ≤ y + d1 + d4 and
2ns ≤ z + d2 + d5 with ‖di‖ < ε

5·2n for i = 3, 4, 5. Thus, as r ≤ y + (d1 + d4), by
refinement there exist r1, r2 ∈ M such that r = r1 + r2, r1 ≤ y and r2 ≤ d1 + d4.
Now,

x ≤ r + s+ d3 = r1 + (r2 + s+ d3),

and hence there exist x1, x2 ∈M such that

x = x1 + x2, x1 ≤ r1 ≤ y
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and

2nx2 ≤ 2nr2 + 2ns+ 2nd3

≤ z + (d2 + d5 + 2nd1 + 2nd4 + 2nd3).

Then, taking v = x1, w = x2 and d = d2 + d5 + 2n(d1 + d3 + d4), we obtain the
desired result. �

Theorem 4.12. Let (M,u) be a refinement monoid with order-unit, let (G(M), [u])
be its Grothendieck group, and let Φ : G(M) → Aff(S(G(M), [u])) be the natural
map. If x, y ∈ M and Φ(x) ≤ Φ(y), then ∀ε > 0 there exist decompositions
x = x1 + x2, y = x1 + y2 such that ‖[x2]‖[u] < ε.

Proof. By Proposition 2.3, (G(M), [u]) is an asymptotic refinement group. As
Φ(x) ≤ Φ(y), we have that Φ([y]− [x]) ≥ 0, that is,

Φ([y]− [x]) ∈ Aff(S(G(M), [u]))+.

Thus, according to Lemma 3.1, for any n ∈ N there exists an element tn ∈M such
that

‖Φ([x+ tn])− Φ([y])‖∞ = ‖Φ([tn])− Φ([y]− [x])‖∞ <
1

2n
,

that is,

Φ([y])− 1

2n
� Φ([x+ tn]) � Φ([y]) +

1

2n
.

In particular, ∀n ≥ 1,

Φ(2n[x]) ≤ Φ(2n[x+ tn]) � Φ(2n[y] + [u]).

Now, by [17, Theorem 4.12], for each n ≥ 1 there exists m ∈ N such that m2n[x] <
m(2n[y] + [u]), and using Corollary 2.6 we have, given δ > 0, an element d1 ∈ M
with ‖[d1]‖[u] < δ such that 2n[x] ≤ 2n[y] + ([u + d1]). By Proposition 4.11 there

exist x1, x2, d2 ∈ M with ‖[d2]‖[u] < δ such that x = x1 + x2, x1 ≤ y and 2nx2 ≤
u+ d1 + d2, whence ‖[x2]‖[u] <

1+2δ
2n . Taking δ < 1

2 , for all n > 1+ log2(
1
ε ) we have

the desired decomposition. �

As a consequence of Theorem 4.12, we obtain the following result for exchange
rings.

Proposition 4.13. Let R be an exchange ring, and let P,Q be finitely generated
projective right R-modules. Let Φ : K0(R) → Aff(S(K0(R), [R])) be the natural
map. If Φ([P ]) ≤ Φ([Q]), then for all ε > 0 there exist decompositions P ∼= P1⊕P2,
Q ∼= Q1 ⊕Q2 such that P1

∼= Q1 and ‖[P2]‖[R] < ε.

Proof. As R is an exchange ring, we have that V (R) is a refinement monoid. Also,
K0(R) = G(V (R)), whence the result is a consequence of Theorem 4.12. �

Proposition 4.13, in the case of regular rings, gives [4, Lemma 3.2], which turns
out to be the key for characterizing when K-theoretically simple regular rings are
simple. In the case of unital C∗-algebras of real rank zero, Proposition 4.13 can be
rewritten in the following form:
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Corollary 4.14. Let A be a unital C∗-algebra of real rank zero, and let p, q ∈ A
be projections. If τ(p) ≤ τ(q) for every quasi-trace τ ∈ QT(A), then ∀ε > 0 there
exist projections p1, p2, q1, q2 ∈ A such that p ∼ p1 ⊕ p2, q ∼ q1 ⊕ q2, while p1 ∼ q1
and sup{τ(p2) | τ ∈ QT(A)} < ε.

Proof. Given the affine homeomorphism QT(A) ∼= S(K0(A), [A]) ([9, Section III]),
we see that τ(p) ≤ τ(q) for every quasi-trace τ ∈ QT(A) if and only if Φ([p]) ≤
Φ([q]). Thus, the result follows from Proposition 4.13. �

Corollary 4.14 could be viewed, in the simple case, as an approximation to an
affirmative answer to the Fundamental Comparability Question 2, proposed by
Blackadar in [8]. This question has an affirmative answer in the case of simple
unital AF C∗-algebras ([7]), and in the case of irrational rotation algebras ([31],
[32]), among others. Recently, Villadsen ([35]) constructed a counterexample to
this question. This example, however, has real rank one, and thus remains out of
the domain of application of Corollary 4.14.

5. Halving idempotents

In this section we will deal with the following problem: can a non-artinian simple
ring be approached by matrix rings of every dimension? The key point is to show
that every idempotent can be approximately “cut” into n equivalent idempotents
for an arbitrary n ∈ N. To be more explicit, given an idempotent e ∈ R and n ∈ N,
we will show that there exist idempotents f, g ∈ R such that

eR ∼= n(fR)⊕ gR,

where g is “small” in some sense. The remark after Corollary 4.7 shows that
this result holds for non-artinian simple exchange rings wherever we take as a
measure of gR the value of ‖[gR]‖[R]. Zhang, in [41], shows that the result holds for

nonelementary simple C∗-algebras of real rank zero wherever n = 2k for arbitrary
k ∈ N, and the measure of gR is fixed by the fact that it turns out to be a direct
summand of both fR and an arbitrary nonzero principal right ideal generated by
an idempotent.

Obviously, this kind of behavior fails in general. An easy example of this is the
Weyl algebra K〈x, y | xy − yx = 1〉, which is a noetherian, non-artinian simple
domain. We will show, by using monoid-theoretic techniques, that the result holds
for any ring R (not necessarily unital) whose monoid V (R) is simple, atomless, and
satisfies the Riesz decomposition property (that is, whenever x, y1, y2 ∈ V (R) are
such that x ≤ y1 + y2, there exist x1, x2 ∈M such that x = x1 + x2, while xi ≤ yi
for all i). Notice that refinement implies Riesz decomposition, but the converse
is false (e.g., M = 〈a,∞ | a + a = ∞〉 is a Riesz monoid, but not a refinement
monoid). Thus, the result holds for a wide class of simple rings that includes the
non-artinian simple exchange rings. In order to state the following result, recall
that an abelian monoid M is conical provided that ∀x, y ∈ M , x + y = 0 implies
x = y = 0.

Lemma 5.1. Let M be a simple, conical, atomless Riesz monoid. Then:
(a) Given nonzero elements x1, . . . , xk ∈ M and n ∈ N, there exists a nonzero

element y ∈M such that ny < xi for all i.
(b) Given nonzero elements p, r ∈ M , m ∈ N, there exist q, s ∈ M such that

p = mq + s and s ≤ (m− 1)r.



K0 OF EXCHANGE RINGS 931

Proof. (a) We will show this result in two steps:

Claim 1. Given nonzero elements x1, . . . , xk ∈M , there exists a nonzero element
y ∈ M such that y ≤ xi for all i. To see this, it is enough to consider the case
k = 2. Let x1, x2 ∈ M be any nonzero elements. As M is simple, there exists
m ∈ N such that x1 ≤ mx2. By Riesz decomposition there exist a1, . . . , am ∈ M
such that x1 = a1 + · · ·+ am and ai ≤ x2 for all i (and obviously ai ≤ x1 for all i).
Since x1 6= 0, there exists at least one j ∈ {1, . . . ,m} such that aj 6= 0. Thus, take
y = aj .

Claim 2. Given a nonzero element x ∈ M , and n ∈ N, there exists a nonzero
element y ∈ M such that ny < x. To see this, observe that, as M is atomless,
there exists a strictly decreasing chain x = x0 > x1 > · · · > xn > 0 of nonzero
elements of M . Let t1, . . . , tn ∈M be nonzero elements such that xi+ ti = xi−1 for
i ∈ {1, . . . , n}. Then, by claim 1 there exists a nonzero element y ∈ M such that
y ≤ ti for all i. Now,

ny ≤ t1 + · · ·+ tn < t1 + · · ·+ tn + xn

= t1 + · · ·+ tn−1 + xn−1 = · · · = t1 + x1 = x0 = x.

(b) Since M is simple, there exists k ∈ N such that p ≤ kr. We will do the proof
by induction on k. For k ≤ (m−1), we have p = m0+p, and obviously p ≤ (m−1)r.
For k = m we have, by [25, Lemma 3.1], a decomposition p = p1 + · · · + pm with
p1 ≤ · · · ≤ pm ≤ r. Thus there exist q1, . . . , qm−1 ∈ M such that p1 + qi = pi+1

for i = 1, . . . ,m− 1. Take q = p1 and s = q1 + · · ·+ qm−1. Then p = mq + s with
s = q1 + · · ·+ qm−1 ≤ p2 + · · ·+ pm ≤ (m− 1)r.

Now, assume that the result holds for k, and suppose that p ≤ (k + 1)r. First,
notice that p ≤ (k + 1)r = kr + r. So, applying the Riesz property, we obtain a
decomposition p = p1 + p2 with p1 ≤ kr and p2 ≤ r. Then, applying induction,
we have that p1 = mq1 + s1 with s1 ≤ (m − 1)r. Hence, p2 + s1 ≤ mr. Again by
induction p2 + s1 = mq2 + s2, with s2 ≤ (m − 1)r. Thus, take q = q1 + q2 and
s = s2, and notice that

p = p1 + p2 = mq1 + s1 + p2 = m(q1 + q2) + s2 = mq + s

with s ≤ (m− 1)r. Thus, the induction step works. �
Theorem 5.2. Let M be a simple, atomless, conical Riesz monoid. Let p, r ∈ M
be nonzero elements, and let m ∈ N. Then, p = mpm + s for some pm, s ∈M such
that s ≤ pm and s ≤ r.

Proof. First, we will see that, in order to show the desired result, it is enough to
prove that there exist q, t ∈ M such that p = mq + t with t ≤ r. Now, suppose
that the claim holds. Then, given p, r ∈M (nonzero elements) and m ∈ N we have
q′, t ∈M such that p = mq′+ t and t ≤ r. Now apply the same to p = t and r = q′.
Thus there exist l, s ∈ M such that t = ml + s, with s ≤ q′, and also s ≤ t ≤ r by
construction. Then, taking q = q′+ l, we have p = mq′+ t = m(q′+ l)+ s = mq+ s
with s ≤ {q, r}.

Now we will show that the claim of the last paragraph is true. To do this, take
p, r ∈ M (nonzero elements) and m ∈ N. By Lemma 5.1(a) there exists a nonzero
element r′ ∈ M such that (m − 1)r′ < r. Now apply Lemma 5.1(b) to p and r′.
Then there exist q, s ∈M such that p = mq + s with s ≤ (m− 1)r′ < r. Thus, the
claim of the first paragraph is true, and so the result holds. �
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As a consequence, we obtain the following result:

Proposition 5.3. Let R be a ring (not necessarily unital) such that V (R) is sim-
ple, atomless and Riesz. Let A,B be nonzero finitely generated projective right R-
modules, and n ∈ N. Then there exist finitely generated projective right R-modules
C,D,E, F such that A ∼= nC ⊕D, D ⊕ E ∼= C, D ⊕ F ∼= B.

Corollary 5.4. Let R be a unital ring such that V (R) is simple, atomless and
Riesz. Then, for all n ∈ N there exists a finitely generated projective right R-
module C such that

Mn(EndR(C)) ⊆ R ⊆Mn+1(EndR(C)),

where the inclusions are (non-unital) ring embeddings.

Note that any non-artinian, simple exchange ring satisfies the hypothesis of
Proposition 5.3 and Corollary 5.4. Thus, these results apply for non-artinian simple
exchange rings, and so [41, Theorem I(i)] is true for arbitrary n ∈ N, and also the
analogous result for regular rings, which generalizes [2, Corollary 2.8].
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