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Abstract

P.Ara and K.R.Goodearl, in [1], introduced and studied the con-

cept of a regular ring R satisfying the following condition, which they

called condition (D): Φ(K0(R)+) is dense in Aff(S(K0(R), [R]))+, where

Φ denotes the natural map from K0(R) to Aff(S(K0(R), [R])). They

proved that every nonartinian, stably finite, strictly unperforated, sim-

ple regular ring satisfies condition (D). In this note we prove that a

regular ring R satisfies condition (D) if and only if R has no nonzero

artinian homomorphic image. We then obtain as a consequence that

every nonartinian, simple regular ring satisfies condition (D).

Introduction

One of the most famous and difficult problems related to the structure of

von Neumann regular rings is the third question in Goodearl’s book, which
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asks if every directly finite, simple regular ring must be unit-regular. In the

past few years, some advances have been made in the direction of an affirmative

answer.

The methods involved in those advances are mainly derived from the fact

that the unit-regular rings are those for which finitely generated projective

modules cancel from direct sums. An easy consequence of this last statement

is that the Grothendieck group, K0, has the interpolation property. Thus, a

standard technique is to study decompositions of finitely generated projective

modules, or of elements of K0, trying to obtain analogous properties to the

cancellation or the interpolation property.

P.Ara and K.R.Goodearl, in [1], show that, if R is a directly finite, simple

regular ring, then (Φ(K0(R)),�) is a simple dimension group ( and therefore

an interpolation group) provided that the image of K0(R)+ under the natural

map

Φ : K0(R)→ Aff(S(K0(R), [R]))

is dense in Aff(S(K0(R), [R]))+, and they give the name condition (D) to

this property. Under this hypothesis, they obtain decomposition properties of

modules quite similar to the unit-regular case.

Two interesting questions then are:

a) When does a directly finite, simple regular ring satisfy condition (D),

and more generally, what kind of regular rings satisfy condition (D)?

b) What conditions on K0(R) imply that K0(R) is an interpolation group?.

In this paper we give a partial answer to b) and a complete answer to a)

by showing that a regular ring R satisfies condition (D) if and only if R has

no nonzero artinian homomorphic image.
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1 Preliminaries

Throughout this work, we follow the notation of [4] and [5], except that we

shall use PR to denote the class of finitely generated projective right modules

over a regular ring R.

We will also use sN to denote the state associated to N ∈ P(R) by the

affine homeomorphism Θ : S(K0(R), [R])→ P(R) described in [4, Proposition

17.12]. In particular, sN([xR]) = N(x) for all x ∈ R.

We recall some definitions that we will use later, as:

Definition 1.1 Let R be any ring. Then we say that R is directly finite

provided that for any x, y ∈ R, if xy = 1, then yx = 1; and we say that R is

stably finite if Mn(R) is directly finite for all n ∈ Z+.

Definition 1.2 Let R be a regular ring, and let P(R) be the Choquet simplex

of pseudo-rank functions on R. Then, we define KerP(R) =
⋂
N∈P(R)KerN

if P(R) 6= ∅, where KerN = {x ∈ R | N(x) = 0} for N ∈ P(R), and

KerP(R) = R if P(R) = ∅. By [4, 16.7], every KerN is a two-sided ideal in

R, and hence so is KerP(R).

Definition 1.3 Let R be a regular ring. Then we say that R is N∗-torsion

free if KerP(R) = 0.

Notice that, if P(R) 6= ∅, we can define

N∗(x) = sup{N(x) | N ∈ P(R)}.

Hence, R is N∗-torsion free if N∗(x) > 0 for all nonzero x ∈ R, and, in

particular, it is not difficult to see that R is stably finite.

Definition 1.4 Let R be any ring, and let A,B be right R-modules. Then we

write A.B if A is isomorphic to a submodule of B, and we write A ≺ B if A

is isomorphic to a proper submodule of B.
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Recall that when R is regular and A,B ∈ PR, if A.B then A is isomorphic

to a direct summand of B. Similarly, if A ≺ B then A is isomorphic to a

proper direct summand of B.

Definition 1.5 Let R be a regular ring. Then we say that R satisfies the

unperforation property if for all A,B ∈ PR and for all n ∈ N, nA.nB if

and only if A.B. If this property holds with . replaced by ≺, then R is said

to satisfy the strict unperforation property.

Definition 1.6 Let G be a preordered abelian group with order-unit, and let

S(G, u) be the space of states on G. Then, we say that a state s on G is

discrete if s(G) is a cyclic subgroup of R, that is, if there exists an m ∈ N

such that s(G) = 1
m
Z, and we say that s is indiscrete if it is not discrete,

that is, if s(G) is a dense subgroup of R.

Definition 1.7 Let G be a partially ordered abelian group. Then G is said to

satisfy the (Riesz) interpolation property provided that, for all

x1, x2, y1, y2 ∈ G such that xi ≤ yj for i, j = 1, 2, there exists z ∈ G such

that xi ≤ z ≤ yj for i, j = 1, 2. Equivalent conditions are given in [5, 2.1]. If

this property holds for strict inequalities, then G is said to satisfy the strict

interpolation property. Further, G is said to be a Riesz group provided

that G is a directed group satisfying the Riesz interpolation propety.

Definition 1.8 Let G be a partially ordered abelian group. Then G is said

to be unperforated provided that for all x ∈ G and for all n ∈ N, nx ∈ G+

implies x ∈ G+, and G is said to be strictly unperforated provided that for

all x ∈ G and for all n ∈ N, nx > 0 implies x > 0.

Definition 1.9 Let G be a partially ordered abelian group. Then G is said to

be a dimension group if G is an unperforated, Riesz group.
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We will recall some results from [2], [7] and [10] that will be useful to prove

the main theorem.

Remark 1.10 If R is an N∗-torsion free regular ring, then its Hausdorff com-

pletion, S, with respect to the N∗-metric, satisfies:

a) S is an unperforated unit-regular ring; [10].

b) The natural map φ : R→ S is an injective ring homomorphism; [7].

c) For N ∈ P(R) and s ∈ S , define N(s) = lim
n→∞

N(sn), where

(sn)n≥1 ⊆ R and φ(sn)→ s in S. Then:

1) N ∈ P(S); [2, Lemma 1.3].

2) The map ψ : P(R) → P(S) defined by the rule ψ(N) = N is an

affine homeomorphism; [10, Theorem 2.4]. The inverse map is

given by the rule ψ−1(P ) = Pφ

3) S is complete with respect to the N∗-metric; [10].

And so,

d) K0(S) is an archimedean norm-complete dimension group; [7, Theorem

2.11].

e) K0(S) is the norm-completion of K0(R) with respect to the order-unit

norm; [2, Cororollary 1.15].

We will also use:

Proposition 1.11 ([5, Corollary 13.6]) Let (G, u) be a nonzero dimension

group with order-unit, and let Φ : G → Aff(S(G, u)) be the natural map. Set

A = {p ∈ Aff(S(G, u)) | p(s) ∈ s(G) for all discrete s ∈ ∂eS(G, u)}. Then,

Φ(G+) is dense in A+.
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Corollary 1.12 ([5, Corollary 13.7]) Let (G, u) be a nonzero dimension

group with order-unit, and let Φ : G → Aff(S(G, u)) be the natural map. If

∂eS(G, u) contains no discrete states, then Φ(G+) is dense in Aff(S(G, u))+.

Finally, as we will frequently need to know whether states are discrete or

indiscrete, we establish a relationship between this property and some chain

conditions on the ring.

Lemma 1.13 (P.Ara, unpublished) Let R be a regular ring, and let N ∈

P(R). Then sN is a discrete state if and only if R/KerN is artinian and N is

a rational convex combination of extremal pseudo-rank functions.

Proof: Suppose that sN is discrete. Then, clearly N(R) ⊆ sN(K0(R))
⋂

[0, 1]

is a finite set. By [4, 16.7], if π : R→ R := R/KerN is the natural projection

map, there exists a unique N
′ ∈ P(R) such that N

′
π = N , and moreover, N

′

is a rank function.

Since N
′
(R) is a finite subset of [0, 1], we have that R contains no infinite

sequences of nonzero orthogonal idempotents, and so, by [4, Corollary 2.16],

R is semisimple artinian. By the assumption that sN is discrete it is clear

that N
′
, and so N , is a rational convex combination of extremal pseudo-rank

functions.

The converse is clear.Q.E.D.

Corollary 1.14 If R is a regular ring, then R has no nontrivial artinian

homomorphic image if and only if S(K0(R), [R]) contains no discrete states.

2 The Main Result

Lemma 2.1 Let R be an N∗-torsion free regular ring. Let S be the N∗-metric

completion of R, and let φ : R→ S be the natural inclusion. Then:
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a) The induced homomorphism

Aff(φ∗) : Aff(S(K0(R), [R]))→ Aff(S(K0(S), [S]))

is an isomorphism of partially ordered abelian groups with order-unit.

b) Aff(φ∗) is an isometry with respect to the supremum norms.

c) K0(φ)(K0(R)+) is norm-dense in K0(S)+.

Proof: a) Notice that, by 1.10,c2, ψ : P(R) → P(S) is an affine homeomor-

phism, which is the inverse of P(φ) : P(S)→ P(R). As there is a natural affine

homeomorphism Θ : S(K0(R), [R]) → P(R), and similarly for S, it is clear

that the map induced by K0(φ), φ∗ : S(K0(S), [S]) → S(K0(R), [R]), is an

affine homeomorphism. Then, as Aff is a functor, we conclude that Aff(φ∗) is

an isomorphism of partially ordered abelian groups with order unit, as desired.

b) Since Aff(φ∗)(1) = 1, the isomorphism Aff(φ∗) must be an isometry with

respect to the order-unit norms in Aff(S(K0(R), [R])) and Aff(S(K0(S), [S])).

However, in these groups the order-unit norms (with respect to the order-unit

1) coincide with the supremum norms ‖ · ‖∞.

c) We have the following commutative diagram:

(∗)
Aff(S(K0(R), [R]))

Aff(φ∗)→ Aff(S(K0(S), [S]))

ΦR ↑ ↑ ΦS

K0(R)
K0(φ)→ K0(S).

where Aff(φ∗) is an isomorphism by (a) and ΦR, ΦS are the natural maps.

Moreover ΦS is a monomorphism, since K0(S) is archimedean. We claim that

K0(φ) is an isometry.To see this, observe that for any x ∈ K0(R),

‖x‖[R] = ‖ΦR(x)‖∞ = ‖Aff(φ∗) ◦ ΦR(x)‖∞ =

= ‖ΦS ◦K0(φ)(x)‖∞ = ‖K0(φ)(x)‖[S].
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Therefore, K0(φ) is an isometry as claimed. The rest of the proof is essentially

contained in the proof of [2, Corollary 1.15].Q.E.D.

Lemma 2.2 Let R be an N∗-torsion free regular ring. Let S be the N∗-metric

completion of R, and let N ∈ P(R). Then, the state associated to N , sN , is

indiscrete if and only if the state associated to N , sN , is indiscrete.

Proof: Take any N ∈ P(R), N = ψ(N) ∈ P(S), and let sN , sN be the asso-

ciated states. It is clear that sN(K0(R)) = sN(K0(φ)(K0(R))) ⊆ sN(K0(S)).

Since K0(φ)(K0(R))) is dense in K0(S) and sN is continuous in the induced

metric, we have that sN(K0(R)) is dense in R if and only if sN(K0(S)) is dense

in R. Thus sN is indiscrete if and only if sN is indiscrete.Q.E.D.

Lemma 2.3 Let R be a regular ring such that P(R) 6= ∅ and let

π : R→ R := R/KerP(R) be the natural projection. Then the following hold:

a) K0(π) : K0(R) → K0(R) is an epimorphism of partially ordered abelian

groups with order-unit, and Ker (K0(π)) is the ideal generated by

H = {[xR] | x ∈ KerP(R)}.

b) P(π) : P(R)→ P(R) is an affine homeomorphism.

c) Aff(π∗) : Aff(S(K0(R), [R]))→ Aff(S(K0(R), [R])) is an isomorphism of

partially ordered abelian groups with order-unit.

d) If N ∈ P(R) and N = P(π)−1(N) ∈ P(R), then sN is indiscrete if and

only if sN is indiscrete.

Proof: a) By [4, Proposition 15.15].

b) By [4, Prop.16.19], P(π) : P(R) → P(R) is an affine homeomorphism from

P(R) onto a closed face F of P(R). Let N ∈ P(R) be a pseudo-rank function.
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As KerP(R) ⊆ KerN , [4, Prop. 16.7] implies that there exists a unique

pseudo-rank function N
′

on R such that N
′
π = N . Thus, F = P(R) and the

result holds.

c) Replacing φ∗ with π∗ and S with R in the proof of 2.1, we obtain (c).

d) Take e ∈ R, and observe that

sN([eR]) = N(e) = Nπ(e) = sN([π(e)(R)]).

As K0(R)+ = 〈[eR] | e ∈ R〉 and K0(R) is directed as ordered group, we

conclude that sN(K0(R)) = sN(K0(R)). Thus, the result holds.Q.E.D.

Notice that if P(R) = ∅, then KerP(R) = R and so we have that R :=

R/KerP(R) = (0), P(R) = ∅ and Aff(S(K0(R), [R])) = Aff(S(K0(R), [R])) =

0, whence (a),(b),(c) and (d) obviously hold.

We are now ready to show the main result of the paper.

Theorem 2.4 Let R be a regular ring, let K0(R) be its Grothendieck group,

let S = S(K0(R), [R]) be the space of states on K0(R), and let Φ : K0(R) →

Aff(S) be the natural map. For each s ∈ S, set Bs = s(K0(R)) if s is discrete,

Bs = R if s is indiscrete. Set A = {p ∈ Aff(S) | p(s) ∈ Bs ∀s ∈ ∂eS}. Then,

Φ(K0(R)+) is dense in A+.

Proof: The general case is easily reduced to the case where R is N∗-torsion free

by using 2.3. Therefore, we will assume that R is an N∗-torsion free regular

ring. Also, it is not difficult to see that {p ∈ Aff(S) | p(s) ∈ s(K0(R)) for all

discrete s ∈ ∂eS} = {p ∈ Aff(S) | p(s) ∈ Bs ∀s ∈ ∂eS}.

Let S be the N∗-metric completion of R. Then, K0(S) is a nonzero dimen-

sion group with order-unit, whence the result holds for S by 1.11. Denote by

AR the set A in Aff (S(K0(R), [R])), and AS the set A in Aff (S(K0(S), [S])).

By 2.1 and 2.2, it is clear that Aff(φ∗)(A
+
R) = A+

S .
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Let p ∈ A+
R, ε > 0. Then Aff(φ∗)(p) ∈ A+

S , and so there exists B ∈ PS such

that

‖ΦS([B])− Aff(φ∗)(p)‖∞ <
ε

2
.

By 2.1, there exists A ∈ PR such that

‖K0(φ)([A])− [B]‖[S] <
ε

2
,

and so, by the triangle inequality

‖Aff(φ∗)(p)− ΦS ◦K0(φ)([A])‖∞ < ε.

Then, as Aff(φ∗) is an isometry, the commutative diagram (*) (proof of 2.1)

gives us

‖p− ΦR([A])‖∞ < ε.

So, Φ(K0(R)+) is dense in A+
R.Q.E.D.

Corollary 2.5 A regular ring R satisfies condition (D) if and only if R has

no nonzero artinian homomorphic image.

Proof: Assume that R has no nonzero artinian homomorphic image. Then,

by 1.14, S(K0(R), [R]) contains no discrete states, whence AR = Aff(S), and

thus the result holds directly from 2.4.

Conversely, if R satisfies condition (D), then all states on K0(R) are indis-

crete, and so by 1.14 R has no nonzero artinian homomorphic image.Q.E.D.

In particular, if R satisfies condition (D), then soc(RR) ⊆ KerP(R). The

converse is false, as is easy to see by considering any free regular Λ-algebra with

Λ a commutative ring [6], or any regular ring of the form (
∏∞
i=1Fi)/(

⊕∞
i=1Fi),

where F1, F2, . . . are fields.

As a corollary, we obtain the following:
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Corollary 2.6 If R is a nonartinian, simple regular ring, then R satisfies

condition (D).

Proof: As R is a simple ring, R has no nonzero artinian homomorphic image.

Hence, by 2.5, the result holds. Q.E.D.

It is well known that every strictly unperforated, directly finite, simple

regular ring is unit-regular [9, Corollary 4], and particularly its Grothendieck

group, K0(R), is a simple strictly unperforated Riesz group , a class of groups

which has recently been studied by Elliot in [3]. Our next result shows that,

in order to prove that K0(R) is a simple strictly unperforated Riesz group, we

only need that K0(R) is strictly unperforated.

Proposition 2.7 Let (G, u) be a simple, strictly unperforated, partially or-

dered abelian group with order-unit, and let Φ : G → Aff(S(G, u)) be the

natural homomorphism, and suppose that Φ(G+) is dense in Aff(S(G, u))+.

Assume also that S(G, u) is a Choquet simplex. Then G is an interpolation

group.

Proof: Clearly, it suffices to prove that G has the strict interpolation property.

Let x1, x2, y1, y2 ∈ G such that xi < yj ∀i, j. Then Φ(xi) � Φ(yj). Choose

ε > 0 such that Φ(xi)+ε� Φ(yj)−ε ∀i, j. As Aff(S(G, u)) is an interpolation

group [5, Thm 11.4], there exists f ∈ Aff(S(G, u)) such that Φ(xi) + ε ≤ f ≤

Φ(yj)− ε ∀i, j. Since Φ(G+) is dense in Aff(S(G, u))+, there exists z ∈ G such

that ‖Φ(z)− f‖ < ε, and so Φ(xi) ≤ f − ε� Φ(z)� f + ε ≤ Φ(yj) ∀i, j. As

G is strictly unperforated, then by [5, 7.8], xi < z < yj ∀i, j, whence G has

the strict interpolation property.Q.E.D.

Corollary 2.8 Let R be a nonartinian stably finite regular ring, and suppose

that for all N ∈ P(R), KerN = 0, and that K0(R) is strictly unperforated.

Then, K0(R) is a simple strictly unperforated Riesz group.
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Proof: As all pseudo-rank functions on R are actually rank functions, R has no

nontrivial stably finite homomorphic image, that is, K0(R) has no nontrivial

ideals. So, (K0(R), [R]) is a directed, strictly unperforated, simple, partially

ordered abelian group with order-unit. Moreover, R satisfies condition (D),

by 2.5, and S(K0(R), [R]) is a Choquet simplex by [4, 17.5]. Now by 2.7 the

result holds. Q.E.D.

The last result can fail if the ring has pseudo-rank functions that are not

rank functions, because the condition (D) can fail. An example of this situation

is given by the ring T defined in [8] with constant n = 2: K0(T ) is a strictly

unperforated group with torsion, but it is not an interpolation group, and it is

easy to see that P(T ) = {N}, where KerN 6= 0 and T/KerN is a commutative

field, whence T has a nontrivial artinian homomorphic image and condition

(D) fails.
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