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Abstract. We prove a cancellation theorem for simple refinement monoids
satisfying the weak comparability condition, first introduced by K.C. O’Meara
in the context of von Neumann regular rings. This result is then applied to
von Neumann regular rings and C∗-algebras of real rank zero via the monoid
of isomorphism classes of finitely generated projective modules.

Introduction

Let M be an (abelian) monoid. For x, y ∈M we will write x ≤ y if there exists
z ∈M such that y = x+z. This preorder is sometimes called the algebraic preorder
in M . Let M∗ denote the set of nonzero elements of M . M is called conical if M∗

is closed under addition. We will write x ≤∗ y if there exists z ∈ M∗ such that
y = x + z. Note that the relation ≤∗ is transitive if M is a conical monoid. An
order-unit in M is a nonzero element u ∈M such that for each x ∈M there exists
n ≥ 1 such that x ≤ nu. A monoid M is said to be simple if it is nonzero and
every nonzero element of M is an order-unit, so that M has no nontrivial ideals
(i.e. convex submonoids of M).

Definition. Let (M,u) be a monoid with order-unit. We say that (M,u) satisfies
weak comparability provided that for all nonzero elements x in M such that x ≤ u,
there exists a positive integer k = k(x) such that, if y ∈M and ky ≤ u, then y ≤ x.
Note that, for conical M , if there is an element x′ ∈ M∗ such that x′ ≤∗ x, then
replacing k(x) by k(x′) we obtain a positive integer k such that ky ≤ u implies
y ≤∗ x.

We say that a subset X of a monoid M is cancellative (respectively strictly
cancellative) if, for a, b, c ∈ X , the relation a + c = b + c (resp. a + c ≤∗ b + c)
implies a = b (resp. a ≤∗ b).

Our main results are the following:
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Theorem. Let (M,u) be a simple refinement monoid satisfying weak comparabil-
ity. Then M∗ is cancellative.

Corollary. Let (M,u) be a simple refinement monoid with weak comparability.
Assume that u+ a = u implies a = 0 for all a ∈M . Then M is cancellative.

We can apply these results to obtain cancellation results for rings R via the
monoids of finitely generated projective right R-modules V (R) provided we know
that V (R) is a refinement monoid. This is the case for von Neumann regular rings
and for C∗-algebras with real rank zero. For von Neumann regular rings we recover
O’Meara’s Theorem [8, Theorem 1]. Also our methods prove that strict cancellation
implies cancellation for C∗-algebras of real rank zero, giving a partial answer to [3,
Question 3.2.3].

1. Refinement monoids

A monoid M is said to be a refinement monoid [11] if whenever a + b = c + d
in M , there exists x, y, z, t ∈M such that a = x+ y, b = z + t while c = x+ z and
d = y + t. We say that M satisfies the Riesz decomposition property if whenever
p ≤ q1+q2 in M , there exist p1, p2 ∈M such that p = p1+p2 and pi ≤ qi for i = 1, 2.
Clearly every refinement monoid satisfies the Riesz decomposition property, but the
converse is not true in general. For example, the monoid {0, u,∞} (where 2u =∞)
satisfies the Riesz decomposition property but it is not a refinement monoid.

An atom of a monoid M is a nonzero element a such that there is no b in M
such that 0 ≤∗ b ≤∗ a. M is an atomic monoid if each element of M can be written
as a sum of atoms. Clearly a simple, nonatomic, refinement monoid has no atoms.
The following lemma is known. In fact, much more is true; see [10, Theorem 6.2].

Lemma 1.1. Let M be a simple nonatomic refinement monoid and let x1, · · · , xn ∈
M∗. Then for each k ∈ N there exists x ∈M∗ such that kx ≤ xi for all i. �
Lemma 1.2. Let M be a simple, conical, nonatomic, refinement monoid and as-
sume that x ≤∗ y +w for some x, y, w ∈M with y 6= 0. Then there exists y′ ∈M∗
such that x ≤∗ y′ + w and y′ ≤∗ y.

Proof. Write x+ t = y+w for some t ∈M∗. Applying the refinement property, we
have x = x1 + x2 and t = t1 + t2 such that y = x1 + t1 and w = x2 + t2. If t1 6= 0,
write t1 = t′1 + t′′1 with t′1, t

′′
1 ∈M∗ and set y′ = x1 + t′′1 . Then clearly x ≤∗ y′ +w.

If t1 = 0, then, by Lemma 1.1, we can write t2 = 2t′2 + t′′2 with t′2 ∈M∗ and t′2 ≤∗ y.
Write y = t′2 + y′ for some y′ ∈M∗. Then

x ≤∗ x+ t′2 + t′′2 = y + t′2 + t′′2 + x2 = y′ + 2t′2 + t′′2 + x2 = y′ + w,

as desired. �
Lemma 1.3. If (M,u) is a simple, conical, nonatomic, refinement monoid satis-
fying weak comparability, then M∗ is strictly cancellative.

Proof. Assume x, y, z are elements of M∗ such that x + z ≤∗ y + z. There exists
m ∈ N such that z ≤ mu, whence x+mu ≤∗ y+mu. Since M is conical, it suffices
to prove the result for the case z = u.

So, assume that x + u ≤∗ y + u with y ∈ M∗. By Lemma 1.2, there exist
y′, t ∈M∗ such that y = y′ + t and x+ u ≤∗ y′ + u. By weak comparability, there
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is k ∈ N such that, for a ∈ M , if ka ≤ u, then a ≤∗ t. Now, using [11, Lemma
1.11(i)] we get decompositions x = x1 + x2 and y′ = x1 + y1 such that kx2 ≤ u.
Therefore, we conclude that x2 ≤∗ t and so x = x1 +x2 ≤∗ x1 +y1 + t = y′+ t = y.
It follows that M∗ satisfies strict cancellation. �
Proposition 1.4. Let (M,u) be a simple, conical, nonatomic, refinement monoid
satisfying weak comparability.

(a) Assume that x + u = u implies x = 0 for x ∈ M . Then M is strictly
cancellative.

(b) Assume that a + u = u for some a ∈ M∗. Then x ≤∗ y for all x, y ∈ M∗
and M∗ is cancellative.

Proof. (a) Since M∗ is strictly cancellative by Lemma 1.3, it will suffice to prove
that x+ z = z implies x = 0 for all x, z ∈M .

Assume that x + z = z for some x ∈ M∗. Since M is nonatomic, we then have
x′+z ≤∗ z for some x′ ∈M . Now there exists a positive integer n such that z ≤ nu
and so x′ + nu ≤∗ nu. By applying Lemma 1.3 we obtain x′ + u ≤∗ u, giving a
contradiction.

(b) Assume that a + u = u for some a ∈ M∗. Let x, y be elements in M∗.
There exists n ≥ 1 such that x ≤ na and thus x + u ≤ na + u = u. We have
x+ u ≤ u ≤∗ y + u and consequently Lemma 1.3 gives us x ≤∗ y.

Now assume that x+z = y+z for x, y, z ∈M∗. Then z ≤∗ x and z ≤∗ y so that
x = z+ x′ and y = z+ y′ for some x′, y′ ∈M∗. Now 2z ≤∗ z implies z = 2z+ t for
some t ∈M∗ and so

x = z + x′ = 2z + t+ x′ = x+ z + t = y + z + t = 2z + y′ + t = z + y′ = y,

showing cancellation in M∗. �
Lemma 1.5. Let M be a strictly cancellative, conical, atomless, refinement monoid.
Assume that 2a + h = a + y for some a, h, y ∈ M . Then there exists e ∈ M such
that 2a = a+ e and y = h+ e.

Proof. By applying the refinement property to the equality a+ a + h = a+ y, we
get a = a1 + t1 = a2 + t2 and h = a3 + t3, with a1 +a2 +a3 = a and t1 + t2 + t3 = y.
If a3 = 0, then we can take e = t1 + t2. So, assume that a3 6= 0. Since M has no
atoms, there exists nonzero x1, x2 ∈M such that a3 = x1 + x2.

For i = 1, 2, we have ai+xi ≤∗ a1 +a2 +x1 +x2 = a = ai+ti. Since M is strictly
cancellative, we get xi ≤∗ ti for i = 1, 2. Write ti = xi + x′i for some x′i ∈M∗, and
set e = x′1 + x′2. Then we have

y = t1 + t2 + t3 = x1 + x′1 + x2 + x′2 + t3 = a3 + t3 + e = h+ e

and also

a+ e = a1 + a2 + a3 + x′1 + x′2 = a1 + a2 + x1 + x2 + x′1 + x′2
= a1 + t1 + a2 + t2 = 2a.

This completes the proof. �
We need a simple lemma:
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Lemma 1.6. The only conical atomic simple refinement monoid is the infinite
cyclic monoid.

Proof. Let M be a conical atomic simple refinement monoid and let a be an atom
in M . By Riesz decomposition, every element b in M is of the form na for some
nonnegative integer n. Assume there is a relation na = ma for 0 ≤ n < m. Then
n > 0 because M is conical. Now use the refinement property to get decompositions
a =

∑m
j=1 aij for i = 1, . . . , n such that a =

∑n
i=1 aij for j = 1, . . . ,m. Since n < m,

there exists some i such that the identity a =
∑m
j=1 aij reads a = ka for some k > 1.

But then a ≤∗ a, contradicting the fact that a is an atom. �

Theorem 1.7. Let (M,u) be a simple refinement monoid satisfying weak compa-
rability. Then M∗ is cancellative.

Proof. If M is not conical, then it is easy to show, by using the simplicity, that M
is a group. So, assume that M is conical (so that M∗ is a semigroup). By Lemma
1.6 we can assume in addition that M is nonatomic. By Proposition 1.4, we only
need to consider the case in which M is strictly cancellative.

So, let M be a strictly cancellative, simple, conical, nonatomic, refinement
monoid. Let x, y, z ∈ M∗ such that x + z = y + z. By Lemma 1.1, there ex-
ists w ∈M∗ such that 2w ≤ x. By simplicity there exists a positive integer k such
that z ≤ kw. Using Riesz decomposition we get z = z1 + · · ·+ zk such that zi ≤ w
for all i. So we get

x+ z1 + · · ·+ zk = y + z1 + · · ·+ zk

with 2zi ≤ x and we therefore can reduce the problem to the case in which 2z ≤ x.
So, assuming this condition, write x = 2z + t for some t ∈ M and note that
2z + (t+ z) = z + y. By Lemma 1.5, there exists e ∈ M such that 2z = z + e and
y = t+ z + e. Therefore

x = 2z + t = z + e+ t = y,

showing cancellation in M∗. �

Corollary 1.8. Let (M,u) be a simple refinement monoid with weak comparability.
Assume that u+ a = u implies a = 0 for all a ∈M . Then M is cancellative.

Proof. We can again assume thatM is conical. SinceM∗ is cancellative by Theorem
1.7, it suffices to prove that a + c = c implies a = 0 for all a, c ∈ M . Since M is
simple, there exists n ≥ 1 such that c ≤ nu. So a+ nu = nu and Theorem 1.7 tells
us that a+ u = u. We conclude that a = 0. �

Finally we note that the proof of Theorem 1.7 gives the following:

Corollary 1.9. Let M be a simple strictly cancellative refinement monoid. Then
M is cancellative. �

The hypothesis of Corollary 1.9 is weaker than those in Corollary 1.8, because
there exist simple cancellative refinement monoids which do not satisfy weak com-
parability; see [9, Example 3.12].
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2. Applications to cancellation

results for some rings and C∗-algebras

Let R be a ring and let V (R) be the monoid of isomorphism classes of finitely
generated projective right R-modules. It is well-known that V (R) is a refinement
monoid whenever R is a von Neumann regular ring [6, Theorem 2.8]. Also, a von
Neumann regular ring is unit-regular if and only if V (R) is a cancellative monoid
[6, Theorem 4.5]. So Corollary 1.8 gives immediately the following result, due to
K.C. O’Meara.

Theorem 2.1 ([8, Theorem 1]). Let R be a simple directly finite von Neumann
regular ring satisfying weak comparability. Then R is unit-regular. �

Also we have the following consequence of Corollary 1.9:

Theorem 2.2. Let R be a simple von Neumann regular ring such that A ⊕ C ≺
B ⊕ C implies A ≺ B for all finitely generated projectives A,B,C. Then R is
unit-regular. �

Now we turn our attention to C∗-algebras. We will follow the background and
notation of [2] and [3]. The monoid V (A) can be identified with the monoid of
Murray-von Neumann equivalence classes of projections in M∞(A). For projections
p, q in a C∗-algebra, we write p . q if p is Murray-von Neumann equivalent to a
subprojection of q. The notation k · p for a positive integer k and a projection p
will mean the orthogonal sum of k copies of p.

Definition. We say that a unital C∗-algebra A satisfies weak comparability if for
every nonzero projection p in A there exists a positive integer k such that, for any
projection q in A, if k · q . 1, then q . p.

It is clear that A satisfies weak comparability if and only if (V (A), [1]) satisfies
weak comparability.

Lemma 2.3. Let A be a C∗-algebra with real rank zero. Then V (A) is a refinement
monoid.

Proof. By [5, Theorem 2.10], all the matrix algebras over A have real rank 0. So it
suffices to consider two projections p, q in a unital C∗-algebra with real rank zero
and show decompositions q = q11 + q12 and 1− q = q21 + q22 such that q11 + q21 ∼ p
and q12 + q22 ∼ 1− p.

By [12, Theorem 3.2], q is homotopic to a projection of the form p′ + p′′ where
p′ ≤ p and p′′ ≤ 1 − p. So we can write q = q11 + q12 where q11 ∼ p′ and
q12 ∼ p′′. Since 1 − q is homotopic to 1 − (p′ + p′′) = (p − p′) + (1 − p − p′′),
we obtain a corresponding decomposition 1 − q = q21 + q22. Finally observe that
q11 + q21 ∼ p′+ (p− p′) = p and q12 + q22 ∼ p′′ + (1− p− p′′) = 1− p, as desired.�
Theorem 2.4. Let A be a finite simple unital C∗-algebra with real rank zero satis-
fying weak comparability. Then V (A) has cancellation, the stable rank of A is one,
and K0(A) is a weakly unperforated Riesz group.

Proof. By Lemma 2.3, V (A) is a refinement monoid. So, V (A) is cancellative by
Corollary 1.8. By [4, III.2.4], the stable rank of A is one. Finally, by [1, Theorem
4.2], K0(A) is weakly unperforated. �

The following result answers [3, Question 3.2.3] for C∗-algebras with real rank
zero.
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Theorem 2.5. Let A be a simple C∗-algebra with real rank zero such that V (A) is
strictly cancellative. Then the stable rank of A is one.

Proof. It follows immediately from Lemma 2.3, Corollary 1.9 and [4, III.2.4]. �
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