
Escuela Superior de
Ingeniería

Programa de Doctorado en
Ingeniería y Arquitectura

Itinerario en Ingeniería de Fabricación

Metodología dirigida por
modelos para las pruebas de un
sistema distribuido multiagente

de fabricación

Autor: Antonio García Domínguez
Directores: Inmaculada Medina Bulo, Mariano Marcos Bárcena

Conformidad de los directores

Da María Inmaculada Medina Bulo, profesora del Departamento de Ingeniería Informática
de la Universidad de Cádiz, y D. Mariano Marcos Bárcena, profesor del Departamento de
Ingeniería Mecánica y Diseño Industrial, siendo Directores de la Tesis titulada Metodología
dirigida por modelos para las pruebas de un sistema distribuido multiagente de fabricación,
realizada por el doctorando D. Antonio García Domínguez dentro del Programa de
Doctorado en Ingeniería y Arquitectura bajo el Itinerario en Ingeniería de Fabricación,
para proceder a los trámites conducentes a la presentación y defensa de la tesis doctoral
arriba indicada, en aplicación de la Normativa Reguladora de Estudios de Tercer Ciclo de
la Universidad de Cádiz, informan que se autoriza la tramitación de la tesis.

Los directores de tesis

Inmaculada Medina Bulo Mariano Marcos Bárcena

Cádiz, España, a 6 de noviembre de 2013

iii

Agradecimientos

Desearía dar las gracias a todas las personas que han hecho posible esta tesis:

• A mis padres, por su apoyo sacrificado e incondicional y por inculcarme la curiosidad
ante todo y el gusto por el trabajo bien hecho.

• A mis hermanas y mis amigos y amigas, por los buenos ratos compartidos y todos
los ánimos recibidos.

• A Inma y Mariano, por su ayuda durante esta tesis y su paciencia.

• A Paco, por enseñarme el placer de impartir conocimientos y aportar mi granito de
arena.

• A la comunidad de desarrolladores de software de fuentes abiertas, que ha posibilitado
el desarrollo de esta tesis con sus sistemas operativos, herramientas, metodologías y
conocimientos.

Muchas gracias a todos.

Antonio García Domínguez
Cádiz, España, 6 de noviembre de 2013

v

Agradecimientos institucionales
Este trabajo fue financiado por la beca de investigación PU-EPIF-FPI-C 2010-065 de la
Universidad de Cádiz, por el proyecto MoDSOA (TIN2011-27242) del Programa Nacional
de Investigación, Desarrollo e Innovación del Ministerio de Ciencia e Innovación y por
el proyecto PR2011-004 del Plan de Promoción de la Investigación de la Universidad de
Cádiz.

vii

Resumen
Las presiones del mercado han empujado a las empresas de fabricación a reducir costes
a la vez que mejoran sus productos, especializándose en las actividades sobre las que
pueden añadir valor y colaborando con especialistas de las otras áreas para el resto. Estos
sistemas distribuidos de fabricación conllevan nuevos retos, dado que es difícil integrar los
distintos sistemas de información y organizarlos de forma coherente. Esto ha llevado a los
investigadores a proponer una variedad de abstracciones, arquitecturas y especificaciones
que tratan de atacar esta complejidad. Entre ellas, los sistemas de fabricación holónicos han
recibido una atención especial: ven las empresas como redes de holones, entidades que a la
vez están formados y forman parte de varios otros holones. Hasta ahora, los holones se han
implementado para control de fabricación como agentes inteligentes autoconscientes, pero
su curva de aprendizaje y las dificultades a la hora de integrarlos con sistemas tradicionales
han dificultado su adopción en la industria. Por otro lado, su comportamiento emergente
puede que no sea deseable si se necesita que las tareas cumplan ciertas garantías, como
ocurren en las relaciones de negocio a negocio o de negocio a cliente y en las operaciones
de alto nivel de gestión de planta.
Esta tesis propone una visión más flexible del concepto de holón, permitiendo que

se sitúe en un espectro más amplio de niveles de inteligencia, y defiende que sea mejor
implementar los holones de negocio como servicios, componentes software que pueden ser
reutilizados a través de tecnologías estándar desde cualquier parte de la organización. Estos
servicios suelen organizarse como catálogos coherentes, conocidos como Arquitecturas
Orientadas a Servicios (‘Service Oriented Architectures’ o SOA). Una iniciativa SOA
exitosa puede reportar importantes beneficios, pero no es una tarea trivial. Por este motivo,
se han propuesto muchas metodologías SOA en la literatura, pero ninguna de ellas cubre
explícitamente la necesidad de probar los servicios. Considerando que la meta de las SOA
es incrementar la reutilización del software en la organización, es una carencia importante:
tener servicios de alta calidad es crucial para una SOA exitosa.
Por este motivo, el objetivo principal de la presente Tesis es definir una metodología

extendida que ayude a los usuarios a probar los servicios que implementan a sus holones
de negocio. Tras considerar las opciones disponibles, se tomó la metodología dirigida por
modelos SODM como punto de partida y se reescribió en su mayor parte con el framework
Epsilon de código abierto, permitiendo a los usuarios que modelen su conocimiento parcial
sobre el rendimiento esperado de los servicios. Este conocimiento parcial es aprovechado
por varios nuevos algoritmos de inferencia de requisitos de rendimiento, que extraen los
requisitos específicos de cada servicio. Aunque el algoritmo de inferencia de peticiones
por segundo es sencillo, el algoritmo de inferencia de tiempos límite pasó por numerosas
revisiones hasta obtener el nivel deseado de funcionalidad y rendimiento. Tras una primera
formulación basada en programación lineal, se reemplazó con un algoritmo sencillo ad
hoc que recorría el grafo y después con un algoritmo incremental mucho más rápido y
avanzado. El algoritmo incremental produce resultados equivalentes y tarda mucho menos,
incluso con modelos grandes.

ix

Para sacar más partidos de los modelos, esta Tesis también propone un enfoque general
para generar artefactos de prueba para múltiples tecnologías a partir de los modelos
anotados por los algoritmos. Para evaluar la viabilidad de este enfoque, se implementó
para dos posibles usos: reutilizar pruebas unitarias escritas en Java como pruebas de
rendimiento, y generar proyectos completos de prueba de rendimiento usando el framework
The Grinder para cualquier Servicio Web que esté descrito usando el estándar Web Services
Description Language.

La metodología completa es finalmente aplicada con éxito a un caso de estudio basado
en un área de fabricación de losas cerámicas rectificadas de un grupo de empresas español.
En este caso de estudio se parte de una descripción de alto nivel del negocio y se termina
con la implementación de parte de uno de los holones y la generación de pruebas de
rendimiento para uno de sus Servicios Web.
Con su soporte para tanto diseñar como implementar pruebas de rendimiento de los

servicios, se puede concluir que SODM+T ayuda a que los usuarios tengan una mayor
confianza en sus implementaciones de los holones de negocio observados en sus empresas.

x

Abstract
Market pressures have pushed manufacturing firms to reduce costs while improving their
products by specialising in their main value-adding activities and collaborating with
other specialist firms for the others. These distributed manufacturing systems bring new
challenges, as it is difficult to integrate their disparate information systems and organise
them in a coherent manner, prompting researchers to provide a number of abstractions,
architectures and specifications that attempt to tackle this complexity. Among them,
holonic manufacturing systems have achieved considerable attention: these view enterprises
as networks of holons, entities which are at the same time formed by and part of several
other holons. So far, holons have been implemented as intelligent self-aware agents
for manufacturing control, but their steep learning curve and difficulties in integrating
with legacy systems has hindered their industrial adoption. Additionally, their emergent
behaviour may not be desirable in contexts with tasks that need specific guarantees in their
behaviour, such as business-to-business or business-to-customer relations and high-level
plant management operations.

This Thesis proposes a more flexible view that allows a holon to have varying degrees of
self-awareness and emergent behaviour, and defends that business holons may be better
implemented as services or software components that can be reused through standards-
based technologies from anywhere in the organisation. These services are usually organised
into coherent catalogues, known as Service Oriented Architectures. A successful SOA
initiative may provide large benefits to the organisation, but it is not a trivial task. For
this reason, many methodologies have been proposed in the literature, but none of them
cover the need to test the services that are finally developed. Considering that the goal of
a SOA is to increase reuse of the available software throughout an organisation, this is an
important oversight: high-quality services are crucial to a successful SOA.

Therefore, the main goal of this Thesis is defining an extended methodology that assists
users in testing the services that implement their business holons. After considering the
available options, the model-driven SODM methodology was selected as a starting point
and was then largely rewritten using the open source Epsilon framework, allowing users
to model their partial knowledge about the expected performance of the services. This
partial knowledge is used by several novel performance requirement inference algorithms
that extract the specific performance requirements of each service. While the throughput
inference algorithm is based on a simple traversal of the graph, the time limit inference
algorithm went through several revisions before reaching the desired level of functionality
and performance. After a first formulation based on linear programming, it was replaced
with a simple ad hoc algorithm and then with a much faster and more advanced incremental
algorithm. The incremental algorithm produces equivalent results to the others while
taking much less time, even in large models.
In order to extract more value from the models, this Thesis also provides a general

approach for generating test artefacts for multiple technologies out of the models annotated
by the previous algorithms. To evaluate the viability of this approach, it has been

xi

implemented for two different applications: repurposing unit tests written in the Java
programming language as performance tests, and generating performance testing projects
in the The Grinder framework for any Web Service described using the language-agnostic
Web Services Description Language standard.

Lastly, the full methodology is successfully applied on a case study based on a rectified
tile manufacturing firm of a Spanish manufacturing enterprise group. This case study starts
with a high-level description of the business and concludes with the partial implementation
of one of the holons involved and the generation and execution of performance test artefacts
for one of its Web Services.

With its support for designing performance requirements and testing them, SODM+T
can therefore help users obtain a higher degree of confidence in the implementation of the
business holons observed in their enterprises.

xii

Contents

1. Introduction 1.1
1.1. Goals and scope . 1.3
1.2. Context . 1.3
1.3. Hypotheses . 1.4
1.4. Document structure . 1.4

2. Concepts of next-generation manufacturing systems 2.1
2.1. Challenges in manufacturing information systems 2.1

2.1.1. Evolution of production control systems 2.4
2.1.2. Holons, agents and services . 2.6
2.1.3. Issues with existing methodologies 2.9

2.2. Extended enterprises . 2.10
2.3. Enterprise integration . 2.12

2.3.1. GRAI Integrated Methodology (GIM) 2.13
2.3.2. Purdue Enterprise Reference Architecture (PERA) 2.15
2.3.3. Computer-Integrated Manufacturing Open System Architecture

(CIMOSA) . 2.15
2.3.4. Generalised Enterprise Reference Architecture and Methodology

(GERAM) . 2.17
2.3.5. EN/ISO 19439 and EN/ISO 19440 2.21
2.3.6. The Open Group Architecture Framework (TOGAF) 2.21
2.3.7. IEC 62264 / ISA-95 . 2.23

2.4. Process modelling . 2.26
2.4.1. Integrated DEFinition for Process Description Capture Method (IDEF)2.28
2.4.2. Process Specification Language (PSL) 2.29
2.4.3. Value Stream Mapping (VSM) . 2.30
2.4.4. Business Process Modelling Notation (BPMN) 2.30
2.4.5. Comparison through a case study 2.32

2.5. Multi-agent systems . 2.39
2.5.1. Applications . 2.39
2.5.2. Agent platforms . 2.43

3. Concepts of software and service engineering for distributed manufacturing 3.1
3.1. Service-oriented architectures . 3.1

3.1.1. Definitions and goals . 3.1
3.1.2. Web Services . 3.2

3.2. Performance engineering . 3.8
3.2.1. Notations . 3.8
3.2.2. Algorithms . 3.9

xiii

Contents

3.3. Model-driven software engineering . 3.9
3.3.1. Definitions . 3.10
3.3.2. Existing approaches . 3.12
3.3.3. Available technologies . 3.14

4. Existing service-oriented methodologies 4.1
4.1. State of the art . 4.1

4.1.1. Prior work on component-based systems 4.1
4.1.2. IBM SOMA . 4.4
4.1.3. SODM . 4.4
4.1.4. BPSOM . 4.5
4.1.5. Hoyer . 4.7

4.2. Selection of a base methodology . 4.9
4.3. Detailed description of SODM . 4.10

4.3.1. UML subset used by SODM . 4.10
4.3.2. Computation-independent models 4.16
4.3.3. Platform-independent models . 4.20
4.3.4. Platform-specific models . 4.21

4.4. Extending SODM for testing . 4.25
4.4.1. System tests: performance requirements 4.25
4.4.2. Function and integration tests: service contracts 4.27

4.5. Conclusion . 4.31

5. SODM+T: extension of SODM for performance testing 5.1
5.1. Introduction . 5.1
5.2. Extended metamodels . 5.2

5.2.1. Extended service process metamodel 5.2
5.2.2. Extended service composition metamodel 5.4

5.3. Extended model editors . 5.4
5.3.1. Computing least common ancestors 5.6
5.3.2. Model validation . 5.8
5.3.3. Migration of service processes to service compositions 5.13

5.4. Performance inference algorithms . 5.13
5.4.1. Input and output values . 5.14
5.4.2. Basic definitions . 5.15
5.4.3. Running example . 5.16
5.4.4. Throughput inference . 5.17
5.4.5. Time limit inference . 5.18

5.5. Evaluation . 5.27
5.5.1. Limitations . 5.27
5.5.2. Implementation . 5.28
5.5.3. Theoretical performance . 5.29
5.5.4. Empirical performance . 5.32

5.6. Conclusions . 5.37

xiv

Contents

6. Generation of test artefacts with SODM+T and MARTE 6.1
6.1. The MARTE profile . 6.1

6.1.1. Architecture . 6.1
6.1.2. GQAM . 6.3
6.1.3. VSL . 6.3

6.2. Changes in SODM+T for MARTE . 6.3
6.2.1. Revised annotations . 6.3
6.2.2. Revised algorithms . 6.6

6.3. Overall approach for test artefact generation 6.7
6.4. Reusing Java unit tests as performance tests 6.8

6.4.1. Model extraction . 6.10
6.4.2. Weaving metamodel . 6.11
6.4.3. Code generation . 6.11

6.5. Generating performance tests for WSDL-based Web Services 6.13
6.5.1. Target performance testing tool: The Grinder 6.14
6.5.2. Model extraction . 6.14
6.5.3. Weaving metamodel . 6.17
6.5.4. Test data generation . 6.18
6.5.5. Test code generation . 6.19
6.5.6. Test infrastructure and report generation 6.20

6.6. Conclusion . 6.22

7. Case study 7.1
7.1. Overall description . 7.1

7.1.1. Enterprise profile . 7.1
7.1.2. Manufacturing process for porcelain stoneware 7.2
7.1.3. Manufacturing facilities for porcelain stoneware 7.3
7.1.4. Providers . 7.4
7.1.5. Information and material flows . 7.4

7.2. Computation-independent models . 7.5
7.2.1. Value models . 7.7
7.2.2. Business process model . 7.7
7.2.3. Business service list . 7.10

7.3. Platform-independent models . 7.10
7.3.1. Use case model . 7.11
7.3.2. Extended use case models . 7.11
7.3.3. Service process models . 7.14
7.3.4. Service composition models . 7.16

7.4. Platform-specific models . 7.17
7.4.1. Extended service composition models 7.17
7.4.2. Web Service interface models . 7.19

7.5. Implementation . 7.20
7.5.1. Persistence layer: adaptation of the ISA-95 object model 7.23
7.5.2. Web interface: specification of rectification processes with ISA-95 . 7.25
7.5.3. Web service: provision of a scheduler WS 7.32

7.6. Performance test generation and execution 7.32
7.7. Conclusion . 7.35

xv

Contents

8. Conclusions and future work 8.1
8.1. Obtained results . 8.1
8.2. Future work . 8.4
8.3. Publications . 8.5

8.3.1. Journal articles . 8.5
8.3.2. Conference papers . 8.6
8.3.3. Book chapters . 8.7

A. Related proofs A.1
A.1. Path ordering simplification . A.1
A.2. Path ordering as a partial order . A.3

B. The Epsilon EUnit testing framework B.1
B.1. Motivation . B.1

B.1.1. Common issues . B.1
B.1.2. Testing with JUnit . B.2
B.1.3. Selected approach . B.3

B.2. Test organisation . B.3
B.2.1. Test suites . B.3
B.2.2. Test cases . B.5

B.3. Test specification . B.5
B.3.1. Ant buildfile . B.6
B.3.2. EOL script . B.7

B.4. Examples: testing a model transformation with EUnit B.11
B.4.1. Models and tasks in the buildfile B.11
B.4.2. Models and tasks in the EOL script B.13

B.5. Extending EUnit . B.15
B.5.1. Adding model management tasks B.15
B.5.2. Integrating model generators . B.17

B.6. Case studies . B.17
B.6.1. Regression tests for EuGENia . B.18
B.6.2. Unit testing for SODM+T . B.18

C. List of acronyms C.1

D. Bibliography D.1

xvi

List of Figures

2.1. Phases of a Collaborative Network . 2.2
2.2. Evolution of manufacturing control structures in the 1980s and early 1990s 2.5
2.3. General architecture of a holon . 2.6
2.4. An example of a holarchy . 2.7
2.5. Concept of a Holonic Manufacturing System 2.11
2.6. A physical holon . 2.12
2.7. GRAI model for a Decision System . 2.14
2.8. Purdue Method . 2.16
2.9. PERA task module . 2.16
2.10. CIMOSA views . 2.17
2.11. CIMOSA process modelling . 2.18
2.12. GERAM framework components . 2.19
2.13. GERA Modelling Framework . 2.20
2.14. EN/ISO 19439 framework for enterprise modelling 2.21
2.15. TOGAF Architecture Development Cycle 2.22
2.16. ISA-95 activity hierarchy . 2.25
2.17. ISA-95 equipment hierarchy . 2.26
2.18. ISA-95 functional enterprise/control model 2.27
2.19. ISA-95 generic activity model . 2.28
2.20. Selected subset of the IDEF3 notation . 2.29
2.21. Selected subset of the Value Stream Mapping notation 2.30
2.22. Selected subset of the BPMN 2.0 notation 2.31
2.23. IDEF3 model for the notation comparison case study 2.33
2.24. BPMN 2.0 model for the notation comparison case study 2.36
2.25. VSM model for the notation comparison case study 2.37
2.26. Architecture of a MASCOT agent . 2.41
2.27. Contract net for scheduling steel milling and casting 2.42

3.1. Language and model levels in MDE/MDSE 3.11
3.2. QVT and ATL transformation pattern . 3.15
3.3. Screenshot of the GMF Dashboard view 3.17

4.1. Outline of the models used by SODM . 4.6
4.2. Integration of BPSOM into the existing software development process . . . 4.6
4.3. Overview of the model-driven development process by Hoyer et al. 4.8
4.4. WSDL 2.0 metamodel . 4.24
4.5. SODM WS interface metamodel . 4.26
4.6. Model for the “Handle Order” service process, with non-functional testing

extensions . 4.28

xvii

List of Figures

4.7. Service composition model for “Handle Order” with functional and non-
functional testing extensions . 4.30

4.8. Example of a visual contract based on graph transformations for “Handle
Order” . 4.31

5.1. UML class diagram with the extended service process metamodel 5.3
5.2. UML class diagram with the extended service composition metamodels . . 5.5
5.3. Finding the least common ancestor of D and F 5.8
5.4. Annotated model for the running example 5.16
5.5. Execution trace of the exhaustive time limit algorithm 5.25
5.6. Execution traces for the incremental graph-based time limit algorithm . . . 5.26
5.7. Screenshot of the Eclipse-based model editor 5.28
5.8. Graph shapes used in the performance analyses 5.30
5.9. Screenshot of the automated Eclipse-based performance comparison tool . 5.33
5.10. Execution times of the throughput inference algorithm 5.34
5.11. Execution times of the time limit inference algorithms 5.35
5.12. Execution times of the incremental graph-based time limit inference al-

gorithm by percentage of annotated nodes 5.35
5.13. Sampled 3-level fork-join models by top-level incomparable paths 5.37

6.1. Architecture of the MARTE profile . 6.2
6.2. Simple example model annotated by the performance inference algorithms 6.5
6.3. Screenshot of the Eclipse Papyrus editor 6.6
6.4. Overall approach for generating performance test artefacts from abstract

performance models . 6.9
6.5. Instance of the above approach for wrapping JUnit tests into ContiPerf tests 6.9
6.6. MoDisco model browser showing a model generated from a Java project . . 6.10
6.7. Simplified subset of the MoDisco Java metamodel 6.11
6.8. Java-MARTE weaving metamodel . 6.12
6.9. Screenshot of the Epsilon ModeLink editor weaving the MARTE perform-

ance model and the MoDisco model . 6.12
6.10. Instance of the above approach for WSDL-based WS 6.15
6.11. ServiceAnalyzer service catalogue metamodel 6.16
6.12. ServiceAnalyzer-MARTE weaving metamodel 6.17
6.13. Example of an overall performance graph produced by Grinder Analyzer . 6.21

7.1. Organisational chart of Keraben . 7.2
7.2. Manufacturing process for porcelain stoneware 7.3
7.3. Map of the Keraben manufacturing firm 7.4
7.4. Map of the Keraben porcelain stoneware manufacturing plant 7.5
7.5. Information and material flows within Keraben 7.6
7.6. Gordijn value model for Keraben . 7.8
7.7. BPMN 2.0 diagram of the high-level business process for Keraben 7.9
7.8. Use case model for Keraben . 7.11
7.9. Extended use case model: “Order submission” 7.12
7.10. Extended use case model: “Order status reporting” 7.12
7.11. Extended use case model: “Order issue notification” 7.13

xviii

List of Figures

7.12. Extended use case model: “Estimated demand submission” 7.13
7.13. Extended use case model: “Production status reporting” 7.14
7.14. Extended use case model: “Production issue notification” 7.14
7.15. Service process model: “Order submission” 7.15
7.16. Service process model: “Order status reporting” 7.15
7.17. Service process model: “Order issue notification” 7.16
7.18. Service composition model: “Order submission” 7.18
7.19. Revised Web Service interface metamodel 7.21
7.20. Web Service interface model for “Estimate production dates” 7.22
7.21. UML class diagram for the domain base package 7.25
7.22. UML class diagram for the people subpackage 7.26
7.23. UML class diagram for the equip subpackage 7.26
7.24. UML class diagram for the material subpackage 7.27
7.25. UML class diagram for the psegment subpackage 7.27
7.26. UML class diagram for the product subpackage 7.28
7.27. UML class diagram for the capabilities subpackage 7.29
7.28. UML class diagram for the schedule subpackage 7.29
7.29. UML class diagram for the perform subpackage 7.30
7.30. Screenshot of the web administration panel 7.31
7.31. Performance testing results for “Estimate production dates” 7.34

A.1. General situation when comparing two paths A.1

B.1. Example of an EUnit test tree . B.4
B.2. Comparison between parametric testing and theories B.5
B.3. Screenshot of the EUnit graphical user interface B.12

xix

List of Tables

2.1. Zachman Framework for Enterprise Architecture 2.24
2.2. Differences between the selected process modelling notations 2.38
2.3. A comparison of the currently available agent platforms 2.44

3.1. 2D grid projection of a simple software factory schema 3.13

4.1. Feature comparison of the SOA methodologies under review 4.2
4.2. UML class diagram concepts used by SODM 4.11
4.3. UML use case diagram concepts used by SODM 4.14
4.4. UML activity diagram concepts used by SODM 4.15
4.5. Abstract and concrete syntax of Gordijn value models 4.17
4.6. New or changed elements in the SODM use case models 4.20
4.7. New or changed elements in the SODM extended use case models 4.22
4.8. Transformation rules from SODM extended use case models to service

process models . 4.23

5.1. Common restrictions for service process and service composition models . 5.8
5.2. Additional constraints for service process models 5.12
5.3. Additional constraints for service composition models 5.13
5.4. Migration strategy from service processes to service compositions 5.14
5.5. Restriction counts and individual and total generation times for the LP-

based algorithm, by component. 5.30
5.6. Restriction counts and generation costs for the LP-based algorithm, by

graph shape, using the results from Table 5.5. 5.31

6.1. Mapping from the SODM+T custom annotations to MARTE 6.4
6.2. Example test metrics produced by Grinder Analyzer (overall results, through-

put and message sizes) . 6.20
6.3. Example test metrics produced by Grinder Analyzer (timing information) . 6.21

B.1. Extra operations and variables in EUnit B.9
B.2. Assertions in EUnit . B.10
B.3. Available options by model comparator . B.12

xxi

List of Listings

2.1. Process Specification Language fragment describing the activity sequences
dedicated to preprocessing tobacco . 2.34

2.2. Process Specification Language fragment describing the machines and ma-
terials used at each step in Listing 2.1 . 2.34

3.1. Example of a HTTP request-response conversation 3.4
3.2. Example of a SOAP message . 3.6
3.3. Abridged example of a WSDL document 3.7

4.1. Service contract for “Create Invoice” in JML 4.29

5.1. Definition of the InitialNode class with EuGENia annotations, using the
Emfatic textual notation for EMF-based metamodels. 5.6

5.2. GMPL model used by the algorithm in Section 5.4.5.1 5.23
5.3. GMPL data for level 0 of the example in Figure 5.4 5.23
5.4. GMPL data for level 1 of the example in Figure 5.4 5.23

6.1. Java code wrapping TFunctionalJUnit4 with ContiPerf 6.10
6.2. Java code wrapping one test from OriginalSuite using ContiPerf 6.13
6.3. Java code using JAX-WS for a “HelloWorld” Web Service 6.14
6.4. Apache Velocity template extracted from the ServiceAnalyzer catalog for

producing the test input message . 6.18
6.5. TestGenerator .spec extracted from the ServiceAnalyzer catalog describing

the inputs for the template in Listing 6.4 6.18
6.6. Template inputs produced by TestGenerator from the .spec in Listing 6.5 6.18
6.7. Example grinder.properties file with workload configuration parameters 6.19
6.8. Example Jython script for The Grinder with the contents of the performance

test to be run by each simulated client . 6.20

7.1. Message catalogue generated from the WSDL document of the “Estimate
production dates” Web Service . 7.33

7.2. Customised TestSpec specification of the input data for testing “Estimate
production dates”. 7.33

B.1. Format of an invocation of the EUnit Ant task B.6
B.2. Example of a 2-level data binding . B.8
B.3. Example of reusing the same operation for several data bindings B.8
B.4. Examples of model bindings . B.8
B.5. Ant buildfile for EUnit with <modelTasks> and a helper target B.13
B.6. EOL script using runTarget to run ETL B.13
B.7. Ant buildfile which only runs the EOL script B.14

xxiii

List of Listings

B.8. EOL script with inlined models and tasks B.14
B.9. Testing an ATL model transformation with EUnit B.16
B.10.Testing an EVL model validation with EUnit B.16
B.11.Inline model generation in EUnit . B.17
B.12.Several model validation tests for SODM+T using EUnit B.19
B.13.Java class used to run EUnit from JUnit-compatible tools B.20

xxiv

1
Introduction

According to the Merriam-Webster dictionary, manufacture is “something made from
raw materials by hand or by machinery”, “the process of making wares by hand or by
machinery especially when carried on systematically with division of labor”, “a productive
industry using mechanical power and machinery” or “the act or process of producing
something”. These definitions refer to several viewpoints through which manufacturing
can be examined: the product, the process, the industry and the act itself.
The term “manufacturing” dates back to the Latin “manu factus”, meaning “made by

hand”. Manufacturing itself is much older, and can be attributed to the rise of the first
agricultural societies, in which some of the population did not need to look for food any
longer and could specialise in a particular craft. Until the XVIIIth century, manufacturing
was largely decentralised and performed by skilled artisans who passed their skills to their
apprentices.
The first major change in manufacturing came with the first Industrial Revolution,

which began in the 18th century and continued up to the middle of the 19th century.
Technological advances in using water and steam as energy sources propelled the increasing
usage of machine tools and more advanced metal working and chemical processes: for
instance, the mechanised loom increased the amount of cotton that a single worker could
process by a thousand. The famous Jacquard loom used punched cards to control the
pattern to be weaved, and is an important precursor of today’s computer programming.

The second Industrial Revolution started in the 1860s and continued until World War I. It
is considered to have started with the invention of the Bessemer process, the first inexpensive
industrial process for the production of steel. The production of interchangeable parts (in
what was known as the “American system”) and the scientific analysis of manufacturing
and business practices (currently known as “manufacturing engineering” and “business
management”) greatly increased the productivity of the factories. The invention of
the telegraph and the telephone simplified communication over large distances, and the
tabulating machine by Hollerith was one step further towards modern computers.

The 20th century brought along a large number of innovations, such as nuclear power or
the jet engine. One of the most important milestones was the invention of the transistor
in 1947 at Bell Labs, which quickly replaced the inefficient and fragile vacuum tubes that
were used in electronics until that time, such as those in the first general-purpose computer,
the ENIAC (announced in 1946). The rapid miniaturisation of transistors has enabled
the creation of increasingly advanced computers and their integration into all aspects of
modern life, including manufacturing.

The large rise in demand that occurred during the mid-XXth century motivated manufac-
turing firms to optimise their operations to reduce unit costs and defects and produce more
advanced products. Some of the most repetitive and defect-prone tasks were gradually
automated, originally with ad hoc mechanisms and finally with programmable machine
tools built around a general-purpose computer. This led to the inception of Computer
Numerical Control (CNC). Numerical Control (NC) started in the 1950s in the United
States with machine tools being controlled by punched cards, and quickly evolved into
CNC when programmable computers were integrated. CNC allowed producing complex
parts repeatedly with strict tolerances, which was key to the advanced requirements set
by the aerospace and automotive industries, among others. Computers are increasingly
used in every manufacturing activity, such as designing parts (Computer Aided Design
or CAD), evaluating their design (Computer Aided Engineering or CAE) or producing
them (Computer Aided Manufacturing or CAM). In addition to producing the parts,

1.1

1. Introduction

distribution within a firm or between firms can be also automated through conveyor belts
and robots.
Beyond manufacturing, computers were increasingly used to manage the companies

themselves. While the first Material Requirements Planning (MRP) systems only assisted
users in producing detailed production schedules and purchase schedules from higher-level
requirements, later Manufacturing Resource Planning (MRP II) systems also considered
other aspects such as human resources, capacity planning or demand management, among
others. Eventually, these systems evolved into the current Enterprise Resource Planning
(ERP) platforms, which cover all information areas of an enterprise.

In recent years, improvements in transportation and communications have fostered
collaboration between manufacturing firms, in what is known as distributed manufacturing.
Large companies now operate as large networks of geographically separated entities,
combining the company’s own plants and external suppliers. Small and Medium Enterprises
(SMEs) may either take orders from large contractors, or join up together to build products
that they would not be able to create by themselves. Computers have been key enablers
in this process as well, as they provide standard formats to exchange information across
heterogeneous systems and define the shared business processes.
However, this dependency on connected networks of software systems have introduced

a considerable level of complexity in the day-to-day operations of the firms, which is
becoming increasingly harder to manage conceptually and technically. This has motivated
the creation of a large number of abstractions and enterprise architectures that help
describe the current networked enterprises.
One of the most common abstractions is holonic manufacturing, which views each of

the networked entities in a manufacturing enterprise as a holon: a term coined by Koestler
[6] as a collaboration of lower-level entities that can also take part in higher-level collabor-
ations, constituting what is called a holarchy (a generalisation of a hierarchy). Holonic
manufacturing systems view each manufacturing agent as a holon, and so there can be
enterprise holons, plant holons, process cell holons and so on.
Holons are useful as a high-level concept, but they ultimately need to be implemented

in some way as part of the information systems of the manufacturing enterprise. In the
literature dedicated to holonic shop floor control, the most common approach has been
to implement each holon as an intelligent autonomous agent. While highly powerful, the
learning curve and integration challenges of most implementations of intelligent agents
and the difficulties in extracting concrete guarantees from their emerging behaviour have
hindered their widespread adoption except for highly complex processes that cannot be
centralised [7]. In addition, other parts of the enterprise may benefit from holons with a
more predictable and repeatable behaviour, such as the high-level management tasks and
the communications with other firms and other participants in the supply chain.

For these contexts that require that the manufacturing agents behave in a repeatable and
reliable way, it may be better to focus first on simplifying their integration and add only
the necessary amount of emergent behaviour later. To that end, those information systems
could be represented as Service-Oriented Architectures (SOAs), in which a well-defined
catalogue of reusable software programs known as services integrate the information within
the manufacturing enterprise and its network of collaborators. A single service can use
and be used by several other services, and so can be seen as a simpler holon that focuses
on its organisational capabilities and leaves emergent behaviours as an optional aspect.

Even if services are simpler and easier to implement and integrate than fully self-aware

1.2

1.1. Goals and scope

intelligent agents, creating a SOA is no simple task. It is necessary to obtain a high-
level view of the enterprise and examine the interactions between each part to see which
programs should be exposed as services to the rest of the organisation. For this reason, a
number of SOA methodologies have been proposed in the literature: some of them even
have partial automation through the use of increasingly detailed computer models, using
what is known as model-driven engineering.

Nevertheless, the existing methodologies are mostly focused on the early stages of
creating the SOA, and do not assist users in validating the services they have finally
developed by testing. This can be a grave omission, as services need to be highly reliable
in order for a SOA initiative to be successful.

1.1 Goals and scope
The overall goal of this Thesis is to define a methodology that helps develop the information
systems of holonic manufacturing enterprises, focusing on implementing holons in a cost
effective way and on helping create the tests for the system. The present Thesis will focus
on service-based holons and their capabilities for intra- and inter-enterprise integration, as
modelled by the interface between levels 3 and 4 of the ISA-95 standard (Section 2.3.7).
This goal can be subdivided into:

1. Define a methodology that can represent both the information systems of holonic
manufacturing enterprises and the tests that should be performed on them. The
methodology will be based on the stepwise refinement of a collection of models
from the enterprise’s business environment to a blueprint of the final system, using
model-driven engineering.

2. Select and adopt several techniques that assist in generating the test cases over the
desired functionality, running them and evaluating the results.

3. Define a set of rules that assist users in deciding how to implement a holon, as these
may include varying levels of intelligence.

4. Implement the methodology and validate it through a case study from a distributed
manufacturing enterprise.

1.2 Context
The present Thesis is a continuation of the research line on Emergent Manufacturing
Systems of the research group TEP-027 “Ingeniería y Tecnología de los Materiales” from
the University of Cádiz, led by Dr. Mariano Marcos-Bárcena. Previous work from the
research group in collaboration with researchers from the University of Seville produced a
Thesis on the development of a holonic design module [1], a book relating the current state
of the art in advanced distributed manufacturing systems [3] and a number of contributions
on several conceptual approaches for holonic manufacturing [2, 4, 5, 8, 9, 10]. While these
conceptual approaches were promising, the group did not have the required software
engineering expertise to implement them into real information systems, and the conceptual
approaches lacked some of the additional details needed for these later stages.

1.3

1. Introduction

Therefore, the present Thesis is conducted as a collaboration with the research lines
on Service-Oriented Architectures, Model-Driven Engineering and Software Testing of
the TIC-025 “UCASE Software Engineering” research group led by Dr. Inmaculada
Medina-Bulo. The Thesis intends to provide a concrete method for implementing some
of the ideas in the initial conceptual approaches from the TEP-027 research group by
applying the software engineering knowledge of the TIC-025 research group. The author
received the necessary foundations for this multidisciplinary research by complementing
his Bachelor’s Degree on Computer Science with a Master’s Degree on Manufacturing
Engineering before starting the present work.

1.3 Hypotheses
The present Thesis has been developed based on the following hypotheses:

• A Service-Oriented Architectures (SOAs) with extensions to provide the required
intelligence can meet the requirements imposed by Shen et al. [11] in distributed
manufacturing enterprises. Namely, integrate their software and hardware, define
an open architecture that can accept new components, communicate effectively
inside and outside the company, take human resources into account, react quickly to
changes and achieve fault tolerance at multiple levels.

• A defect in a service that has been reused across the SOA of a holonic manufacturing
enterprise can generate considerable expenses and hinder the creation of an effective
extended enterprise. Developing tests for these services is less expensive than the
potential losses in trust and revenue.

• Existing SOA methodologies are a good starting point for defining a new methodology
that explicitly takes testing techniques into account, reduces the risk that the system
will not behave in the expected manner at some point and assists user in deciding
which holons should include additional intelligence.

• Using a model-driven methodology helps drive its usage, reduces its cost and im-
proves the agility of the enterprise to respond to changing technical and business
requirements.

• Current overall approaches such as Model-Driven Architecture® (MDA®) from OMG
or Software Factories (SF) from Microsoft help realise the overall vision of the
enterprise reference architectures that are well-known in the manufacturing world,
such as CIMOSA or GERAM. In both cases, the system is formed by combining
models at different levels of genericity and granularity and from multiple perspectives
in the organisation.

1.4 Document structure
The rest of this text is divided into the following chapters:

1.4

1.4. Document structure

• Chapter 2 introduces the concepts underlying this work, starting by expanding on
the ideas outlined at the beginning of this chapter. Next, it introduces extended
enterprises and the existing abstractions for them, presents the existing enterprise
reference architectures and reviews several existing notations for describing manufac-
turing processes. Later, it describes the current state of the art and applications of
multi-agent systems. This is followed by a description of Service-Oriented Architec-
tures (SOAs) and the technologies underlying Web Servicess. Since SOA is heavily
reliant on obtaining the desired level of performance in each service, performance
engineering is then introduced. The chapter concludes with a brief discussion of
model-driven engineering concepts and tools.

• Chapter 4 compares existing SOA methodologies and some antecedents and se-
lects SODM as the base SOA methodology, presenting it in more depth. It then
proposes several extensions on SODM for modelling functional and non-functional
requirements.

• Chapter 5 presents SODM with Testing (SODM+T), an extension of Service Oriented
Development Method (SODM) with support for performance testing, with improved
models and validation. Several algorithms for early performance requirements design
are presented: three for time limit inference and one for throughput inference. All
algorithms are successfully tested and then evaluated theoretically and empirically.

• Chapter 6 migrates the SODM+T annotations to the standard OMG UML Modelling
and Analysis of Real-Time and Embedded Systems (MARTE) profile, and then shows
how to generate performance test artefacts for multiple technologies by using model
weaving between the annotated models and models extracted from the code. In
particular, the approach is demonstrated for Java code and Web Services Description
Language (WSDL) documents. Model extraction from Java is performed using
an existing tool (MoDisco). Model extraction and random test case input data
generation from the WSDL documents are performed using several new tools.

• Chapter 7 applies SODM+T to a manufacturing enterprise from start to finish. The
SODM+T business models are extended with details from the ISA-95 standards and
then refined until obtaining a service composition model for a particular business
service indicating which holon should perform each task. This model is then annotated
using the extensions in Chapter 5. Before generating and running the performance
test artefacts generated for the Web Services (WS) using the approach in Chapter 6,
the case study pays special attention to the way in which the WS is implemented
based on the ISA-95 data model. Several issues in the ISA-95 object model are found
in the process.

• Chapter 8 summarises the results of this work and presents future lines of work.

• Appendix A provides several additional proofs that are important for the correctness
of one of the time limit inference algorithms in Chapter 5.

• Appendix B introduces the Epsilon EUnit unit testing framework for model hand-
ling tasks, which was developed during a 3-month stay at the University of York

1.5

References

(United Kingdom). EUnit has been used for the technical validation of the inference
algorithms and the modelling tools.

• Finally, Appendices C and D collect the acronyms and the bibliography used in this
document, respectively.

References
[1] F. Aguayo González. Diseño y Fabricación de Productos en Sistemas Holónicos:

Aplicación al Desarrollo de un Módulo Holónico de Diseño. PhD thesis, University of
Cádiz, 2003. 1.3

[2] F. Aguayo González, J. Lama Ruiz, M. Sánchez Carrilero, R. Bienvenido Bárcena,
J. González Madrigal, and M. Marcos Bárcena. Concepción holónica de la ergonomía
en sistemas de fabricación automatizados. Anales de Ingeniería Mecánica, pages
1087–1095, 2004. 1.3

[3] F. Aguayo González, M. Marcos Bárcena, M. Sánchez Carrilero, and J. Lama Ruiz.
Sistemas Avanzados de Fabricación Distribuida. Ra-Ma, Madrid, España, 2007. ISBN
9788478978045. 1.3

[4] R. Bienvenido Bárcena, M. Álvarez Alcón, J. González Madrigal, M. Marcos Bárcena,
and M. Sánchez Carrilero. Holonic manufacturing systems: an emergent proposal
for the 21st century. The International Journal for Manufacturing Science and
Production, 1999. 1.3

[5] J. González Madrigal, J. Sánchez Sola, M. Marcos Bárcena, and M. Sánchez Carrilero.
Aproximaciones a los sistemas de fabricación holónicos. Informacion de Máquinas-
Herramientas y Equipos, pages 59–65, 1998. 1.3

[6] A. Koestler. The Ghost in the Machine. Penguin Books, June 1990. ISBN 978-
0140191929. 1.2

[7] P. Leitão. Agent-based distributed manufacturing control: A state-of-the-art survey.
Engineering Applications of Artificial Intelligence, 22(7):979–991, October 2009. ISSN
0952-1976. 1.2

[8] M. Marcos Bárcena, M. Álvarez Alcón, M. Sánchez Carrilero, and J. Sánchez Sola.
Sistemas de fabricación holónicos: una propuesta para el siglo XXI. Anales de
Ingeniería Mecánica, 12(3):275–281, 1998. 1.3

[9] M. Sánchez Carrilero, M. Marcos Bárcena, M. Álvarez Alcón, J. Sánchez Sola, and
R. Bienvenido Bárcena. El diseño en los sistemas de fabricación holónicos. In Actas
del X Congreso Internacional de Ingeniería Gráfica, pages 312–330, 1998. 1.3

[10] M. Sánchez Carrilero, F. Aguayo González, J. Lama Ruiz, R. Bienvenido Barcena,
and M. Marcos Barcena. Integración de modelos biónicos, holónicos y fractales para
fabricación distribuida. Anales de Ingeniería Mecánica, pages 395–403, 2004. 1.3

1.6

References

[11] W. Shen, Q. Hao, H. J. Yoon, and D. H. Norrie. Applications of agent-based systems
in intelligent manufacturing: An updated review. Advanced Engineering Informatics,
20(4):415–431, October 2006. ISSN 1474-0346. 1.4

1.7

2
Concepts of next-generation

manufacturing systems

2.1. Challenges in manufacturing information systems

This chapter introduces the concepts related to manufacturing engineering that underlie
the present Thesis and the challenges that remain to be solved.
Section 2.1 presents the current challenges confronted by manufacturing information

systems and the available solutions for these challenges. After discussing the historic trend
towards increasingly distributed manufacturing systems in Section 2.1.1, Section 2.1.2
will review the relationship between overall concepts of holons, agents and services and
Section 2.1.3 will list the issues with the existing agent-based methodologies.

This motivational section is followed by several sections introducing extended enterprises
(§2.2) and a survey of the available enterprise integration architectures and specifications
(§2.3). Section 2.4 provides a comparison of a selected subset of process modelling notations.
Finally, Section 2.5 reviews the state of the art in multi-agent systems and their relationship
with holonic manufacturing systems.

2.1 Challenges in manufacturing information systems
Manufacturing enterprises need to deal with an increasingly dynamic market that requires
increased variety and quality with reduced margins, and which imposes ever shorter product
life cycles. To stay ahead, enterprises must focus on their key strengths and collaborate
with others for the rest of the work, joining up into temporary Virtual Enterprises (VEs)
to meet the incoming business opportunities. Johansen et al. [43] presented a case study
on the importance of these issues for the Saab car maker regarding vehicle building
and maintenance. According to Camarinha-Matos and Afsarmanesh [12], VEs have the
following advantages:

• Agility: the ability to recognise, rapidly react and cope with the unpredictable
changes in the environment in order to achieve better responses to opportunities,
shorter time-to-market, and higher quality with less overhead.

• Complementary roles: several enterprises working together can enter markets that
were previously inaccessible in isolation.

• Achieving dimension: a partnership can make the whole achieve critical mass and
appear “larger” in new markets.

• Competitiveness: achieving cost effectiveness by dividing subtasks across specialisa-
tions in the VE and quickly gathering the necessary competences.

• Resource optimisation and innovation by sharing resources and ideas between enter-
prises, respectively.

These advantages are especially important in Europe, where most of the economy is
based on SMEs. According to the 2004 EU Manufuture report [54], 99% of the 2.5 million
manufacturing businesses at the time were SMEs. While SMEs tend to exhibit greater
agility than larger organisations, their Information Technology (IT) adoption is limited by
implementation costs, budget constraints, lack of technological awareness and IT skills,
difficulties to determine costs and benefits and questions on the reliability and security of
the technology [60].

2.1

2. Concepts of next-generation manufacturing systems

O1 O2 O3

O4 O5 O6

CNE

(a) Opportunity
identifica-
tion

O1 O2 O3

O4 O5 O6

CNE

(b) Creation and
operation

O1 O2 O3

O4 O5 O6

CNE

(c) Dissolution

Figure 2.1. Phases of a Collaborative Network [60]: initially, six business opportunities
are identified. Two CNs are created to follow some of them. Later on, one
of the CN disappears while the other remains in operation.

On their review, Chituc et al. [15] generalised the VEs to the general economic concept
of a collaborative business enterprise: a Collaborative Network (CN). The lifecycle of a CN
is divided into several phases (shown in Figure 2.1): opportunity identification, creation,
operation and dissolution. The same enterprise may participate in multiple CNs, and
CNs may change during operation, e.g. when one of the participants disappears during
bankruptcy or merges with a third party. Once the objectives that motivated the creation
of the CN are met, the CN disappears.
The success of a CN or VE depends on having a common base among its members:

common goals and standards, interoperable IT infrastructure and real-time information
sharing. Interoperability is a particularly difficult technical requirement, as it requires not
only creating and selecting a compatible set of technologies, but also ensuring that the
information is well understood across all organisations. These two requirements are known
as application integration and information integration [69].
Application integration focuses on using a compatible set of technologies across all

participants, and has received considerable attention by researchers and industry. Initial
initiatives tended to be ad-hoc for each integration case and therefore quite expensive.
Later on, several specifications were drawn and implemented, such as Remote Method
Invocation (RMI) or Common Object Request Broker Architecture (CORBA), but these
did not see widespread adoption as they were either platform-specific (Java-specific in
the case of RMI), highly complex (CORBA), or both. More recent developments have
seen the rise of Web Services (WS), which are pieces of software based on the same open
standards as the World Wide Web that can be reused from any platform with a conforming
implementation. It has been suggested to reorganise existing systems as catalogues of
services, in order to take advantage of this reusability and save on development and
integration costs: this approach is known as a Service-Oriented Architecture (SOA).

Information integration requires giving the exchanged data a consistent meaning over the
CN. The meaning includes the context in which each message was sent, the set of concepts
it is built upon (its ontology), and how these concepts should be interpreted. Research
and development on these aspects has produced a variety of application integration
platforms (as implementation platforms), enterprise architectures (as common languages
for modelling enterprises) and enterprise ontologies (representations of the concepts in a
business domain). Nevertheless, using these concepts is difficult and can be out of reach
for most SMEs, due to the costs involved. A simplified form which can be supported by

2.2

2.1. Challenges in manufacturing information systems

automated tools would make them more accessible.
In addition to a greater need for integration and interoperability with their business

partners, current manufacturing enterprises need to make their plants more adaptable and
reactive to unexpected situations. Shen et al. [74] lists six requirements that every new
manufacturing enterprise needs to meet to be competitive:

R1. Full integration of heterogeneous software and hardware systems within an enterprise,
a virtual enterprise, or across a supply chain;

R2. Open system architecture to accommodate new subsystems (software or hardware)
or dismantle existing subsystems “on the fly”;

R3. Efficient and effective communication and cooperation among departments within
an enterprise and among enterprises;

R4. Embodiment of human factors into manufacturing systems;

R5. Quick response to external order changes and unexpected disturbances from both
internal and external manufacturing environments; and

R6. Fault tolerance both at the system level and at the subsystem level so as to detect and
recover from system failures and minimise their impacts on the working environment.

R1 to R3 deal with information integration, much in the same line as discussed above. R4
is outside of the scope of the present Thesis, which is focused on the IT of the manufacturing
enterprises. However, R5 and R6 require that the manufacturing enterprise implements
a certain degree of intelligence into their process. Therefore, the automated steps will
need to be able to reason about their current situation and react accordingly to meet the
production requirements. This problem is orthogonal to enterprise integration, and belongs
to the field of production control and scheduling: nevertheless, better information should
enable the control systems to make better decisions. It is important, therefore, to ensure
that the adopted control techniques can integrate deeply with the business environment.
In summary, the following challenges in manufacturing IT must be considered:

• Obtaining a greater degree of integration and interoperability across enterprises,
making VEs more accessible to the many SMEs that make up the largest part of
the industry in most economies. SOAs are a recent development that may simplify
interoperability between manufacturing information systems, but their adoption
needs to be simplified in order to become feasible for most SMEs.

• Developing more advanced production control systems for reacting to unexpected
events, while keeping their development and operation complexity within a man-
ageable limit for SMEs. The the existing approaches for production control will be
discussed in more depth below.

• Integrating the IT dedicated to managing the enterprise with the IT dedicated
to controlling the production processes, so both can benefit from the additional
information. The business should be notified as soon as possible of disturbances in
manufacturing, and the manufacturing process should be able to quickly react to
events such as cancelled or changed orders.

2.3

2. Concepts of next-generation manufacturing systems

2.1.1 Evolution of production control systems
The very first computerised production control systems were centralised: a single mainframe
controlled every machine in the plant, which had to run in lockstep with it [21]. This
allowed for global optimisation across the entire plant and simplified monitoring, as there
was only one source for information, but it placed enormous demands on the mainframe.
Response times were slow, a single failure could stop the entire plant and the system was
hard to extend when new machines were acquired.

In order to provide some redundancy, hierarchical control systems divided the intelligence
of the original mainframe into levels: most of the intelligence was in a central plant
controller, which then delegated on area controllers, then on cell controllers and finally on
machine controllers. As orders continued down the hierarchy, the systems became simpler
and simpler all the way to the machine level, which could do little beyond following its
own orders. This reduced the complexity involved in adding a new machine and allowed
having a mix of different computers working at different speeds. However, this did not
solve the original issue of having the main controller as a single point of failure: in fact,
the system was now threatened as well by failures in the communication links to the main
controller. In order to solve this issue, modified hierarchical control systems were proposed,
where some of the controllers could coordinate themselves independently from the main
controller, which only sent orders and managed exceptional situations.

The next step in this evolution were heterarchical control systems, in which every pair
of elements could talk to each other through a shared medium (e.g. a computer network).
In this fully decentralised scheme, every element negotiated with the rest to meet its own
goals, using for example the Contract Net Protocol [66]. A heterarchical control system
offered several important advantages: individual controllers were easier to implement, the
cooperation protocols ensured that the system worked in the presence of errors and adding
a new machine did not require changing the rest of the system. However, heterarchical
control systems were unable to perform global optimisation, as elements only had local
knowledge, and were very sensible to the “market rules” of the cooperation protocols (e.g.
relative importance of transport times). The flow time of an order was also hard to predict,
as it depended on all the other orders in the system.

Each step of the above evolution (summarised in Figure 2.2) made the control structure
flatter in order to benefit fault tolerance and responsiveness (two of the above requirements
by Shen et al. [74]), but global optimisation and increased predictability would require
adding back some structure into the control system. This has motivated the creation of
more advanced manufacturing systems, such as Biological Manufacturing Systems (BMS),
Fractal Manufacturing Systems (FrMS) or Holonic Manufacturing Systems (HMS).
A BMS models the enterprise as a set of “tissues” (processes, products or services),

formed by cells or modelons that perform specific operations and receive and produce
genetically coded artefacts. Vaario and Ueda [83] illustrate a BMS in a case study for
a small assembly plant. Cells can evolve autonomously according to a fitness function
evaluated during simulations, which may vary according to the current needs of the
enterprise. Cells can self-regulate and communicate through mechanisms that mimic
enzymes and hormones, and can also be divided or merged during operation.
A FrMS builds up the system from self-similar entities at multiple levels of scope [72]:

these were inspired by the “fractal factory” concept in Warnecke [84], which was originally
applied to companies at the organisational level. The main component of a FrMS is a

2.4

2.1. Challenges in manufacturing information systems

(a) Centralised (b) Proper hierarchical

(c) Modified hierarchical (d) Heterarchical

Figure 2.2. Evolution of manufacturing control structures in the 1980s and early 1990s
from a centralised approach with a single mainframe, to decentralised
approaches based on a computer network [21]. The squares represent
controllers and the circles represent machines.

Basic Fractal Unit (BFU), which is composed of five functional modules: an observer, an
analyser, a resolver, an organiser and a reporter. Owing to their fractal nature, BFUs
behave in the same way regardless of the level of aggregation: a BFU may represent a
single machine or an entire plant. Each BFUs provides services following an individual
goal while inheriting some plant-level goals from the higher level BFUs. A FrMSs may
change their structure during execution in order to improve its performance, creating
higher-level fractals or dividing an existing fractal into several ones.

Finally, an HMS consists of a collection of holons, a term coined by Koestler [46]: an entity
that is both a “whole” (the Greek prefix hol-) by itself and may be “part” (-on) of several
other holons, participating in a holarchy (a hierarchy that allows nesting). The concept of
a holon was first adopted in manufacturing for one of the case studies conducted by the
Intelligent Manufacturing Systems (IMS) project Christensen [16]. Unlike the fractals in a
FrMSs or BMSs, holons generally do not divide, merge nor evolve [72]. Holarchies follow
a simpler approach that is closer to a functional decomposition of the information system.
For instance, the Product-Resource-Order-Staff Architecture (PROSA) has a predefined
set of holons (process, resource, order and staff holons) [7]: these holons are only created
through explicit interaction with the system (e.g. submitting a production order or adding
a machine). However, holons do negotiate and cooperate between themselves: approaches
based on the Contract Net Protocol are quite common.

It can be seen that BMSs, FrMSs and HMSs share the same basic idea that the enterprise
is composed of a number of independent units that negotiate and cooperate with each
other (as in heterarchic manufacturing), and which can be aggregated at multiple levels
(as in hierarchical manufacturing). However, they operate quite differently: while cells can
evolve, divide and merge and fractals can divide and merge, holarchies tend to stay the
same except for adding or removing instances of the available types of holons. Negotiation
and scheduling approaches may also differ considerably. In practice, HMSs have received
wider adoption in the research community, as they are simpler to implement.

2.5

2. Concepts of next-generation manufacturing systems

Figure 2.3. General architecture of a holon [9]

2.1.2 Holons, agents and services
The previous sections showed the increasingly distributed nature of manufacturing, whether
considering organisational and business aspects, application and information integration
or production control. In order to unify these views, it is necessary to provide a concept
that unifies the basic units of these perspectives. The concept of a holon as originally
coined by Koestler is particularly attractive because of its genericity: it can be applied to
any domain (whether social or technical), by mapping the holons to the basic building
blocks from which the complex systems or societies are built.

This was the approach followed by [16] for production control, expanding on some early
work by Japanese researchers. The HMS Consortium specialised the basic concepts of a
holon and a holarchy as applied to manufacturing systems: a holon was “an autonomous
and cooperative building block of a manufacturing system for transforming, transporting,
storing and/or validating information and physical objects”, and a “holarchy” was “a
system of holons which can cooperate to achieve a goal or objective”. In particular,
Christensen divided the holon into an information processing part and an optional physical
processing part which received the materials and resources, and placed special attention
on the integration with human intelligence.

Based on these ideas, Bussmann [9] presented the general architecture of an HMS holon
shown in Figure 2.3: the kernel is the decision making component, which guides the
communication with the other artificial holons and with humans and provides instructions
to the physical control component if it exists. The physical control component manages
the physical process required for manufacturing.

Fletcher et al. [25] then suggested placing holons into cooperation domains, enabling them
to locate, contact, interact and collaborate with each other. Holons could be standalone
entities (atomic) or be composed from several lower-level holons (compound), as the
holarchy in Figure 2.4 shows. For instance, the compound holons CH2 and CH5 receive
control information from the cooperation domain CD1, which also exchanges data with
CH2. In turn, CH2 contains the atomic holons AH1 and AH2 and the compound holon
CH1, working together through the nested cooperation domain CD21. Ideally, cooperation
domains should evolve dynamically upon demand, but current implementations tend to
be limited to hard-wired structures with predefined reactions [56].

Holons are commonly implemented as Multi-Agent System (MAS) since first proposed
by Bussmann [9]. An agent is “an autonomous component that represents physical or
logical objects in the system, capable to act in order to achieve its goals, and being able to
interact with other agents [...]” [52] and a MAS is simply a collection of agents interacting
with each other. MAS have received considerable attention from the artificial intelligence
research community, with the development of reference architectures, methodologies and

2.6

2.1. Challenges in manufacturing information systems

CD1

CD21

CD27 CD24 CD23

CD25 CD26

CD11

CD14 CD13

CD17 CD19

CD16 CD15

CD2

Cooperation Domain

CH1

CH2

Compound Holon

CH5

CH4

CH3

AH1

Atomic Holon

AH2

AH3 AH4

AH5

AH6

AH7 AH8

control data

Figure 2.4. An example of a holarchy, adapted from [25]: a hierarchy of holons which
can be nested within each other and communicate themselves through
cooperation domains by sending and receiving data and control information.

software platforms [26, 62] (§2.5). However, they have not been widely adopted by industry.
Monostori et al. [58] and Leitão [52] identified several possible reasons:

• MASs do not reduce the complexity of a problem. In fact, they may increase the
initial cost of developing a solution, as these systems use a new set of concepts which
will be unfamiliar to the manufacturing enterprises.

• Interoperability is expensive: just because of the increased communication overhead,
coarse-grained systems with sophisticated agents are difficult to scale up. Beyond
this overhead, it is important to use standard platforms which allow transparent
communications between applications. Shared ontologies would also be useful, but
due to their cost, they tend to be kept very simple.

• Reconfiguration and integration of physical devices is much more complex in the
“real world” than in the simulation-based settings of most research papers.

• Industrial-strength tooling is missing, and wrapping legacy systems into agents is
still a manual affair.

• The emergent behaviour of a MAS is also a barrier to practical acceptance of agent-
based solutions: industry needs safeguards against unpredictable behaviour and
guarantees regarding reliability and performance. Demonstrating that a MAS has
the desired system properties is still an open issue.

• Finally, Leitão [52] argues that while MASs and HMSs are frequently said to perform
well in presence of disturbances, there is little objective evidence of it in the literature.
Proper evaluation frameworks with normalised performance indicators are needed.

Since HMS are usually based on MAS, they share many of these challenges. These
findings suggest that while deliberative and proactive agent-based holons may be useful

2.7

2. Concepts of next-generation manufacturing systems

for highly complex production control systems, they may impose too much complexity
in simpler cases or in other areas of the organisation. In fact, it can be argued from the
architecture proposed by Bussmann in Figure 2.3 that existing software systems such as
a Manufacturing Execution System (MES) that runs the shop floor or the ERP system
that manages the business functions are also holons: they can be aggregated at several
levels, they communicate with other systems through machine-oriented interfaces and with
humans through graphical user interfaces, and it is increasingly common to add reactive
and proactive intelligence into them through expert systems, business rule engines or
event-driven architectures, among many other techniques. Therefore, not all holons may
need to be full-fledged agents: instead, they may have very different levels of intelligence
depending on what is needed from them.
From a software engineering perspective, a holon could be thought of as a reusable

component with a clear set of interfaces with humans and other components or systems.
However, whereas an instance of a regular component would only be part of a single whole
(e.g. a software library inside a program), the same holon could be part of multiple “wholes”
by participating in several cooperation domains. On top of being autonomous, holons need
to have a inter-holon interface based on open standards in order to be interoperable with
each other: if necessary, communication primitives beyond the usual request/response
interaction (such as the Contract Net Protocol) could be built on top of them. The
cooperation domains mentioned by Fletcher can also be simplified depending on the needs
of the holons: starting from a regular computer network, more services could be added
with the appropriate middleware.

Therefore, this Thesis suggests generalising the implementation of a holon from a full
fledged agent to a reusable piece of software that has the following features:

• can be integrated into several other holons while retaining its own separate identity,

• performs a well-defined task which can be reused from other holons,

• provides machine-oriented interfaces through open standards-based technologies,

• uses one or more communication primitives (e.g. request/response or auctions),

• communicates with other holons through one or more cooperation domains,

• may include a human-facing interface (such as a web interface or desktop application),

• may interact with a physical control layer and

• may include some degree of intelligence to reason about its work (expert systems,
business rules, schedulers, and so on).

These simplified requirements for implementing a holon can be considered as an extension
of the concept of a service in SOAs [33]. In fact, Ribeiro et al. [70] found that agents and
services had their own strengths and weaknesses and that they complemented each other.
Several other authors have already proposed wrapping machines and agent platforms as
services [53, 77]. However, there are few approaches that fully combine both approaches:
either everything is an agent and only some SOA technologies are used, or agents are
ignored in favour of services. An alternative approach would be to create a high-level

2.8

2.1. Challenges in manufacturing information systems

model of the manufacturing processes and their supporting business processes, derive the
holons from these descriptions and then decide where how “smart” each holon should be.

In closing, this Thesis suggests that the implementation space for a holon is not limited
to full-fledged agents, but instead should range from purely reactive service-based holons
(which may be simply wrapping legacy software) to fully proactive and intelligent agent-
based holons. Development efforts should focus first on obtaining an adequate level of
interoperability, and then add intelligence to the holons that require it.

2.1.3 Issues with existing methodologies
There are many methodologies in the literature for developing MAS: two examples are
ANEMONA [31] and ASEME [75]. ANEMONA focuses on the analysis of the system:
starting from a requirements document with the business practices of the organisation and
the production goals, the user decomposes the system into a holarchy of holons, which
are then completed with design information for the JADE agent platform1. However,
ANEMONA seems to have little support for automation and no code is publicly available.
ASEME starts by modelling the actors and their goals and the use cases of the system,
then defining the roles of each agent and specifying their internal behaviour as statecharts,
and finally generating the appropriate code for the JADE agent platform. While ASEME
has no explicit support for modelling holons, its tools are publicly available and include
automated transformations between each step of the methodology. Neither of these
technologies consider the possibility that some of the agents may need to be available as
services in order to be accessible from external systems.
On the other hand, developing a SOA requires strictly following its basic principles

and managing a catalogue of well-defined, reusable and reliable services across the entire
organisation [24]. This is not a simple task, and so several methodologies have been
proposed to guide the process. Many cover only part of the process, such as the one
proposed by Engels et al. [23], but others attempt to cover a large part of the entire process,
such as SOMA from Ghosh et al. [30], SODM from de Castro [19] or the component-based
methodology from Stojanović [76]. However, these methodologies do not consider assisting
the user in defining the test cases, leaving them as a manual task or excluding them from
the methodology. This can be a grave omission, since the higher reliance on code reuse
that SOA promotes would amplify the potential impact of a software defect. Without
well-defined tests, continuous changes on the services would be too dangerous and the
agility promised by SOA would not be achieved.
Therefore, it can be concluded that:

• Manufacturing is increasingly moving towards distributed models in all its areas:
instead of rigid hierarchical systems with single points of failure, using networks of
autonomous entities allows for quicker integration and increased fault tolerance.

• Among the available paradigms, holonic manufacturing has had the widest adoption
in the research community. Holonic manufacturing systems have been commonly
implemented as multi-agent systems in the literature, but reception by industry
has been limited due to their additional complexity and the difficulties in providing
guarantees for their emergent behaviour.

1jade.tilab.com

2.9

http://jade.tilab.com

2. Concepts of next-generation manufacturing systems

• Instead, it may be better to implement holons as services that can be reused
throughout the organisation, and then give them the intelligence that may be
required by each part of the organisation. This intelligence may come in various
forms, including but not limited to software agents.

• A methodology is required to support the development of these holonic systems.
However, neither the existing agent-oriented methodologies nor the existing service-
oriented methodologies provide all the necessary constructs.
Existing holonic or agent-oriented methodologies do not explicitly consider the
need to expose some of the agents as services, and the way in which they should
integrate with the rest of the enterprise. On the other hand, existing service-oriented
methodologies are focused on the decomposition of the system as a catalogue of
services and do not provide explicit support for testing the services and assigning a
certain level of intelligence to each service-based holon.

2.2 Extended enterprises
Companies are not run in a vacuum: they need to take part in the ecosystem formed by
providers, designers, manufacturers, contractors, clients and competitors. In order to be
successful, they need to add more value to their products than their competitors. This
usually requires taking advantage of available information in order to quickly respond
to market demands. In specific terms, Shen et al. [74] list six basic requirements that
every new manufacturing enterprise should meet in order to be competitive: integrate
their software and hardware, define an open architecture that can accept new components,
communicate effectively inside and outside the company, take human resources into account,
react quickly to changes and achieve fault tolerance at multiple levels.
In addition, nowadays companies are forced to interact beyond the local geographical

area they are used to operate on. Using interconnected information systems is a key step,
as well as standardising business practices and solving various logistics problems. After
this integration has been achieved, the resulting organisation is known as an extended
enterprise [6]. Extended enterprises are based on the establishment and preservation
of long-term links of trust to other companies in the value chain. In contrast, agile
enterprises rely on quick and continuous adaptation, and virtual enterprises focus on
reacting to specific situations with temporary alliances. Johansen et al. [43] have discussed
the importance of these long-term links in a case study on the Saab car maker.
Many different approaches have been suggested for describing the structure of an

extended enterprise. The most immediate approach is heterarchic manufacturing [21],
in which every part of the company can talk to the rest. This provides a high degree
of flexibility, but it is hard to predict and optimise. This urged the creation of more
structured models, such as bionic, fractal or holonic models [79]. Some authors have even
suggested integrating these paradigms [55].

Bionic models are inspired in biological systems [83]. The company consists of a set of
“tissues” (representing processes, products or services), formed by “cells” that perform
various functions and receive and send genetically codified artefacts (parts and products).
Continuing this analogy, a cell controls its own functions by secreting “enzymes” (internal
control information) and can influence or be influenced by “hormones” (information from

2.10

2.2. Extended enterprises

Figure 2.5. Concept of a Holonic Manufacturing System (adapted from [55])

the environment and other business units). Critical situations can be quickly handled
using the faster “nervous system” (i.e. a company-wide messaging system).

On the other hand, fractal models start from the mathematical constructs of the same
name [84]. These are focused on building the company from self-similar entities at several
scope levels. Higher-level fractals are layered on top of lower-level fractals whenever the
latter cannot handle all the tasks that must be completed. Conversely, the goals of the
organisation flow down from the main fractal that contains the entire company, becoming
increasingly concrete level by level. Every fractal can regulate itself up to a certain degree.
Finally, holonic models view organisations as collections of “holons”, a term coined

by [46] to mean something that is both a whole and a part. Koestler [45] observed that
organisms were “not an aggregation of elementary parts”, but rather a “multi-levelled
hierarchy of semi-autonomous sub-wholes” (the so-called holons). Every holon can be
viewed as a whole formed by its sub-holons, and also as part of several higher-level holons.
Holons delegate work on their sub-holons, work for the higher-level holons, and cooperate
with the holons at the same level and their local environment. The set of all holons in
the organisation is known as a “holarchy”, which can be viewed as a generalisation of a
hierarchy.
Figure 2.5 illustrates the concept of a holon at level n of the holarchy, which is part

of several holons at the n+ 1-th level and is formed from several holons at the n− 1-th
level. At the lowest level, a holon may simply wrap the control software for a physical
device, so it can talk to the other holons. Higher-level holons may work at the cell, plant
or enterprise level, providing more intelligence while operating with less restrictive time
constraints. Holonic concepts have been used to model shop floor control systems, material
handling systems, logistics systems and even entire enterprises [3, 52].
As an example of an application of holonic concepts in manufacturing, Brussel et al.

[7] have proposed the Product-Resource-Order-Staff Architecture (PROSA) reference

2.11

2. Concepts of next-generation manufacturing systems

Figure 2.6. A physical holon (based on [52])

architecture for holonic shop floor control systems, identifying four kinds of holons:

• Product holons hold the process and product knowledge to assure the correct making
of the product with sufficient quality.

• Resource holons contain a physical part (a production resource of the manufacturing
system), and an information processing part that controls the resource. They may
refer to some piece of equipment, a workstation, a cell, a job shop, or an entire
factory, among other things.

• Order holons represent a task in the manufacturing system. It is responsible for
performing the assigned work correctly and on time.

• Staff holons can act as external experts that give optional advice to the other holons.

This suggests that even though the bionic, fractal and holonic models are quite different,
but they all view the enterprise as a dynamic network of agents with a certain degree of
autonomy and ability to coordinate with other agents. One of the most important problems
in putting these models into practice is creating the required communication channels
across the business units. Information systems tend to be designed and implemented based
on short-term requirements specific to each business unit, which may predate current
Web-based integration initiatives. This poses many challenges while setting up temporary
collaborations with external companies in order to take advantage of their skills and
resources.

2.3 Enterprise integration
The previous section showed that the extended enterprise could be conceived as a heterarchy,
a biological entity, a fractal entity, a holarchy or a combination of these. Nevertheless,
this conceptual view would need to be realised in some concrete way across the people,
processes and equipment available throughout the manufacturing enterprise.

2.12

2.3. Enterprise integration

As computers became increasingly affordable, there was a large push to use them to
integrate all the information produced and required by existing manufacturing firms. This
approach was called Computer Integrated Manufacturing (CIM), and specific implementa-
tions largely varied on their scope and features. Some of these systems operated at process
level, while others handled entire plants. There were also issues due to the different ways
in which the systems represented the organisation.

In the next subsections, several reference architectures for enterprise integration will be
discussed. Most of them are closely related to manufacturing, either by design (GRAI,
PERA, CIMOSA, ISA-95) or by their history (GERAM, ISO 19439/19440). TOGAF was
derived not from the manufacturing industry, but from defense IT specialists, explaining
its slightly different features. Architectures have been sorted largely by chronological order
except for ISA-95, which is described last due to its unique focus on the integration of the
business and manufacturing control functions of the enterprise.

2.3.1 GRAI Integrated Methodology (GIM)
One of the first approaches proposed to organise the information in these computer-based
systems was the GRAI Integrated Methodology (GIM) by G. Doumeingts et al. [29]. More
up to date descriptions are available at [13, 68], and a case study applying GIM is available
at [22]. GIM is divided into two large steps:

1. First, conceptual Interrelated Activity, Result and Graph (Graphes et Résultats
et Activités Interreliés or GRAI) models for the current enterprise and the desired
future enterprise are built from user requirements. These models are divided into
functional, decisional, informational and physical models.

2. Using these conceptual models, several sets of specifications are created for the
organisation, its information systems and its manufacturing technologies.

GIM divides the enterprise into three subsystems:

Physical System Performs the actual work (i.e. manufacturing). The Physical System is
modelled using IDEF0 process descriptions (see Section 2.4.1 on page 2.28).

Decision System Manages products and resources, schedules production and so on.
Decision Systems are described using Graphes et Résultats et Activités Interre-
liés (GRAI) grids and GRAI networks, which will be briefly described below.

Information System Exchanges information and orders between the two previous systems.
Information Systems are described using entity/relationship models [14].

Decision Systems are vertically divided into layers by the time horizon of the decisions
involved (the “coordination” criterion). The topmost layer may handle strategical business
decisions that span several years and are revised every year. In contrast, the bottom layer
may only be concerned with the production for the next two months, while monitoring
production week by week. The bottom layer is known as the “operating system”, since
it interfaces with the Physical System and needs to respond in an event-driven fashion,
rather than by time periods.

2.13

2. Concepts of next-generation manufacturing systems

Figure 2.7. GRAI model for a Decision System [68]

Each layer is then divided into several functional areas by the “synchronisation” criterion:
product management activities, planning activities and resource management activities.
The Information System is designed to support the aggregation of information while
ascending through the decision layers, and the coordination of the orders from the upper
layers while descending.

Figure 2.7 illustrates the breakdown of the Decision System through the coordination
and synchronisation criteria. H is the time horizon that must be considered when taking
a decision, and P is the period that should be used for monitoring its results. The bottom
edge of the figure shows the Physical System running the material flow through several
manufacturing resources, in order to build the desired products.

GRAI can model Decision Systems using GRAI grids. These are quite similar to the
table in Figure 2.7: they use one row for each layer in the Decision System, and separate
columns for the product management, planning and resource management activities.
However, GRAI grids also have columns for external and internal sources of information
at each layer. Every cell in the table (except for the information sources) is known as a
“decision centre”, a place where decisions are made by taking into account all information
flows (represented as single arrows between cells) and decision frames (represented as thick,
hollow arrows) that restrict the decisions that can be made.

By itself, GRAI grids can be used descriptively to identify issues within the overall
management of an enterprise or a plant. However, they cannot be easily simulated due
to their high level of abstraction and usage of natural language descriptions. GRAI nets
can be used to describe the decision process in each decision centre in a more structured
fashion.

2.14

2.3. Enterprise integration

2.3.2 Purdue Enterprise Reference Architecture (PERA)
The Purdue Enterprise Reference Architecture (PERA) was developed in a joint collab-
oration between the University of Purdue and a consortium of industrial companies [86],
together with a methodology (the “Purdue method”) for modelling the enterprise with
PERA. Some of the issues PERA set out to solve were excessive complexity in top-down
CIM projects, lack of integration in bottom-up CIM projects and lack of personnel involve-
ment, among others. These efforts started in 1986 and produced several other useful results,
such as the Purdue CIM Reference Model by Williams [85], a collection of requirements
and recommendations for implementing CIM in an enterprise.
PERA models the CIM Business Entity (the representation of the manufacturing firm

itself, hereafter known as CBE) using a top-down approach, in which descriptions become
increasingly detailed and concrete over time, until the plant is decommissioned. The
first two layers (“concept” and “definition”) focus on the information and manufacturing
requirements, which finally describe the information and manufacturing functional task
networks. After descending to the “specification” layer, it is required to break down tasks
into those that will be automated, and those that will be performed by humans. For this
reason, the information and manufacturing architectures are bridged by the human and
organisational architecture from the “specification” layer down to the last “operations”
layer.
Figure 2.8 on page 2.16 summarises the steps involved in the Purdue method. This

diagram is also known as the “PERA chime”, due to its bell-like shape. The method
covers the entire lifecycle of the firm, from its general conception and overall mission to
its replacement.

Similarly to GIM, PERA divides the enterprise into several layers of abstraction. How-
ever, its focus is turned more into describing the entire enterprise, rather than focusing on
the way information is aggregated and distributed through the layers.

Figure 2.8 on page 2.16 shows that the main unit of decomposition in PERA is a “task
module” (shown in Figure 2.9 on page 2.16). Task modules are essentially black boxes
that represent a particular transformation process, whether it is a manufacturing step, the
execution of a computer program or an action performed by a human. Tasks transform
their inputs into a set of outputs which may go either into another task, or to a storage
area. The behaviour of a particular task can be controlled through a set of external
parameters. If a particular transformation step is deemed to be too complex, task modules
may me broken up into simpler task modules. Task modules are interconnected by flows,
which may represent data flows for the information architecture, or material and energy
flows for the manufacturing architecture.

2.3.3 Computer-Integrated Manufacturing Open System
Architecture (CIMOSA)

The Computer-Integrated Manufacturing Open System Architecture (CIMOSA) [47, 48, 49]
was developed as part of a project of the European Strategic Programme for Research
in Information Technology (ESPRIT), by the European CIM Architecture (AMICE).
Similarly to PERA, it models the enterprise through the processes run in its day-to-day
operation.

In order to keep models within a manageable size, CIMOSA suggests creating multiple

2.15

2. Concepts of next-generation manufacturing systems

Figure 2.8. Purdue Method [86]

Figure 2.9. PERA task module [86]

2.16

2.3. Enterprise integration

Figure 2.10. CIMOSA views [47]

views over three dimensions, as shown in Figure 2.10. Models can cover four kinds of
information (organisation, resources, information and functions), three abstraction levels
(requirements, design or implementation) and provide generic, partially specific or fully
specific descriptions of a manufacturing firm.
CIMOSA provides modellers with a set of predefined constructs, which serve as a

standard vocabulary for practitioners. According to Kosanke [47], Processes, Events and
Enterprise Activities describe the functionality and behaviour of the enterprise operation.
Inputs and outputs of Enterprise Activities (Enterprise Objects) define the information
and resources needed. Organisational aspects are defined as Organisation Elements, which
are structured in Organisational Units or Cells. Many of these concepts were standardised
as ENV 12204:1996, later replaced by ISO 19440:2007 (see Section 2.3.5).
Figure 2.11 on page 2.18 shows a simple example of the top-down modelling process

imposed by CIMOSA. The firm has three Processes, “Administration”, “Quality Assur-
ance” and “Manufacturing” that send and receive Enterprise Objects (products, invoices,
payments and orders) between the firm, its customers and its suppliers. The “Manufactur-
ing” process is broken up into several lower-level Enterprise Activities, such as “Machine
Part” or “Paint Part”, which are connected together according to a Behavioural Rule Set
(BRS) that indicates when an EA is done and when the next EA can begin. Every EA
transforms its inputs into a set of outputs and is controlled through external information,
much like PERA task modules. In addition, the bottom edge is used to send the required
resources into the EA.

2.3.4 Generalised Enterprise Reference Architecture and
Methodology (GERAM)

Due to the large number of available reference architectures, the IFAC/IFIP Task Force
decided to merge some of the most popular ones (namely, PERA, GIM and CIMOSA)
into a single generalised reference architecture. This new architecture would be applicable

2.17

2. Concepts of next-generation manufacturing systems

Figure 2.11. CIMOSA process modelling [48]

to any kind of enterprise, and not just to manufacturing enterprises.
From these efforts, the Generalised Enterprise Reference Architecture and Methodology

(GERAM) [34] was produced. Version 1.6.3 of GERAM was published as an annex of
ISO 15704 [39], which describes the general requirements that must be met by enterprise
reference architectures and methodologies.
GERAM takes a more modular approach than PERA, GIM and CIMOSA. As shown in

Figure 2.12, the reference architecture itself (GERA) is only one component of GERAM.
Other components include the methodology, the modelling languages, reusable partial
design or implementation models and the systems themselves. As Chen et al. [13] stated,
GERAM is not yet another proposal for a reference architecture, but a framework meant
to organise the existing enterprise integration knowledge.
GERAM inherits from CIMOSA the idea of dividing models into multiple views along

several axes (as shown in Figure 2.10), but replaces the model derivation axis with a
sequence of life-cycle phases much like that in PERA (see Figure 2.8). These phases are
not mutually exclusive: several phases may be in effect at the same time. As in CIMOSA,
there are function, information, resource and organisation views.
GERAM extends the explicit division in PERA of the enterprise architecture into its in-

formation systems architecture, human and organisational architecture and manufacturing
architecture (now called the “mission support equipment architecture”). The boundaries
between the human architecture and the other two architectures are now less clear-cut:
there is an upper-bound of automation called “automatibility”, and a lower-bound called
“humanizability”. The enterprise must decide upon a certain “extent of automation”
between those bounds in the mission support and information architectures.

2.18

2.3. Enterprise integration

Figure 2.12. GERAM framework components [34]

2.19

2. Concepts of next-generation manufacturing systems

Figure 2.13. GERA Modelling Framework [34]. The organisation, resource, information
and function views are not explicitly represented.

2.20

2.3. Enterprise integration

Figure 2.14. EN/ISO 19439 framework for enterprise modelling [41]

2.3.5 EN/ISO 19439 and EN/ISO 19440
ISO 15704:2006 had provided a normative set of requirements for enterprise reference
architectures, and presented GERAM as a generic example. It was time to update the
existing ENV 40003:1991 and ENV 12204:1996 standard enterprise architecture modelling
framework and constructs (based on CIMOSA) with new versions based on ISO 15704. By
combining elements from GIM, PERA, CIMOSA and GERAM, a new standard framework
and set of constructs were published as EN/ISO 19439:2006 and EN/ISO 19440:2007,
respectively [41, 42].
EN/ISO 19439 is a general modelling framework that provides a common vocabulary

and streamlines GERAM (compare Figure 2.13 with Figure 2.14). It provides detailed
descriptions of the meaning of each modelling dimension and their points. Annex B
suggests using the Purdue method in the requirements definition phase, with the same
sequence of business entity designation, mission statement, policy description, requirements
specification and module, function and task listings.

EN/ISO 19440 provides a normative set of modelling constructs based on the EN/ISO
19439 framework. Most of these constructs are taken from CIMOSA, such as Business
Processes (originally Processes), Behaviour Rule Sets and Enterprise Activities, among
others. The Decision Centre construct is an adaptation of GRAI grids. EN/ISO 19440
also provides normative textual template-based notations and an informative metamodel
based on UML, and suggests which constructs should be used at each modelling phase.

2.3.6 The Open Group Architecture Framework (TOGAF)
Aside from the GERAM and ISO 19439 lineage, there have been many other proposals
for enterprise architectures. The Open Group Architecture Framework (TOGAF) is one

2.21

2. Concepts of next-generation manufacturing systems

Figure 2.15. TOGAF Architecture Development Cycle [80]

of them [80]. According to the specification, the first version of TOGAF in 1995 was
based on the Technical Architecture Framework for Information Management (TAFIM),
developed by the US Department of Defense.
Among the previous specifications, TOGAF is closest to the GERAM approach: it

provides a base set of concepts and guidelines for modelling, but it does not force specific
modelling languages upon users. While TOGAF and GERAM are general-purpose refer-
ence architectures for enterprises in any industry, TOGAF lacks the manufacturing bias
that GERAM inherited from its ancestors. In turn, TOGAF pays more attention to the
information system, identifying the following four architecture domains:

• The Business Architecture defines the business strategy, governance, organisation
and key business processes.

• The Data Architecture describes the structure of the logical and physical data assets
and data management resources.

• The Application Architecture provides a blueprint for the individual applications to
be deployed, their interactions, and their relationships to the core business processes.

• The Technology Architecture describes the logical software and hardware capabilities
required to support the deployment of business, data and application services.

TOGAF also provides its own Architecture Development Method (ADM), which is
defined as an iterative process divided into 8 phases, with an additional set-up phase and
several guidelines for managing requirements over all phases. Figure 2.15 illustrates the
structure of the ADM.

2.22

2.3. Enterprise integration

One of the main advantages of TOGAF over GERAM or ISO 19439/19440 is its much
higher level of detail. It provides a considerable number of guidelines and recommendations
on how to plan architecture migrations, identify opportunities, govern the implementation
and handle specific aspects such as SOAs (see Section 3.1), risk management or security
aspects.
TOGAF proposes storing all models in an Architecture Repository, which is a centralised

location that organises every artefact, deliverable and reusable building block created
within the organisation. Ideally, this would allow enterprises to create architectures for
new purposes by reusing elements of previous architectures or industry-specific libraries.
Artefacts in the repository are structured according to a metamodel, comply with the
stored standards in its Standards Information Base and all changes are logged in its
Governance Log. Best practices create new elements in its Reference Library.
The artefacts in the Architecture Repository can be examined through several views.

TOGAF defines the Enterprise Continuum as such a view, providing a certain context and
a general set of requirements. These shape an Architecture Continuum between generic
architectures and specific architectures, much like the genericity axis in ISO 19439. In
turn, these architectures support a Solutions Continuum between generic and specific
solutions (implementations), which are finally deployed and become part of the context of
the Enterprise Continuum. The Architecture Continuum and Solutions Continuum also
help classify the artefacts, making the repository more manageable in large organisations.
Instead of the Enterprise Continuum, users may wish to use other ways to view their

Architecture Repository, such as the Zachman Framework [89]. As a framework, it does
not provide a methodology for creating the models: it is only intended as a way to organise
the models, much like ISO 19439. The Zachman framework is defined as a 6 by 6 grid
over 2 axes (the question to be answered, and the audience). Table 2.1 shows a simplified
description of the framework.

2.3.7 IEC 62264 / ISA-95
While the previous specifications provided reference architectures for modeling the entire
enterprise, ANSI/ISA-95 is focused on the integration between the manufacturing control
and business IT systems in an organisation. Due to historical reasons, these IT systems
have tended to grow separately from each other, and communication is difficult due to
differing cultures and terminology. ISA-95 is set to bridge those differences.
ANSI/ISA-95 is a partial reference architecture according to the requirements in ISO

15704, and has been published as the IEC 62264 international standard. Roughly speaking,
IEC 62264 provides three kinds of models for the organisation: hierarchical models of the
activities within the organisation, data flow models with the information exchanged among
these activities and a set of object models that describe the structure of the information
and its meaning. Three parts are currently published:

• Part 1 includes most of the basic definitions [35]. IEC 62264-1 inherits the functional
hierarchy of the enterprise from the Purdue CIM reference model (see Section 2.3.2),
which is shown in Figure 2.16. Level 0 defines the physical processes. Level 1 defines
the activities that sense and manipulate the physical processes. Level 2 controls and
monitors the physical processes. Level 3 covers the workflow activities for producing
the end products. Finally, Level 4 defines the business activities needed to manage a

2.23

2. Concepts of next-generation manufacturing systems

A
ud

ie
nc
eC
la
ss
if.

W
ha

t
H
ow

W
he
re

W
ho

W
he
n

W
hy

C
la
ss
if.
M
od

el
s

Ex
ec
ut
iv
e

Pe
rs
pe

ct
iv
e

In
ve
nt
or
y

Id
en
tifi

ca
tio

n
Pr

oc
es
s

Id
en
tifi

ca
tio

n
D
ist

rib
ut
io
n

Id
en
tifi

ca
tio

n
R
es
po

ns
ib
ili
ty

Id
en
tifi

ca
tio

n
T
im

in
g

Id
en
tifi

ca
tio

n
M
ot
iv
at
io
n

Id
en
tifi

ca
tio

n
Sc
op

e
C
on

te
xt
s

Bu
sin

es
s

M
an

ag
em

en
t

Pe
rs
pe

ct
iv
e

In
ve
nt
or
y

D
efi
ni
tio

n
Pr

oc
es
s

D
efi
ni
tio

n
D
ist

rib
ut
io
n

D
efi
ni
tio

n
R
es
po

ns
ib
ili
ty

D
efi
ni
tio

n
T
im

in
g

D
efi
ni
tio

n
M
ot
iv
at
io
n

D
efi
ni
tio

n
Bu

sin
es
s

C
on

ce
pt
s

A
rc
hi
te
ct

Pe
rs
pe

ct
iv
e

In
ve
nt
or
y

R
ep
re
se
nt
a-

tio
n

Pr
oc
es
s
R
ep
-

re
se
nt
at
io
n

D
ist

rib
ut
io
n

R
ep
re
se
nt
a-

tio
n

R
es
po

ns
ib
ili
ty

R
ep
re
se
nt
a-

tio
n

T
im

in
g
R
ep
-

re
se
nt
at
io
n

M
ot
iv
at
io
n

R
ep
re
se
nt
a-

tio
n

Sy
st
em

Lo
gi
c

En
gi
ne
er

Pe
rs
pe

ct
iv
e

In
ve
nt
or
y

Sp
ec
ifi
ca
tio

n
Pr

oc
es
s

Sp
ec
ifi
ca
tio

n
D
ist

rib
ut
io
n

Sp
ec
ifi
ca
tio

n
R
es
po

ns
ib
ili
ty

Sp
ec
ifi
ca
tio

n
tim

in
g

Sp
ec
ifi
ca
tio

n
M
ot
iv
at
io
n

Sp
ec
ifi
ca
tio

n
Te

ch
no

lo
gy

Ph
ys
ic
s

Te
ch
ni
ci
an

Pe
rs
pe

ct
iv
e

In
ve
nt
or
y

C
on

fig
ur
a-

tio
n

Pr
oc
es
s
C
on

-
fig

ur
at
io
n

D
ist

rib
ut
io
n

C
on

fig
ur
a-

tio
n

R
es
po

ns
ib
ili
ty

C
on

fig
ur
a-

tio
n

T
im

in
g
C
on

-
fig

ur
at
io
n

M
ot
iv
at
io
n

C
on

fig
ur
a-

tio
n

To
ol

C
om

po
ne
nt
s

En
te
rp
ris

e
Pe

rs
pe

ct
iv
e

In
ve
nt
or
y
In
-

st
an

tia
tio

ns
Pr

oc
es
s
In
-

st
an

tia
tio

ns

D
ist

rib
ut
io
n

In
st
an

ti-
at
io
ns

R
es
po

ns
ib
ili
ty

In
st
an

ti-
at
io
ns

T
im

in
g
In
-

st
an

tia
tio

ns

M
ot
iv
at
io
n

In
st
an

ti-
at
io
ns

O
pe

ra
tio

ns
In
st
an

ce
s

A
ud

ie
nc
e N
am

es
In
ve
nt
or
y

Se
ts

Pr
oc
es
s

Fl
ow

s
D
ist

rib
ut
io
n

N
et
wo

rk
s

R
es
po

ns
ib
ili
ty

A
ss
ig
nm

en
ts

T
im

in
g

C
yc
le
s

M
ot
iv
at
io
n

In
te
nt
io
ns

T
ab

le
2.
1.

Za
ch
m
an

Fr
am

ew
or
k
fo
r
En

te
rp
ris

e
A
rc
hi
te
ct
ur
e
[8
9]

2.24

2.3. Enterprise integration

Figure 2.16. ISA-95 activity hierarchy. This is the extended version with additional
explanations from Part 3 [38], rather than the original version from Part
1 [35].

manufacturing organisation.

IEC 62264-1 defines two more hierarchical views of the organisation: equipment
hierarchies and decision hierarchies. Equipment hierarchies divide the physical
assets of the enterprise into sites, areas, work centres and work units, as shown
in Figure 2.17. Level 4 activities usually deal with the entire enterprise or a site,
while level 3 activities deal with a single site at most. Decision hierarchies classify
decision-making activities by what they relate to (products, resources or schedules)
and by their scope (from long-term enterprise-wide decisions to short-term decisions
about a single action).

After describing these hierarchical views, Part 1 focuses on the interface between
levels 3 and 4. Figure 2.18 shows the ISA-95 functional enterprise/control model,
which lists all the high-level activities which exchange information between these
two levels. The activities outside the thick dashed line belong to level 4, the ones
inside belong to level 3, and the ones that straddle the line have some functions in
level 3 and some functions in level 4. The rest of the specification presents a set of
simple Unified Modelling Language (UML) class diagrams describing the contents of
these information flows in plain English.

• Part 2 is conceptually simple but just as long. It lists the attributes of each of the UML
classes from Part 1, describing their valid values and meanings [36]. Incidentally, the
World Batch Forum (currently “WBF, The Organization for Production Technology”)
created the Business to Manufacturing Markup Language (B2MML) [88] from parts

2.25

2. Concepts of next-generation manufacturing systems

Figure 2.17. ISA-95 equipment hierarchy, initially defined in Part [35] and then extended
with storage zones and units in Part 3 [38].

1 and 2 of ISA-95. B2MML implements the ISA-95 data model using XML Schema
(see Section 3.1.2.3) for its use in system integration projects.

• Part 3 focuses on the activities within level 3 [38], the information flows between
them and the decisions taken during their execution. It can be used as a generic
blueprint of the business processes required to manage a manufacturing enterprise.
This part also completes the specification in several significant ways: for instance,
a decision is now valid during its horizon, and is reviewed periodically or when a
certain event happens.
All the manufacturing operations management activities are divided into four groups:
production, maintenance, quality and inventory management operations. In turn,
each kind of management operation must handle four categories of information:
what can be done (e.g. production or quality testing capabilities), what to do
and when (production schedules, maintenance requests), how to do it (product
definition, quality test definition) and how it was done (maintenance response,
inventory response).
The standard provides a standard template for each of the four groups of manu-
facturing operations management activities, as shown in Figure 2.19. This basic
template is then extended with the specific details of each activity group and the
relevant information flows to the entities in levels 1 and 2.

2.4 Process modelling
The previous section discussed several specifications that aimed to model the entire
enterprise by combining models covering multiple perspectives. This section will present
several modelling notations used specifically to model the business and/or manufacturing
processes run by the enterprise.

2.26

2.4. Process modelling

Figure 2.18. ISA-95 functional enterprise/control model [35]. The activities within
the thick dashed line belong to ISA-95 level 3, and those outside the line
belong to ISA-95 level 4. The activities that straddle the line have some
functions in level 3 and the rest in level 4.

2.27

2. Concepts of next-generation manufacturing systems

Figure 2.19. ISA-95 generic activity model for a group of manufacturing operations
management activities [38]. This model is specialised for each of the
production, maintenance, quality and inventory operations management
activity groups.

Several notations have been used for this purpose, such as IDEF3, the Process Spe-
cification Language (PSL) or the Value Stream Mapping (VSM) notation. More recently,
the Business Process Modelling Notation (BPMN) 2.0 standard from the Object Man-
agement Group (OMG) has been proposed for modeling business processes, using three
kinds of views: collaborations, processes and choreographies. BPMN is intended as a
bridge between business process design and process implementation [64]. It has gained
considerable momentum in the recent years, with over 73 implementations by various
vendors.

This section will describe some of these notations and position BPMN 2.0 among them
by using a small case study. The survey by Aguilar-Savén [2] covers a more extensive
range of flow-based notations, but it predates BPMN 2.0. Initial work on PSL produced
an extensive comparison of the capabilities of the notations available at the time [44].

2.4.1 Integrated DEFinition for Process Description Capture
Method (IDEF)

According to the original report, IDEF3 “was created specifically to capture descriptions
of sequences of activities” [57]. IDEF3 uses two kinds of models: process schematics
and object schematics. Process schematics describe the valid sequences of the Units of
Behaviour (UOBs) in the process. Object schematics describe the kinds of objects present
in the system, their relationships and their state transitions. Node and link shapes for
IDEF3 process and object schematics are shown in Figure 2.20.

Process schematics represent the UOBs as boxes with textual labels and unique identifiers.
Precedence links specify valid sequences of UOB activations. There are two types of
precedence links: simple and constrained. A simple precedence link from A to B only
indicates that whenever A and B both happen, A must happen before B. A may happen
and not B, B may happen and not A, or any number of UOBs not included in the process

2.28

2.4. Process modelling

Figure 2.20. Selected subset of the IDEF3 notation

schematic may happen between A and B. Constrained precedence links can further limit
the valid possibilities. Finally, junctions can split or join paths. AND junctions activate
or join all related paths, OR junctions only some, and XOR junctions exactly one.
Object schematics represent the possible states for each object in the system. Links

relate different objects, represent their state transitions or classify them. A state transition
from A to B means that object b can only be in state B after object a has been in state A.
Object a may be the same as object b or not. Users set conditions on transitions or states
by linking them to UOBs from the process schematics.
IDEF3 allows for a hierarchical decomposition of both process and object schematics:

starting with a high-level view, modelers can “drill down” into the detailed descriptions.
It also allows modellers to indicate where information is “hidden” about parts, object
categories and other constructions.

2.4.2 Process Specification Language (PSL)
ISO 18629:2004, widely known as the Process Specification Language (PSL), is a textual
notation for describing manufacturing processes [40]. Its goal is to allow different applica-
tions to exchange process data. To achieve that interoperability, PSL is organized as an
ontology of concepts, related to each other using axioms and definitions. PSL is organized
into several layers. A more in-depth description of PSL is available at [5].
The main concepts in PSL constitute the PSL-Core. There are four kinds of entities

in PSL processes: activities, objects, activity occurrences and timepoints. Activities can
have zero or more occurrences. Timepoints are linearly ordered from a timepoint before
all others in the past (inf-), to a timepoint after all others in the future (inf+). Every
activity occurrence and object happens or exists between two timepoints.

The next layer in PSL is the Outer Core, with additional concepts and definitions that
are commonly used, such as sub-activities: activities nested inside others. The PSL-Base
layer extends the PSL Outer Core with more specialized terms, such as durations (intervals
between timepoints) and resource handling, among others. The outermost layer only
includes optional extensions.

2.29

2. Concepts of next-generation manufacturing systems

Figure 2.21. Selected subset of the Value Stream Mapping notation

2.4.3 Value Stream Mapping (VSM)
Lean manufacturing strives to reduce costs and increase flexibility by removing waste
(muda) from the manufacturing process. The Value Stream Mapping (VSM) notation
helps identifying issues and creating improvement plans to reduce waste. A “value stream”
contains all the actions required to bring a product to the customer: part and raw material
retrieval, intermediate transformation and storage operation, transport and communication,
among others. This section will refer to the VSM workbook by Rother and Shook [71]
from the Lean Enterprise Institute, focused on the production flow.

Factory icons represent external plants. Incoming and outgoing shipments are represented
using a truck icon and a broad arrow. The manufacturing process is divided into process
boxes: each box is a sequence of steps in which materials flow continuously. Elements
may be connected by information flows (regular, electronic or “go see”) or material flows
(push, pull, FIFO or sequenced pull). Material flows usually indicate the kind of inventory
handling involved: accumulated inventory, supermarkets or buffer stock. Specific icons
are available for load-leveling (“heijunka”) boxes, “kanban”-based systems, operators and
possible improvements (“kaizen” bursts). Some of the graphical icons in VSM are listed in
Figure 2.21.

2.4.4 Business Process Modelling Notation (BPMN)
In the recent years, interest in modeling business processes for re-engineering, simulation
and execution has steadily increased. Nowadays, the most popular notations are all based
on “workflows”. Workflows are defined in [87] as “the automation of a business process,
in whole or part, during which documents, information or tasks are passed from one
participant to another for action, according to a set of procedural rules”. Normally, these
workflows are described in a specific language, supported by a Workflow Management
System (WFMS). The WFMS communicates with the participants (both humans and
software entities) to execute the workflows and monitor them.
There are several workflow modelling languages currently in use. Some of them are

designed to be directly run and monitored by a WFMS automatically, such as the Web
Services Business Process Execution Language (WS-BPEL) 2.0 [63]. However, these
notations can be quite hard to grasp for business analysts: simply reading the workflows
already required advanced software development skills.
The proliferation of low-level notations for process execution motivated the creation

of BPMN as a high-level notation which could be used by both business analysts and

2.30

2.4. Process modelling

Figure 2.22. Selected subset of the BPMN 2.0 notation

software developers. In fact, the first versions of BPMN were only intended as graphical
notations for the WS-BPEL standard. BPMN 2.0 has added its own formal execution
semantics based on Petri networks and several file formats to the specification, making it
usable both for process design and process enactment [64]. Part of the notation is shown
in Figure 2.22.
Activities represent units of work in the process. Activities may have sub-processes

describing them in more detail. Some of these sub-processes may be started in response to
an event. Activities performed by different stakeholders will be usually placed in different
pools, which may be further divided into lanes. The type of a task is noted by decorating
it with one or two markers in the upper left corner. BPMN allows three types of markers:
loop markers to indicate that the same activity will be run several times in sequence,
multi-instance markers to allow multiple executions by different performers (normally in
parallel), and compensation markers to indicate that the activity will “compensate” or
undo the effects of previous activities. Loop and multi-instance markers cannot be placed
at the same time on a single activity.
Events are situations to which the BPMN process reacts. Events are drawn as circles:

the line style of the circle indicates if it is a start event that instantiates a process, an
intermediate event that the process waits for, or a finish event which concludes execution.
Inside the circle, an icon indicates what kind of event is handled.

Activities and events are connected together through flows and gateways. Message flows
model the exchanges of information and material between the participants, and sequence
flows control the execution of the activities. Sequence flows may optionally converge or
diverge through gateways, similar to IDEF3 junctions. Activities may also query or modify
data stores: this is represented with a dotted arrow from the activity to the data store or
from the data store to the activity, respectively.
Intermediate events may also be placed at the boundary of an activity to respond to

2.31

2. Concepts of next-generation manufacturing systems

specific situations during their execution. If the event is interrupting (drawn using a
double solid line), it will stop the activity when triggered and continue execution through
its single outgoing sequence flow. If it the event is non-interrupting (drawn using a double
dashed line), the sequence flow will be activated without stopping the original activity.

2.4.5 Comparison through a case study

In the previous sections, IDEF3, PSL, VSM and BPMN 2.0 were presented. This section
shows how to use each notation to model a hypothetical manufacturing process described
in natural language. In the next section, the models will be used to compare the notations.

2.4.5.1 Textual description

The company under study (“Company A”) receives tobacco and cellulose acetate and
produces cigarettes. Tobacco preprocessing consists of several steps and slightly varies
from product family to product family. 180–200kg boxes of raw tobacco are regularly
received from external suppliers. First, the moisture in the raw tobacco is increased and
casings are added. Next, tobacco is blended, cut, compressed and packaged. Optionally,
the tobacco may be “expanded” before packaging to produce the “light” variants.
Cigarette filters are produced from cellulose acetate tows, separating the fibers before

adding a plasticizer and cutting the filter rods into individual filters. After letting the
filters harden on trays, they are sent to the cigarette making machine.
Filters and processed tobacco are received by another department, which wraps the

tobacco and adds the filters, joining the cigarette with the filter using tipping paper. These
cigarettes are then packed into boxes, which are bought by distributors and finally sold by
retailers.
It is important to note that Company A recently joined a larger group and needs to

synchronize its in-house information system with the SAP R/3 installation in use within
the group. This includes inventory levels, manufacturing reports and production forecasts.
Shipments from suppliers and to distributors are handled by an external company, part of
the same group.

2.4.5.2 IDEF3 model

Figure 2.23 is the IDEF3 object schematic for the manufacturing process. Objects represent
intermediate products, from raw materials up to packaged goods. The UOB boxes have
a slightly different notation, as they refer to UOBs in the omitted process schematic.
They describe the process steps required for each state transition. There are two types of
processed tobacco (regular and expanded), and therefore two types of cigarettes (regular
and “light”). Most UOBs have a single digit: their contents have not been expanded.
However, as an example, the “Make filters” UOB (#2) has been expanded into four nested
UOBs, with identifiers from 2.1.1 to 2.1.4. Additionally, the “Filters” object node has a
different line style and is decorated with a “C”, indicating there are several types of filters
not shown in the diagram.

2.32

2.4. Process modelling

F
ig
ur
e
2.
23
.

ID
EF

3
m
od

el
fo
r
th
e
no

ta
tio

n
co
m
pa

ris
on

ca
se

st
ud

y

2.33

2. Concepts of next-generation manufacturing systems

Listing 2.1 Process Specification Language fragment describing the activity sequences
dedicated to preprocessing tobacco

(forall (?opt)
(implies (oof ?opt PreprocessTobacco)
(exists (?oim ?oac ?orc ?ob ?orb ?ocut ?ocomp)
(and (oof ?oim IncreaseMoisture) (oof ?oac AddCasings)

(oof ?orc RefillCasings) (oof ?ob Blend)
(oof ?orb RefillBlender) (oof ?ocut Cut) (oof ?ocomp Compress)
(sao ?oim ?opt) (sao ?oac ?opt) (sao ?orc ?opt) (sao ?ob ?opt)
(sao ?orb ?opt) (sao ?ocut ?opt) (sao ?ocomp ?opt)
(mpr ?oim ?oac) (mpr ?oac ?orc) (mpr ?oac ?ob)
(mpr ?ob ?orb) (mpr ?ob ?ocut) (mpr ?ocut ?ocomp)))))

Listing 2.2 Process Specification Language fragment describing the machines and ma-
terials used at each step in Listing 2.1

(reusable Moisturizer IncreaseMoisture)
(possibly_reusable CasingSpreader AddCasings)
(possibly_reusable Blender Blend)
(wearable Cutter Cut)
(reusable Compressor Compress)
(consumable DryTobacco IncreaseMoisture)
(creates IncreaseMoisture MoistTobacco)
(consumable MoistTobacco AddCasings)
(creates AddCasings MoistTobaccoWithCasings)
(consumable MoistTobaccoWithCasings Blend)
(creates Blend BlendedTobacco)
(modifies Cut BlendedTobacco)
(modifies Compress BlendedTobacco)

2.4.5.3 PSL description

Due to space constraints, only included the fragment dedicated to preprocessing the tobacco
has been included. To simplify the discussion, it is shown by parts. occurrence_of has
been abbreviated to oof, subactivity_occurrence to sao and min_precedes to mpr, to
save space.

Listing 2.1 describes the activities and subactivities dedicated to preprocessing tobacco
and how they are ordered. These constraints ensure the occurrences of the subactivities
in “Preprocess Tobacco” go in the order “Increase Moisture”, “Add Casings”, “Blend”,
“Cut” and “Compress”. In addition, “Refill Casings” should happen some time after “Add
Casings”, and “Refill Blender” some time after Blend.

Listing 2.2 describes the machines and materials used at each step, using PSL resource
theory. Resources are described in terms of how an activity using a resource affects other
activities which require that resource. Reusable resources can be always used after the
activity which uses them completes. Possibly reusable resources require that a setup

2.34

2.4. Process modelling

activity completes before they can be reused. Wearable resources may not be usable at
some point in the future. Consumable resources can never be reused. Finally, an activity
may also create or modify a resource.

2.4.5.4 BPMN 2.0 model

Figure 2.24 is a BPMN 2.0 model of the manufacturing process. The model is divided
into several lanes: one for each participant in the process. Lanes do not need to represent
every action taken by a participant: for instance, this diagram only shows the activities
from the parent company and in-house IT directly related to this manufacturing process.
The lane for the logistics company is completely empty: all the model shows is that the
plant sends shipment requests to it after a batch is done.

The model indicates that the plant receives every day the batches to be produced, and
repeats the basic manufacturing process for each of them. Repetition in BPMN 2.0 is
modelled by marking the repeated activity (“Produce batch”) with a small circle-shaped
arrow. The contents of “Produce batch” are very similar to the IDEF3 process schematic
from which Figure 2.23 was produced. The BPMN model adds the capability to model
the messages sent to the other participants. An event-based subprocess (marked with a
dashed rectangle with rounded corners) indicates that when there is a fault, a message is
sent to the in-house IT system notifying that the manufacturing of a certain batch was
aborted.

2.4.5.5 VSM model

Figure 2.25 presents a VSM schematic describing the different material and information
flows in the plant. Suppliers provide the required tobacco and cellulose acetate tows once
a week and these are pushed through the process, which performs 2 weekly shipments of
cigarette boxes. There are two information systems communicating with the plant: an
in-house system sends daily orders to the tobacco preprocessing area and weekly orders
to the filter manufacturing area, and receives regular notifications about the shipments.
The SAP/R3 system from the parent company sends weekly manufacturing schedules and
receives periodic production and inventory status reports.

2.4.5.6 Comparison results

In the previous section, the same manufacturing process has been described from several
viewpoints, using IDEF3, PSL, VSM and BPMN 2.0. This section will compare the
expressive capabilities of these notations for several important aspects in manufacturing
processes. Table 2.2 summarises these results.
All the notations allow for defining valid sequences for the tasks in the manufacturing

process. VSM uses very high-level tasks, dividing the process only where continuous flow
is interrupted. IDEF3 and BPMN 2.0 model sequences of activities, which can diverge into
different paths or converge into one path using junctions (IDEF3) or gateways (BPMN).
BPMN can also describe what to do if something goes wrong (faults), how to undo changes
(compensation) and how to respond to signals. Though IDEF3 and BPMN 2.0 allow
unspecified activities to be inserted between those in the models, PSL is the most flexible
notation for activity sequencing, due to its use of precedence relations.

2.35

2. Concepts of next-generation manufacturing systems

F
ig
ur
e
2.
24
.

BP
M
N

2.
0
m
od

el
fo
r
th
e
no

ta
tio

n
co
m
pa

ris
on

ca
se

st
ud

y

2.36

2.4. Process modelling

F
ig
ur
e
2.
25
.

V
SM

m
od

el
fo
r
th
e
no

ta
tio

n
co
m
pa

ris
on

ca
se

st
ud

y

2.37

2. Concepts of next-generation manufacturing systems

IDEF3 PSL VSM BPMN 2.0

Activity
sequences

Fine-grained
(control flows)

Fine-grained
(precedence
constraints)

Coarse
(material flows)

Fine-grained
(control flows,

events)
Timing

constraints Implicit (text) Explicit
(durations) Implicit (text) Explicit

(alarms)
Machine-
operator

assignments

Implicit
(objects)

Explicit
(resources)

Implicit (data
boxes)

Implicit
(pools)

Material flows
Implicit
(object

transitions)

Explicit
(resources) Explicit Implicit

(messages)

Information
flows

Needs
IDEF0/IDEF1X

Needs
extensions

Explicit, no
internal
structure

Explicit, relies
on extensions
for internal
structure

Table 2.2. Differences between the selected process modelling notations

IDEF3 and VSM do not explicitly model timing constraints: they can only be emulated
through textual descriptions. BPMN 2.0 allows for setting alarms at certain times,
frequencies or delays, as shown in the models. PSL includes a rich set of theories for the
duration of activities.

Machine/operator assignments can be emulated in IDEF3, relating the object node with
the machine to the object node. VSM does not model assignments and only includes the
parameters of the process which affect material flow, such as changeover or cycle time.
BPMN does not explicitly model machine/operator assignments, but they can be emulated
using pools and lanes if desired. PSL models machines and operators and resources, and
includes several theories for describing constraints on them.

Material flows can be emulated in IDEF3 using state transitions between object nodes,
as in Figure 2.23. BPMN cannot accurately model continuous material flows, but can
emulate material flow in discrete manufacturing through messages with the part information.
Material flows can be explicitly modeled in VSM. PSL models normally describe materials
as consumable or renewable resources.

Information flows cannot be described with a single IDEF3 model: supporting IDEF0 and
IDEF1X models will be usually required. PSL does not model the information exchanged
between the manufacturing steps directly: however, a new extension has been proposed
for that [4]. VSM models information flows directly, but does not provide any formal
mechanisms to describe their internal structure. BPMN explicitly models the messages
exchanged between each of the participants, but relies on vendor-specific extensions to
describe the structure of the messages.
From the above observations, it can be concluded that BPMN 2.0 can be seen as a

superset of IDEF3 process schematics, adding explicit support for modeling the participants
in the process, event handlers and message exchanges. However, BPMN cannot model the

2.38

2.5. Multi-agent systems

existing objects and their transitions, like IDEF3 object schematics can.
As a constraint-based notation, PSL has more expressive power than BPMN. However,

it is also much harder to use than BPMN, and there are fewer tools for it: only Tau and
Vampire, two theorem provers. Messaging is still not part of the PSL standard: once it is
included, it would be interesting to translate BPMN to PSL and then enhance the PSL
description.
VSM is a much simpler notation than BPMN and only provides a very high-level picture

of the process, focusing on the material and information flows rather than the exact
sequence of operations. For this reason, VSM is observed to complement BPMN: the
former is a quick pen-and-paper tool for iterative process improvement, and the latter is
for detailed process design and enactment.

As it is, BPMN 2.0 is recommended for two areas: describing the information-intensive
activities which support the manufacturing process, and describing repetitive manufacturing
processes with few variations. For describing families of interrelated manufacturing
processes with high degrees of flexibility, PSL would be the best choice: however, the tools
for PSL could be improved.

2.5 Multi-agent systems
Section 2.2 presented several conceptual views of the extended enterprise. All these views
modelled the enterprise as a set of individual entities that interacted in some manner. The
major difference between these proposals was the actual way in which they interacted.
From the point of view of the distributed artificial intelligence research community,

these individual entities would be usually represented as “agents”. According to the
Foundation for Intelligent Physical Agents (FIPA) reference architecture [26], an agent is
“a computational process that implements the autonomous, communicating functionality
of an application”. Leitão [52] mentions several other definitions and provides a more
exhaustive definition of an agent as “an autonomous component that represents physical
or logical objects in the system, capable to act in order to achieve its goals, and being able
to interact with other agents, when it does not possess knowledge and skills to reach alone
its objectives”. While the FIPA definition only considers agents as separate entities that
can talk to each other, the definition provided by Leitão explicitly considers the ability to
cooperate with other agents to meet its own goals and the fact that an agent may operate
physical objects in the real world.

2.5.1 Applications
Agent-based systems have many applications in intelligent manufacturing. Shen et al. [74]
classified the existing approaches into five categories. Each of these categories below will
be examined below.

2.5.1.1 Enterprise integration

Enterprise integration attempts to join all the separate information systems normally used
at most enterprises into an uniform whole, in order to optimise its performance. In this
situation, agents would normally wrap the existing legacy systems and provide additional

2.39

2. Concepts of next-generation manufacturing systems

intelligence. Proposals in this area largely vary on their scope and abstraction level, from
enterprise-wide reference architectures to dynamic workflow composition engines.
Nahm and Ishikawa [61] proposed a hybrid multi-agent system architecture with two

basic types of agents: hybrid behaviour agents (HBAs) that respond to events and monitor
their environment, and hybrid interaction agents (HIAs) that act as mediators between
HBAs. The architecture was tested by modelling a collaborative product development
environment, with several subtypes of HBAs and HIAs that were specific to the problem
domain.
Lea et al. [50] presented a prototype of a multi-agent ERP system combining four

types of agents: task agents that performed the actual work, data collection agents that
accessed existing data stores, coordination agents that joined the agents in each department
together, and interface agents that interacted with the human users of the system. Using
these agents, Lea et al. showed how an order could be evaluated by a collaboration between
the agents of the marketing, accounting, inventory and logistics departments.

As an alternative to explicit workflows such as those written in a complete WS-BPEL or
BPMN process description (see Section 2.4.4), Poggi et al. [67] used agents to dynamically
compose web services based on the current environment. An existing agent platform was
integrated with a business rule engine, an ontology engine and distributed trust handling.
A custom engine implemented a subset of the BPEL [63] specification, completing an
abstract model by using rule inference and collaborations between agents.

2.5.1.2 Enterprise collaboration

Collaborations between enterprises can take many forms, such as supply chains, virtual
enterprises or extended enterprises. Integrating extended enterprises would be handled
basically in the same way as a regular one: it would be a matter of increasing the scale and
the complexity of the system, as the boundaries between the collaborating organisations
would need to be explicitly addressed.

Fox et al. [28] defined a supply chain as “a set of activities which span enterprise
functions from the ordering and receipt of raw materials from the manufacturing of
products through the distribution and delivery to the customer” and proposed using agents
to handle the complex dynamic problems that they presented. Several kinds of functional
agents would be required: 1. order acquisition agents that received orders from clients and
negotiated terms and changes, 2. logistics agents that coordinated the plants, suppliers
and distribution centres, 3. transportation agents that assigned and scheduled inter-plant
movement requests, 4. scheduling agents that coordinated requests from the resource
agents with the production schedules of the logistics agents and considered trade-offs when
solving unfeasible situations, 5. resource agents monitor inventory levels and send purchase
requests in order to meet the schedule and 6. dispatching agents perform the order release
and real-time floor control functions, delegating on the scheduling agent when deviations
from the schedule happen.
More recently, Sadeh et al. [73] proposed the Multi-Agent Supply Chain cOordination

Tool (MASCOT). Instead of multiple kinds of agents, Sadeh et al. suggests using a single
agent per enterprise and per site. The internal architecture of these agents is considerably
more complex, as shown in Figure 2.26. A MASCOT agent contains a set of Knowledge
Sources (KS) sharing a common data store (a “blackboard”) and is operated through a
graphical user interface. KS range from communication systems with the existing systems

2.40

2.5. Multi-agent systems

Figure 2.26. Architecture of a MASCOT agent [73]

in the organisation, to BOM databases, order management systems and scheduling systems,
among others. Agents can work on multiple problems at the same time, using a different
“context” for each of them.

2.5.1.3 Planning and scheduling

Manufacturing process planning and scheduling requires the selection and sequencing of
manufacturing processes in order to achieve certain goals while meeting specific constraints.
Most real-world scheduling problems are considered to be hard enough that an optimal
solution is too expensive to compute, so practitioners must settle for “good enough”
solutions using heuristic algorithms. Using these algorithms in a centralised approach
may produce better results than using a distributed approach, but only if no disturbances
appear, and with the added complexity and risk of having a single point of failure and
a bottleneck in the central scheduler. On the other hand, a distributed system may be
able to react more quickly to problems and may keep complexity down by relying on the
emergent behaviour of all the separate agents [65].
Yet Another Manufacturing System (Yams) is one of the first multi-agent systems for

process planning and scheduling [66]. It was based on the contract net model. After
posting a job offer, “Manager” agents would collect “Bid” messages from the “Bidder”
agents and send an “Award” message to the most suitable one. The “Bidder” would then
periodically send status or termination report, and the “Manager” could terminate the
contract at any time. In order to reduce communication overhead, agents were organised
as a hierarchy mimicking the organisation of the manufacturing company, its plants and
its equipment. Agents could only communicate with their children, their parents and their
siblings.

Since then, a considerable number of proposals have been published. Most of them are

2.41

2. Concepts of next-generation manufacturing systems

Figure 2.27. Contract net for scheduling steel milling and casting [18]

also based on market-oriented approaches, such as auctions based on delivery times or
virtual currencies which combine manufacturing cost with delays [1, 17, 18, 32, 51].

Cowling et al. [18] is particularly interesting, as it combines contract nets with traditional
scheduling algorithms and rescheduling strategies for scheduling steel casting and milling.
There are four kinds of agents: user agents, slabyard (SY) agents, hot strip milling (HSM)
agents and continuous caster (CC) agents. HSM and CC agents have their own internal
scheduling algorithms and rescheduling strategies. SY agents act as mediators between
the HSM and CC agents. Inter-agent cooperation is performed through a bid mechanism
(shown in Figure), in which HSM requests slabs from the slabyard, which may request
new slabs if necessary. Schedules are repaired by selecting a strategy that maximises
“robustness”, a metric that combines the efficiency of a schedule with the stability of the
completion times.

2.5.1.4 Shop floor control

Manufacturing shop floor control relates to strategies and algorithms for operating a
manufacturing plant, taking into account both the present and past observed states and
the demand from the market. Shop floor control can work at several levels of abstraction.
At a high level, it is mostly concerned with distributing work efficiently through the

manufacturing resources in order to meet the schedules and maximise production levels.
As it can be considered as a particular case of agent-based scheduling, it will not be
discussed further.
On the other hand, at a low level, agents may need to control individual resources

in order to implement a specific production process. For instance, Brückner et al. [8]
proposed using agents to control some of the painting steps in the Daimler-Benz AG car
plant, as the seemingly simple process had problems with feedback loops and buffering
due to failed quality checks.
Tseng et al. [81] use agents to wrap incoming jobs and physical resources for a flexible

2.42

2.5. Multi-agent systems

manufacturing system, which needs to implement mass customisation capabilities. Agents
coordinate through an auction mechanism, in which the price charged by the manufacturing
agents to the job agents depends on their capability, utilisation and delivery times.

Bussmann and Schild [10] use agents to control another flexible manufacturing system
that distributes workpieces over several machines connected by forwards, backwards and
supply conveyors. Workpiece agents bid for jobs and machines post offers for them as
long as workpieces are properly leaving their storage areas. This prevents bottlenecks in
the system. The workpiece and switching table agents collaborate in order to implement
dynamic routing.
Agents are also useful for process control beyond manufacturing. Tatara et al. [78]

used an adaptive multi-agent system to control a network of geographically distributed
chemical reactors, due to the non-linearity of the chemical process involved. Agents can
change their local objectives in order to meet global objectives, and communicate through
a shared knowledge environment that promotes ideas through reinforcement.

2.5.1.5 Holonic Manufacturing Systems

Holons were previously described in Section 2.2 as a way to conceptualise the enterprise.
A holon is an autonomous entity that is formed by several lower-level entities or wraps a
physical object, and that in turn is part of several higher-level holons in the holarchy.
The concept of a holon is quite similar to that of an agent, but there are some slight

differences. Leitão [52] points out that agents were conceived in the distributed artificial
intelligence area (by computer scientists) and that holons were conceived in the computer-
integrated manufacturing area. While agents are both a concept and a set of technologies,
holons are only conceptual. Holons are built through lower level holons, while agents
are normally standalone entities that collaborate and communicate. Holons also tend to
accommodate better wrapping physical entities and their real-time constraints.

A large number of proposals in the HMS literature are based on the PROSA architecture
(see Section 2.2). For instance, FABMAS is a PROSA-based system that implements
holons through a multi-agent system for controlling a semiconductor wafer fabrication
facility [59]. Giret Boggino [31] is a PROSA-based methodology using FIPA standards for
the system architecture. However, not all of them are, such as the holonic supply chain
management system by Ulieru and Cobzaru [82]. This system uses a two-level holarchy,
with a multi-enterprise level that integrates customers, order managers, logistics, transport
and banking, and an enterprise level that covers the suppliers and the plants. Agents are
equipped with rule-based inference engines in a custom language, and use contract nets
for negotiation.
Most approaches also rely on the FIPA specifications [27] or the IEC 61499 function

block abstraction [37]. Deen [20] presented a holonic architecture that uses IEC 61499 for
both low and high level control and FIPA for high level control.

2.5.2 Agent platforms
At the date of this writing (24th November 2013), FIPA lists 10 different agent platforms
in their official website2. Among these, the Java Agent DEvelopment (JADE) framework

2http://fipa.org/resources/livesystems.html

2.43

http://fipa.org/resources/livesystems.html

2. Concepts of next-generation manufacturing systems

Pl
at
fo
rm

Li
ce
ns
e

FI
PA

-b
as
ed

W
eb

sit
e

Fe
at
ur
es

A
ge
nt
Fa

ct
or
y

LG
PL

Ye
s

ww
w.

ag
en

tf
ac

to
ry

.c
om

D
iv
id
ed

in
to

a
ru
nt
im

ee
nv

iro
nm

en
ta

nd
a
co
m
-

m
on

ag
en
t
la
ng

ua
ge

fra
m
ew

or
k,

w
ith

su
pp

or
t

fo
r
m
ul
tip

le
la
ng

ua
ge
s.

C
ou

ga
ar

BS
D
-b
as
ed

N
o

co
ug

aa
r.

or
g

A
ge
nt

be
ha

vi
ou

r
is

pl
ug

ge
d

in
to

th
e
fra

m
e-

wo
rk
’s

ag
en
ts
.
Pr

ov
id
es

m
es
sa
gi
ng

,
na

m
in
g,

m
ob

ili
ty
,b

la
ck
bo

ar
ds

an
d
ex
te
rn
al

U
Is
.

FI
PA

-O
S

C
us
to
m

Ye
s

so
ur

ce
fo

rg
e.

ne
t/

pr
oj

ec
ts

/f
ip

a-
os

Ja
va
-b
as
ed
.

Im
pl
em

en
ts

m
os
t
FI

PA
ex
pe

ri-
m
en
ta
ls
pe

cifi
ca
tio

ns
.N

ot
up

da
te
d
sin

ce
20

01
.

G
O
R
IT

E
LG

PL
N
o

ww
w.

in
te

nd
ic

o.
co

m/
go

ri
te

Ja
va
-b
as
ed
.

A
ge
nt
s
ar
e
or
ga
ni
se
d

in
go
al
-

or
ie
nt
ed

te
am

s
us
in
g
a
BD

If
ra
m
ew

or
k.

JA
C
K

®
Pr

op
rie

ta
ry

N
o

ww
w.

ag
en

t-
so

ft
wa

re
.c

om
Ja
va
-b
as
ed
.

A
ge
nt
s
ar
e
de
fin

ed
us
in
g

BD
I.

Su
pp

or
ts

m
ob

ile
de
vi
ce
s,

te
am

s
an

d
sim

ul
a-

tio
n.

JA
D
E

LG
PL

Ye
s

ja
de

.t
il

ab
.c

om
Ja
va
-b
as
ed
.

A
ge
nt
s
ca
n

be
m
ov
ed

be
tw

ee
n

co
m
pu

te
rs
.

O
pt
io
na

l
su
pp

or
t
fo
r
se
m
an

tic
s,

m
ob

ile
ag
en
ts
,w

or
kfl

ow
s
an

d
we

b
se
rv
ic
es
.

Ja
nu

s
G
PL

v3
Pa

rt
ia
lly

ja
nu

s-
pr

oj
ec

t.
or

g
Ja
va
-b
as
ed
.

U
se
s

th
e

C
ap

ac
ity

-R
ol
e-

In
te
ra
ct
io
n-
O
rg
an

isa
tio

n
m
et
am

od
el
.

Su
p-

po
rt
s
re
cu
rs
iv
e/
m
ob

ile
ag
en
ts

an
d
ho

lo
ns
.

M
aD

K
it

G
PL

Pa
rt
ia
lly

ww
w.

ma
dk

it
.o

rg

Ja
va
-b
as
ed
.

U
se
s
th
e
A
ge
nt
-G

ro
up

-R
ol
e
or
-

ga
ni
sa
tio

na
lm

od
el

an
d
im

pl
em

en
ts

ar
tifi

ci
al

so
ci
et
ie
s.

Su
pp

or
ts

sim
ul
at
io
n
an

d
pr
ov

id
es

di
st
rib

ut
ed

ap
pl
ic
at
io
n
au

th
or
in
g
to
ol
s.

M
ob

ile
C

Pr
op

rie
ta
ry

Ye
s

ww
w.

mo
bi

le
c.

or
g

C+
+
-b
as
ed

.A
ge
nt
sa

re
im

pl
em

en
te
d
in

a
po

rt
-

ab
le

su
pe

rs
et

of
C9

0
an

d
ru
n
in

an
in
te
rp
re
te
r.

Ze
us

C
us
to
m

Ye
s

so
ur

ce
fo

rg
e.

ne
t/

pr
oj

ec
ts

/z
eu

sa
ge

nt
Ja
va
-b
as
ed
.
In
cl
ud

es
a
ru
le

en
gi
ne
,a

pl
an

ne
r

an
d
m
on

ito
rin

g
to
ol
s.

N
ot

up
da

te
d
sin

ce
20

01
.

T
ab

le
2.
3.

A
co
m
pa

ris
on

of
th
e
cu
rr
en
tly

av
ai
la
bl
e
ag
en
t
pl
at
fo
rm

s

2.44

http://www.agentfactory.com
http://cougaar.org
http://sourceforge.net/projects/fipa-os
http://www.intendico.com/gorite
http://www.agent-software.com
http://jade.tilab.com
http://janus-project.org
http://www.madkit.org
http://www.mobilec.org
http://sourceforge.net/projects/zeusagent

References

and JACK® seem to be the most actively developed. FIPA-OS is still available, but it
has not been updated since 2009. FIPA-OS and JADE are open source platforms, while
JACK® appears to be a closed source commercial product. The official website for Zeus is
no longer available, but the code can be still downloaded.

Searching “agent software” through Google3 and Wikipedia4,5 and the survey by Nikolai
and Madey [62] yielded several other results. A large number of these systems were
dedicated to agent-based simulation rather than implementing real systems and were
discarded. Others had not received any updates in over 3 years, or were no longer
available.

Table 2.3 lists the main features of each of the agent platforms. In general, most of these
platforms are largely based on Java and are for academic purposes, except for JACK® and
MobileC, which are commercial products. Judging from the activity in mailing lists and
forums, JADE seems to have the most active user community by far. JADE has been
extended to handle mobile agents (JADE-LEAP), integrate with Eclipse (eJade6) and
handle semantic technologies (SemanticAgent7), among others.

However, one of the most interesting recent contribution to JADE for the present work
is the Workflows and Agents Development Environment (WADE) [11]. WADE provides
a set of Java libraries that allow users to implement agents using a workflow paradigm,
much like that of the process notations listed in Section 2.4.1 or Section 2.4.4. Instead of
defining its own abstract notation, workflows are implemented through regular Java code.

References
[1] S. Adhau, M. Mittal, and A. Mittal. A multi-agent system for distributed multi-

project scheduling: An auction-based negotiation approach. Engineering Applications
of Artificial Intelligence, December 2011. ISSN 0952-1976. doi: 10.1016/j.engappai.
2011.12.003. 2.42

[2] R. S. Aguilar-Savén. Business process modelling: Review and framework. International
Journal of Production Economics, 90(2):129–149, July 2004. ISSN 0925-5273. doi:
10.1016/S0925-5273(03)00102-6. 2.28

[3] R. Babiceanu and F. Chen. Development and applications of holonic manufacturing
systems: A survey. Journal of Intelligent Manufacturing, 17(1):111–131, 2006. ISSN
0956-5515. doi: 10.1007/s10845-005-5516-y. 2.11

[4] C. Bock. Interprocess communication in the process specification language. Technical
Report NISTIR 7348, National Institute of Standards and Technology, Gaithersburg,
MD, USA, October 2006. 2.38

[5] C. Bock and M. Gruninger. PSL: a semantic domain for flow models. Software & Sys-
tems Modeling, 4(2):209–231, 2005. ISSN 1619-1366. doi: 10.1007/s10270-004-0066-x.
2.29

3http://www.google.com
4https://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software
5https://en.wikipedia.org/wiki/Category:Agent-based_software
6http://selab.fbk.eu/dnguyen/ejade/index.html
7https://code.google.com/p/semanticagent/

2.45

http://www.google.com
https://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software
https://en.wikipedia.org/wiki/Category:Agent-based_software
http://selab.fbk.eu/dnguyen/ejade/index.html
https://code.google.com/p/semanticagent/

References

[6] J. Browne, I. Hunt, and J. Zhang. The Extended Enterprise (EE). In L. M. Camarinha-
Matos, H. Afsarmanes, and V. Merik, editors, Intelligent Systems for Manufacturing:
Multi-Agent Systems and Virtual Organizations, pages 3–30. Kluwer Academic Pub-
lishers, Londres, 1998. 2.10

[7] H. V. Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, and P. Peeters. Reference
architecture for holonic manufacturing systems: PROSA. Computers in Industry, 37
(3):255–274, November 1998. ISSN 0166-3615. 2.5, 2.11

[8] S. Brückner, J. Wyns, P. Peeters, and M. Kollingbaum. Designing agents for manu-
facturing control. In Proceedings of the 2nd AI & Manufacturing Research Planning
Workshop, pages 40–46, 1998. 2.42

[9] S. Bussmann. An agent-oriented architecture for holonic manufacturing control. In
Proceedings of the First Open Workshop IMS Europe, Lausanne, Switzerland, 1998.
URL http://stefan-bussmann.de/downloads/ims98.pdf. 2.6

[10] S. Bussmann and K. Schild. An agent-based approach to the control of flexible produc-
tion systems. In 2001 8th IEEE International Conference on Emerging Technologies
and Factory Automation, 2001. Proceedings, volume 2, pages 481 –488 vol.2, October
2001. doi: 10.1109/ETFA.2001.997722. 2.43

[11] G. Caire, D. Gotta, and M. Banzi. WADE: a software platform to develop mission
critical applications exploiting agents and workflows. In Proceedings of the 7th inter-
national joint conference on Autonomous agents and multiagent systems: industrial
track, pages 29–36, 2008. 2.45

[12] L. M. Camarinha-Matos and H. Afsarmanesh. Elements of a base VE infrastructure.
Computers in Industry, 51(2):139–163, June 2003. ISSN 01663615. doi: 10.1016/
S0166-3615(03)00033-2. 2.1

[13] D. Chen, B. Vallespir, and G. Doumeingts. GRAI integrated methodology and its
mapping onto generic enterprise reference architecture and methodology. Computers
in Industry, 33(2–3):387–394, September 1997. ISSN 0166-3615. doi: 10.1016/
S0166-3615(97)00043-2. 2.13, 2.18

[14] P. P.-s. Chen. The entity-relationship model: Toward a unified view of data. ACM
Transactions on Database Systems, 1:9–36, 1976. 2.13

[15] C.-M. Chituc, C. Toscano, and A. Azevedo. Interoperability in collaborative networks:
Independent and industry-specific initiatives – the case of the footwear industry.
Computers in Industry, 59(7):741–757, September 2008. ISSN 0166-3615. 2.2

[16] J. H. Christensen. Holonic manufacturing systems: Initial architecture and standards
directions. In Proceedings of the First European Conference on Holonic Manufacturing
Systems, Hannover, Germany, December 1994. 2.5, 2.6

[17] G. Confessore, S. Giordani, and S. Rismondo. A market-based multi-agent system
model for decentralized multi-project scheduling. Annals of Operations Research, 150
(1):115–135, 2007. ISSN 0254-5330. doi: 10.1007/s10479-006-0158-9. 2.42

2.46

http://stefan-bussmann.de/downloads/ims98.pdf

References

[18] P. I. Cowling, D. Ouelhadj, and S. Petrovic. Dynamic scheduling of steel casting and
milling using multi-agents. Production Planning & Control, 15(2):178–188, 2004. 2.42

[19] M. V. de Castro. Aproximación MDA para el desarrollo orientado a servicios de
sistemas de información web: del modelo de negocio al modelo de composición de
servicios web. PhD thesis, Universidad Rey Juan Carlos, March 2007. 2.9

[20] S. M. Deen. HMS/FB architecture and its implementation. In Agent Based Manufac-
turing: Advances in the Holonic Approach. Springer, July 2003. ISBN 9783540440697.
2.43

[21] D. M. Dilts, N. P. Boyd, and H. H. Whorms. The evolution of control architectures
for automated manufacturing systems. Journal of Manufacturing Systems, 10(1):
79–93, 1991. ISSN 0278-6125. 2.4, 2.5, 2.10

[22] G. Doumeingts, Y. Ducq, B. Vallespir, and S. Kleinhans. Production management
and enterprise modelling. Computers in Industry, 42(2–3):245–263, June 2000. ISSN
0166-3615. doi: 10.1016/S0166-3615(99)00074-3. 2.13

[23] G. Engels, A. Hess, B. Humm, O. Juwig, M. Lohmann, J. Richter, M. Voß, and
J. Willkomm. A method for engineering a true Service-Oriented Architecture. In
J. Cordeiro and J. Filipe, editors, Proceedings of the 10th International Conference
on Enterprise Information Systems, pages 272–281, Barcelona, España, 2008. ISBN
978-989-8111-38-8. 2.9

[24] T. Erl. SOA: Principles of Service Design. Prentice Hall, Indiana, EEUU, 2008. ISBN
0132344823. 2.9

[25] M. Fletcher, E. Garcia-Herreros, J. Christensen, S. Deen, and R. Mittmann. An open
architecture for holonic cooperation and autonomy. In 11th International Workshop
on Database and Expert Systems Applications, 2000. Proceedings, pages 224–230, 2000.
doi: 10.1109/DEXA.2000.875031. 2.6, 2.7

[26] Foundation for Intelligent Physical Agents. FIPA abstract architecture specifica-
tion SC00001L, December 2002. URL http://www.fipa.org/specs/fipa00001/
SC00001L.pdf. Last checked: November 6th, 2013. 2.7, 2.39

[27] Foundation for Intelligent Physical Agents. FIPA standard status specifications,
2002. URL http://www.fipa.org/repository/standardspecs.html. Last checked:
November 6th, 2013. 2.43

[28] M. S. Fox, J. F. Chionglo, and M. Barbuceanu. The integrated supply chain man-
agement system. Technical report, University of Toronto, Department of Industrial
Engineering, 1993. 2.40

[29] G. Doumeingts, B. Vallespir, M. Zannittin, and D. Chen. GIM-GRAI integrated
methodology, a methodology for designing CIM systems, version 1.0. Technical report,
University Bordeaux, Bordeaux, France, May 1992. 2.13

[30] S. Ghosh, A. Arsanjani, and A. Allam. SOMA: a method for developing service-
oriented solutions. IBM Systems Journal, 47(3):377–396, 2008. 2.9

2.47

http://www.fipa.org/specs/fipa00001/SC00001L.pdf
http://www.fipa.org/specs/fipa00001/SC00001L.pdf
http://www.fipa.org/repository/standardspecs.html

References

[31] A. Giret Boggino. ANEMONA: una metodología multiagente para sistemas holónicos
de fabricación. PhD thesis, Universidad Politécnica de Valencia, July 2005. 2.9, 2.43

[32] D. Goldberg, V. Cicirello, M. B. Dias, R. Simmons, S. Smith, and A. Stentz. Task
allocation using a distributed market-based planning mechanism. In Proceedings
of the second international joint conference on Autonomous agents and multiagent
systems, pages 996–997, 2003. 2.42

[33] IBM Corporation, MESA International, and Capgemini. SOA in Manufacturing
Guidebook, May 2008. 2.8

[34] IFAC/IFIP Task Force. GERAM: generalised enterprise reference architecture
and methodology, March 1999. URL http://www.ict.griffith.edu.au/~bernus/
taskforce/geram/versions/geram1-6-3/v1.6.3.html. 2.18, 2.19, 2.20

[35] International Electrotechnical Commission. IEC/FDIS 62264-1:2003 – enterprise-
control system integration – part 1: Models and terminology, 2003. 2.23, 2.25, 2.26,
2.27

[36] International Electrotechnical Commission. IEC/FDIS 62264-2:2004 – enterprise-
control system integration – part 2: Model object attributes, 2004. 2.25

[37] International Electrotechnical Commission. Function blocks - part 1: Architecture.
Technical Report IEC 61499-1, IEC, 2005. 2.43

[38] International Electrotechnical Commission. IEC/DIS 62264-3:2007 – enterprise-control
system integration – part 3: Activity models of manufacturing operations management,
2007. 2.25, 2.26, 2.28

[39] International Standards Organization. ISO 15704 – industrial automation systems –
requirements for enterprise-reference architectures and methodologies, August 1999.
2.18

[40] International Standards Organization. ISO 18629-1 – process specification language –
part 1: Overview and basic principles, 2004. 2.29

[41] International Standards Organization. ISO 19439 – enterprise integration – framework
for enterprise modelling, 2006. 2.21

[42] International Standards Organization. ISO 19440 – enterprise integration – constructs
for enterprise modelling, 2007. 2.21

[43] K. Johansen, M. Comstock, and M. Winroth. Coordination in collaborative man-
ufacturing mega-networks: a case study. Journal of Engineering and Technology
Management, 22(3):226–244, September 2005. ISSN 0923-4748. 2.1, 2.10

[44] A. Knutilla, C. Schlenoff, S. Ray, S. T. Polyak, A. Tate, S. C. Cheah, and R. C.
Anderson. Process specification language: An analysis of existing representations.
Technical Report NISTIR 6133, National Institute of Standards and Technology,
Gaithersburg, MD, USA, 1998. 2.28

2.48

http://www.ict.griffith.edu.au/~bernus/taskforce/geram/versions/geram1-6-3/v1.6.3.html
http://www.ict.griffith.edu.au/~bernus/taskforce/geram/versions/geram1-6-3/v1.6.3.html

References

[45] A. Koestler. Some general properties of self-regulating open hierarchic order (SOHO).
In A. Koestler and J. R. Smythies, editors, Beyond Reductionism: New Perspectives
In The Life Sciences. Houghton Mifflin Co, 1971. ISBN 0807015350. 2.11

[46] A. Koestler. The Ghost in the Machine. Penguin Books, June 1990. ISBN 978-
0140191929. 2.5, 2.11

[47] K. Kosanke. CIMOSA – overview and status. Computers in Industry, 27(2):101–109,
October 1995. ISSN 0166-3615. doi: 10.1016/0166-3615(95)00016-9. 2.15, 2.17

[48] K. Kosanke and M. Zelm. CIMOSA modelling processes. Computers in Industry, 40
(2–3):141–153, November 1999. ISSN 0166-3615. doi: 10.1016/S0166-3615(99)00020-2.
2.15, 2.18

[49] K. Kosanke, F. Vernadat, and M. Zelm. CIMOSA: enterprise engineering and
integration. Computers in Industry, 40(2–3):83–97, November 1999. ISSN 0166-3615.
doi: 10.1016/S0166-3615(99)00016-0. 2.15

[50] B.-R. Lea, M. C. Gupta, and W.-B. Yu. A prototype multi-agent ERP system: an
integrated architecture and a conceptual framework. Technovation, 25(4):433–441,
2005. ISSN 0166-4972. doi: 10.1016/S0166-4972(03)00153-6. 2.40

[51] Y.-H. Lee, S. R. T. Kumara, and K. Chatterjee. Multiagent based dynamic resource
scheduling for distributed multiple projects using a market mechanism. Journal of
Intelligent Manufacturing, 14(5):471–484, 2003. ISSN 0956-5515. doi: 10.1023/A:
1025753309346. 2.42

[52] P. Leitão. Agent-based distributed manufacturing control: A state-of-the-art survey.
Engineering Applications of Artificial Intelligence, 22(7):979–991, October 2009. ISSN
0952-1976. 2.6, 2.7, 2.11, 2.12, 2.39, 2.43

[53] F. Macia-Perez, J. V. Berna-Martinez, D. Marcos-Jonquera, I. Lorenzo-Fonseca, and
A. Ferrandiz-Colmeiro. A new paradigm: cloud agile manufacturing. International
Journal of Advanced Science and Technology, 45:47–54, August 2012. ISSN 2005-4238.
2.8

[54] Manufuture High Level Group. Manufuture: a vision for 2020. Technical report,
European Commission, Brussels, Belgium, November 2004. ISBN 92-894-8322-9. 2.1

[55] M. Marcos, F. Aguayo, M. Sánchez Carrilero, L. Sevilla, and J. R. Lama. Toward the
next generation of manufacturing systems. Frabiho: a synthesis model for distributed
manufacturing. In Proceedings of the First I*proms Virtual Conference, pages 35–40.
Elsevier, 2005. 2.10, 2.11

[56] V. Marik, M. Fletcher, and M. Pechoucek. Holons & agents: Recent developments and
mutual impacts. In V. Marik, O. Stepankova, H. Krautwurmova, and M. Luck, editors,
Multi-Agent Systems and Applications II, volume 2322 of Lecture Notes in Computer
Science, pages 89–106. Springer Berlin / Heidelberg, 2002. ISBN 978-3-540-43377-4.
2.6

2.49

References

[57] R. J. Mayer, C. P. Menzel, M. K. Painter, P. S. de Witte, T. Blinn, and B. Perakath.
IDEF3 process description capture method report. Interim Technical Report AL-TR-
1995-XXXX, Knowledge Based Systems Inc., Texas, USA, September 1995. 2.28

[58] L. Monostori, J. Váncza, and S. Kumara. Agent-based systems for manufacturing.
CIRP Annals - Manufacturing Technology, 55(2):697–720, 2006. ISSN 0007-8506. doi:
10.1016/j.cirp.2006.10.004. 2.7

[59] L. Mönch, M. Stehli, and J. Zimmermann. FABMAS: an agent-based system for pro-
duction control of semiconductor manufacturing processes. In V. Marík, D. McFarlane,
and P. Valckenaers, editors, Holonic and Multi-Agent Systems for Manufacturing,
volume 2744 of Lecture Notes in Computer Science, pages 258–267. Springer Berlin /
Heidelberg, 2003. ISBN 978-3-540-40751-5. 2.43

[60] F. Nachira. Towards a network of digital business ecosystems fostering the local
development. Discussion paper, European Commission, Brussels, Belgium, Septem-
ber 2002. URL http://www.digital-ecosystems.org/doc/discussionpaper.pdf.
Last checked: November 6th, 2013. 2.1, 2.2

[61] Y.-E. Nahm and H. Ishikawa. A hybrid multi-agent system architecture for enterprise
integration using computer networks. Robotics and Computer-Integrated Manufac-
turing, 21(3):217–234, June 2005. ISSN 0736-5845. doi: 10.1016/j.rcim.2004.07.016.
2.40

[62] C. Nikolai and G. Madey. Tools of the trade: A survey of various agent based modeling
platforms. Journal of Artificial Societies and Social Simulation, 12(2):2, 2009. 2.7,
2.45

[63] OASIS. Web Service Business Process Execution Language (WS-BPEL) 2.0, April
2007. URL http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.
Last checked: November 6th, 2013. 2.30, 2.40

[64] Object Management Group. Business process model and notation 2.0, January 2011.
URL http://www.omg.org/spec/BPMN/2.0/. Last checked: November 6th, 2013.
2.28, 2.31

[65] D. Ouelhadj and S. Petrovic. A survey of dynamic scheduling in manufacturing
systems. Journal of Scheduling, 12(4):417–431, 2009. ISSN 1094-6136. doi: 10.1007/
s10951-008-0090-8. 2.41

[66] H. V. D. Parunak. Manufacturing experience with the contract net. Distributed
Artificial Intelligence, 1:285–310, 1987. 2.4, 2.41

[67] A. Poggi, M. Tomaiuolo, and P. Turci. An agent-based service oriented architecture.
In Proc. 8th AI* IA/TABOO Joint Workshop From Objects to Agents: Agents and
Industry: Technological Applications of Software Agents, Genova, pages 157–165, 2007.
2.40

[68] R. Poler, F. Lario, and G. Doumeingts. Dynamic modelling of decision systems
(DMDS). Computers in Industry, 49(2):175–193, October 2002. ISSN 0166-3615. doi:

2.50

http://www.digital-ecosystems.org/doc/discussionpaper.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0/

References

10.1016/S0166-3615(02)00083-0. URL http://www.sciencedirect.com/science/
article/pii/S0166361502000830. 2.13, 2.14

[69] J. T. Pollock. The big issue: Interoperability vs integration. eAI Journal, October
2001. URL http://me.jtpollock.us/pubs/2001.08-BigIssue_eAIJournal.pdf.
2.2

[70] L. Ribeiro, J. Barata, and P. Mendes. MAS and SOA: complementary automation
paradigms. In A. Azevedo, editor, Innovation in Manufacturing Networks, volume 266
of IFIP International Federation for Information Processing, pages 259–268. Springer
Boston, 2008. ISBN 978-0-387-09491-5. 2.8

[71] M. Rother and J. Shook. Learning to See: Value Stream Mapping to Add Value and
Eliminate MUDA. Lean Enterprise Institute, June 1999. ISBN 978-0966784305. 2.30

[72] K. Ryu and M. Jung. Agent-based fractal architecture and modelling for developing
distributed manufacturing systems. International Journal of Production Research, 41
(17):4233–4255, 2003. ISSN 0020-7543. doi: 10.1080/0020754031000149275. 2.4, 2.5

[73] N. M. Sadeh, D. W. Hildum, and D. Kjenstad. Agent-based e-supply chain decision
support. Journal of Organizational Computing and Electronic Commerce, 13(3-4):
225–241, 2003. 2.40, 2.41

[74] W. Shen, Q. Hao, H. J. Yoon, and D. H. Norrie. Applications of agent-based systems
in intelligent manufacturing: An updated review. Advanced Engineering Informatics,
20(4):415–431, October 2006. ISSN 1474-0346. 2.3, 2.4, 2.10, 2.39

[75] N. Spanoudakis and P. Moraitis. Using ASEME methodology for model-driven agent
systems development. In D. Weyns and M.-P. Gleizes, editors, Agent Oriented Software
Engineering XI, volume 6788 of Lecture Notes in Computer Science (LNCS), pages
106–127. Springer-Verlag Berlin Heidelberg, 2011. 2.9

[76] Z. Stojanović. A Method for Component-Based and Service-Oriented Software Systems
Engineering. PhD thesis, Delft University of Technology, 2005. 2.9

[77] D. Tapia, S. Rodríguez, J. Bajo, and J. Corchado. FUSION@: a SOA-based multi-
agent architecture. In J. Corchado, S. Rodríguez, J. Llinas, and J. Molina, editors,
International Symposium on Distributed Computing and Artificial Intelligence 2008
(DCAI 2008), volume 50, pages 99–107. Springer Berlin/Heidelberg, 2009. 2.8

[78] E. Tatara, M. North, C. Hood, F. Teymour, and A. Cinar. Agent-based control of
spatially distributed chemical reactor networks. In S. Brueckner, G. Di Marzo Seru-
gendo, D. Hales, and F. Zambonelli, editors, Engineering Self-Organising Systems,
volume 3910 of Lecture Notes in Computer Science, pages 222–231. Springer Berlin /
Heidelberg, 2006. ISBN 978-3-540-33342-5. 2.43

[79] A. Tharumarajah, A. Wells, and L. Nemes. Comparison of emerging manufacturing
concepts. In Proceedings of the 1998 IEEE International Conference on Systems,
Man, and Cybernetics, pages 325–331, California, EEUU, 1998. 2.10

2.51

http://www.sciencedirect.com/science/article/pii/S0166361502000830
http://www.sciencedirect.com/science/article/pii/S0166361502000830
http://me.jtpollock.us/pubs/2001.08-BigIssue_eAIJournal.pdf

References

[80] The Open Group. The Open Group Architecture Framework (TOGAF) Version 9.1.
The Open Group, 2011. ISBN 978-90-8753-679-4. 2.22

[81] M. M. Tseng, M. Lei, C. Su, and M. E. Merchant. A collaborative control system for
mass customization manufacturing. CIRP Annals - Manufacturing Technology, 46(1):
373–376, 1997. ISSN 0007-8506. doi: 10.1016/S0007-8506(07)60846-4. 2.42

[82] M. Ulieru and M. Cobzaru. Building holonic supply chain management systems: an
e-logistics application for the telephone manufacturing industry. IEEE Transactions
on Industrial Informatics, 1(1):18–30, 2005. ISSN 1551-3203. doi: 10.1109/TII.2005.
843827. 2.43

[83] J. Vaario and K. Ueda. Biological concept of self-organization for dynamic shop-
floor configuration. In N. Okino, T. Hiroyuki, and F. Susumu, editors, Selected,
revised proceedings of the IFIP TC5/WG5.7 International Conference on Advances in
Production Management Systems, volume 114 of IFIP Conference Proceedings, pages
55–66, Kyoto, Japan, November 1996. Chapman & Hall. ISBN 0-412-82350-0. 2.4,
2.10

[84] H. Warnecke. The Fractal Company: A Revolution in Corporate Culture. Springer-
Verlag, August 1997. ISBN 038756537X. 2.4, 2.11

[85] T. J. Williams, editor. A Reference Model for Computer Integrated Manufacturing
(CIM). Instrument Society of America, North Carolina, USA, second edition, 1989.
ISBN 1-55617-225-7. 2.15

[86] T. J. Williams. The Purdue enterprise reference architecture. Computers in Industry,
24(2–3):141–158, September 1994. ISSN 0166-3615. doi: 10.1016/0166-3615(94)
90017-5. 2.15, 2.16

[87] Workflow Management Coalition. WFMC-TC-1011: terminology and glossary 3.0, Feb-
ruary 1999. URL http://www.workflowpatterns.com/documentation/documents/
TC-1011_term_glossary_v3.pdf. Last checked: November 6th, 2013. 2.30

[88] World Batch Forum. Business to manufacturing markup language (B2MML), 2008.
URL http://www.isa.org/Content/NavigationMenu/General_Information/
Partners_and_Affiliates/WBF/Working_Groups2/XML_Working_Group/B2MML/
B2MML.htm. Last checked: November 6th, 2013. 2.25

[89] J. A. Zachmann. The Zachman Framework™: the Official Concise
Definition, 2008. URL http://www.zachmaninternational.com/index.php/
the-zachman-framework. Last checked: November 6th, 2013. 2.23, 2.24

2.52

http://www.workflowpatterns.com/documentation/documents/TC-1011_term_glossary_v3.pdf
http://www.workflowpatterns.com/documentation/documents/TC-1011_term_glossary_v3.pdf
http://www.isa.org/Content/NavigationMenu/General_Information/Partners_and_Affiliates/WBF/Working_Groups2/XML_Working_Group/B2MML/B2MML.htm
http://www.isa.org/Content/NavigationMenu/General_Information/Partners_and_Affiliates/WBF/Working_Groups2/XML_Working_Group/B2MML/B2MML.htm
http://www.isa.org/Content/NavigationMenu/General_Information/Partners_and_Affiliates/WBF/Working_Groups2/XML_Working_Group/B2MML/B2MML.htm
http://www.zachmaninternational.com/index.php/the-zachman-framework
http://www.zachmaninternational.com/index.php/the-zachman-framework

3
Concepts of software and service

engineering for distributed
manufacturing

3.1. Service-oriented architectures

This chapter presents the software engineering concepts behind the present Thesis and
how they can help solve the challenges identified in the previous chaptter.
SOAs are introduced in Section 3.1 as a scalable approach to organize and integrate

the information systems of a manufacturing enterprise using standards-based technologies
with greater industrial support. In particular, from Section 3.1.2 onwards some of the
most commonly used technologies for developing SOAs are presented.
Since using SOAs raises several issues on how to meet performance requirements,

Section 3.2 introduces the overall field of performance engineering.
The high complexity of developing a SOA has been tackled in the literature by developing

model-driven methodologies that help structure and partially automate the process involved.
The methodologies themselves are later discussed in Chapter 4: readers are suggested
to read Section 3.3 first, as it introduces the concepts behind model-driven software
engineering in general.

3.1 Service-oriented architectures
Section 2.4.4 described how workflows could help an organisation formalise their practices,
assisting the improvement and control of their business processes. However, the information
systems need to provide the basic building blocks to make them work.
This requires a change in the way the systems are conceived: instead of closed silos of

information which are solely manipulated through a user interface, they must now provide
a catalogue of services which can be flexibly reused over all workflows in the organisation.
These new systems are known as Service-Oriented Architectures (SOAs).

3.1.1 Definitions and goals
There is not a clear consensus on what a SOA is. The Organisation for the Advancement
of Structured Information Systems (OASIS) defines SOA as “a paradigm for organizing
and utilizing distributed capabilities that may be under the control of different ownership
domains” [30]. Essentially, SOA is a different way of organising separate software systems
from different enterprises into a single whole and taking advantage of that integration.
The World Wide Web Consortium (W3C) has a much more detailed definition: “a

SOA is a form of distributed systems architecture that is typically characterized by the
following properties: logical view [...], message orientation [...], description orientation
[...], granularity [...], network orientation [...], platform neutral [...].” [55]. This is a rather
more technical definition, which focuses on the distributed nature of services and the clear
separation between what the services does and how it is implemented. It also requires
that services have formal descriptions that can be processed automatically, which is not
always the case in practice.
Erl [17] notes that “SOA establishes an architectural model that aims to enhance the

efficiency, agility and productivity by positioning services as the primary means through
which solution logic is represented [...]”. In turn, services “exist as physically independent
software programs with distinct design characteristics that support the attainment of the
strategic goals associated with service-oriented computing”. These goals are highly focused
on increased reuse and standardisation, in order to save costs:

3.1

3. Concepts of software and service engineering for distributed manufacturing

• Increased Intrinsic Interoperability: through common design principles and the usage
of open standards, software programs can directly work with each outer without
requiring expensive custom integration logic.

• Increased Federation: a collection of standardised services that are easy to compose
creates an information environment in which applications and resources are united,
and yet each of these maintains their autonomy and self-governance.

• Increased Vendor Diversification Options: using vendor-neutral technologies through-
out the enterprise prevents organisations to be locked into specific solutions. Or-
ganisations are free to adopt new solutions and resources, or to replace previously
existing ones.

• Increased Business and Technology Domain Alignment: services can be derived from
descriptions of the business itself, increasing the abstraction level of the system
and ensuring that the system represents the actual business requirements of the
enterprise. In addition, having business functions as explicit software programs allow
to recombine these into new processes when necessary.

• Increased Return on Investment (ROI): while the first version of a proper service
can cost more to develop than adding the same feature to a traditional standalone
application, it will produce greater returns in the long run, as it is used from other
parts of the organisation.

• Increased Organisational Agility: as more and more of the logic in the organisation
is not tied to particular applications but to services in a well-governed catalogue,
creating new solutions will be faster through the reuse of these standardised building
blocks.

• Reduced IT Burden: increasing reuse reduces redundancy and waste of business
logic, which in turn reduces the size and the operational cost of the IT department.

The definitions proposed by OASIS and Erl are intentionally vague: they consider that
any combination of technologies can be used to build a SOA. The key aspect is to follow
its general principles and create a high-quality catalogue of services. In practice, however,
most SOA development uses Web Services (WS) as defined by the W3C [56] and meeting
the technical requirements listed in the W3C SOA definition. By using an open and
standardised technology stack, users can interoperate between differing software platforms
without any technical or financial barriers.

3.1.2 Web Services
The previous section examined three different definitions of SOA. Two of these definitions
were mainly conceptual and regarded SOA as a different paradigm for organising enterprise
IT and aligning IT with the business strategy. The definition proposed by the World Wide
Web Consortium (W3C) was mostly technical, however.

This conceptual and technical split is also present for services. Services are largely
conceptual entities and do not impose specific technologies. However, the need for

3.2

3.1. Service-oriented architectures

standardisation within the industry has pushed several organisations to provide collections
of vendor-neutral specifications for their implementation.
In particular, the W3C defines a WS as [56]:

A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems interact with
the Web service in a manner prescribed by its description using SOAP-messages,
typically conveyed using HTTP with an XML serialization in conjunction with
other Web-related standards.

OASIS has a similar definition of a WS [41]:

The term Web Service describes a specialized type of software, which is designed
to support a standardized way for provision and consumption of services over
the Web, through the compliance with open standards such as eXtensible
Markup Language (XML), SOAP, Web Services Description Language (WSDL)
and Universal Description, Discovery and Integration (UDDI).

Both of these definitions mention the same basic set of technologies: WSDL for describing
the format of the Simple Object Access Protocol (SOAP) messages, which are usually sent
over HyperText Transfer Protocol (HTTP). In addition, OASIS mentions the Universal
Description, Discovery and Integration (UDDI) standard for service discovery. The rest of
this section will provide short descriptions for each of these technologies.

3.1.2.1 Hypertext Transfer Protocol (HTTP)

The HyperText Transfer Protocol (HTTP) is the underlying technology behind the World
Wide Web, being used to serve all web traffic today. However, it has many other uses
beyond websites, thanks to its design.
HTTP is an extensible and generic stateless server-client protocol that operates inde-

pendently from the kind of information transmitted, thanks to specific provisions for typing
and content negotiation. It also provides simple facilities for authentication, which are
commonly combined with other standards for encryption and secure identities. Interacting
through HTTP usually works as follows:

1. The client sends a request to a server, specifying a Uniform Resource Identifier (URI)a,
a HTTP method, the HTTP version in use and a set of headers.
A URI is a string that uniquely identifies the remote resource. A Uniform Resource
Locator (URL) is a kind of URI that indicates where the resource is. The two most
common HTTP methods are GET (an idempotent request for a remote resource)
and POST (a modification of a remote resource).
Clients can specify additional requirements on the desired content through headers.
For instance, the Accept-Language header can be used to specify the preferred
language for the requested content (e.g. Spanish and then English if not available).

2. The server replies with a status code (which may be a standard code or a custom
one), a set of headers detailing additional information about the delivered content,
and the content of the response itself.

3.3

3. Concepts of software and service engineering for distributed manufacturing

Listing 3.1 Example of a HTTP request-response conversation
GET / HTTP/1.0

HTTP/1.0 302 Found
Location: http://www.google.es/
Cache-Control: private
Content-Type: text/html; charset=UTF-8
Date: Sat, 01 Sep 2012 16:03:33 GMT
Content-Length: 218
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN

<HTML><HEAD><meta ...>
<TITLE>302 Moved</TITLE></HEAD><BODY>
<H1>302 Moved</H1>
The document has moved
here.
</BODY></HTML>

Status codes are divided by their first number into informational (1xx), successful
(2xx), redirections (3xx), client errors (4xx) and server errors (5xx).

Using headers, the server can indicate additional information about the provided
content, such as its type, language, date, cache expiration date and so on.

Listing 3.1 shows a simple usage of HTTP for retrieving http://www.google.com. The
client connects to the server at www.google.com and sends the first line, indicating that it
wants to retrieve the root resource (with URI /) using HTTP 1.0. The client terminates
its request by sending two CRLF (return carriage and linefeed) sequences. The rest of the
listing is the response from the server, which redirects the user to http://www.google.es.
According to the Content-Type response header, the response includes an HyperText
Markup Language (HTML) document in UTF-8 encoding with a link to the target URL,
in case the browser does not follow the redirect automatically.

3.1.2.2 Extensible Markup Language (XML)

The most straightforward way to exchange documents through a network is to simply
send the text as is using a specific encoding, without any formatting. In order to add
machine-readable annotations, one approach would be to mark specific parts with a special
syntax. For instance, a specific word could be marked to be displayed in bold on the screen
by surrounding it with special tags, and a block of text could be marked as a section of
the document. This is the basic approach followed by a markup language.

One of the first standards on markup languages was the Standard Generalised Markup
Language (SGML) [18], published as ISO 8879:1986 [23]. SGML provided a way to define
markup languages from a set of generic primitives, so developers could reuse the same

3.4

http://www.google.com
http://www.google.es

3.1. Service-oriented architectures

tools to parse documents written in these languages. One of these languages was the
HyperText Markup Language (HTML).
HTML was largely successful due to the World Wide Web, but SGML was not widely

adopted as a general-purpose document exchange format due to its complexity. Writing a
SGML parser was too difficult. For this reason, W3C developed a simplified version of
SGML called the eXtensible Markup Language (XML) [57].
XML documents are much easier to parse thanks to their tree-like structure. Broadly

speaking, XML documents consist of regular text, opening tags and closing tags. An
element is delimited by an opening tag and a closing tag, and it may contain nested
elements or blocks of text. Elements may also contain a set of key-value pairs known as
attributes inside the opening tag.

A XML document is formed by a single root element that contains zero or more elements.
A document is well-formed if the opening and closing tags of all non-root elements are
part of the same parent element, i.e. the elements are properly nested inside each other.

3.1.2.3 XML Schema

The W3C published XML as a standard for defining markup languages using a common
set of concepts of tools. However, documents in a specific XML-based markup language
not only need to be well-formed: they also need to be valid. A valid XML document
conforms to the schema that defines the XML-based markup language itself.
XML provides a subset of the SGML Document Type Definition (DTD) schema language,

but it was quite limited and could not handle some XML features, such as namespaces.
This prompted the W3C to define a more advanced schema language known as XML
Schema [54]. XML Schema has been widely adopted in industry: in fact, SOAP, WSDL,
UDDI and many other XML-based technologies define their document formats with it.

3.1.2.4 Simple Object Access Protocol (SOAP)

The Simple Object Access Protocol (SOAP) [58] is an XML-based message format for ex-
changing structured and typed information between peers in a decentralised and distributed
environment. SOAP also provides directives to encode certain kinds of information, several
message exchange patterns and instructions on how to send SOAP messages through
HTTP and regular email.
SOAP messages are formed by a single Envelope element, which contains an optional

Header and a mandatory Body. In case of an error, the Body will contain a single Fault
element with the Code and Reason of the problem. Listing 3.2 shows an example of a
SOAP message that confirms that a request for a loan was granted.

3.1.2.5 Web Services Description Language (WSDL)

The W3C Web Services Description Language (WSDL) specification allows for creating
machine-readable descriptions of network services. WSDL documents define operations
and message at an abstract level, leveraging the XML Schema specification, and are then
bound to specific network protocols and message formats into an endpoint. The concrete
endpoints are finally published as Web Services at a certain URL. WSDL 1.1 provides
mappings for SOAP, HTTP and Multipurpose Internet Mail Extensions (MIME) (email).

3.5

3. Concepts of software and service engineering for distributed manufacturing

Listing 3.2 Example of a SOAP message
<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<loan:requestResponse xmlns:loan="...">
<accept xsi:type="xsd:boolean" xmlns="">true</accept>

</loan:requestResponse>
</soapenv:Body>

</soapenv:Envelope>

Listing 3.3 shows an abridged example of a WSDL description of the WS that pro-
duced the response in Listing 3.2. The message elements (lines 3–10) describe the
input and output messages and each of their parts. These messages are the input and
output of the “approve” operation of the “loanApprovalPT” portType (lines 11–15),
which is in turn bound to the SOAP HTTP binding using a binding element (lines
17–33). Finally, the concrete endpoint represented by the “ApprovalBinding” is pub-
lished as the “ApprovalService” Web Services (lines 34–38), which is listening at the
http://localhost:8000/ApprovalService URL.

3.1.2.6 Universal Description Discovery and Integration (UDDI)

The Universal Description, Discovery and Integration (UDDI) specification published by
the Web Services Interoperability Organisation (WS-I) described both an XML-based
global Web Services registry and the facilities required to query it [40]. UDDI providers
would replicate each other’s information, much like the Domain Name System (DNS)
for the World Wide Web, and WS developers would search the UDDI registry and find
appropriate WS using the provided meta data. Unfortunately, that view was not realised
in the long term, after some of its major backers removed their support [44].

3.1.2.7 Web Services Interoperability Basic Profile (WS-I BP)

Web Services are intended to promote interoperability through the use of open standards,
such as SOAP or WSDL. However, in practice, these specifications are quite complex
and not all vendors support the same subsets of features. In order to keep WS platforms
interoperable with the rest, WS-I published its Basic Profile (WS-I BP) [52].
Web Services Interoperability Basic Profile (WS-I BP) imposes a set of restrictions on

the usage and implementation of several of the above standards, such as SOAP, XML
Schema, WSDL and UDDI. In some cases, WS-I BP forbids the usage of certain awkward
combinations of features. WS-I BP may also provide additional guidance beyond what is
specified in one of the standards.

3.6

3.1. Service-oriented architectures

Listing 3.3 Abridged example of a WSDL document
1 <?xml version="1.0" encoding="UTF-8"?>
2 <definitions name="ApprovalService" targetNamespace="..." ...>
3 <message name="creditInformationMessage">
4 <part name="firstName" type="xsd:string"/>
5 <part name="name" type="xsd:string"/>
6 <part name="amount" type="xsd:integer"/>
7 </message>
8 <message name="approvalMessage">
9 <part name="accept" type="xsd:boolean"/>
10 </message>
11 <portType name="loanApprovalPT">
12 <operation name="approve">
13 <input name="input1" message="tns:creditInformationMessage"/>
14 <output name="output1" message="tns:approvalMessage"/>
15 </operation>
16 </portType>
17 <binding name="ApprovalBinding" type="ns0:loanApprovalPT">
18 <soap:binding
19 transport="http://schemas.xmlsoap.org/soap/http"
20 style="rpc"/>
21 <operation name="approve">
22 <soap:operation/>
23 <input name="input1">
24 <soap:body use="literal"/>
25 </input>
26 <output name="output1">
27 <soap:body use="literal"/>
28 </output>
29 <fault name="fault1">
30 <soap:fault name="fault1" use="literal"/>
31 </fault>
32 </operation>
33 </binding>
34 <service name="ApprovalService">
35 <port name="ApprovalServicePort" binding="tns:ApprovalBinding">
36 <soap:address location="http://localhost:8000/ApprovalService"/>
37 </port>
38 </service>
39 </definitions>

3.7

3. Concepts of software and service engineering for distributed manufacturing

3.2 Performance engineering
Obtaining the desired level of performance has been a regular concern since the development
of the first computer systems, as shown by the early survey in [29]. There are basically
two approaches: evaluating a model of a prospective system (known as performance
engineering), or measuring the performance of an implemented system (performance
testing).

These approaches are complementary: using analytic models reduces the risk of imple-
menting an inefficient software architecture, which is expensive to rework [48]. When the
system is implemented, measuring its performance is more accurate, and can detect not
only design issues, but also bad coding practices and unexpected workloads or platform
issues [3]. Some authors have proposed overloading “performance engineering” to point to
both model- and measuring-based approaches [53].
This section will review some of the works that are more closely related to ours. The

existing notations will be visited first, focusing on the currently available standards.
The currently available performance analysis algorithms will be then discussed. Readers
unfamiliar with UML are suggested to visit the introduction presented in Section 4.3.1.

3.2.1 Notations
Performance engineering usually involves building a simplified representation (a model)
with information on each part of the system, from which the expected global performance
is derived. There is a large number of works dealing with model-based testing, i.e., “the
automatable derivation of concrete test cases from abstract formal models, and their
execution” [50]. Most of them (as evidenced by Utting itself) are dedicated to functional
testing: this section will focus instead on those dedicated to performance aspects.
The most common formalisms in performance engineering are layered queuing net-

works [42], stochastic Petri networks [28] and process algebra specifications [49]. These
formalisms are backed by in-depth research and the last two have solid mathematical
foundations in Markov chain theory. However, they introduce an additional layer of
complexity which might discourage some users from applying these techniques.

Widespread adoption of UML as a de facto standard notation has prompted researchers
to derive their analytic models from UML models, first with ad hoc annotations and later
consolidating on standard extensions to UML, such as the Schedulability, Performability
and Time (SPT) profile [33] or the Quality of Service and Fault Tolerance Characteristics
and Mechanisms (QoS/FT) profile [34]. SPT extended UML with a set of stereotypes
describing scenarios that various analysis techniques could take as inputs. QoS/FT had a
broader scope than SPT and a more flexible approach: users formally defined their own
quality of service vocabularies and used them to annotate their models.
When UML 2.0 was published, OMG saw the need to update the SPT profile and

harmonise it with other new concepts. This resulted in the Modelling and Analysis of
Real-Time and Embedded Systems (MARTE) profile [35], published in 2009. Like the
QoS/FT profile, the MARTE profile defines a general framework for describing quality
of service aspects. The MARTE profile uses this framework to define a set of pre-made
UML stereotypes, as those in the SPT profile. A more in-depth description of MARTE is
available in Section 6.1 (page 6.1).

3.8

3.3. Model-driven software engineering

3.2.2 Algorithms
Silver et al. [47] annotated each task in a workflow with probability distributions for their
running times, and collected data from 100 simulation runs to estimate the probability
distribution of the running time of the entire workflow and validate it using a Kolmogorov-
Smirnov goodness-of-fit test. Simulating the workflow allows for flexibly modeling the
stochastic behaviour of each service, but it has a high computational overhead due to the
number of simulation runs that are required.

The SWR algorithm proposed in [7] computes the expected quality-of-service (QoS) of
the workflow by iteratively reducing its graph model to a single task. SWR only works with
deterministic values, but its QoS model can describe the cost, reliability and minimum,
average and maximum times for each service. It is interesting to note that Cardoso et
al. combine several data sources to estimate the QoS of each task: designer experience,
previous times in the current instance, previous times in all instances of this workflow,
and previous times in all workflows. The designer is responsible for specifying the relative
importance of each data source.

Moving beyond workflows and into entire software systems, Bernardi et al. have defined
the Dependability and Analysis Modeling sub-profile for MARTE [4]. It has been combined
with the standard Generic Quantitative Analysis Modelling (GQAM) and Performance
Analysis Modelling (PAM) sub-profiles of MARTE to evaluate the risk that a soft real-time
system does not meet its time limits [5].
Alhaj and Petriu generated intermediate performance models from a set of UML

diagrams annotated with the MARTE profile, describing a service-oriented architecture [1]:
activity diagrams model the workflows, component diagrams represent the architecture
and sequence diagrams detail the behaviour of each action in the workflows.

Ardagna and Pernici used a Mixed Integer Linear Programming (MILP) solver to select
which services should be used in a Web Services composition written in WS-BPEL [2].
Each task had a set of candidate services, and the engine could decide at each moment
which of them should be invoked by solving a MILP problem with an objective function
expressed as a weighted sum of several quality of service metrics. Loops were handled
by manually specifying the probability distribution of their iterations and expanding or
unpeeling the paths according to a certain probability threshold.

3.3 Model-driven software engineering
Software programs are very complex entities: a single system may have tens of thousands
of lines of code and may need to meet functional and non-functional requirements of all
kinds. Describing the system will also require detailing its data structures, algorithms,
deployment instructions, configuration and so on. When confronted with complex systems
that need to be examined from many viewpoints, it is common in engineering disciplines
to create models of the system.

In the context of software engineering, models are heavily used in the early development
stages of a system, especially for requirements engineering and high-level design. However,
these models tend to be usually only used as documentation: mapping these models to an
actual system is left as a manual exercise. As a result, the return on the investment in
building those models is greatly reduced, and some developers simply do not feel the need

3.9

3. Concepts of software and service engineering for distributed manufacturing

to build these models or update them as the code changes. Some developers simply use
those high-level models as throw-away documentation to sketch an idea [31].

Model Driven Software Engineering (MDSE) attempts to subvert this tendency by using
models as inputs and outputs for computer-based tools that assist developers [6]. Schmidt
[45] identifies several key differences between MDSE and the failed Computer Assisted
Software Engineering (CASE) initiatives in the 80s and 90s:

• CASE tools needed to generate much more code than current MDSE tools, as the
existing platforms lacked support for many of the features required for the models.
Current tools can take advantage of the large variety of frameworks and libraries for
user interfaces, networking, Web Services, and so on. Programming languages have
advanced as well and are now much more concise than before.

• At the time, CASE tools did not support concurrent engineering and were hard to
integrate with the traditional tools used to write regular code. Current development
environments are much more extensible and can naturally integrate traditional
code-centric tools with newer model-centric ones.

• CASE tools tried to represent every part of the system, in an attempt to effectively
replace lower-level programming languages. In the end, the models produced were
as complex as regular code. In contrast, MDSE promotes targeting notations to
specific domains, making their implementation and usage much simpler.

• MDSE places a large emphasis on the creation of reusable model handling technologies.
There are frameworks for transforming, validating, comparing and merging models,
among many other tasks. This reduces the work involved in implementing new usage
scenarios for existing models and checking the validity of the models, and allows
users to suitably customise their development processes. Traditional CASE tools
lacked these facilities.

The rest of this section introduces MDSE more in depth and presents some of the
available technologies. Section 3.3.1 provides formal definitions for some of the concepts
involved. Section 3.3.2 describes several approaches proposed to organise model-driven
methodologies. Finally, Section 3.3.3 lists some of the available model handling technologies.

3.3.1 Definitions
There is little consensus on what a model is, but for this document the abstract definition
by Rothenberg [43] will be adopted: “to model [...] is to represent a particular referent
cost-effectively for a particular purpose”. A model may have many purposes: it may be
used to specify something to be produced (e.g. as part of a contract), to predict what
would happen in some scenarios, or to communicate some facts in a simpler way (e.g. as
part of a lesson). However, it should be easier to use the model for that purpose than the
original referent.
Seidewitz [46] identifies two important concepts related to using models in practice:

• An interpretation of a model is a mapping of the model’s elements to elements of
the referent such that the truth value of statements in the model can be determined

3.10

3.3. Model-driven software engineering

Metametamodel

Metamodel
Metamodelling

language

Model
Modelling
language

Referent

represents

describes

represents
describes

represents

describes

Figure 3.1. Language and model levels in MDE/MDSE

from the referent, to some level of accuracy. It is the interpretation of the model
that gives it meaning.
For instance, if a UML class diagram models a system written in the Java program-
ming language, each UML class could be interpreted as corresponding to a single
Java class with the same name and equivalent methods.

• A theory is a way to deduce new statements about a referent from the statements
already in some model of the referent. Every deducible statement from the model
must be consistent with each other. Models that conform to the theory can be used
to derive new information about the referent. If the theory is correct, these pieces of
information should be correct as well.
Going back to the UML class diagram, the class model can suggest how the classes
will be used in practice, and help verify if other models using those classes are
consistent or not.

Every model is expressed in a modelling language. A description of a formal language is
divided into three parts [22]: the set of all valid expressions (its syntax), the space of all
the meanings that the expressions can take (its semantic domain) and a semantic mapping
from the syntax to the semantic domain. In general, it is easier to deal with abstract
entities rather than the actual text or graphics: for this reason, it is quite common to
have a parser read the concrete syntax and produce a simplified in-memory representation
known as the abstract syntax of the expression. This also allows for having multiple
concrete syntaxes that map to the same abstract syntax.

In summary, the abstract syntax of a modelling language is the set of concepts that can
be used in the models it describes. This is also known as the metamodel of the modelling
language. The models of this language are said to conform to its metamodel, as they use its
concepts. In turn, a metamodel may also conform to a metametamodel of a metamodelling
language. Normally, metametamodels tend to be defined in terms of their own language, in
order to stop the abstraction process. Figure 3.1 summarises these relationships.

3.11

3. Concepts of software and service engineering for distributed manufacturing

Due to the way these layers of abstraction are based upon each other, some authors
have proposed the “Mn-model” terminology, where n ≥ 0 is the abstraction level. Some
examples using UML [38] are listed below:

• A “M0-model” would be the actual referent. For instance, it could be the physical
car right in front of the observer.

• The corresponding “M1-model” would be the UML Car class that represents the
abstraction of the concept of a car. The original object would be a kind of Car: it
could have a certain color, a certain maker and model and a license plate, among
other properties.

• At the “M2-model” level, the Car class is a specific instance of a UML Class.

• Finally, at the “M3-model” level, a UML Class would be a Meta-Object Facility
(MOF) Class [36]. Since MOF is defined in terms of itself, it is impossible to raise
further the abstraction level.

3.3.2 Existing approaches
Models can be linked, chained and combined in any way. However, some particular
approaches have received large amounts of attention from the research community and
industry. This section will introduce two of them: the Model-Driven Architecture® (MDA®)
initiative from the Object Management Group (OMG), and the Software Factories from
Microsoft.

3.3.2.1 Model-Driven Architecture®

The Model-Driven Architecture® proposal from OMG suggests that the description of a
system should be divided into three viewpoints [32]:

• The Computation Independent Viewpoint focuses on the environment of the system
and its requirements. The details of the structure and processing of the system
are hidden or not yet determined. This viewpoint uses Computation Independent
Models (CIMs).

• The Platform Independent Viewpoint focuses on the operation of a system while
hiding the details necessary for a particular platform. A platform independent
view shows that part of the complete specification that does not change from one
platform to another. As the name suggests, this viewpoint uses Platform Independent
Models (PIMs) in a general-purpose or domain-specific modelling language.

• The Platform Specific Viewpoint augments the Platform Independent Viewpoint
with details on how the system will be mapped on top of a platform, which is
a set of standardised reusable subsystems, frameworks and libraries that provide
domain-agnostic functionality. This viewpoint uses Platform Specific Models (PSMs).

MDA® attempts to separate the environment of a system from its abstract requirements
and its technical requirements. Ideally, this should make migrating the system to a new
technology should be much faster. As models become increasingly detailed, it is easier to

3.12

3.3. Model-driven software engineering

Business Information Application Technology

Conceptual
Use cases,
business
goals

Business entities
and relationships

Business
processes

Service
distribution,
QoS strategy

Logical Workflows,
roles Message schemas

Service
interactions and

definitions

Logical
server types

Physical Process
specifications

Database
schemas and
data access
strategy

Detailed design Physical
servers

Table 3.1. 2D grid projection of a simple software factory schema [20]: the columns
define concerns and the rows define levels of abstraction.

define manual or automated transformations that generate some or all of the code and/or
documentation of the final system from the PIMs and the PSMs.

Interestingly, this CIM → PIM → PSM split is quite reminiscent of the genericity axis
of the ISO 19439 model views (Section 2.3.5).

3.3.2.2 Software Factories

Software factories are a model-driven approach that borrows many concepts from manu-
facturing theory. The definition by Greenfield et al. [21] of a software factory is:

A software product line that provides a production facility for the product
family by configuring extensible tools using a software template based on a
software schema.

A software factory schema is a directed graph whose nodes are viewpoints and whose
edges are computable relationships between viewpoints called mappings. This is a much
more general representation than the layered architecture of MDA®. For the sake of
simplicity, schemas may be projected into a two-dimensional grid, much like that of the
Zachmann Framework (see Table 2.1). Table 3.1 shows a simple schema for a product
line of service-oriented systems. The schema will usually need to be extended with a
description of the process with which each of these viewpoints and their artefacts should
be developed. Schemas may include fixed and configurable parts for the purposes of mass
customisation, much like the configurable parts of a manufacturing process in Flexible
Manufacturing Systems.
The schema only describes the overall process, but it does not implement it. The

relevant modelling languages, patterns, frameworks and tools will need to be developed,
packaged and distributed to developers. The collection of all these assets is known as a
software factory template. Tools should be able to accept a software factory template and
reconfigure themselves automatically in order to efficiently produce systems in the relevant
product line.

3.13

3. Concepts of software and service engineering for distributed manufacturing

3.3.3 Available technologies
Section 3.3.1 explained how models were normally defined using metamodels, and metamod-
els were in turn defined using metametamodels. These levels of abstraction are not only
useful for ontological purposes: they are also important for code reuse.

There is a large number of common tasks that need to be performed on models, such as
validation, transformation, code generation, comparison and so on. Writing these tasks
from scratch for every metamodel would be too expensive. Instead, current model handling
technologies require that the metamodel conforms to the specific metametamodel, and
leverage the concepts of the metametamodel so the user only needs to provide an abstract
description of how to perform the task.

Two of the most actively used metametamodels are ECore [10] and Kernel Meta Meta
Model (KM3) [19]. ECore is heavily based on Essential MOF, a core subset of MOF,
and implements most of the specification. However, some tools are not tightly bound to
a specific metametamodel, such as the Epsilon framework [27]. The Epsilon framework
implements a family of task-specific model handling languages that are not implemented
directly in terms of a specific metametamodel, but rather on top of a pluggable abstraction
layer (the Epsilon Model Connectivity layer) that accepts multiple modelling technologies1.
The Epsilon Object Language (EOL) is the base language for all the Epsilon languages, and
it is an imperative language inspired on the OMG Object Constraint Language (OCL) [39]
(described below).

The rest of this section lists a selection of currently available model handling technologies,
divided by task. Due to its much wider adoption, the discussion will focus on the ECore-
based ecosystem.

3.3.3.1 Metamodel definition

In addition to implementing ECore itself, the Eclipse Modeling Framework (EMF) provides
a graphical editor to define ECore-based metamodels. Users can define packages, classes
and fields in a hierarchical editor which mirrors the contents of the actual .ecore file.
EMF can generate libraries for loading and saving models and generic editors from the
definition of an ECore metamodel.
Several alternative notations have appeared that make metamodel descriptions more

concise and easier to read and write. In addition to using models based on a subset
of UML class diagrams or deriving metamodels from XML Schema files, several textual
domain-specific languages have been developed. Emfatic [15] can represent all the ECore
constructs, such as inheritance, containment, references and annotations, among others.
Xcore is a newer Eclipse project that is set to replace Emfatic with a cleaner syntax and
more advanced editors [9].

3.3.3.2 Model-to-model (M2M) transformations

From an abstract perspective, a model transformation can be defined as any program that
takes models as inputs. However, in practice this term is usually reserved to using a model
to create another model or modify an existing one.

1As of 2012-09-02, there are Epsilon Model Connectivity (EMC) drivers for ECore, BibTeX, Comma-
Separated Values, Human-Usable Textual Notation, plain XML, NetBeans MetaData Repository and
Z models.

3.14

3.3. Model-driven software engineering

M3 MMM

M2 MMa MMt MMb

M1 Ma Tab Mb

conformsTo conformsTo conformsTo

conformsTo based on conformsTo basedOn conformsTo

outputinput executed

conformsTo

Figure 3.2. QVT and ATL transformation pattern [24]

In 2002, OMG published a Request for Proposals for a model transformation language
that aligned with its standards (such as UML or MOF). One of these proposals was the
ATLAS Transformation Language (ATL) [24], which later diverged into an independent
open source project. The merged proposals resulted in the MOF Query/View/Transform-
ation (QVT) specification [37]. ATL and several implementations of QVT are part of the
Eclipse Model to Model Transformation (MMT) project [14].
QVT and ATL share the same transformation pattern, shown in Figure 3.2. They take

a model (i.e. a M1-model) Ma as input and execute a transformation model Tab to obtain
model Mb. Ma conforms to the MMa metamodel (M2 model), Tab conforms to the MMt
metamodel and Mb conforms to the MMc metamodel. In turn, all the metamodels conform
to a shared metametamodel (M3 model), which only conforms to itself.
From an abstract point of view, model transformation consists of creating a mapping

from the input model to the target model. This mapping can be described in a declarative
manner by using patterns on the source and target elements. Alternatively, an imperative
or procedural description would specify the steps required to obtain the elements of
the output model from the input model. In practice, it is quite common to mix these
approaches: declarative mappings are more concise and less prone to bugs, but more
advanced mappings may require some implicit descriptions. QVT and ATL implement
both approaches, being hybrid transformation languages.
The Epsilon framework includes three Model to Model (M2M) languages: the Epsilon

Transformation Language (ETL), the Epsilon Wizard Language (EWL) and Flock [27].
ETL is a hybrid transformation language much like QVT or ATL that provides several
additional features, such as support for interactive transformations or multiple input and
output models. EWL is an imperative language that is specialised for in-place transforma-
tions that represent repetitive day-to-day modelling tasks. In-place transformations are a
special case of the approach in Figure 3.2, in which Ma and Mb are the same model. Flock
is a model migration language that specialises ETL in order to migrate models from a
previous revision of their metamodel to the latest one.

3.15

3. Concepts of software and service engineering for distributed manufacturing

3.3.3.3 Model weaving

As described above, model transformation tools implement an automated mapping from
a source model to a target model. However, it may be unfeasible to provide such an
automated mapping. For instance, it may be required to relate two models that were
produced separately for different purposes, based on their meanings. In addition, these
relations may provide more information than just a mapping: links could have a set of
attributes detailing what sort of relationship exists between the two model entities.

In this case, the Tab model in Figure 3.2 would be created manually instead of through
a program in a model transformation language. Being a model, Tab could be then used as
an input of an automated transformation together with Ma and Mb.

The practice of manually creating a model that links other models together (a weaving
model) is known as model weaving. One of the first proposals for model weaving was the
ATLAS Model Weaver (AMW) [8]. AMW provides a generic weaving metamodel, which
would take the role of MMb in Figure 3.2.

Alternatively, users may create custom weaving metamodels and use the standard EMF
tooling. This is the approach used in Epsilon ModeLink [25], a special-purpose model
editor designed for creating links between two models and a specially designed weaving
metamodel.

3.3.3.4 Model-to-text (M2T) transformations

One common limitation in QVT and the other M2M languages is that they cannot
manipulate textual representations of the models. In order to produce text from models, a
different set of technologies is required.
One of the first ECore-based Model to Text (M2T) languages was Java Emitter Tem-

plates (JET), originally part of the EMF project and now part of the Eclipse M2T
project [12]. JET is inspired on Java Server Pages (JSP): templates are a mix of plain
text, “scriptlets” (fragments of Java code), “expressions” (embedded strings within the
output) and “directives” which define settings.
Xpand is another M2T language that provides type safety for templates and aspect

oriented programming constructions, among other features, such as an improved editor
with code completion. Acceleo is an actively developed implementation of the OMG MOF
Model to Text Transformation (MOFM2T) 1.0 standard. Both Acceleo and Xpand are
also part of the Eclipse MMT project.

The Epsilon framework includes a M2T language, called the Epsilon Generation Language
(EGL). It is a template-based language, much like JET, but instead of Java fragments,
it uses EOL fragments. This allows EGL to extend the available model operations using
EOL, which is more concise than Java for manipulating models. In addition, EGL supports
traceability reports, protected areas, language-specific formatters and modularisation.

3.3.3.5 Model validation

Models may need to meet additional restrictions beyond conforming to their respective
metamodels. For instance, a UML class diagram with a Dog class in it may need to ensure
that its legs field is greater or less than 4. This fact could be easily represented using a
simple annotation in natural language, but more complex cases would be ambiguous and
would be impossible to check using automated tools.

3.16

3.3. Model-driven software engineering

Figure 3.3. Screenshot of the GMF Dashboard view

For this reason, OMG developed the Object Constraint Language (OCL) specification,
based on previous business modelling efforts and the Syntropy method [39]. The first
versions of OCL could only be used with UML models, but since version 2.0, OCL can
be used with any MOF-based model. OCL can be used both as a query language or as
a constraint language (as in the example above). As a specification language, OCL is
free of side effects: it cannot change anything in the model during evaluation, it does not
implement loops and it cannot invoke operations with side effects. In addition, expressions
may not always be directly executable.

The Eclipse Model Development Tools (MDT) project provides a partial implementation
of OCL for ECore-based models [13]. OCL is integrated into model editors through the
EMF Validation Framework [10]. Other constraint languages and libraries have been
developed for this framework. In particular, the Epsilon framework provides the Epsilon
Validation Language (EVL), a constraint language based on EOL that provides support
for interactive feedback, warnings, inter-constraint dependencies, automated inconsistency
repairing and inter-model constraints, among others.

3.3.3.6 Graphical modelling notations

As mentioned above, EMF can generate a hierarchical editor automatically from an ECore-
based metamodel. However, these tree-based editors can be cumbersome to work with when
modelling complex structures. A graphical editor which explicitly represented relations
between models and the attributes of these entities would be better suited. On the other
hand, creating such an editor from scratch would take too long for most practitioners.

The Eclipse Graphical Modelling Framework (GMF) was developed in order to reduce
the cost of creating these graphical editors [11]. GMF implements a model-driven process
to generate most of the code required, so developers only need to manually modify the
parts that are unique to their domain. GMF uses four kinds of models in addition to the
ECore metamodel: one for shapes, another for editing tools, a third one for relating the
shapes and tools with the metamodel, and a fourth one for customising the code to be
generated. Figure 3.3 shows a screenshot of the GMF Dashboard, which guides developers
following the GMF workflow.

Though GMF saves a considerable amount of effort, creating these models is still not a

3.17

References

trivial task, and requires some knowledge about the underlying libraries and frameworks.
Maintaining the GMF models and keeping them in sync with changes in the metamodel
itself can also be difficult.
EuGENia is a tool based on the Epsilon framework that reduces the amount of work

required to produce, customise and maintain the models required by GMF [26]. EuGENia
takes a specially annotated ECore metamodel and the EOL-based polishing transformations
and drives the GMF code generation process. EuGENia provides primitives for often
requested primitives, such as compartments, vector-based figures, geometric shapes and so
on.

Another alternative is to use higher-level libraries to build the graphical editors, instead
of using a model-driven process. This is the approach taken by Graphiti [16], which hides
the complexities of the underlying graphical technologies behind a simplified interface.
Interestingly, this simple interface led to the creation of Spray [51], a family of textual
domain-specific languages for generating graphical model editors.

References
[1] M. Alhaj and D. C. Petriu. Approach for generating performance models from UML

models of SOA systems. In Proceedings of the 2010 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON ’10, pages 268–282, New York,
USA, 2010. ACM. doi: 10.1145/1923947.1923975. 3.9

[2] D. Ardagna and B. Pernici. Adaptive service composition in flexible processes. IEEE
Transactions on Software Engineering, 33(6):369–384, 2007. doi: 10.1109/TSE.2007.
1011. 3.9

[3] A. Avritzer and E. J. Weyuker. Deriving workloads for performance testing. Software:
Practice and Experience, 26(6):613–633, 1996. ISSN 1097-024X. 3.8

[4] S. Bernardi, J. Merseguer, and D. C. Petriu. A dependability profile within MARTE.
Software & Systems Modeling, 2009. ISSN 1619-1366. doi: 10.1007/s10270-009-0128-1.
3.9

[5] S. Bernardi, J. Campos, and J. Merseguer. Timing-Failure risk assessment of UML
design using time petri net bound techniques. IEEE Transactions on Industrial
Informatics, 2010. ISSN 1551-3203. doi: 10.1109/TII.2010.2098415. 3.9

[6] J. Bézivin. On the unification power of models. Software and Systems Modeling, 4(2):
171–188, May 2005. ISSN 1619-1366. doi: 10.1007/s10270-005-0079-0. 3.10

[7] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality of service for
workflows and web service processes. Web Semantics: Science, Services and Agents
on the World Wide Web, April 2004. doi: 10.1016/j.websem.2004.03.001. 3.9

[8] M. D. Del Fabro, J. Bézivin, and P. Valduriez. Weaving models with the eclipse AMW
plugin. In Proceedings of the 2006 Eclipse Modeling Symposium, Eclipse Summit
Europe, Esslingen, Germany, October 2006. 3.16

3.18

References

[9] Eclipse Foundation. Eclipse wiki – Xcore, 2012. URL http://wiki.eclipse.org/
Xcore. 3.14

[10] Eclipse Foundation. Eclipse Modeling Framework, 2013. URL http://eclipse.org/
modeling/emf/. Last checked: November 6th, 2013. 3.14, 3.17

[11] Eclipse Foundation. Graphical Modeling Project, 2013. URL http://www.eclipse.
org/modeling/gmp/. Last checked: November 6th, 2013. 3.17

[12] Eclipse Foundation. Main page of the Model to Text project (M2T), 2013. URL
http://www.eclipse.org/modeling/m2t/. Last checked: November 6th, 2013. 3.16

[13] Eclipse Foundation. Model Development Tools (MDT) project homepage, 2013. URL
http://www.eclipse.org/modeling/mdt/?project=ocl. Last checked: November
6th, 2013. 3.17

[14] Eclipse Foundation. Model to Model Transformation (MMT) project homepage, 2013.
URL http://www.eclipse.org/mmt/. Last checked: November 6th, 2013. 3.15

[15] Eclipse Foundation. Emfatic project homepage, 2013. URL http://www.eclipse.
org/modeling/emft/emfatic/. Last checked: November 6th, 2013. 3.14

[16] Eclipse Foundation. Graphiti project homepage, 2013. URL http://www.eclipse.
org/graphiti/. Last checked: November 6th, 2013. 3.18

[17] T. Erl. SOA: Principles of Service Design. Prentice Hall, Indiana, EEUU, 2008. ISBN
0132344823. 3.1, 3.2

[18] C. F. Goldfarb. The roots of SGML – a personal recollection, 1996. URL http:
//www.sgmlsource.com/history/roots.htm. Last checked: November 6th, 2013.
3.4

[19] R. Gorrieri, H. Wehrheim, F. Jouault, and J. Bézivin. KM3: a DSL for metamodel
specification. In Formal Methods for Open Object-Based Distributed Systems, volume
4037 of Lecture Notes in Computer Science, pages 171–185. Springer Berlin Heidelberg,
2006. 3.14

[20] J. Greenfield. Software factories: Assembling applications with patterns, models,
frameworks, and tools, November 2004. URL http://msdn.microsoft.com/en-us/
library/ms954811.aspx. Last checked: November 6th, 2013. 3.13

[21] J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupi. Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools. Wiley, first edition,
August 2004. ISBN 9780471202844. 3.13

[22] D. Harel and B. Rumpe. Meaningful modeling: what’s the semantics of “semantics”?
Computer, 37(10):64–72, 2004. ISSN 0018-9162. doi: 10.1109/MC.2004.172. 3.11

[23] International Standards Organization. ISO 8879:1986 – information processing – text
and office systems – standard generalized markup language (SGML), 1986. 3.4

3.19

http://wiki.eclipse.org/Xcore
http://wiki.eclipse.org/Xcore
http://eclipse.org/modeling/emf/
http://eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/m2t/
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/mmt/
http://www.eclipse.org/modeling/emft/emfatic/
http://www.eclipse.org/modeling/emft/emfatic/
http://www.eclipse.org/graphiti/
http://www.eclipse.org/graphiti/
http://www.sgmlsource.com/history/roots.htm
http://www.sgmlsource.com/history/roots.htm
http://msdn.microsoft.com/en-us/library/ms954811.aspx
http://msdn.microsoft.com/en-us/library/ms954811.aspx

References

[24] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: a model transformation tool.
Science of Computer Programming, 72(1-2):31–39, June 2008. ISSN 0167-6423. doi:
10.1016/j.scico.2007.08.002. 3.15

[25] D. S. Kolovos. Epsilon ModeLink, 2012. URL http://eclipse.org/gmt/epsilon/
doc/modelink/. Last checked: November 6th, 2013. 3.16

[26] D. S. Kolovos, L. M. Rose, S. B. Abid, R. F. Paige, F. A. C. Polack, and G. Botterweck.
Taming EMF and GMF using model transformation. In D. C. Petriu, N. Rouquette,
and O. Haugen, editors, Model Driven Engineering Languages and Systems, volume
6394 of LNCS, pages 211–225. Springer-Verlag, Berlin, Germany, 2010. ISBN 978-3-
642-16144-5. 3.18

[27] D. S. Kolovos, L. M. Rose, R. F. Paige, and A. García-Domínguez. The Epsilon book,
2013. URL http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/
trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf. Last checked: Novem-
ber 6th, 2013. 3.14, 3.15

[28] J. P. López-Grao, J. Merseguer, and J. Campos. From UML activity diagrams to
Stochastic Petri nets: application to software performance engineering. SIGSOFT
Softw. Eng. Notes, 2004. doi: 10.1145/974043.974048. 3.8

[29] H. Lucas. Performance evaluation and monitoring. ACM Computing Surveys, Septem-
ber 1971. doi: 10.1145/356589.356590. 3.8

[30] C. M. MacKenzie, K. Laskey, F. McCabe, P. Brown, and R. Metz. Reference Model
for Service Oriented Architecture 1.0, October 2006. URL http://docs.oasis-open.
org/soa-rm/v1.0/soa-rm.pdf. Last checked: November 6th, 2013. 3.1

[31] Martin Fowler. UmlAsSketch, August 2012. URL http://martinfowler.com/bliki/
UmlAsSketch.html. Last checked: November 6th, 2013. 3.10

[32] Object Management Group. MDA Guide version 1.0.1, June 2003. URL http:
//www.omg.org/cgi-bin/doc?omg/03-06-01. Last checked: November 6th, 2013.
3.12

[33] Object Management Group. UML Profile for Schedulability, Performance, and
Time (SPTP) 1.1, January 2005. URL http://www.omg.org/spec/SPTP/1.1/. Last
checked: November 6th, 2013. 3.8

[34] Object Management Group. UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms (QFTP) 1.1, April 2008. URL
http://www.omg.org/spec/QFTP/1.1/. Last checked: November 6th, 2013. 3.8

[35] Object Management Group. UML Profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE) 1.1, June 2011. URL http://www.omg.org/spec/
MARTE/1.1/. Last checked: November 6th, 2013. 3.8

[36] Object Management Group. Meta-Object Facility (MOF) 2.4.1, August 2011. URL
http://www.omg.org/spec/MOF/2.4.1/. Last checked: November 6th, 2013. 3.12

3.20

http://eclipse.org/gmt/epsilon/doc/modelink/
http://eclipse.org/gmt/epsilon/doc/modelink/
http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf
http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://martinfowler.com/bliki/UmlAsSketch.html
http://martinfowler.com/bliki/UmlAsSketch.html
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/spec/QFTP/1.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MOF/2.4.1/

References

[37] Object Management Group. Query/View/Transformation (QVT) 1.1, January 2011.
URL http://www.omg.org/spec/QVT/1.1/. Last checked: November 6th, 2013. 3.15

[38] Object Management Group. Unified Modeling Language (UML) 2.4.1, August 2011.
URL http://www.omg.org/spec/UML/2.4.1/. Last checked: November 6th, 2013.
3.12

[39] Object Management Group. Object Constraint Language Specification (OCL) 2.3.1,
January 2012. URL http://www.omg.org/spec/OCL/2.3.1/. Last checked: Novem-
ber 6th, 2013. 3.14, 3.17

[40] Organization for the Advancement of Structured Information Standards. Universal
Description Discovery and Integration Standard 3.0, October 2004. URL http:
//uddi.org/pubs/uddi_v3.htm. Last checked: November 6th, 2013. 3.6

[41] Organization for the Advancement of Structured Information Standards. Web ser-
vice implementation methodology, July 2005. URL https://www.oasis-open.org/
committees/documents.php?wg_abbrev=fwsi. Last checked: November 6th, 2013.
3.3

[42] D. C. Petriu and H. Shen. Applying the UML Performance Profile: Graph Grammar-
based Derivation of LQN Models from UML Specifications. In Proceedings of the
12th Int. Conference on Computer Performance Evaluation: Modelling Techniques
and Tools (TOOLS 2002), volume 2324 of Lecture Notes in Computer Science, pages
159–177, London, UK, 2002. Springer Berlin. 3.8

[43] J. Rothenberg. The nature of modeling. Artificial Intelligence, Simulation, and
Modeling, pages 75–92, 1989. 3.10

[44] SAP News. Microsoft, IBM, SAP to discontinue UDDI web services registry ef-
fort, January 2006. URL http://soa.sys-con.com/node/164624. Last checked:
November 6th, 2013. 3.6

[45] D. C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):25–31, 2006. ISSN
0018-9162. 3.10

[46] E. Seidewitz. What models mean. Software, IEEE, 20(5):26–32, 2003. ISSN 0740-7459.
doi: 10.1109/MS.2003.1231147. 3.10

[47] G. A. Silver, A. Maduko, J. Rabia, J. Miller, and A. Sheth. Modeling and simulation
of quality of service for composite web services. In Proceedings of 7th World Multicon-
ference on Systemics, Cybernetics and Informatics, pages 420–425. Int. Institute of
Informatics and Systems, November 2003. 3.9

[48] C. U. Smith and L. G. Williams. Software performance engineering. In L. Lavagno,
G. Martin, and B. Selic, editors, UML for Real: Design of Embedded Real-Time
Systems, pages 343–366, The Netherlands, May 2003. Kluwer. 3.8

[49] M. Tribastone and S. Gilmore. Automatic extraction of PEPA performance models
from UML activity diagrams annotated with the MARTE profile. In Proceedings of
the 7th Int. Workshop on Software and Performance, pages 67–78, Princeton, NJ,
USA, 2008. ACM. doi: 10.1145/1383559.1383569. 3.8

3.21

http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/OCL/2.3.1/
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
https://www.oasis-open.org/committees/documents.php?wg_abbrev=fwsi
https://www.oasis-open.org/committees/documents.php?wg_abbrev=fwsi
http://soa.sys-con.com/node/164624

References

[50] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based test-
ing, April 2006. URL http://researchcommons.waikato.ac.nz/handle/10289/81.
Last checked: November 6th, 2013. 3.8

[51] J. Warmer, K. Thoms, M. Boger, F. Filipelli, M. Bauer, and J. Reichert. Spray project
homepage, 2012. URL https://code.google.com/a/eclipselabs.org/p/spray/.
Last checked: November 6th, 2013. 3.18

[52] Web Services Interoperability Organization. Basic profile - version 1.1 (Final), Au-
gust 2004. URL http://www.ws-i.org/Profiles/BasicProfile-1.1.html. Last
checked: November 6th, 2013. 3.6

[53] M. Woodside, G. Franks, and D. Petriu. The future of software performance engin-
eering. In Proceedings of Future of Software Engineering 2007, pages 171–187, Los
Alamitos, CA, USA, 2007. IEEE Computer Society. doi: 10.1109/FOSE.2007.32. 3.8

[54] World Wide Web Consortium. XML Schema Part 0: Primer (Second Edition).
Technical report, November 2004. URL http://www.w3.org/TR/xmlschema-0/. Last
checked: November 6th, 2013. 3.5

[55] World Wide Web Consortium. Web services architecture, February 2004. URL
http://www.w3.org/TR/ws-arch/. Last checked: November 6th, 2013. 3.1

[56] World Wide Web Consortium. Web services glossary, February 2004. URL http:
//www.w3.org/TR/ws-gloss/. Last checked: November 6th, 2013. 3.2, 3.3

[57] World Wide Web Consortium. Extensible Markup Language (XML) 1.1 (Second Edi-
tion), August 2006. URL http://www.w3.org/TR/xml11/. Last checked: November
6th, 2013. 3.5

[58] World Wide Web Consortium. SOAP version 1.2 part 0: Primer, April 2007. URL
http://www.w3.org/TR/soap12-part0/. Last checked: November 6th, 2013. 3.5

3.22

http://researchcommons.waikato.ac.nz/handle/10289/81
https://code.google.com/a/eclipselabs.org/p/spray/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/soap12-part0/

4
Existing service-oriented

methodologies

4.1. State of the art

The previous chapter introduced the key concepts underlying the present work. These
concepts extended from high-level business aspects (such as extended enterprises or
enterprise integration architectures), to system architectures such as Multi-Agent Systems
(MASs) and Service-Oriented Architectures (SOAs), or particular software development
disciplines such as model-driven development or performance engineering.

One of the goals of the present Thesis was defining a methodology which could represent
both the information systems of a distributed manufacturing enterprise and its tests.
Since a large fraction of the information systems will be part of a SOA, this chapter will
review a selection of the existing model-driven methodologies which attempt to reduce
their development cost. Since none of the reviewed methodologies explicitly included
testing models, one of them will be selected as a starting point, presented in more depth
and extended to describe functional and nonfunctional requirements of the services to be
implemented.

4.1 State of the art
Implementing a SOA is a hard task, as it can affect the entire organisation. Without a
proper methodology, it can be prohibitively expensive even for a small manufacturing firm.
For this reason, various SOA methodologies have been proposed to reduce their cost. Since
these methodologies are very different from each other, they must be compared regarding
their completeness, how much manual work they require and how costly they are.

The present discussion will focus on model-driven methodologies, which derive increas-
ingly detailed descriptions (i.e. models) of the SOA to be built through a series of manual
and automated transformations. There are other well-known methodologies such as the
one proposed by Erl [11] or Papazoglou and Heuvel [28], but these are limited to textual
descriptions of the steps involved, and do not explicitly involve any modelling.
Additionally, the review will be limited to methodologies that cover both identifying

which services are needed, modelling the services to be implemented and (perhaps partially)
implement them. There are model-driven methodologies that are entirely dedicated to
specific steps in the process, such as the GAMBUSE methodology by Nguyen et al. [23],
which uses gap analysis to detect differences between the existing and the desired business
processes and tries to reuse as many of the existing assets as possible when listing which
services are required by the organisation.
The first methodology to be reviewed is by Stojanović [30] and is based on a concept

which predates SOAs: component-based development. The appropriate parallelisms
between these concepts will be drawn and the steps involved will be listed. This will
be followed by a discussion of the service-centric and organisation-wide Service Oriented
Modeling and Architecture (SOMA) [14], SODM [7] and Business Process Service Oriented
Methodology (BPSOM) [9] methodologies, and the methodology proposed by Hoyer et al.
[17], which is focused on implementing service-based integration solutions. Table 4.1
summarises the most important features of these methodologies.

4.1.1 Prior work on component-based systems
Service-oriented architectures were not imagined from thin air: rather, they represent the
next evolutionary step of several existing ideas in software engineering. Many parallelisms

4.1

4. Existing service-oriented methodologies

T
ab

le
4.
1.

Fe
at
ur
e
co
m
pa

ris
on

of
th
e
SO

A
m
et
ho

do
lo
gi
es

un
de
r
re
vi
ew

N
am

e
Sc
op

e
B
as
ed

on
N
ot
at
io
ns

A
ut
om

at
ed

?
C
os
t

St
oj
an

ov
ić

A
na

ly
sis

(c
om

pa
ny

-w
id
e)

an
d

de
sig

n

C
om

po
ne
nt
s,

la
te
r

re
or
ie
nt
ed

to
se
rv
ic
es

U
p
to

th
e
us
er
,U

M
L

pr
ef
er
re
d
(s
im

pl
e

m
od

el
s)

N
on

e
M
ed
iu
m

SO
M
A

En
tir

e
lif
ec
yc
le

(c
om

pa
ny

-w
id
e)

U
M
L
cl
as
se
s
w
ith

st
er
eo
ty
pe

s
ar
e

co
nv

er
te
d
in
to

se
rv
ic
es

U
M
L
pr
ofi

le
s

(a
dv

an
ce
d
m
od

el
s)

C
od

e
ge
ne
ra
tio

n
an

d
do

c.
ge
ne
ra
tio

n
H
ig
h

SO
D
M

A
na

ly
sis

(c
om

pa
ny

-w
id
e)
,

de
sig

n
an

d
im

pl
em

en
ta
tio

n
(p
ar
tia

l)

U
M
L
ac
tiv

iti
es

w
ith

st
er
eo
ty
pe

s
ar
e

co
nv

er
te
d
in
to

se
rv
ic
es

Va
lu
e
di
ag
ra
m
s,

BP
M
N

bu
sin

es
s

pr
oc
es
se
s,
U
M
L
pr
ofi

les
(s
im

pl
e
m
od

el
s)

D
es
ce
nd

in
g
M
2M

tr
an

sfo
rm

at
io
ns

an
d

W
S
in
te
rfa

ce
ge
ne
ra
tio

n

M
ed
iu
m

BP
SO

M

A
na

ly
sis

(c
om

pa
ny

-w
id
e)
,

de
sig

n
an

d
im

pl
em

en
ta
tio

n
(n
om

in
al
)

U
M
L
m
od

el
s
pr
ov

id
e

hi
gh

-le
ve
ld

es
cr
ip
tio

n
of

in
te
rfa

ce
s
an

d
co
m
m
un

ic
at
io
n

pr
ot
oc
ol
s

BP
M
N

bu
sin

es
s

pr
oc
es
se
s,

So
aM

L
U
M
L

pr
ofi

le
,U

M
L
se
qu

en
ce

di
ag
ra
m
s

D
es
ce
nd

in
g
M
2M

tr
an

sfo
rm

at
io
ns

(u
nd

oc
um

en
te
d)

M
ed

iu
m
/H

ig
h

H
oy
er

A
na

ly
sis

(fo
r
a

sp
ec
ifi
c
in
te
gr
at
io
n

so
lu
tio

n)
,d

es
ig
n

an
d
im

pl
em

en
ta
tio

n

D
om

ai
n
an

d
wo

rk
flo

w
m
od

el
s
pr
od

uc
e
a

se
rv
ic
e
m
od

el
,f
ro
m

w
hi
ch

W
SD

L,
X
M
L

Sc
he
m
a
an

d
BP

EL
de
sc
rip

tio
ns

ar
e

ge
ne
ra
te
d

U
M
L
ac
tiv

ity
,s

eq
ue

nc
e

an
d
co
m
po

ne
nt

di
ag
ra
m
s

Se
rv
ic
e
m
od

el
ge
ne
ra
tio

n
an

d
W

SD
L/

X
M
L

Sc
he
m
a/
BP

EL
ge
ne
ra
tio

n

M
ed
iu
m

4.2

4.1. State of the art

can be established between the idea of a SOA and its immediate ancestor: Component-
Based Development (CBD).
There are many definitions of “component”: for the purposes of this work, it can

be defined as a “black box” that is clearly separated from the rest which provides a
certain functionality under some contract and which can be assembled together with other
components.
In many ways, this is quite similar to the concept of a service. The main differences

between services in SOA and components in CBD are:

• The way in which the part is related to the whole. Components tend to be hidden
within the application and cannot be told apart from it. On the other hand, services
retain their individuality even when composed into higher-level services: the same
service can be used from several places.

• The abstraction level at which they operate. Components tend to be design or
implementation artefacts, such as a particular user interface widget or a particular
library for performing a certain task. In contrast, services provide business-level logic
which is independent of the programming language used to implement the services
themselves.

Taking advantage of these similarities, Stojanović [30] extends a methodology originally
for CBD to SOA. There are better known component-based methodologies such as
Kobra [2] or Catalysis [10], but they do not explicitly handle the case of SOA. Stojanović
describes the concepts to be used in each model, allowing the user to select one among
several notations for them.
The overall process followed by this methodology can be summarised as follows:

1. The business goals, processes, entities, resources, events and rules of the existing
environment are captured in a set of Business Domain Models (BDMs).

2. The use cases to be implemented by the system are identified and collected in a
Business Component Model (BCM). A business component brings together use cases
which handle the same domain elements, change together, use the same systems
and/or are part of a single transaction.

3. The applications to be used for implementing each of the business components are
identified and described in the Application Component Models (ACMs).

4. Finally, these ACMs are instantiated by selecting the actual implementation artefacts
they will be created from: external or in-house libraries, business logic, and so on.
This step produces a set of Implementation Component Modelss (ICMs).

These steps are similar to the OMG MDA® approach (§ 3.3.2.1) which first models the
business, then a platform-independent view of the system with its abstract requirements
and then a platform-specific view of the system which is closer to the implementation. This
methodology does not impose any particular notation, though UML is used for its case
study. However, all model transformations are entirely manual, and no formal mappings
are defined between them.

4.3

4. Existing service-oriented methodologies

4.1.2 IBM SOMA
The IBM SOMA methodology defines an integrated approach over the SOA develop-
ment process. It spans the entire process, from its conception to its monitoring and
maintenance [14]. It consists of an iterative process divided into multiple stages.

First, SOMA requires creating a business domain model and a set of templates for the
available integration solutions. The next step is finding all the services which should be
part of the architecture by combining multiple information sources: enterprise goals, a
conceptual model of the environment, and existing legacy systems.
Next, these services will be reorganised into a coherent whole. Since a large number

of potential services may have been identified, SOMA requires selecting the subset that
achieves the best balance between benefit and cost and postponing the rest. Finally, the
selected services will be implemented, validated, deployed and tracked.

The main contribution from SOMA is the combination of several requirements elicitation
techniques to extract as many services as possible:

• Goal-Service Modeling (GSM) extracts services by studying the business goals of
the organisation and finding out in which ways the system can support these goals
and the related metrics.

• Domain decomposition takes the available concepts in the business domain and
extracts services from the things that the system could do with them. For instance,
for an “order”, a system may create it, check its status, modify it, create an invoice
for it or cancel it, among other actions.

• Analysing existing assets can also produce services by studying already available
systems and finding which parts of their functionality could be reused elsewhere in
the organisation. Mission-critical systems may not be replaceable in the short term,
but their logic may be still useful beyond its normal bounds.

The services obtained using these three methods are then rearranged in a hierarchy,
which is trimmed down with a custom litmus test that concludes whether it is worth
incurring the additional cost entailed by providing the service.

The methodology has been implemented as a series of extensions to the Rational Unified
Process (RUP) and uses UML with custom extensions for modelling advanced aspects.
Though it has been validated through several projects and is based upon a known

process, SOMA is a complex methodology that requires creating a large set of intermediate
documents using a wide array of tools. For this reason, SOMA may not be well-suited to
small or medium manufacturing firms, which may not have enough resources to perform
this kind of exhaustive modelling. A more lightweight approach could be more effective in
these cases.

4.1.3 SODM
The Service Oriented Development Method (SODM) is a model-driven methodology for
developing service-based systems [7, 8, 31]. The SODM development process follows the
OMG MDA® proposal: while the business view encompasses the CIM level, the information
systems view covers the PIM and PSM levels. Figure 4.1 shows the models used by SODM
and how they relate to each other.

4.4

4.1. State of the art

The business view models the environment through a collection of value exchange models,
as proposed by Gordijn and Akkermans [15]. Existing business processes are described
using BPMN activity diagrams (§ 2.4.4).
After the business view is defined, the next step is developing the PIM level of the

information system view. To do this, a list of business services is extracted from the value
exchange models, from which a collection of use case models is derived. These use case
models are then subdivided and related with each other in a set of extended use case
models, using the BPMN models as a reference.

With the extended use case models, the user has described what the system should do.
The next step is specifying how the system should do it. In SODM, this is achieved by
creating service process models that arrange the identified use cases in order to carry out a
business service. These models are extended once more to produce the service composition
models, which split the service activities between the entities that participate in the process
(the business collaborators).

The PSM level is created from the PIM service composition models. The extended service
composition models specify the service activities which should be deployed as reusable Web
Services, and from these a set of Web Service interface models will be produced. These
two kinds of models are linked to each other: any change to one of them will result in
changes to the other. From these two kinds of models, a set of solution-specific application
business logic models will be produced, and some of the code of the desired system will be
generated.

This methodology is more lightweight than SOMA, and some of the mappings between
the models are automated, unlike the methodology by Stojanović (§ 4.1.1). It uses simpler
notations and strives to use the most appropriate notation at each step. At the CIM
level, BPMN is used, due to its higher abstraction level and its popularity among business
analysts. In contrast, UML is used at the PIM and PSM levels to make this part of SODM
more accessible to software developers [8].
This methodology is a good starting base for creating a methodology for creating

service-oriented systems in the context of distributed manufacturing systems. Current
business practices can be captured in the available models, and then used to add more
and more details until the models can generate a skeleton of the entire system.
Admittedly, it does not cover all the stages in the development process of a SOA. For

instance, it does not attempt to support the testing of the software within the SOA.
However, these shortcomings can be addressed by extending SODM with additional testing
models and transformations.

4.1.4 BPSOM
The Business Process Service Oriented Methodology (BPSOM) was proposed by Delgado
et al. [9] as an extension of the existing practices of a software development firm (as shown
in Figure 4.2). It defines a model-driven process for developing services from the business
processes in the organisation.
Like SODM, it is based on the OMG MDA approach (§ 3.3.2.1). Business processes

constitute the CIM level and are modelled using BPMN. The business process models are
transformed using QVT (Query/View/Transformation [24], § 3.3.3.2) to a collection of
SoaML (Service oriented architecture Modelling Language [27]) models. SoaML provides a
metamodel and a UML profile for the specification and design of services within a service-

4.5

4. Existing service-oriented methodologies

Figure 4.1. Outline of the models used by SODM [8]

Figure 4.2. Integration of BPSOM into the existing software development process [9]

4.6

4.1. State of the art

oriented architecture. SoaML provides several ways in which services can be described,
classifying them into simple interfaces for Web Services in the RPC (Remote Procedure
Call) style, service interfaces (bidirectional WS with different interfaces for consumer and
provider) and service contracts (which entail the execution of particular choreography).
BPSOM is divided into the following activities:

• BM1: Assess the target organisation, introducing the project team to the organisation
for which the development will be carried out.

• BM2: Identify business processes and model them with BPMN.

• D1: Identify and categorize services as required to implement the business processes.
The SoaML models will describe the Service Architecture (SA) listing the participants,
the service contracts and the roles the participants play in them.

• D2: Specify services by filling out the rest of the details in the SoaML models, such
as interfaces, operations or input and output parameters.

• D3: Investigate existing services which are listed in a central catalogue, in case they
can be reused.

• D4: Assign components to services. These components will eventually implement
the functionality of the service.

• D5: Define services interaction through UML sequence diagrams that describe the
service orchestrations and choreographies throughout the system.

• I1: Implement services, in which the components that comprise each of the services
are implemented.

BPSOM is quite similar to SODM, which is to be expected, as they are both based
on the OMG MDA approach. Both methodologies start from business process models in
BPMN and use them to create PIM-level models and then the code. While SODM uses
custom models at the PIM and PSM levels instead of SoaML models, in the end both
methodologies generate code from a detailed description of the selected services.
BPSOM does not provide any facilities for verification and validation: it only extends

the development process with the activities that are strictly required for creating the
services, but not for testing or deploying them. Several tools for driving the execution of
the methodology have been published, but the QVT transformations themselves or their
descriptions are not publicly available.

4.1.5 Hoyer
Hoyer et al. defined a top-down model-driven methodology for creating service-oriented
applications in [17]. It has a smaller scope than SODM and BPSOM, being focused on
the development of a particular integration solution rather than a company-wide SOA.

The first step of the methodology is eliciting the general requirements for the integration
solution, using whichever techniques are available (though the authors recommend creating
UI protoypes). The requirements themselves do not need to be in any particular notation.

4.7

4. Existing service-oriented methodologies

Figure 4.3. Overview of the model-driven development process by Hoyer et al. [17]

4.8

4.2. Selection of a base methodology

Next, these requirements will be used to manually derive a set of domain models
(UML class diagrams) and workflow models (UML activity). These will be automatically
transformed using QVT into a service model, consisting of a set of UML interfaces and
components. From these three UML models, the methodology generates the required
XML Schema datatypes, WSDL interfaces and WS-BPEL service compositions for the
particular integration solution. The final step requires the user to implement the desired
Web Services from the WSDL and XML Schema documents: this can be partly automated
depending on the target programming language and frameworks.

The overall approach is shown in Figure 4.3. The methodology uses a small number of
models in comparison to SODM and BPSOM, and it is quite developer-centric, judging
from the exclusive usage of UML during the modelling stages. A closer notation to that
used by business analysts (such as BPMN) would be better suited to capture workflows.
However, BPMN cannot be easily translated to WS-BPEL, as suggested by Weidlich et al.
[32], so this might have been intentional.

4.2 Selection of a base methodology
In the previous section, several of the existing model-driven methodologies for developing
SOAs were reviewed, producing the results shown in Table 4.1. All these methodologies
used top-down approaches, starting from high-level business processes and using various
techniques to select which business functionality should be made available throughout
the organisation as reusable services. However, they largely varied in several important
aspects, such as their scope, their degrees of automation, their cost or the complexity of
the models being used.
In order to decide which methodology should be used as a starting point, several

requirements were set:

R1. The methodology must be extensible to the entire manufacturing company, as the
SOA will need to integrate the manufacturing plants of the company and its partners
in the value chain.

R2. The methodology must provide at least partial automation for producing the analysis
and design models.

R3. The methodology must be publicly available. Ideally, a reference implementation
should be available as well, but it is not required.

R4. The methodology should use well-known notations and simple models, keeping its
cost within the resource constraints present in a small-medium enterprise.

Requirement R2 excluded the methodology by Stojanović. Requirements R1, R3
and R4 excluded SOMA. Hoyer was excluded due to R1. This left only BPSOM and
SODM. Among these, SODM was selected as it provided detailed descriptions of the
transformations involved in the analysis and design stages, used a more accessible subset
of the UML notations and used value diagrams to model the business model motivating
the supporting business processes and information systems. It is also important to note
that graphical SoaML modelling tools are currently limited to costly proprietary options,
such as MagicDraw, IBM Rational Software Architect or Enterprise Architect.

4.9

4. Existing service-oriented methodologies

4.3 Detailed description of SODM
Having selected SODM for the above reasons, this section will describe the models used
by SODM (shown in Figure 4.1) and the concepts involved in more depth. Due to the
interdisciplinary nature of the present thesis, it is assumed that some readers may be
unfamiliar with software engineering notations such as UML. After a short introduction
to the subset of UML used by SODM, each of the models used by SODM will be visited,
starting from the highest-level models up to the models closest to the implemented system.

4.3.1 UML subset used by SODM
SODM uses several kinds of models defined by the Unified Modelling Language (UML)
published by the Object Management Group (OMG) [25]. These are class diagrams, use
case diagrams and activity diagrams. As UML is a very complex specification, this section
will only present the subset of UML that SODM uses in each kind of diagram.

UML can be extended using “profiles”. Profiles add new “stereotypes” that can be
applied to certain kinds of model elements and specify additional semantic information.
The extensions provided by SODM will be detailed below, followed by some new proposed
extensions for testing functional and non-functional requirements.

4.3.1.1 Class diagrams

Class diagrams represent each of the concepts that will be handled by the system, according
to the object-oriented programming paradigm. A “class” is an abstract concept that
represents all “objects” of a certain kind. For instance, while “wheeled vehicle used for
transporting passengers, which also carries its own engine or motor” is the abstract concept
of an Car, “that car” is an object of the underlying class.

All objects of a class have certain pieces of information associated with them (known as
“attributes”) and provide various behaviours (“methods”).

A is said to be a subclass of B when all the objects of A are also objects of B, i.e. the
objects of A are a specific kind of objects of B. Continuing the previous example, SUV
would be a subclass of Car, as every SUV is also a Car. This relation can also be expressed
in other ways: B is a superclass of A, A inherits from B, B is a parent of A, or A is a
descendant of B. Subclassing is useful as the objects in these subclasses will inherit all the
attributes and methods of their superclasses: for instance, since every Car will have an
engine attribute, SUV will implicitly have it as well.

There are several ways to specify inheritance relationships in UML, but these diagrams
will only consider the most common kinds: complete and disjoint. “Complete” means that
there are no more subclasses beyond those explicitly drawn in the diagram, and “disjoint”
means that a certain object may only belong to one subclass. This means that if only the
SUV and Bus subclasses are defined, it is assumed that no Sedan objects exist.

Objects in a class may be related to objects in another class. This is represented using
an “association” between the classes, which may have a descriptive name and in which each
of the participating classes will take a certain role. These roles may also have descriptive
names. An association can also impose limits on how many objects of each class can be
related to each other at the same time, by specifying a “cardinality” on each role. For
instance, it can be assumed that an Car is owned by one Person and that one Person may

4.10

4.3. Detailed description of SODM

own zero or more Cars. The resulting association “owns” will have two roles: “owner” for
Person (with cardinality “1”) and “possession” for Car (with cardinality “*”).

Objects may contain other objects through “composition” or “aggregation” associations:

• In a composition, the container has the exclusive ownership of the contained object
and if the container is destroyed, the contained object will be destroyed as well. A
composition from Car to Engine would indicate that an Engine is part of exactly
one Car, and that the Engine would be discarded together with the Car.

• Aggregations do not require exclusive ownership and do not limit the lifetime of the
contained object. For instance, a Family may be the aggregation of many Person
objects. However, the same Person may belong to multiple Family objects or may
also belong to a SportsClub, for instance. If the SportsClub disbands, this will not
affect the Person objects in it.

The notation used in class diagrams is presented on Table 4.2.

Table 4.2. UML class diagram concepts used by SODM
Name Notation Meaning

Class
Car

year : Integer
+ start()

Describes a set of objects that share
the same specifications of features,
constraints and semantics. All ob-
jects in a class have various fields
with pieces of information about
them (attributes) and certain beha-
viours (methods).
The example on the left shows a class
that represents all Cars. The year
attribute indicates its registration
year and the start method starts
its engine.

Generalisation
SUV Car

Relation from a source (child) class
A to a target (parent) class B, indic-
ating that every object of A is also
an object of B and should therefore
inherit its attributes and methods.
On the left, SUVs are described as
a particular kind of Cars.

Continues on next page

4.11

4. Existing service-oriented methodologies

Continued from previous page
Name Notation Meaning

Association

Person

Car

has

1owner

*possession

Relation between a certain number
of objects of one or more classes. An
association may link two or more
“ends”. The number of objects as
each end is limited by the “cardin-
ality” of that end. For instance, if
a certain end has cardinality 2, that
means that after selecting specific
objects for all other ends, only two
objects of the class at that end may
be related to them. Each end plays
a certain “role” in the association.
If an association end is navigable,
instances at that end will be easy
to list from instance at the other
ends. The simplest associations are
binary and bidirectional (boths ends
are navigable), but they need not be.
If only one of the ends is navigable,
it is marked with an arrow tip.
Association and role names may be
omitted if desired. Cardinalities are
assumed to be 1 by default.
The “has” association on the left
models the fact that a Person may
have zero or more Cars, and every
Car will be owned by exactly one
Person.

Continues on next page

4.12

4.3. Detailed description of SODM

Continued from previous page
Name Notation Meaning

Composition

Car

LicensePlate

Wheel

1

4

Binary association in which one of
the ends is “owned” by the other.
This means that if the object at
the “owner” ends is destroyed, the
“owned” objects will cease to be as
well. The cardinality of the “owned”
will indicate how many objects of its
class are owned by each instance of
the “owner” class.
The example on the left shows
that a Car has a LicensePlate and
four Wheels. Since the end for
LicensePlate in its association with
Car does not have an arrow tip,
the model also shows that one
can find the Car instance from its
LicensePlate.

Aggregation

Team

Person

*

1..*

Binary association which models a
whole-part relationship, much like
a composition. Unlike a composi-
tion, the part can belong to multiple
wholes and does not need to be des-
troyed together with any of them.
The example on the left shows that
a Team is formed by one or more
Person objects, and that a Person
may be part of several teams. Even
if a Team is disbanded, the Person
objects in it will remain.

4.3.1.2 Use case diagrams

Use case diagrams model the scenarios in which the stakeholders in the business environment
in which the system will operate (the “actors”) will use the system to obtain a tangible
result (their so-called “use cases” for the system).

These diagrams link each of the actors with the use cases in which they have an interest
on, whether it is because they interact with the system in some form, or because they
affect or are affected by the results (e.g. a tax authority on a tax ledger module).
Use cases may be linked to each other as well, if the modeller considers their contents

to be related in some form. A use case may include the steps followed by another use case,
or may extend those of another use case.

Normally, use cases are presented inside a graphic element that represents the boundary
of the system being modelled, and the actors are placed just outside this boundary. This

4.13

4. Existing service-oriented methodologies

helps visualise what is the system supposed to do and not, and who is affected in some
way by its operation.

The notation used for the use case diagrams in SODM is summarised in Table 4.3.

Table 4.3. UML use case diagram concepts used by SODM
Name Notation Meaning

Actor

Salesman

Person or entity that is affected by
or that interacts with the system in
some form. For instance, the above
Salesman in a system managing a
general store.

System boundary System

Limit between what the system will
do and will not. Use cases will be
placed inside this boundary, and act-
ors will be place outside it. Due
to space restrictions, this table will
only use a system boundary in this
row.

Use case

PO

Perform
Order

Sequence of actions performed by
the system to produce a specific res-
ult of some value to one or more
of the actors in the diagram. The
Perform Order use case on the left
produces something of value for
the Salesman actor and is therefore
linked to it. Optionally, the link can
have an arrow tip at the end next to
the use case.

Extension

Pay with
credit card

Pay

�extend�

Relation between two use cases in
which one of them extends the beha-
viour of the other. Here, Pay with
credit card only extends Pay with
the additional details required to
handle this particular form of pay-
ment.

Inclusion

Process
Sale

Pay

�include�

Relation between use cases in which
one of them includes the behaviour
of the other. For instance, in order
to process a sale, the system will
necessarily need to process the pay-
ment of the requested amount.

4.14

4.3. Detailed description of SODM

4.3.1.3 Activity diagrams

UML activity diagrams list the steps required to perform a specific task in the system.
They specify the order constraints between these steps, how they may overlap and under
which conditions certain steps will be executed or not. In this sense, they are quite similar
to flowcharts.

In every activity diagram, execution starts from an initial node and continues through
the control flows until a final node is reached. Intermediate nodes may be of the following
types:

• Subactivities or actions that perform a concrete task.

• Decision nodes, which select one of several outgoing control flows depending on a set
of conditions.

• Fork nodes, which continue execution concurrently through all their outgoing control
flows.

• Join nodes, which wait for all incoming control flows to converge before continuing
execution through its only outgoing control flow.

• Merge nodes, which reunite several execution branches into one. Unlike join nodes,
execution will continue as soon as any of the incoming control flows is activated.

In addition to control flows, object flows may be used in order to pass information
between steps. Nodes may be also placed on the swimlane of the stakeholder which will
perform the task.
Table 4.4 summarises the notation used for the activity diagrams in SODM.

Table 4.4. UML activity diagram concepts used by SODM
Name Notation Meaning

Initial node Unique starting point for all execu-
tion paths.

Activity final
node

Ends all execution branches of the
current activity.

Flow final node
Ends the current execution branch.
No other execution branches will be
affected.

Fork node

Divides the current execution branch
into several concurrent branches.
Fork nodes have several incoming
flows and no outgoing flows.

Join node
Waits for all incoming flows to reach
it, and then continues execution
through its only outgoing flow.

Continues on next page

4.15

4. Existing service-oriented methodologies

Continued from previous page
Name Notation Meaning

Merge node

Reunites several execution branches
into one, like the join node. Unlike
the join node, execution will con-
tinue as soon as any of the incoming
flows is activated. Has several in-
coming flows and only one outgoing
flow.

Decision node

Activates the outgoing control flow
whose condition holds true. Has sev-
eral outgoing flows and only one in-
coming flow.

Activity or action Task

Task to be performed by the system
or a stakeholder. While activities
can be decomposed into lower-level
entities, actions represent atomic en-
tities.

Object node Order

Object or message passed between
two activities or actions. These are
normally used to represent the in-
puts and outputs of the activities
and actions.

Control flow

Link between two nodes indicating
that once execution is over for its
source node, it will continue through
the target node.

Object flow

Link which connects an activity or
action with an object node. If the
object node is the target of the link,
it means that it is an output of the
activity or action. Otherwise, it is
an input of the action.

4.3.2 Computation-independent models
In the previous section, the subset of UML used by SODM was described. The rest of this
section will present the abstract and concrete syntaxes of each of the models used in every
step of SODM, and how they are combined.

The first step in all methodologies based on the MDA approach by the OMG, as SODM,
is modelling the business environment itself. This will help ensure that the system built is
aligned to the needs of the organisation requesting it.

These models do not need to take into account any design or implementation detail of

4.16

4.3. Detailed description of SODM

the system to be built. Their intent is to formalise the current workings of the organisation,
the stakeholders involved and their interests.

4.3.2.1 Value models

The first models required by this methodology are the value models proposed by Gordijn and
Akkermans [15] and implemented in [16]. These models present the business model upon
which the enterprise operates as a collection of value exchanges between the participants
in its environment. The abstract concepts of the value models used in the present Thesis,
their meaning and their graphical notations are listed in Table 4.5.

These exchanges are described at an abstract level, without going into details about how
they are actually performed. For instance, the models do not specify whether a particular
financial transaction is done in cash or by electronic means, or the means of transport
used for supplying a certain kind of goods.
Reading a value model requires starting from the start stimulus, a special node that

signals that a customer has a certain need that must be fulfilled through a sequence of
value exchanges until reaching a set of end stimulus.

Creating a value model from a textual description of the organisation requires following
these steps:

1. Identify the operational scenario, i.e. which products, services or experiences are
requested by the customers.

2. Identify both kinds of actors: those whose needs will be fulfilled, and those who will
help fulfil them.

3. Identify the objects by studying what is sent and received to and from the actors.

4. Identify the dependency paths from the start stimuli to the end stimuli, listing the
sequences of value exchanges required to fulfil the needs of the customer.

Table 4.5. Abstract and concrete syntax of Gordijn value models
Name Notation Meaning

Actor
Name

Self-sufficient economic entity, such
as an enterprise or an end consumer.
“Self-sufficient” means that it can
obtain profits after a certain time
period (for an enteprise), or that it
can obtain a certain added value (for
an end consumer). Valid business
models must ensure that all actors
are self-sufficient.

Value object Name
Kind of service, product or experi-
ence which has economic value for at
least one of the actors in the model.

Continues on next page

4.17

4. Existing service-oriented methodologies

Continued from previous page
Name Notation Meaning

Value port Point from which an actor sends or
receives value objects.

Value offering (no graphical
representation)

Everything sent or received by an
actor during a particular exchange
with its environment. It consists of
a set of value ports in the same dir-
ection (sending or receiving), associ-
ated to the same value interface. It
models the restriction that in order
to be performed, value objects must
be sent and/or received through all
the ports involved at the same time.

Value interface

Pair of two value offerings: the of-
fering made by an actor to its en-
vironment, and the offering that is
expected to be received in exchange.
In order to be activated, both offer-
ings must be performed at the same
time. These are drawn at the edges
of the actors and market segments.

Value exchange

Link between to value ports, not-
ing that the actors are willing to ex-
change value objects between each
other.

Market segment

Name
Category of actors that share the
same value interfaces.
A particular actor in a segment
may have additional value interfaces:
these will be modelled separately as
a supplementary actor.

Value activities
Name Activities performed by an actor in

order to obtain some kind of added
value. These are drawn inside the
actor that performs them.

Continues on next page

4.18

4.3. Detailed description of SODM

Continued from previous page
Name Notation Meaning

Dependency node

A

B

C

D

Nodes which describe the way in
which the needs of the end custom-
ers depend upon the execution of a
sequence of value exchanges through-
out the actors in the model, start-
ing from a starting stimulus (A) and
ending at a set of end stimulus (B).
Some exchanges may require several
other exchanges, which may all have
to be performed (drawn as an AND
fork, C) or at least one of them (OR
fork, as in D). In other cases, some
exchanges will have to be performed
after every previous exchange is done
(an AND join, C) or after at least
one of the previous exchanges is done
(an OR join, D).

Dependency path Connects a dependency node to a
value interface.

4.3.2.2 Business process models

The first versions of SODM used UML activity diagrams to describe the business tasks
needed to obtain a tangible result for the customer [7]. These tasks were high-level abstract
tasks which had to be realised through several lower-level tasks in the information system:
business process models are only intended to capture the current and desired states of the
business practices or the organisations, and not for directly implementing the system.

Business process models for the latest versions of SODM have the same focus, but use
the Business Process Modelling Notation 2.0 (BPMN 2.0) instead [8]. BPMN 2.0 was
introduced in Section 2.4.4, together with an example based on a case study in Section 2.4.5
and Figure 2.24. Readers are suggested to refer to these sections for an overview of the
abstract concepts and notation used.

4.3.2.3 Business services list

The list of business services simply enumerates all the services that are provided by the
organisation in order to satisfy the needs of the customers. Each entry includes the name
of the service and the customer whose need is fulfilled.
Creating the list requires first identifying who will serve as customers for the services

of the organisation. The value model is used as a starting point: every actor containing
a start stimulus in some dependency path is a customer, requiring a sequence of value
exchanges in order to fulfil her needs.
Next, the services required by the customers need to be identified. These can be

extracted from the value models by traversing them from the start stimulus and collecting

4.19

4. Existing service-oriented methodologies

Table 4.6. New or changed elements in the SODM use case models
Name Notation Meaning

End consumer

Customer

Specific kind of actor that represents
a user that will obtain a particular
business service through the system.

Business service

Customer

�BS�
A

Service provided by the system that
produces a result with tangible value
for the end consumer.

System boundary
�CLASSIFIER�

System
The meaning is the same as before,
but the notation has been changed
to that in the left.

the value activities that need to be performed and the value exchanges that need to be
facilitated, or by examining the activities in the business processes involved.

4.3.3 Platform-independent models
Through the computation-independent models presented above, SODM can represent the
enterprise and its environment and elicit the list of the business services required by the
customers.
In this second stage, SODM will produce a collection of models which will describe

the functionality required by the system, without regards for specific implementation
details, such as the technologies to be used or the environment in which the system will
be deployed.

4.3.3.1 Use case models

Use case models in SODM relate the business services to be provided by the system to
their consumers. In general, these are fairly standard UML use case diagrams (as those in
Section 4.3.1.2), with some slight changes (see Table 4.6).

These models describe a particular kind of use case, known as a “business service”. Each
business service is linked with exactly one “end consumer”, a particular kind of actor. In
addition, each end consumer uses exactly one business service.
In order to create the use case models, modellers will need to consider exactly which

will be the scope of the system and who will use it. Not all business services may be
directly offered as reusable services, and some services will not be used directly by the end
consumers, but rather by some third parties (e.g. regular staff instead of management).

After deciding which business services will be provided as reusable services by the system
and who will be the end consumers for these services, modellers will add the appropriate
links to relate them.

4.20

4.3. Detailed description of SODM

4.3.3.2 Extended use case models

The extended use case models take the above business services and decompose them into
“composite” use cases, which are then broken up into several “basic” use cases, which are
easier to implement.
The decomposition of the business services needs to be based on the information in

the value models and the business process models. For instance, it may be necessary to
implement additional functionality in order to facilitate a specific value exchange, or to
perform some of the actions in the service process model.

Furthermore, these extended use case models will include inclusion and extension links
between the basic and composite use cases. These links will be used to create a first
version of the service process models, as shown below.

SODM also classifies use cases as “structural” or “functional”. Structural use cases are
associated with the day to day management of certain kinds of resources in the system
(such as “Create order”), whereas functional use cases implement more advanced logic.

These deviations from the standard use case models in UML are collected in Table 4.7.

4.3.3.3 Service process models

The extended use case models created above present an overall view of the functionality
that must be provided by the system. The next step is to specify how these pieces are
assembled in order to render the services required by the end consumers. This is the role
of the service process models.
Service process models are simplified UML activity diagrams which string “service

activities” (a particular kind of activity) together. SODM can help users generate a first
draft of the service process model from the extended use case models, by converting basic
use cases into service activities and applying the rules in Table 4.8 to interconnect them.
Service process models do not use lanes, as the assignment of the activities to particular
stakeholders has not been considered yet. An example of a service process with some
proposed extensions is later shown in Figure 4.6.

4.3.3.4 Service composition models

Service composition models take the previous service process models and decompose service
activities into lower-level actions which can be directly implemented into the system. These
actions are then assigned to specific participants or “business collaborators”, modelled as
swimlanes. Collaborators send and receive information through the exchange of object
nodes. An example of a service composition with some proposed extensions is shown below
in Figure 4.7.

Business collaborators are extracted from the value models. Every service composition
model should take into account every actor or market segment that performs a business
activity related to the service composition.

4.3.4 Platform-specific models
The last stage of SODM defines a set of models which depend on the actual implementation
technologies. According to the OMG MDA approach (§ 3.3.2.1), these are the Platform

4.21

4. Existing service-oriented methodologies

Table 4.7. New or changed elements in the SODM extended use case models
Name Notation Meaning

End consumer

Customer

Specific kind of actor that represents
a user that will obtain a particular
business service through the system.

Composite use
case

Depends on whether it is
structural or functional.

Set of actions required to provide a
business service. It consists of sev-
eral basic use cases, and it can be
either structural or functional.

Basic use case Depends on whether it is
structural or functional.

Set of actions required to provide
a business service. It can be either
structural or functional.

Structural use
case

C

�SUC�
A

Set of actions required to provide a
business service that manipulates a
specific kind of resource in the sys-
tem. It can be either composite or
basic.

Functional use
case

C

�FUC�
A

Set of actions required to provide a
business service which implements a
higher-level logic beyond that of a
structural use case. It can be com-
posite or basic.

System boundary
�CLASSIFIER�

System
The meaning is the same as before,
but the notation has been changed
to that in the left.

4.22

4.3. Detailed description of SODM

Table 4.8. Transformation rules from SODM extended use case models to service process
models

Extended use case model Service process model

B A
�extend�

A B

B

B’

A
�extend�

�extend�

A B
B’

or

A B
B’

B A
�include� A B

A B

B’

�include�

�include�

B B’ A

or

B’ B A

4.23

4. Existing service-oriented methodologies

Figure 4.4. WSDL 2.0 metamodel [7]

Specific Models (PSM). SODM uses two kinds of PSMs: extended service composition
models and Web Service (WS) interface models.
The SODM extended service composition models are almost the same as the original

service composition models (§ 4.3.3.4), except for the new �WS� stereotype. �WS�
marks the actions in the models which should be made available through the SOA as
reusable services.
The metamodel for the SODM WS interface models is a straightforward mapping of

the core concepts of the the WSDL 2.0 [34] standard. The WSDL 2.0 metamodel is shown
in Figure 4.4, and consists of the following concepts:

• The root of every model is a Definition instance, with a human-readable name and
a unique TargetNameSpace URI. This URI decorates the names of all the services,
bindings, interfaces and messages in the model, reducing the risk of a name collision.

Definitions may also include Import objects to load definitions from external WSDL
documents, or Include objects that reuse external XML Schema [33] type and element
definitions.

• Each Service listens for requests at several Endpoints, which are associated with a
particular technology (SOAP, REST, email and so on) through a Binding.

• Each Binding exposes a certain Interface through the specified technology. The
information in the binding will be used to encode and decode the exchanged messages
appropriately into and from the actual communication medium.

4.24

4.4. Extending SODM for testing

• The Interface of a Service is an aggregation of zero or more Operations. Each
Operation is invoked through a certain message Pattern to access a specific function-
ality of the Service. The predefined message patterns in WSDL 2.0 may use zero or
one Input, Output or Fault Messages.

• Every Message consist of zero or more Parts, which have a name and conform to a
certain XML Schema Type or Element.

Based on this metamodel, SODM proposes a UML profile for class diagrams that
captures most of its contents, leaving the rest for a later transformation. The metamodel is
shown in Figure 4.5 in page 4.26: it closely mimics the concepts shown above. Most of the
stereotypes are applicable to UML Classes, except for several Association stereotypes which
relate Operations with Messages, Parts with Elements and Definitions with Elements.

4.4 Extending SODM for testing
From the detailed description above, it can be concluded that SODM is a lightweight
methodology that focuses on the description of the business environment, the functional
requirements of the system and the WS that should be built. Therefore, it could be used
with small to medium companies that do not have the necessary resources to use a more
extensive approach (such as SOMA) but still need to ensure that the system is aligned to
their business.

Nevertheless, the models in SODM do not have all the information required by testers
of the SOA being built. The functional requirements of the system are described using
textual labels in the service process and service composition models, and non-functional
requirements are not explicitly modelled at all.

This section will present several ways in which the models in SODM could be extended
to assist testers. Myers [22] lists six different higher-order testing methods: module,
integration, function, system, acceptance and installation testing. Among these six, only
the three methods that require special treatment in SOA will be considered: integration,
function and system testing. Acceptance tests could use the existing traceability relation-
ships between the CIM and PIM models in SODM: rather than extending the models, it
is a matter of using the right tools to relate these models.

In order to take advantage of the model-driven approach, these tests should be part of a
feedback loop in which test results are used to further improve both the models and the
system.

4.4.1 System tests: performance requirements
In the context of SOA, system tests would cover the entire architecture: the whole
ecosystem formed by all exposed WS and their consumers. Since functional tests would
be better suited to specific parts of the system, these larger tests would be more indicated
to non-functional aspects such as scalability or latency. Having a way to detect as early as
possible if the desired performance would not be met or could not be possibly achieved
with the existing design could be useful. In many cases, these non-functional requirements
are part of the Service Level Agreement (SLA) of the exposed Web Services.

4.25

4. Existing service-oriented methodologies

F
ig
ur
e
4.
5.

SO
D
M

W
S
in
te
rfa

ce
m
et
am

od
el

(t
ra
ns
la
te
d
fro

m
[7
]).

N
ew

st
er
eo
ty
pe

s
ar
e
sh
ad

ed
in

bl
ue
.

4.26

4.4. Extending SODM for testing

These requirements can be described as part of the PIM service process models, extending
them with new annotations containing the interesting parts of the SLAs involved. SLAs
could be applied at multiple levels: service processes (probably implemented as Web
Service compositions), their service activities (individual Web Services) or the actions that
make up the service activities (components used by the WS). Ideally, the SLAs for the
lower-level elements should follow from those of the higher-level elements: if the global
performance requirements change, these changes should be automatically propagated to
the lower-level requirements. It may also be useful to check if the lower-level requirements
are consistent with the high-level ones. These transformations and validations could be
supported by a model-driven approach.
The resulting performance requirements could be then used to automatically generate

a set of test artefacts for existing test performance tools, such as ContiPerf [5] (for Java
classes), soapUI [13] (for SOAP-based Web Services) or The Grinder [1] (a general-purpose
load testing framework).

Figure 4.6 illustrates how these requirements could be expressed in a model of “Handle
Order”, a service process which handles an order from a customer. Several new stereotypes
have been added, indicating the minimal number of concurrent requests per second that
must be processed and the time limit for each of them. Conditional control flows are also
annotated with an estimation of the probability with which they are activated. Using the
information provided by the modeller (the filled nodes) the tools may be able to derive
new information (the transparent nodes). For instance, since the probability that the
order is accepted is p = 0.8, each of the two concurrent execution branches started if the
order is accepted will need to handle at least 5p = 4 requests per second.

4.4.2 Function and integration tests: service contracts
In the context of SODM, function tests will attempt to find defects in the way that a
particular business service is implemented. The business service is implemented as a
service process formed by multiple service activities, and some of these service activities
will be eventually implemented as reusable WS.

In order to derive tests that try to find defects in the entire service process (at the
integration testing level) or a specific service activity (at the function testing level),
functional contracts for the service process and each of the service activities would be
highly valuable. These contracts could be used to automatically derive test cases to be
run on the final system, or to check specific properties.
The contracts must relate the inputs and outputs of the service process and service

activities with the initial and final state of the system. Since SOA is heavily focused on
having high-quality reusable WS, the service activities with the �WS� stereotype are
especially important. These service activities appear at the PSM level, in the extended
service composition models.
There are many notations that the models could use to represent the contracts. Since

SODM uses UML models, the most obvious choice would be the textual preconditions and
postconditions from the Object Constraint Language (OCL) of the Object Management
Group (OMG) Object Management Group [26].
Figure 4.7 shows how these would look like for the service composition model de-

rived from the service process model in Figure 4.6. The standard �precondition� and
�postcondition� stereotypes present assertions that must hold before and after the

4.27

4. Existing service-oriented methodologies

F
ig
ur
e
4.
6.

M
od

el
fo
r
th
e
“H

an
dl
e
O
rd
er
”
se
rv
ic
e
pr
oc
es
s,

w
ith

no
n-
fu
nc
tio

na
lt
es
tin

g
ex
te
ns
io
ns

4.28

4.4. Extending SODM for testing

Listing 4.1 Service contract for “Create Invoice” in JML
/*@

@ requires o.accepted == true
@ && o.open == true
@ && o.articles.length > 0
@ && !(\exists Invoice i;
@ Invoice.all.contains(i)
@ ⇒ i.order.id == o.id);
@
@ ensures \fresh(\result)
@ && \result.entries.length == o.articles.length
@ && (\forall int j;
@ j ≥0 && j < \result.entries.length;
@ \result.entries[i].price
@ == o.articles[i].currentPrice)
@ && (\sum int j;
@ j ≥0 && j < \result.entries.length;
@ \result.entries[i].price) == \result.total)
@*/

public Invoice createInvoice(Order o) {
// ...

}

execution of the service activity “Create invoice”, respectively. As it is marked with
the �WS�, it will be eventually implemented as a Web Service. The preconditions on
“Create invoice” require that the order should be initially open, accepted, not empty and
without a matching invoice. After its execution, the postconditions require that a new
invoice with the proper entries and total sum (including tax) has been created.
OCL is not the only textual language available for describing these preconditions and

postconditions. There are other options, such as the Java Modelling Language (JML)
by Burdy et al. [6] or the Spec# language by Barnett et al. [4], which are closer to familiar
languages such as Java or C#, respectively. In fact, the relative success of JML (with
support for some tools such as the static checker ESC/Java James and Chalin [18] or
the Daikon dynamic invariant generator [12]) in the research community motivated the
creation of WSCoL, an extension of JML for WS with support for temporal logic by Baresi
et al. [3].
Listing 4.1 shows how the preconditions and postconditions in Figure 4.7 would be

written in JML. Due to syntactic reasons, the service activity has been represented as a
Java method.

JML and Spec# could be especially useful for integration tests. Both could decorate the
Java or C# code that implements a particular service activity (as a WS) with a contract.
The contracts could be read by special-purpose compilers or aspect-oriented programming
to weave programs that checked that the contract was met every time, and notify providers
and users about violations. The contracts could also be used as an additional test oracles,
checking if the obtained results are valid. Contracts could be used to test the individual

4.29

4. Existing service-oriented methodologies

F
ig
ur
e
4.
7.

Se
rv
ic
e
co
m
po

sit
io
n
m
od

el
fo
r
“H

an
dl
e
O
rd
er
”
w
ith

fu
nc
tio

na
la

nd
no

n-
fu
nc
tio

na
lt
es
tin

g
ex
te
ns
io
ns

4.30

4.5. Conclusion

Figure 4.8. Example of a visual contract based on graph transformations for “Handle
Order”

actions that make up the service activity as well.
It is important to note that there are also other options beyond traditional assertion-

based contracts. Sinha and Paradkar [29] proposed using semantic descriptions based on
a specific ontology, and Lohmann et al. [19, 20, 21] presented a graphical notation based
on graph transformations. The notation by Lohmann is easier to use, but it does not have
the same expressive power as OCL or JML.
The visual contracts proposed by Lohmann represent each operation as a set of graph

transformation rules, in which the graphs in the left half (the preconditions) are transformed
into the graphs in the right half (the postconditions). Negative conditions are put inside
grey boxes with the �NAC� stereotype. Objects that only appear on the left half are
deleted, while objects that only appear on the right half are newly created. Universal
and existential quantifiers can be represented using multiobjects, which are collections of
objects of the same type and are drawn as a stack of rectangles.

To illustrate these visual contracts and compare them with OCL and JML, the restrictions
in Figures 4.7 and Listing 4.1 have been adapted accordingly in Figure 4.8. The notation
can represent a considerable part of the required logic, but it lacks several important
features. It could not model the constraints involving the total sum included in the invoice,
or that the prices in the invoice were the currently listed prices.

4.5 Conclusion
Creating a service-oriented architecture is a complex task that can affect the entire
organisation. To help tackle this complexity, several methodologies have been proposed at
multiple levels of abstraction. In this chapter, the strengths and weakness of several of
these methodologies have been compared: a summary of the results is shown in Table 4.1
in page 4.2.
SODM, BPSOM and Hoyer were found to be lightweight methodologies that could be

applied with a manageable cost for a small-to-medium company for roughly the same tasks.
SOMA was discarded as it was a proprietary methodology from IBM and would likely be
applicable only to larger organisations. The recommendations from Erl and Papazoglou
were too abstract, and the methodology by Stojanović did not explicitly define a set of

4.31

References

models to be created.
Another important conclusion is that none of the existing model-driven technologies

explicitly included testing aspects in their models. SOMA did consider an explicit test stage
in the development process, but the models themselves did not include any information
that was specifically for testing. The other methodologies did not cover the testing stage
at all.

It can be argued that a model-driven methodology for creating a SOA should consider
testing aspects as well. For this reason, Section 4.3 defined a set of selection criteria to
decide which of these methodologies should be extended. After applying these criteria,
SODM was selected and analysed in further depth to see in which ways its models could
be extended with testing aspects.
Several tentative extensions were proposed for testing functional and non-functional

requirements in Section 4.4. The desired behaviour of the modelled service processes, service
activities and actions could be annotated with services contracts written in languages such
as OCL [26], JML [6] or (more appropriately) WSCoL [3]. The desired performance of the
SOA could be also described at multiple levels, so the performance requirements for an
entire service process could trickle down into all the service activities. The next chapters
will further define and evaluate some of these proposed extensions.

References
[1] P. Aston and C. Fizgerald. The Grinder, a Java Load Testing Framework, 2012. URL

http://grinder.sourceforge.net/. Last checked: November 6th, 2013. 4.27

[2] C. Atkinson, P. Bostan, D. Brenner, G. Falcone, M. Gutheil, O. Hummel, M. Juhasz,
and D. Stoll. Modeling components and Component-Based systems in KobrA. In The
Common Component Modeling Example, volume 5153 of Lecture Notes in Computer
Science, pages 54–84. Springer Berlin, Heidelberg, Alemania, 2008. ISBN 978-3-540-
85288-9. doi: 10.1007/978-3-540-85289-6_4. 4.3

[3] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini. A timed extension of
WSCoL. In Proceedings of the IEEE International Conference on Web Services, 2007
(ICWS 2007), pages 663–670, 2007. doi: 10.1109/ICWS.2007.25. 4.29, 4.32

[4] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: an
overview. In Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices, pages 49–69. Springer Berlin, 2005. 4.29

[5] V. Bergmann. ContiPerf 2, September 2011. URL http://databene.org/contiperf.
html. Last checked: November 6th, 2013. 4.27

[6] L. Burdy, Y. Cheon, and D. R. Cok. An overview of JML tools and applications.
International Journal on Software Tools for Technology Transfer (STTT), 7(3):212–
232, June 2005. 4.29, 4.32

[7] M. V. de Castro. Aproximación MDA para el desarrollo orientado a servicios de
sistemas de información web: del modelo de negocio al modelo de composición de

4.32

http://grinder.sourceforge.net/
http://databene.org/contiperf.html
http://databene.org/contiperf.html

References

servicios web. PhD thesis, Universidad Rey Juan Carlos, March 2007. 4.1, 4.4, 4.19,
4.24, 4.26

[8] V. De Castro, E. Marcos, and J. M. Vara. Applying CIM-to-PIM model trans-
formations for the service-oriented development of information systems. In-
formation and Software Technology, 53(1):87–105, 2011. ISSN 0950-5849. doi:
10.1016/j.infsof.2010.09.002. 4.4, 4.5, 4.6, 4.19

[9] A. Delgado, F. Ruiz, I. de Guzmán, and M. Piattini. Business process service oriented
methodology (BPSOM) with service generation in SoaML. In H. Mouratidis and
C. Rolland, editors, Advanced Information Systems Engineering, volume 6741 of
Lecture Notes in Computer Science, pages 672–680. Springer Berlin / Heidelberg,
2011. ISBN 978-3-642-21639-8. 4.1, 4.5, 4.6

[10] D. F. D’Souza and A. C. Wills. Objects, Components, and Frameworks with UML:
The Catalysis(SM) Approach. Addison-Wesley Professional, October 1998. ISBN
0201310120. 4.3

[11] T. Erl. SOA: Principles of Service Design. Prentice Hall, Indiana, EEUU, 2008. ISBN
0132344823. 4.1

[12] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. The daikon system for dynamic detection of likely invariants. Science
of Computer Programming, 69(1-3):35–45, 2007. 4.29

[13] eviware.com. soapUI home page, 2012. URL http://www.soapui.org/. 4.27

[14] S. Ghosh, A. Arsanjani, and A. Allam. SOMA: a method for developing service-
oriented solutions. IBM Systems Journal, 47(3):377–396, 2008. 4.1, 4.4

[15] J. Gordijn and H. Akkermans. Value-based requirements engineering: exploring
innovative e-commerce ideas. Requirements Engineering, 8(2):114–134, July 2003. doi:
10.1007/s00766-003-0169-x. 4.5, 4.17

[16] J. Gordijn and H. Akkermans. e3value™ toolset, August 2006. URL http://www.
e3value.com/tools/. 4.17

[17] P. Hoyer, M. Gebhart, I. Pansa, A. Dikanski, and S. Abeck. Service-oriented integra-
tion using a model-driven approach. International Journal On Advances in Software,
3(1):304–317, September 2010. ISSN 1942-2628. 4.1, 4.7, 4.8

[18] P. R. James and P. Chalin. Faster and more complete extended static checking for the
java modeling language. Journal of Automated Reasoning, 44(1-2):145–174, February
2010. ISSN 0168-7433. doi: 10.1007/s10817-009-9134-9. 4.29

[19] M. Lohmann, S. Sauer, and G. Engels. Executable visual contracts. In Proceedings
of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing,
pages 63–70, 2005. doi: 10.1109/VLHCC.2005.35. 4.31

4.33

http://www.soapui.org/
http://www.e3value.com/tools/
http://www.e3value.com/tools/

References

[20] M. Lohmann, G. Engels, and S. Sauer. Model-driven monitoring: generating assertions
from visual contracts. In Proceedings of the 21st IEEE/ACM International Conference
on Automated Software Engineering, 2006 (ASE ’06), pages 355–356, 2006. ISBN
1527-1366. doi: 10.1109/ASE.2006.52. 4.31

[21] M. Lohmann, L. Mariani, and R. Heckel. A model-driven approach to discovery, testing
and monitoring of web services. In Test and Analysis of Web Services, pages 173–204.
Springer Berlin, 2007. ISBN 978-3-540-72911-2. doi: 10.1007/978-3-540-72912-9_7.
4.31

[22] G. J. Myers. The Art of Software Testing. John Wiley & Sons, 2 edition, 2004. ISBN
0471469122. 4.25

[23] D. K. Nguyen, W.-J. van den Heuvel, M. Papazoglou, V. de Castro, and E. Marcos.
GAMBUSE: a gap analysis methodology for engineering SOA-Based applications. In
Conceptual Modeling: Foundations and Applications, volume 5600 of Lecture Notes in
Computer Science, pages 293–318. Springer Berlin Heidelberg, 2009. 4.1

[24] Object Management Group. Query/View/Transformation (QVT) 1.1, January 2011.
URL http://www.omg.org/spec/QVT/1.1/. Last checked: November 6th, 2013. 4.5

[25] Object Management Group. Unified Modeling Language (UML) 2.4.1, August 2011.
URL http://www.omg.org/spec/UML/2.4.1/. Last checked: November 6th, 2013.
4.10

[26] Object Management Group. Object Constraint Language Specification (OCL) 2.3.1,
January 2012. URL http://www.omg.org/spec/OCL/2.3.1/. Last checked: Novem-
ber 6th, 2013. 4.27, 4.32

[27] Object Management Group. Service oriented architecture modeling language (SoaML)
1.0.1, May 2012. URL http://www.omg.org/spec/SoaML/1.0.1/. 4.5

[28] M. P. Papazoglou and W.-J. V. D. Heuvel. Service-oriented design and development
methodology. Int. J. Web Eng. Technol., 2(4):412–442, 2006. 4.1

[29] A. Sinha and A. Paradkar. Model-based functional conformance testing of web
services operating on persistent data. In Proceedings of the 2006 workshop on Testing,
analysis, and verification of web services and applications, pages 17–22, Portland,
Maine, 2006. ACM. ISBN 1-59593-458-8. doi: 10.1145/1145718.1145721. 4.31

[30] Z. Stojanović. A Method for Component-Based and Service-Oriented Software Systems
Engineering. PhD thesis, Delft University of Technology, 2005. 4.1, 4.3

[31] J. Vara Mesa, E. Marcos, and M. V. de Castro. Obteniendo modelos de sistemas de
información a partir de modelos de negocios de alto nivel: un enfoque dirigido por
modelos. In Actas de las IV Jornadas Científico-Técnicas en Servicios Web y SOA,
pages 15–28, Sevilla, España, October 2008. 4.4

[32] M. Weidlich, G. Decker, A. Großkopf, and M. Weske. BPEL to BPMN: the myth
of a straight-forward mapping. In On the Move to Meaningful Internet Systems:
OTM 2008, volume 5331 of Lecture Notes in Computer Science, pages 265–282,

4.34

http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/SoaML/1.0.1/

References

Monterrey, Mexico, November 2008. Springer Berlin. ISBN 978-3-540-88870-3. doi:
10.1007/978-3-540-88871-0_19. 4.9

[33] World Wide Web Consortium. XML Schema Part 0: Primer (Second Edition).
Technical report, November 2004. URL http://www.w3.org/TR/xmlschema-0/. Last
checked: November 6th, 2013. 4.24

[34] World Wide Web Consortium. Web Services Description Language (WSDL) Version
2.0 Part 0: Primer, June 2007. URL http://www.w3.org/TR/wsdl20-primer. Last
checked: November 6th, 2013. 4.24

4.35

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/wsdl20-primer

5
SODM+T: extension of SODM for

performance testing

5.1. Introduction

In the previous chapter, the existing model-driven methodologies for developing service-
oriented architectures were reviewed. The existing methodologies assisted users in modelling
the business environment, deciding how the business processes should be supported by
software and extracting a list of Web Services that exposed the functionality that was fit
for reuse. However, they did not use the models to test the services themselves. For this
reason, it was decided to extend the models and transformations within SODM to assist
in the testing in the derived models.
In this chapter, the first version of SODM+T will be presented. This version of

SODM+T extends SODM by adding local and global partial performance constraints to
some of the models in SODM to help users define the performance requirements of the
system. These constraints are extended to the entire system by several algorithms that
automatically transform the model. After defining the algorithms, their theoretical and
empirical performance is analysed on several classes of models.

5.1 Introduction
In order to reduce development costs and increase code reuse throughout the organisation,
service-oriented architectures encourage developers to reuse services from third parties
or other parts of the organisation whenever possible. This usually results in new services
called service compositions. Such a combination of internal and external services implies
that the overall Quality of Service (QoS) is not fully controlled by the original developer:
it also depends on the quality of service of the integrated services.

Many different strategies have been proposed and combined in order to deal with this sort
of QoS dependency in software systems [1, 3, 12]. Some of the most common approaches
are to sign Service Level Agreements (SLAs) with the external providers and to monitor
the services for performance degradations. However, defining the parameters of the SLA
or the conditions for a performance degradation can be difficult: asking too much may
be expensive for the service consumer, and asking too little may alienate its customers.
Existing approaches have focused on computing the expected global QoS from the local
QoS of each service, and using it to select services among several candidates so that the
global requirements are met. Normally, this information is usually obtained by constantly
monitoring the performance of the application.
However, there are many cases in which the expected QoS is not known for all the

services involved, or those values are not trusted. The service may not be constantly
monitored, or the data may not be publicly disclosed by the service provider. Alternatively,
the service may not be even implemented yet. The only choice in that case is to make
an educated guess. However, if the guess is wrong, all estimations will have be manually
revised, which can be not just tedious, but error-prone.
In this context, high-level models of the service compositions could be used to infer

the QoS that should be required from the integrated services to meet the global QoS
requirements. Section 4.4.1 suggested adding performance annotations to the SODM
service composition models introduced in Section 4.3.3.4. This chapter will refine these
extensions and present an algorithm to compute how many requests per second should be
handled by the services, and two algorithms to infer their time limits. The first time limit
inference algorithm is a simpler version that is used as a performance baseline and test
oracle for the second algorithm, which has been heavily optimised.

5.1

5. SODM+T: extension of SODM for performance testing

The rest of this chapter is structured as follows: Section 5.2 shows how several of the
SODM metamodels were extended to accommodate these new performance requirements.
Section 5.3 presents the extended model editors. Section 5.4 defines two naïve algorithms
for inferring the throughput and response times that should be imposed on each service.
Due to the high cost of the naïve time limit inference algorithm, Section 5.4.5.2 presents
a naïve graph-based algorithm that is optimised in Section 5.4.5.3 so it does not need
to visit all candidate paths in the underlying graph. Section 5.5 discusses the practical
limitations of the algorithms and evaluates their theoretical and empirical performance on
several classes of models. Finally, Section 5.6 summarises the results obtained and outlines
several ways in which the presented approach could be improved.

5.2 Extended metamodels
SODM used a subset of the UML activity diagrams for their service process and service
composition models. This section will revise these models with the annotations needed
to describe the global performance requirements of the service processes and service
compositions and derive the local performance requirements of the actions within them.
Some of the actions may include additional local information with partial knowledge about
their expected performance.

5.2.1 Extended service process metamodel
Figure 5.1 shows a UML class diagram of the extended SODM+T service process
metamodel. A service process model consists of a single ServiceProcess instance (highlighted
in red), which contains a set of ActivityNodes connected by several ActivityEdges.
The available ActivityNodes are almost the same as in the original SODM metamodel,

except for these changes:

• UML StructuredActivityNodes were added, so users can nest nodes inside each other
and describe performance constraints hierarchically.

• UML MergeNodes were added: SODM did not include them, but in order to conform
to UML they were added back.
The model editors can validate if a MergeNodes or a JoinNodes are reuniting the
right kind of branches by computing the common branching point of all their parents.
In graph theory, finding this branching point is known as finding the Least Common
Ancestor (LCA) of all the parents of the JoinNode. Section 5.3.1 will discuss the
implementation of a solution for finding the LCA.

The other extensions added by SODM+T for modelling the performance requirements
of the process are also shown in green:

• ControlFlows that have a DecisionNode as their source1 can now specify a condition
for their traversal (e.g. “x > 0” or “order accepted”) and an estimation of the
probability that the condition holds true (between 0 and 1, both exclusive).

1This is enforced by the model validation rules in Section 5.3.2.

5.2

5.2. Extended metamodels

Figure 5.1. UML class diagram with the extended service process metamodel. Some
classes have been repeated in the diagram for the sake of clarity: these are
decorated with arrow emblems.

5.3

5. SODM+T: extension of SODM for performance testing

• PerformanceAnnotations are global performance annotations. They have two at-
tributes: concurrentUsers, the number of users per second that will be invoking the
activity, and secsTimeLimit, the time limit in seconds for each reply. Users are ex-
pected to set both attributes manually, according to their performance requirements
for the workflow.

• LocalPerformanceAnnotations annotate individual ExecutableNodes. In this case,
concurrentUsers and secsTimeLimit will be automatically computed from the weight
and minimumTime attributes.
minimumTime is the minimum time in seconds that should be allotted to the
node, while weight is a real number which serves as a relative estimation of the
computational cost of the node. Having a weight of 3 roughly means that the node
may take three times as much time as another with weight 1, after considering all
the minimum times. Finally, reps is the expected number of iterations the node will
go through: it should be 1 or more. Section 5.4 defines these concepts formally.
By default, minimumTime, weight and reps are set to 0, 1 and 1, respectively. These
values model the simplest case: a node with no known minimum time, being run
only once and with a unit weight.

Using this extended metamodel, the algorithms can iteratively “drill down” on in-
creasingly local constraints from the global performance annotation. First, the global
performance constraint will be used to derive the local performance annotations of the
outermost nodes. Next, these local performance annotations will be used as the global
performance constraint for the contents of the each of the StructuredActivityNodes. This
process will continue recursively until only atomic Actions remain.

5.2.2 Extended service composition metamodel
Figure 5.2 shows the extended service composition metamodel in SODM+T. It is almost the
same as the extended metamodel for service processes. The only change in the metamodel
is that ActivityNodes may be split over several ActivityPartitions. Each of these partitions
represents one of the business stakeholders, as in the original version from SODM.
According to the metamodel, service compositions can have ActivityNodes that do not

belong to any partition. For this reason, new validation rules have been added that only
allow ObjectNodes to be placed outside a partition. These are the nodes that will explicitly
model the information to be exchanged between the stakeholders. These additional model
validation constraints are listed in Section 5.3.2.

5.3 Extended model editors
After defining the extended SODM+T metamodels in Section 5.2, the next step is creating
the editors required to create conforming models. The editors have been created using the
model-driven process implemented by the Eclipse Graphical Modelling Framework (GMF)
(§3.3.3.6, [4]).

The GMF models are first generated by EuGENia from annotated versions of the
metamodels and then customised automatically using transformations written in the

5.4

5.3. Extended model editors

Figure 5.2. UML class diagram with the extended service composition metamodels.
Some classes have been repeated in the diagram for the sake of clarity:
these are decorated with arrow emblems.

5.5

5. SODM+T: extension of SODM for performance testing

Listing 5.1 Definition of the InitialNode class with EuGENia annotations, using the
Emfatic textual notation for EMF-based metamodels.

1 @gmf.node(figure="svg", svg.uri="platform:/plugin/.../initial.svg",
2 size="30,30", label.placement="none", resizable="false",
3 margin="0", tool.name="Initial Node")
4 class InitialNode extends ActivityNode {}

Epsilon Object Language (EOL). EuGENia defines its own set of annotations, automating
the most common tasks when creating graphical model editors based on GMF.

Listing 5.1 shows an example of how EuGENia is used in combination with the Emfatic
textual notation for writing EMF-based metamodels [5]. The gmf.node annotation
indicates that:

• instances of the class will be represented as nodes in the diagram (by using gmf.node),

• will be drawn using a certain Scalable Vector Graphics (SVG) image specified in
svg_uri (since figure was set to “svg”),

• with a fixed size of 30 by 30 pixels (size),

• with no label and no margin (resizable and margin),

• and the tool for creating these nodes will be labelled “Initial Node” in the palette
(tool.name).

Some of the additional customisations done beyond these annotations were contributed
back as new annotations for EuGENia, such as support for vector-based images, custom
polygons, OCL link restrictions and custom label parsers, among others2. Other contri-
butions to EuGENia included multiple bug fixes and automation support for the Eclipse
integrated development framework.

The following subsections will focus on the ways in which the editors support the creation
of valid and consistent models. Starting with a description of some of the supporting
algorithms behind the editors, the semantic rules that are enforced by the editors will be
listed, followed by a discussion of the usefulness of model migration as a concise notation
to transform models conforming to similar metamodels.

5.3.1 Computing least common ancestors
The model editors implement several supporting algorithms for model validation using
the Epsilon Object Language (EOL). In addition to being much more concise than Java
for manipulating models, EOL scripts can be reused throughout all the Epsilon-based
languages, including the Epsilon Validation Language (EVL), the Flock model migration
language or the Epsilon Wizard Language (EWL) for in-place model transformations.

Most of these supporting algorithms are quite simple and well known, such as collecting
all nodes reachable from a node in breadth-first order or detecting cycles by using a

2See the Eclipse bug reports #400569 or #359921.

5.6

https://bugs.eclipse.org/bugs/show_bug.cgi?id=400569
https://bugs.eclipse.org/bugs/show_bug.cgi?id=359921

5.3. Extended model editors

depth-first traversal of the graph. This section will describe a less known problem that
appears when needing to validate if a JoinNode or MergeNode are reuniting branches that
split off at a ForkNode or DecisionNode, respectively.

Finding this branching point can be understood as finding the Least Common Ancestor
(LCA) of the parent nodes of the JoinNode. There are several definitions of LCA in the
literature, but in this work the Set of Least Common Ancestors (SLCA) of two nodes will
be defined as the leaves of the subgraph that contains all their common ancestors.
From graph theory, it is said that a node A is an ancestor of B (likewise, that B is a

descendant of A) when there is a path (a sequence of nodes connected by directed edges)
from A to B. If the path goes through only one edge (has length 1), it is said that A is
a parent of B, and that B is a child of A. A node is defined as a leaf when it has no
descendants besides itself.

Several algorithms have been published to compute the LCAs of pairs of nodes in trees
and Directed Acyclic Graphs (DAGs) [2]. Many of the existing algorithms preprocess
the original tree or graph to speed up later queries into a simple table lookup. These
algorithms have been designed for large and dense graphs with many edges, such as those
commonly used in fields such as computational biology. However, service process and
service composition models are usually not that large and not that dense, and it will not
be necessary to compute the LCA of all the nodes, but rather only those of the parents
of the JoinNodes. In fact, the results obtained by Bender et al. suggest that the naive
algorithm (based on the above definition of SLCA) has acceptable performance for modest
and less dense graphs such as ours. If necessary, it is always possible to switch to a more
advanced algorithm in the future without changing the rest of the model editors.
The algorithms receive two nodes A and B from a graph G and returns lca(A,B),

another node in the graph, by following these steps:
1. The depths of the nodes A and B, d(A) and d(B) respectively, are computed and

used to derive M = max{d(A), d(B)}.
Here, the depth of a node is defined recursively: nodes with no incoming edges have
depth 0, and the rest have the maximum depth of all their parents plus one. This
definition requires graphs not to have any cycles in order to guarantee that the
computation does not loop endlessly. In other words, the model must represent a
DAG.
The depth of each node is only computed once per model: after it has been computed,
it is cached by the EOL execution engine.

2. The ancestors of A with depth less than or equal with M are stored in set AA.

3. AB is computed from the ancestors of B in the same way.

4. A = AA∩AB is computed and one of the elements of the set SLCA(A,B) = {e|d(e) =
maxa∈A{d(a)} is returned. This set contains the elements common to AA and AB

that have the maximum depth. As shown later, the model validation rules ensure
that |SLCA(a, b)| ≤ 1 for all pairs (a, b) of parents of a JoinNode.

Figure 5.3 illustrates how the algorithm works. In order to find the LCA of D and F ,
their ancestors are first computed and then divided into common ancestors (circles) and
the rest (pentagons for D and rhombi for F). Among the common ancestors, the one with
the maximum depth is picked: B, highlighted in bold.

5.7

5. SODM+T: extension of SODM for performance testing

A B C D

E F

G

Figure 5.3. Finding the least common ancestor of D and F

5.3.2 Model validation
In order to produce the expected results and simplify their design to a reasonable degree,
the performance inference algorithms must receive service process and service composition
models that meet certain constraints beyond simply conforming to the metamodels in
Section 5.2.
These constraints are largely divided into a common set for both metamodels, and

two specific sets of constraints for service process and service composition models. These
restrictions have been implemented using the Epsilon Validation Language (EVL) [9] and
tested with the EUnit framework on Appendix B. By properly modifying the model editor
generated by GMF, the restrictions are automatically checked upon saving the model.
Some of these restrictions have been implemented in OCL as well, in order to forbid users
from performing certain actions (e.g. creating a self-loop).
The common set is shown in Table 5.1, and the additional sets that are specified to

service processes and service compositions are listed in Tables 5.2 and 5.3. It is said that
a certain EVL restriction is satisfied by an instance of a certain type both when it is
applicable to that instance (its guard, expressed as “If X...”, is satisfied) and when the
restriction itself is upheld (the check is satisfied). Some EVL restrictions may depend on
others: it may not make sense to bother the user with additional errors, or doing the check
may produce an error or run into an endless loop.

Some numeric fields are checked by testing if their values belong to a small range, rather
than simply testing them for equality. This is due to the approximate representation of a
number that the standard IEEE-754 [8] used by Java provides.
One seemingly important restriction imposed upon the models is that they must have

no cycles: the algorithms need the graphs to have a finite number of paths. Nevertheless,
bounded iteration can be represented through the reps attribute in LocalPerformanceAnnotation.

Table 5.1. Common restrictions for service process and service composition models
Element Restriction Fixes

ActivityEdge Both the source and the target
ends must be set. None.

The source and the target ends
must not be the same. None.

Continues on next page

5.8

5.3. Extended model editors

Continued from previous page
Element Restriction Fixes

ActivityNode

If it is neither an InitialNode nor
a PerformanceAnnotation nor
an ObjectNode, it must have at
least one incoming edge.

None.

If it is not a JoinNode nor
a MergeNode and no cycles
exist in the graph, it must
have at most one incoming
ControlFlow.

Reassign the multiple
ControlFlows to a new
JoinNode.

If it is neither a FinalNode nor
a PerformanceAnnotation nor
an ObjectNode , it must have at
least one incoming ControlFlow.

None.

If it is neither a ForkNode
nor a DecisionNode and there
are no cycles in the graph, it
must have at most one outgoing
ControlFlow.

Reassign the multiple out-
going ControlFlows to a
new ForkNode or a new
DecisionNode (decided by the
user).

ControlFlow If the edge has a condition, the
source must be a DecisionNode. Remove the condition.

If the source of the edge is a
DecisionNode, it must have a
condition.

Set “dummy” as condition to
tell the user that it should be
properly set.

If the edge has a condition
according to the above rules,
its probability must be greater
than 0 and less than 1.

None.

If the edge does not have a con-
dition according to the above
rules, its probability must be
exactly 1.

Set probability to 1.

If the source is set, it must not
be an ObjectNode None.

If the target is set, it must not
be an ObjectNode None.

FlowEdge
Both the source and the target
of the edge should be attached
to an ActivityNode.

None.

Continues on next page

5.9

5. SODM+T: extension of SODM for performance testing

Continued from previous page
Element Restriction Fixes

FlowEdge The source and the target of the
edge must not be the same. Remove the edge.

If both ends are set and
the source or the target is
a StructuredActivityNode, the
source and the target should
belong to the same container
(whether it is the model or
a StructuredActivityNode). In
other words: edges must not
cross over the boundary of a
container.

None.

ObjectFlow

If both source and target are
set, exactly one of the source
and the target must be an
ObjectNode, and the other one
has to be an ExecutableNode.

None.

DecisionNode

If the restrictions from
ActivityNode on incoming and
outgoing edges are met, the
node must have more than one
outgoing ControlFlow.

Replace the DecisionNode and
its only incoming and outgoing
ControlFlows with a single edge
from the source of the incoming
edge to the target of the outgo-
ing edge.

If the probabilities of all the out-
going edges are valid, their total
sum must be 1± 10−3.

None.

FinalNode There must be no outgoing
edges. Remove all outgoing edges.

ForkNode

If the restrictions from
ActivityNode on incoming and
outgoing edges are met, the
node must have more than one
outgoing ControlFlow.

Replace the ForkNode and its
only incoming and outgoing
ControlFlows with a single edge
from the source of the incoming
edge to the target of the outgo-
ing edge.

InitialNode
If there are no cycles in the
graph, all reachable paths must
end at a FinalNode.

None.

It must not have any incoming
edges. Remove all incoming edges.

Continues on next page

5.10

5.3. Extended model editors

Continued from previous page
Element Restriction Fixes

If the restrictions on the number
of outgoing edges are met, none
of the outgoing edges should
point to a FinalNode.

Add an Action between this
node and the FinalNode in ques-
tion.

No cycles may be reachable
from this node.

Remove one of the edges that
takes part in the first cycle
found.

JoinNode

If the restrictions from
ActivityNode on incoming and
outgoing edges are met, the
node must have more than one
incoming ControlFlow.
Replace the JoinNode and its
only incoming and outgoing
ControlFlows with a single edge
from the source of the incoming
edge to the target of the outgo-
ing edge.
Pairwise, all parent nodes must
have the same LCA (§5.3.1),
and it must be a ForkNode.

None.

Local-
Performance-
Annotation

The annotation must be linked
to some ExecutableNode. None.

The minimum time must be
greater than or equal to 0. None.

The weight must be greater
than or equal to 0. None.

The number of repetitions must
be greater than or equal to 1. None.

It must not have any incoming
ActivityEdges. Remove all offending edges.

It must not have any outgoing
ActivityEdges. Remove all offending edges.

Continues on next page

5.11

5. SODM+T: extension of SODM for performance testing

Table 5.2. Additional constraints for service process models
Element Restriction Fixes

ServiceProcess The composition must have a
global PerformanceAnnotation.

Create a global annotation with
the default values (weight 1 and
minimum time limit 0).

There must be at least one
FinalNode. None.

There should be exactly one
InitialNode. None.

Continued from previous page
Element Restriction Fixes

MergeNode

If the restrictions from
ActivityNode on incoming and
outgoing edges are met, the
node must have more than one
incoming ControlFlow.

Replace the JoinNode and its
only incoming and outgoing
ControlFlows with a single edge
from the source of the incoming
edge to the target of the outgo-
ing edge.

Pairwise, all parent nodes must
have the same LCA (§5.3.1),
and it must be a DecisionNode.

None.

NamedElement The name of the element must
be defined. None.

ObjectNode It must have at least one incom-
ing ObjectFlow. None.

It must have at least one outgo-
ing ObjectFlow. None.

It must have no incoming and
no outgoing ControlFlows. Remove all offending edges.

Performance-
Annotation

The number of concurrent users
must greater than 0. None.

The time limit must be greater
than 0. None.

Structured-
ActivityNode

It must have at most one
InitialNode. None.

5.12

5.4. Performance inference algorithms

Table 5.3. Additional constraints for service composition models
Element Restriction Fixes

Service-
Composition

The composition must have a
global PerformanceAnnotation.

Create a global annotation with
the default values (weight 1 and
minimum time limit 0).

There must be at least one
FinalNode. None.

There must be at least one
ActivityPartition. None.

The only ActivityNodes outside
the ActivityPartitions should be
ObjectNodes.

Remove all nodes outside the
partitions.

There should be exactly one
InitialNode across all partitions. None.

ActivityPartition Every partition should have a
name. None.

5.3.3 Migration of service processes to service compositions
The editor can also automatically transform service process models into service composition
models. As it can be seen in Figures 5.1 and 5.2, their metamodels are quite similar to
each other. A traditional model-to-model transformation would need to specify many rules
that would essentially only copy elements from the service process model to the service
composition model.

In this context, a transformation for a specialised model migration tool such as Epsilon
Flock [11] can be much more concise and easier to maintain. Flock can be told to retype
the elements of a certain type of the service process metamodel to elements of the service
composition metamodel, implicitly copying all their information. If necessary, more
advanced migration rules for specific types can be described imperatively.
Table 5.4 summarises the model migration rules. The migration can be invoked from

the Eclipse Integrated Development Environment (IDE). In comparison with a previous
version that was based on a traditional model-to-model transformation language, the
Flock-based transformation has over 74% less lines.

5.4 Performance inference algorithms
In the previous sections, the extended service process and service composition metamodels
were introduced, and several interesting aspects of the editors created to edit conforming
models were introduced. This section will present several algorithms that infer local
performance requirements from a mix of global and local annotations, considering required
throughput and response time limits. The first version of the time limit inference will used
as test oracle and performance baseline for the following versions. All algorithms can be

5.13

5. SODM+T: extension of SODM for performance testing

SP type SC type Strategy

Action Action Retype.
ControlFlow ControlFlow Retype.
DecisionNode DecisionNode Retype.
FinalNode FinalNode Retype.
ForkNode ForkNode Retype.
InitialNode InitialNode Retype.
JoinNode JoinNode Retype.
MergeNode MergeNode Retype.
LocalPerformanceAnnotation LocalPerformanceAnnotation Retype.
ObjectFlow ObjectFlow Retype.
ObjectNode ObjectNode Retype.
PerformanceAnnotation PerformanceAnnotation Retype.

ServiceProcess ServiceComposition

Retype, then move
all nodes into a new
ActivityPartition with
name “Main”.

StructuredActivityNode StructuredActivityNode Retype.

Table 5.4. Migration strategy from service process (SP) models to service composition
(SC) models. The “retype” strategy uses the default Flock migration strategy,
copying all the information from the original element to the migrated element.

invoked on demand by modellers from the graphical model editors.

5.4.1 Input and output values
The input variables of the inference algorithms are the workload and time limit specified
in the global PerformanceAnnotation and the weights, minimum times and repetitions
in the LocalPerformanceAnnotations. The algorithms update the concurrentUsers and
secsTimeLimit attributes of every LocalPerformanceAnnotation with the inferred values.

Depending on how they are combined, minimumTime and weight can model several
common scenarios depending on what the modeller knows about the expected time limit
of an executable node. Let m ≥ 0 be the minimum time and w ≥ 0 be the weight:

• m = 0, w = 0: the node costs nothing. This is not used for ExecutableNodes. Rather,
they are the implicit values for every ActivityNode that is not an ExecutableNode.
This makes them effectively invisible to the inference algorithms, except for the
ways in which they branch and join the execution paths. Without loss of generality,
it is assumed that the cost of performing decisions, forks or joins is negligible in
comparison to that required by the actions themselves.3

• m > 0, w = 0: the node has a fixed time limit. This usually means that there is a
strict Service Level Agreement (SLA) for the WS or software component represented
by the node, which ensures that it will finish exactly within m seconds.

3In any case, decision costs, for example, can be modelled by ad hoc actions preceding decision nodes.

5.14

5.4. Performance inference algorithms

• m = 0, w > 0: all the time will be allotted automatically. There is no known SLA or
any estimates of how long it could take. Instead, the modeller must compare the
cost of the node with the rest of nodes in the workflow.

• m > 0, w > 0: part of the allotted time is set manually, and the rest is inferred
automatically. This can be useful if previous measures that point to a certain
minimum time exist, but it still desired to grant some of the remaining time.

It is important to note that the LocalPerformanceAnnotations of a StructuredActivityNode
can be used as global constraints for the paths directly inside them, after their minimum-
Time and concurrentUsers have been computed. This allows the algorithms to descend
recursively through the model, starting at the outermost level and proceeding until only
atomic actions are left.

5.4.2 Basic definitions
As listed in Section 5.3.2, all algorithms require that the models do not contain cycles,
that they only have one InitialNode per container, and that every action is reachable from
exactly one of them.
Several shared concepts for all algorithms need to be described first:

• s(e) and g(e) are the source and target ActivityNodes of ActivityEdge e, respectively.

• i(n) and o(n) are the incoming and outgoing edges of node n, respectively.

• L > 0 is the global time limit of the model, in seconds.

• The set of all valid minimum time and weight constraints under a global time limit
L is C(L) = {(m,w) | 0 ≤ m ≤ L ∧ w ≥ 0}.

• c(n) = (m(n), w(n)) ∈ C(L) is the constraint of the node n, where m(n) is the
minimum time limit of n and w(n) is its weight.

• r(n) is the estimated number of times that node n will be run. If n is inside a
StructuredActivityNode, it is the number of times that n will be run each time its
container is run.

• Each path p has also a constraint c(p) = (m(p), w(p)) ∈ C(L), with m(p) =∑
n∈p m(n)r(n) and w(p) = ∑

n∈p w(n)r(n) being the total minimum time and weight
of p after considering the repetitions of each node in p.

• If path p is allotted t(p) seconds, s(p) = t(p)−m(p) can be defined as the slack of
path p: the time available beyond its total minimum time. By definition, t(p) = L if
p starts at an InitialNode.
Ideally, it should be distributed proportionally to the weight of each node, according
to Sw(p) = s(p)/w(p), which is defined as the slack per unit of weight of path p. As
a special case, if w(p) = 0, then Sw(p) = 0.
Consistent models should have s(p) > 0 whenever w(p) > 0, so every path p with a
non-zero weight has some slack to distribute.

5.15

5. SODM+T: extension of SODM for performance testing

Evaluate Order
m = 0.4 w = 0

r = 1

Divide into
Segments

m = 0 w = 1
r = 1 Ship Order

m = 0 w = 1
r = 1

Create Invoice
m = 0 w = 1

r = 1

Perform Payment
m = 0 w = 1

r = 1

Close Order
m = 0 w = 1

r = 1

Process Segments
m = 0 w = 1 r = 5

L = 1 T (I) = 1

[accepted] (prob=0.8)

[rejected] (prob=0.2)

Figure 5.4. Annotated model for the running example. The model includes a global
(L, T (I)) pair with the global time limit for all execution paths and the num-
ber of requests per second (throughput) entering the outermost InitialNode
I, respectively. ExecutableNodes include (m,w, r) tuples with the min-
imum times, weights and expected iterations of their local performance
annotations. Decision branches include estimated traversal probabilities.

• PS(n) is the set of all paths starting at the node n.

• d(n) is the depth of the node n. It is 0 if n does not belong to any StructuredActivityNodes
and 1 + d(S) if n belongs to the StructuredActivityNode S.

• Level D of the model is defined as the set of every node n with d(n) = D. Level 0 is
the global level, containing the topmost InitialNode. This definition of depth should
not be confused with the one used for computing LCAs in Section 5.3.1.

5.4.3 Running example
In order to illustrate the algorithms, the simple example shown in Figure 5.4 will be used.
This model represents a Web Service composition that processes an order for a certain
item by following these steps:

1. Receive a message from the client with the order.

2. Evaluate the order using a set of internal business rules.

3. If the order is rejected, close the order and notify the client.

5.16

5.4. Performance inference algorithms

4. If the order is accepted:
a) Divide the order into segments, to ensure that the customer receives each item

as soon as possible.
b) For each segment, create the invoice and perform the payment at the same time

the shipment order is sent. This is done by invoking the Web Services provided
by the other departments.

c) Close the order and notify the client.

The model is divided into two levels:

• Level 0 contains the outermost nodes: the Actions “Evaluate Order”, “Divide into
Segments”, “Process Segments”, “Close Order”, the DecisionNode and MergeNode
and the outermost InitialNode and FinalNode.

• Level 1 is comprised of the nodes inside “Process Segments”: the Actions “Ship
Order”, “Create Invoice” and “Perform Payment”, the ForkNode and JoinNode and
the innermost InitialNode and FinalNode.

The composition has L = 1 s as global time limit while handling T (I) = 1 request per
second. minimumTime is set to 0.4 s for “Evaluate Order”, ensuring it receives at least
0.4 s. Since its weight is set to 0, it will not get any more time than that: it will be allotted
exactly 0.4 s. This combination of values is used to represent the situation in which a
strict SLA saying that it should never take longer than 0.4 s had been signed.

All Actions had reps set to 1. However, the StructuredActivityNode “Process Segments”
was originally a loop. For that reason, reps is set to an estimate of the maximum number
of segments expected in a typical order (5).

5.4.4 Throughput inference
After having described the inputs of the algorithms, this section will describe the simplest of
the two inference algorithms, which is dedicated to computing locally expected throughput
from the globally expected throughput.
The algorithm propagates the global throughput requirement T (I) (where I is the

InitialNode at the global level) through the graph. T is defined as a function which takes
a node or edge and produces its expected throughput. The formula to be applied depends
on the type of element passed to it:

• For an ActivityEdge e, T (e) = P(e)T (s(e)), where P(e) is the probability of e being
traversed.

• For the InitialNode I, T (I) is equal to the throughput of the global performance
annotation if I is not part of any StructuredActivityNode. Otherwise, T (I) is equal
to the throughput of the StructuredActivityNode it belongs to.

• For a JoinNode n, T (n) = mine∈i(n) T (e), since requests in the least performing
branch set the pace.

• For a MergeNode n, T (n) = ∑
e∈i(n) T (e), as requests from mutually exclusive

branches are reunited.

5.17

5. SODM+T: extension of SODM for performance testing

• For any other node n, T (n) = T (e1), where e1 ∈ i(n) is its only incoming edge.

For example, the following process computes T (Create Invoice) for the model shown in
Figure 5.4, which needs to handle T (I) = 1 request per second:

T (Create Invoice) = T (incoming edge of Create Invoice)
= T (ForkNode in Process Segments)
= T (incoming edge of ForkNode in Process Segments)
= T (InitialNode in Process Segments)
= T (Process Segments)
= T (incoming edge of Process Segments)
= T (Divide Segments)
= T (incoming edge of Divide Segments)
= 0.8 T (Evaluate Order)
= 0.8 T (incoming edge of Evaluate Order)
= 0.8 T (I)
= 0.8

The actual implementation of the algorithm avoids computing the same values several
times by annotating each node in level 0 in topological order, then in level 1, and so on
until no more nodes are left. The attribute concurrentUsers of the local performance
annotation of each ExecutableNode n is updated to T (n).

5.4.5 Time limit inference
Inferring the time limits of each action inside an activity is considerably more complex than
inferring their required throughputs. Section 5.4.5.1 will first describe an algorithm that
estimates the time limit of each node by solving one or more Linear Programming (LP)
problems. This algorithm will serve as a test oracle and performance baseline for two
graph-based algorithms. This section concludes by showing how the algorithms operate
on the running example from Figure 5.4.

5.4.5.1 Linear programming-based algorithm

The simplest way to describe the desired time limits is by expressing them as an optimisation
problem. In particular, their computation will be formulated as a linear programming
problem, as there are efficient tools for solving them.
For the sake of simplicity, it can be assumed for now that the model has only one

level, i.e. there are no StructuredActivityNodes and there is only one InitialNode, I. Let
N be the set of all ExecutableNodes, P = PS(I) be the set of paths starting from I and
PC(n) = {q | q ∈ P ∧ n ∈ q} be the set of all the paths in P that contain n.

The optimisation problem will operate on one variable Sw(n) for each n ∈ N , trying to
maximise the amount of time that is used over all paths (resulting in more lenient time
limits whenever possible):

maximise
∑

p ∈ P

∑
n ∈ p

(Sw(n)w(n) +m(n)) r(n).

5.18

5.4. Performance inference algorithms

Here, Sw(n) is defined as the slack per unit of weight of n. It is the additional time beyond
m(n) that is assigned per unit of weight to n. The main idea is that Sw(n) should be
higher for nodes with higher weights, whenever possible. The resulting time limit l(n) of a
node n will be then Sw(n)w(n) +m(n).
The problem is then subject to these two validity constraints:

R1. Sw(n) ≥ 0, for all n ∈ N . Assigned times must not be negative.

R2. ∑
n∈p(Sw(n)w(n) + m(n)) r(n) ≤ L, for all p ∈ P . The assigned times must meet

the global time limit on all paths.

However, these are not enough. With only these constraints, assigning all time to a
single node in a path and giving no time to the rest would be still acceptable. The next
constraints will try to ensure that times are as evenly distributed as possible according to
the weight of each task.
The concept of an even distribution is that if an ExecutableNode n only belonged to

path p, an optimal Sw(n) would be equal to Sw(p). This can be extended to multiple
nodes and paths as:

R3. Sw(n) ≥ min{Sw(p) | p ∈ PC(n), w(p) > 0}, for all n ∈ N . The assigned slack per
unit of weight must be greater than or equal to the one available on the strictest
path that n belongs to. In other words: we may never impose stricter constraints
than those that would be inferred from the strictest path alone.

R4. Sw(m) = Sw(n), for every pair of m,n ∈ N so that PC(m) = PC(n). If two nodes
belong to the same set of paths, time should also be distributed proportionally to
their weights.

This formulation is a standard linear programming problem that can be readily solved:
the time limit for each ExecutableNode n will be Sw(n)w(n) + m(n). Generalising this
approach to models with more than one level is simple: the algorithm is first run
on level 0, producing time limits for all the level 0 ExecutableNodes (including the
StructuredActivityNodes). Then, it is run on the contents of each StructuredActivityNode in
level 0 (i.e. level 1) using the previously computed time limits as its “global” requirement.
This process continues until all levels of the model have been annotated.

If any of the generated problems are unfeasible, the user has placed inconsistent require-
ments on the composition (for instance, imposing a time limit of 10 seconds and having
an action with 15 seconds of minimum time). Detecting and reporting these situations
concisely to the user can be difficult when using linear programming, however.

This formulation is easy to understand and implement. However, the size of the problem
to be solved increases exponentially as more and more paths are added to the model.
For this reason, this algorithm may not be usable for reasonably large models. The next
section will show a graph-based algorithm that alleviates this by culling uninteresting
subpaths as soon as possible.

5.4.5.2 Exhaustive graph-based algorithm

The exhaustive graph-based algorithm is a loop that iterates over every path from I,
refining the existing results until every ExecutableNode is annotated with its time limit
l(n). It follows these steps:

5.19

5. SODM+T: extension of SODM for performance testing

1. Compute all the paths in PS(I). These are all the paths from the InitialNode to
each of the FinalNodes.

2. Sort each path in PS(I) with w(p) > 0 in increasing order of Sw(p), so the strictest
paths come first.

3. Visit each path p in PS(I):
a) If s(p) = 0, the minimum time limits are taking up all the available time. If

w(p) > 0, there will be nodes that should receive some additional time and will
not be able to. In that case, the user is notified and execution is aborted.

b) If s(p) < 0, the sum of the minimum time limits in p exceeds the global time
limit. The user is notified and execution is aborted.

c) Otherwise, s(p) > 0. Split the ExecutableNodes in p into two disjoint subsets
depending on whether l(n) has been set (R, the set of restricted nodes) or not
(U , the set of unrestricted nodes).
Let l(R) = ∑

n∈R l(n)r(n) be the total time used by the restricted nodes,
m(U) = ∑

n∈U m(n)r(n) be the total minimum time used by the unrestricted
nodes and w(U) = ∑

n∈U w(n)r(n) be the total weight of the unrestricted nodes.
For every n in U , set Sw(n) to (L−l(R)−m(U))/w(U) if w(U) > 0, distributing
the remaining slack evenly over the unrestricted nodes, or to 0 otherwise.
Each node n ∈ U is assigned the time limit l(n):

l(n) = m(n) + Sw(n)w(n) (5.1)

This algorithm basically tries all paths, sorting them in such a way that each node will
be visited first in the path from which its strictest time limit can be inferred. Once it has
a time limit, it will not be changed again: instead, its time limit will be used to calculate
the time limits for the nodes in the following (and less strict) paths.
Once more, generalising this algorithm to models with multiple levels only requires

running the algorithm first for the InitialNode in level 0, then for all the InitialNodes in
level 1 (using the inferred values as global time limits), and so on.
The algorithm is simple, but it has the same inherent flaw as the LP-based algorithm:

it needs to visit all the paths in PS(I), whose number grows exponentially as ForkNodes
and DecisionNodes are added to the graph. This means that the algorithm is impractical
except for simple graphs.

5.4.5.3 Incremental graph-based algorithm

The previous formulations suffered from exponentially growing problem sizes, since they
needed to check all paths from the InitialNode. This section defines an optimised graph-
based algorithm that builds the set of paths under study incrementally, reducing this
explosive growth.

Again, the description will be simplified by assuming that the model has only one level.
Multiple levels are handled in the same way as in the previous algorithms.
The algorithm can be described as a recursive function taking a node n and the time

assigned to it, t(n). Initially, n = I and t(n) = L, the global time limit. The algorithm
follows these steps:

5.20

5.4. Performance inference algorithms

1. Select two paths from PS(n):

• Let pms(n) be the path with the minimum Sw(p) when t(n) seconds are available.
In case of a tie, pick the path with maximum w(p).

• Let pMm(n) be the path with the maximum m(p).

2. If s(pMm(n)) < 0, the minimum time limits cannot be satisfied: notify the user and
abort the execution.

3. If s(pms(n)) = 0 and w(pms(n)) > 0, there is no slack in a path with a non-zero
weight: notify the user and abort the execution.

4. Set the time limit of n, l(n), to m(n) + Sw(pms(n))w(n). The remaining time will
be TR = t(n)− l(n) r(n) seconds. Mark n as visited.

5. Sort each edge e ∈ o(n) in increasing order of Sw(pms(g(e))) with r(g(e)) = TR. This
ensures that the algorithm continues through the subpath starting at n that has the
minimum slack per unit of weight when TR seconds are available.

6. Visit each edge in o(n):

a) If the target of e has been visited before, check if the time which was sent to it,
T ′R, is strictly less than TR, the time which would have been sent through e.

In that case, try to reuse the surplus TR − T ′R seconds on the source of e and
its ancestors, and send T ′R seconds through e. Go back in the graph from the
source of e, collecting nodes with non-zero weights into C until a node with
more than one incoming or outgoing edge is found. Increase the time limit of
each collected node by (TR − T ′R)w(n)/w(C), where w(C) = ∑

n∈C w(n)r(n).

b) If the target of e has not been visited before, invoke this algorithm recursively,
setting n to the target of e and r(n) = TR.

It is important to note that the graph-based algorithm uses several optimisations to
improve its performance. First of all, a path p is not represented by its sequence of nodes,
but by its constraint c(p) = (m(p), w(p)), saving much memory.
Second, to select pMm(n) at each node it is necessary to know the maximum m(p) for

each path p ∈ PS(n), which can be noted as m(pMm(n)) or simply Mm(n). It can be
computed in advance with the following equation:

Mm(n) = m(pMm(n)) = m(n)r(n) + max{Mm(g(e)) | e ∈ o(n)} (5.2)

Since (5.2) is recursive, it can be evaluated incrementally, starting from the FinalNodes
(for which Mm(n) = 0) and going back up to the InitialNode in reverse topological order.

Third, selecting pms(n) at each node requires knowing the strictest path starting from
it. This cannot be computed in advance, as it depends on the time received by the node,
t(n), which is not known a priori. Instead, redundant paths from PS(n) will be removed.
This reduced set will be called P ′S(n). A path pa ∈ PS(n) is removed when it is said to be
always less or just as strict than some other path pb ∈ PS(n), independently of the time

5.21

5. SODM+T: extension of SODM for performance testing

received by n or the common ancestors of pa and pb. Let (a, b) = c(pa) and (c, d) = c(pb).
The formal comparison between pa and pb is defined as follows:

(a, b) �s(L) (c, d) ≡
∀t ∈ [0, L] ∀x ∈ [0, L] ∀y ≥ 0

a+ x ≤ t ∧ c+ x ≤ t ∧
b+ y > 0 ∧ d+ y > 0⇒
t− (a+ x)
b+ y

≥ t− (c+ x)
d+ y

(5.3)

After a lengthy simplification (shown in Appendix A.1), the right side of (5.3) can be
replaced by:

a ≤ c ∧ (b ≤ d ∨ (b− d)L ≤ bc− ad) (5.4)

Equations (5.3) and (5.4) would consider all pairs of the form (L, x) to be just as strict.
The number of paths to be evaluated could be further reduced while obtaining the same
results by considering the (L, x) pair with the highest value of x as the strictest one. This
results in the revised and final definition of �s(L):

a ≤ c ∧ (b ≤ d ∨ (a < L ∧ (b− d)L ≤ bc− ad)) (5.5)

It can be proved that this defines a partial order (a reflexive, antisymmetric, and
transitive binary relation) on C(L). The proof is shown in Appendix A.2.

Finally, like Mm(n), P ′S(n) can also be computed incrementally by traversing the graph
in reverse topological order. Let ni be a child of n. Let pa and pb be two paths in PS(ni),
so that c(pa) �s(L) c(pb). By definition, pa is less or just as strict as pb regardless of their
common ancestors, so 〈n〉+ pa will also be discarded from P ′S(n) over 〈n〉+ pb. This means
that instead of comparing every path in PS(n) for every node n, P ′S(n) can be built by
adding n at the beginning of the paths in P ′S(ni), for every child ni of n, and then filtering
the redundant paths using �s(L).

Let max�s(L) S select the paths in S which are not always less strict than any other (the
maximal elements according to �s(L)). P ′S(n) is defined as:

P ′S(n) = max
�s(L)
{(m(n)r(n) +M,w(n)r(n) +W) |

e ∈ o(n) ∧ (M,W) ∈ P ′S(g(e))} (5.6)

Please, notice that P ′S(f) = PS(f) = {(0, 0)} when f is a final node.

5.4.5.4 Examples

The previous sections defined the linear programming-based and graph-based algorithms
and described the key optimisations used within the latter. The algorithms will now be
applied to the example in Figure 5.4, showing how they arrive at the same results through
different means. The global time limit will be set in both cases to L = 1 s. Action names
will be shortened to their initials when necessary: “Evaluate Order” will be simply “EO”.

5.22

5.4. Performance inference algorithms

Listing 5.2 GMPL model used by the algorithm in Section 5.4.5.1
1 set A; # All executable nodes
2 set P; # All paths
3 param G; # Global time limit
4 param m{a in A}, default 0; # Minimum times
5 param w{a in A}, default 1; # Weights
6 param r{a in A}, default 1; # Repetitions
7 param paths{a in A, p in P}, default 0, binary; # Paths (1 if action belongs to path)
8
9 # Total minimum time and weight of each path
10 param mp{p in P} := sum{a in A} paths[a, p] ∗ m[a] ∗ r[a];
11 param tw{p in P} := sum{a in A} paths[a, p] ∗ w[a] ∗ r[a];
12
13 # Minimum slack per unit of weight by task
14 param msuw{a in A} := min{p in P: paths[a, p] == 1 && tw[p] > 0} (G−mp[p])/tw[p];
15
16 # Slack per unit of weight for each action (must be positive)
17 var suw{a in A} ≥0;
18
19 maximize usage: sum{a in A, p in P} (paths[a, p] ∗ (suw[a]∗w[a] + m[a]) ∗ r[a]);
20
21 subject to glimit {p in P}: sum{a in A} (paths[a, p] ∗ (suw[a] ∗ w[a] + m[a]) ∗ r[a]) ≤G;
22 subject to minslack {a in A}: suw[a] ≥msuw[a];
23 subject to samepaths
24 {a in A, b in A: a < b && forall {p in P} paths[a, p] == paths[b, p]}: suw[a] == suw[b];
25
26 solve;

Listing 5.3 GMPL data for level 0 of the example in Figure 5.4
set A := "Evaluate Order", "Divide into Segments", "Close Order", "Process Segments";
set P := p_1 p_2;
param G := 1.0;
param m := "Evaluate Order" 0.4;
param w := "Evaluate Order" 0.0;
param r := "Process Segments" 5.0;
param paths :=
[∗, p_1] "Evaluate Order" 1 "Close Order" 1
[∗, p_2] "Evaluate Order" 1 "Divide into Segments" 1 "Process Segments" 1 "Close Order" 1;

end;

Listing 5.4 GMPL data for level 1 of the example in Figure 5.4. Minimum times,
weights and repetitions use the default values of 0, 1 and 1, respectively.

set A := "Perform Payment", "Create Invoice", "Ship Order";
set P := p_1 p_2;
param G := 0.08571428571428572;
param paths :=
[∗, p_1] "Create Invoice" 1 "Perform Payment" 1
[∗, p_2] "Ship Order" 1;

end;

5.23

5. SODM+T: extension of SODM for performance testing

5.4.5.4.1 Linear programming-based algorithm The linear programming formulation
described above can be written in any of the existing mathematical programming languages.
In this Thesis GNU MathProg Language (GMPL) was selected, which is part of the
GNU Linear Programming Kit (GLPK)4. GMPL is a very concise notation for linear
programming and is a subset of the A Mathematical Programming Language (AMPL)
language [6].
In GMPL, the problem can be split into two sections. The model section describes

the available parameters, variables, constraints and objective function. The data section
provides values for some of the parameters. This is useful for reusing the same problem
with different data.

The shared model for all problems generated in the algorithm is shown in Listing 5.2.
Lines 1 and 2 define the set of actions or nodes (A) and the set of all paths (P) over
which the constraints will be defined. The global time limit is modelled as a parameter
(G) in line 3. Lines 4–6 model the minimum times, weights and estimated repetitions as
additional parameters with default values 0, 1 and 1 respectively. Lines 10 and 11 define
derived parameters with the total minimum time and weight of every path. From these,
line 14 derives another parameter with the minimum slack per unit of weight for each
action in A. Using these parameters, the suw positive variables (according to R1) defined
in line 17 need to maximise the total available time as defined in line 19, subject to the
constraints in lines 21 (R2), 22 (R3) and 23–24 (R4).
The algorithm solved the problem using the data for level 0 in Listing 5.3 first. The

resulting time limits were of 0.086 s for “Evaluate Order” (EO), “Divide into Segments”
(DS), “Close Order” (CO) and each repetition of “Process Segments” (PS).

Using these results, it produced the data in Listing 5.4 and solved the problem for level
1. The resulting time limits were of 0.043 s for “Perform Payment” (PP) and “Create
Invoice” (CI) and 0.086 s for “Ship Order” (SO).

5.4.5.4.2 Exhaustive algorithm The exhaustive algorithm produces the execution
traces shown in Figure 5.5. The paths from the InitialNodes to the FinalNodes have been
labelled with numbers, ordering them from most to least restrictive.
On level 0, there are two paths: the strictest one goes through “Divide into Segments”

and “Process Segments” and the other does not. The algorithm visits the strictest path p1
first: all its nodes are unrestricted (as no time limits have been set), som(U) = m(p1) = 0.4
and w(U) = w(p1) = 0 + 1 + 5 + 1 = 7. Therefore, Sw(n) = (1− 0.4)/7 ' 0.086 for every
n in p1. The second path does not have any unrestricted nodes (all nodes were annotated
in the previous path).

Next, level 1 (with the contents of “Process Segments”) is examined, with L = 0.086 as
previously computed. The strictest path goes through “Creative Invoice” and “Perform
Payment”, with a zero total minimum time and total weight equal to 2 units. Therefore,
each action receives half of the available 0.086 s. The next path goes through “Ship Order”,
which receives the full 0.086 s.

5.4.5.4.3 Incremental graph-based algorithm The execution trace of the graph-based
algorithm over levels 0 and 1 of the running example is shown in Figure 5.6. First, Mm(n)
and P ′S(n)) are precomputed over level 0:

4http://www.gnu.org/software/glpk

5.24

http://www.gnu.org/software/glpk

5.4. Performance inference algorithms

2

Evaluate Order
m=0.4 w=0 r=1

l = 0.4

1

Divide into Segments
m=0 w=1 r=1

l = 0.086

Process Segments
m=0 w=1 r=5

l = 0.086

Close Order
m=0 w=1 r=1

l = 0.086

(a) Level 0

21

Ship Order
m=0 w=1 r=1

l = 0.086

Create Invoice
m=0 w=1 r=1

l = 0.043

Perform Payment
m=0 w=1 r=1

l = 0.043

(b) Level 1

Figure 5.5. Execution trace of the exhaustive time limit algorithm on levels 0 and 1 of
the running example in Figure 5.4, with L = 1 second. Every Activity lists
its minimum time limit m, its weight w and the computed time limit t and
its number of repetitions r. The available execution paths are sorted from
least to most restrictive.

5.25

5. SODM+T: extension of SODM for performance testing

Mm = 0.4
PS = {(0.4, 7)}

t = 1

Evaluate Order
m = 0.4 w = 0 r = 1

Mm = 0.4 PS = {(0.4, 7)}
t = 1 l = 0.4

Mm = 0
PS = {(0, 7)}

t = 0.6

Divide into Segments
m = 0 w = 1 r = 1

Mm = 0 PS = {(0, 7)}
t = 0.6 l = 0.086

Process Segments
m = 0 w = 1 r = 5

Mm = 0 PS = {(0, 6)}
t = 0.514 l = 0.086

Mm = 0
PS = {(0, 1)}

t = 0.2

Close Order
m = 0 w = 1 r = 1

Mm = 0 PS = {(0, 1)}
t = 0.086 l = 0.086

Mm = 0
PS = {(0, 0)}

t = 0

(a) Level 0

Mm = 0
PS = {(0, 2)}
t = 0.086

Mm = 0
PS = {(0, 2)}
t = 0.086

Ship Order
m = 0 w = 1 r = 1

Mm = 0 PS = {(0, 1)}
t = 0.086 l = 0.086

Mm = 0
PS = {(0, 0)}

t = 0

Create Invoice
m = 0 w = 1 r = 1

Mm = 0 PS = {(0, 2)}
t = 0.086 l = 0.043

Perform Payment
m = 0 w = 1 r = 1

Mm = 0 PS = {(0, 1)}
t = 0.043 l = 0.043

Mm = 0
PS = {(0, 0)}

t = 0

(b) Level 1

Figure 5.6. Execution traces for the incremental graph-based time limit algorithm on
levels 0 and 1 of the running example in Figure 5.4, with L = 1 second on
level 0. Every ExecutableNode was annotated with its minimum time limit
m, its weight w and its number of repetitions r. The first pass produced
from all subpaths starting at each node n the maximum total minimum
time limit Mm(n) and the maximal constraints P ′S(n). Nodes received t
seconds on the second pass, from which each ExecutableNode took a part
for its time limit l and propagated the rest. Level 1 is comprised of the
contents of “Process Segments”, and its global time limit L = 0.086 was
computed in level 0.

5.26

5.5. Evaluation

• Mm(CO) = 0, P ′S(CO) = {(0, 1)}.

• Mm(PS) = 0, P ′S(PP) = {(0, 6)} (since PS has r = 5).

• Mm(DS) = 0, P ′S(DS) = {(0, 7)}.

• Mm(EO) = 0.4, P ′S(EO) = {(0.4, 7)}.

Using the maximal constraint (0.4, 7), it follows that the slack per unit of weight on
the strictest path will be (1 − 0.4)/7 ' 0.086 seconds. After that, the algorithm sends
the available time (L = 1 s) into the InitialNode and then into EO. EO takes 0.4 s and
sends the remaining 0.6 s through the DecisionNode to DS, which takes 0.086 s and sends
the remaining 0.514 s to PS. PS takes 0.086 s for each of its 5 repetitions and sends the
remaining 0.086 s to CO through the JoinNode.
The algorithm then continues over the contents of “Process Segments”, using its time

limit as the new global time limit. Mm(n) and P ′S(n) are computed in the same way as
before. SO takes the full 0.086 s, being the only ExecutableNode in its path. CI and PP
take half of L each: 0.043 s.

5.5 Evaluation
The previous sections have described the models used by the inference algorithms and
the algorithms themselves. This section will study their limitations and evaluate their
performance on the above reference implementations.

5.5.1 Limitations
All algorithms require that the graph underlying the model has no cycles. This seems
like an important restriction, as loops are common in most processes, but there are
ways to model iteration without cycles. In the above models, a loop is represented as a
StructuredActivityNode with an appropriate estimate of the number of repetitions in its
reps attribute. Loops can be arbitrarily nested as well in this way, and the time limit
inference algorithms scale down the inferred values according to the number of repetitions.

All ExecutableNodes need to be annotated with a minimum time limit and a weight. It
could be argued that the problem of defining their time limits was simply shifted to defining
their local performance annotations. However, these are easier to write and maintain, as
they only depend on the individual nodes and the relative values of the weights of the
others. In particular, they do not depend on the global time limit. Users satisfied with
the default zero time limit and unit weight only need to set the global time limit and the
conditional branch probabilities in order to use the inference algorithms.
All ActivityEdges starting at a DecisionNode need to be annotated with probabilities.

The only way to estimate these is through the modeller’s domain knowledge. Alternatively,
it may be simply assumed that every decision branch is equally probable, in absence of
other information.
In their current form, the algorithms do not take into account the fact that the same

task may be used in several workflows, or several times in the same workflow. However,
the linear programming-based time limit inference algorithm could be extended to include

5.27

5. SODM+T: extension of SODM for performance testing

Figure 5.7. Screenshot of the Eclipse-based model editor

some of these restrictions in the generated problems. The graph-based algorithm would
not accommodate those additional restrictions as well, but it could take strictest time
limit inferred among all its occurrences.

Similarly, the algorithms assume the best-case scenario in which the modelled process is
the only one currently being run. This requires that the global time limit and throughput
requirements and the minimum times take into account the delays introduced by a system
that is also running other processes concurrently.

For the sake of simplicity, this chapter has used a custom set of annotations. Nevertheless,
the algorithms can be applied with standard performance annotations, such as those from
the MARTE UML [10], as shown in Chapter 6.

5.5.2 Implementation
The above models and algorithms have been implemented as a set of Eclipse plug-ins (see
Figure 5.7). The source code is freely available under the Eclipse Public License v1.0 [7]
and uses a mix of several task-specific model handling languages from the Epsilon family
(§3.3.3).

The models can be created using a graph-oriented graphical editor. To ensure that the
inference algorithms can be applied, the tool is able to validate the models automatically,
providing error and warning markers and “quick fixes” to assist the user in correcting
invalid models. The algorithms can be launched from the contextual menu of the graphical
editor.

5.28

5.5. Evaluation

The throughput inference algorithm and the graph-based time limit inference algorithm
have been unit tested using a set of manually designed test cases, using the EUnit
framework included in Epsilon (described in Appendix B). In addition, the graph-based
time limit inference algorithm has been tested with a large set of automatically generated
models, ensuring that its results were within 0.1% of those of the linear programming-based
algorithm5.

5.5.3 Theoretical performance
The previous sections described the inherent limitations to the algorithms and presented
their reference implementations. Before evaluating their empirical performance, this section
will infer some upper bounds on their execution costs from their definitions.

This section will also define several representative graph shapes for the models. These
shapes will be used throughout the theoretical and empirical performance analyses of the
time limit inference algorithms.

5.5.3.1 Throughput inference

The performance of this algorithm is quite simple to analyse. If the nodes are visited in
topological order, the algorithm will only need to visit each node once. For each node, the
algorithm will compute a constant-time expression on every incoming edge (multiplications
for conditional edges, scalar comparisons for JoinNodes and sums for MergeNodes).

Let the model have n nodes and e edges. Since the algorithm visits each node and edge
exactly once and spends a constant amount of time on each of them, the algorithm will
require O(n+ e) operations. If the underlying graph is dense, then e ∈ Θ(n2) and O(n+ e)
becomes simply O(n2).

5.5.3.2 LP-based time limit inference

The time limit inference algorithms are harder to analyse than the throughput inference
algorithm, as their performance depends on the structure of the underlying graph. For
this reason, several graph shapes will be defined for the models (shown in Figure 5.8):

Sequence models consist of an InitialNode followed by one or more Action nodes in
sequence, with a FinalNode at the end.

Fork-join models have an InitialNode, followed by a sequence of f “levels”. Each level
has a DecisionNode with two branches with a single Action, merged before the next
level. The model has n = 2 + 4f ∈ Θ(f) nodes and e = 1 + 5f ∈ Θ(f) edges in total,
and there are 2f paths from the InitialNode to the FinalNode.

Dense models have an InitialNode, followed by a sequence of f “levels”, like the fork-join
models. However, the structure of each level is different: a DecisionNode picks
between running an Action or jumping to any of the following levels. The model has
n = 2 + 3f ∈ Θ(f) nodes and e = 1 + 3f + ∑f

i=1 i ∈ Θ(f 2) edges. There are (f + 1)!
paths from the InitialNode to the FinalNode. These models have many more edges

5Results may vary within this range due to floating point errors.

5.29

5. SODM+T: extension of SODM for performance testing

A1 A2

(a) Sequence: 2 Action nodes

A11

A12

A21

A22

1 level

(b) Fork-join: 2 levels

A1 A2

1 level

(c) Dense: 2 levels

Figure 5.8. Graph shapes used in the performance analyses

and paths than the fork-join models: in fact, they represent the densest graph that
can be built with this combination of nodes.

With these shapes in mind, the analysis of the performance of the linear programming-
based time limit inference algorithm can be performed. Since there are many methods
for solving LP problems (some of them very efficient on the average case), the focus will
be instead placed on the size of the resulting LP problem. The LP problem will have n
variables and will consist of an objective function which can be generated in O(np) time
and the following restrictions:

• The slack per unit of weight must be positive (R1): one per node. Each restriction
can be generated in O(1) time.

Component O(r. count) O(gen. time) O(total time)
Objective function np np
R1: Sw(n) ≥ 0 n 1 n
R2: L per path p n np
R3: minimum Sw n np n2p
R4: same paths n2 p n2p

Total n2 + p n2p

Table 5.5. Restriction counts and individual and total generation times for the LP-based
algorithm, by component.

5.30

5.5. Evaluation

Shape O(nodes) O(paths) O(r. count) O(total time)
Sequence, n nodes n 1 n2 n2

Fork-join, f levels f 2f 2f f 22f

Dense, f levels f f ! f ! f 2f !

Table 5.6. Restriction counts and generation costs for the LP-based algorithm, by graph
shape, using the results from Table 5.5.

• The global time limit must be honored (R2): one per path, generated in O(n) time
by traversing every node in the path.

• The lower bound on the slack per of unit weight for every node (R3): one per node,
generated in O(np) time by traversing every path and computing m(p) and w(p) for
it.

• The slack per unit of weight must be equal for all (m,n) pairs of nodes in the
same paths (R4): one for every such pair, generated or discarded in O(p) time by
comparing PC(m) and PC(n).

These results are aggregated in Table 5.5. It can be concluded that O(n2 +p) restrictions
will be generated in O(n2p) operations. Table 5.6 applies these results to each of the three
graph shapes in Figure 5.8. It can be seen that the rapidly increasing number of paths in
the model is the main limiting factor for applying the algorithm to more complex models.

5.5.3.3 Exhaustive graph-based time limit inference

In the case of the exhaustive time limit inference algorithm, enumerating the p existing
paths requires a depth-first traversal of the graph, which must traverse the e ∈ O(n2)
edges in the graph. Each path in the graph will then have to be traversed a constant
number of times to compute several expressions which require O(n) operations.
Therefore, the algorithm requires O(e + np) operations. Sequences only have O(n)

edges and p = 1, so they only require O(n) operations in total. However, fork-join
models would require O(f + n2f) = O(n2f) operations, and dense models would require
O(f 2 + n(f + 1)!) = O(nf !) operations. It can be seen that the rapidly increasing number
of paths in the model is also the main limiting factor for applying this algorithm to more
complex models.

5.5.3.4 Incremental graph-based time limit inference

Analysing the incremental graph-based time limit inference algorithm is harder than
analysing the LP-based algorithm. For this reason, analysis will be limited in this case to
fork-join models, proceeding by parts in the worst case:

• Computing Mm(n) in advance for each node always takes O(1)O(n) = O(n) oper-
ations, as it requires evaluating an arithmetic expression over the O(1) incoming
edges of each of the n nodes.

5.31

5. SODM+T: extension of SODM for performance testing

• Computing P ′S(n) in advance for each node is actually the most expensive part of
the algorithm: in the worst case, O(2f) paths need to be considered at every node
and selecting the strictest ones takes O(4f) operations per node and O(n4f) in total.

• The last step depends on the number of elements of P ′S(n) for each node n in the
graph: in the worst case, |P ′S(n)| = |PS(n)| (no paths have been removed) for every
node n and O(n2f) operations are required.

Joining the three parts of the algorithm yields a time of O(n4f) operations in the worst
case for a fork-join model. The absolute worst case is very expensive. However, it is also
very rare, as shown in Section 5.5.4.4.

5.5.4 Empirical performance
The previous section studied the definitions of the algorithms to derive several upper
bounds for their execution times. It was concluded that the throughput algorithm required
O(n2) operations, the LP-based time limit inference algorithm required O(f 22f) operations
for fork-join models with f levels and the graph-based time limit inference algorithm
required O(n4f) operations for the same fork-join models.
However, it was also concluded that these were very loose upper bounds, due to

limitations in the analysis. For this reason, this section will discuss the results of several
experiments based on the actual execution of the algorithms on a set of automatically
generated models. It will be shown that the incremental graph-based algorithm requires
much less time to run in practice than the LP-based and exhaustive graph-based algorithms,
and that it does not show the exponential growth which would be expected from the
previous upper bound. This is because the worst case becomes harder to find as models
become more complex, as shown at the end of this section.
The performance tests were run in a machine with an Intel Core Duo T2250 CPU at

1.73GHz with 3.2GiB DDR3-1066 RAM, using Eclipse Juno (build ID M20130204-1200)
and the latest development snapshot of Epsilon (revision 2253) to date. Wall clock times
were measured using the facilities provided by the Java Virtual Machine, ensuring other
processes remained idle during the tests. The studies in Sections 5.5.4.1, 5.5.4.2 and 5.5.4.3
were conducted using an Eclipse plug-in (see Figure 5.9) that was built for this study. Parts
of the graph-based time limit algorithm were ported to C++ for the study in Section 5.5.4.4.
All relevant code is freely available at [7].

5.5.4.1 Throughput inference

Figure 5.10 shows the average execution times for the throughput inference algorithm for
the three graph shapes described in Figure 5.8. The generated sequence and dense models
had between 0 and 50 actions, and fork-join models had between 0 and 25 levels.

The algorithm shows the expected level of performance for fork-join and sequence models.
A model with 50 actions in a sequence model only takes 0.04 s, and a fork-join model with
50 actions takes 0.07 s. A dense model with 50 actions takes somewhat longer, requiring
0.46 s. This confirms the previous O(n+ e) bound for the algorithm: sparse graphs exhibit
linear growth, while dense graphs show quadratic growth.

5.32

5.5. Evaluation

F
ig
ur
e
5.
9.

Sc
re
en

sh
ot

of
th
e
au

to
m
at
ed

Ec
lip

se
-b
as
ed

pe
rfo

rm
an

ce
co
m
pa

ris
on

to
ol
.
“G

LP
K
”
re
fe
rs

to
th
e
lin

ea
r
pr
og

ra
m
m
in
g-

ba
se
d
al
go

rit
hm

,“
Ex

ha
us
tiv

e”
re
fe
rs

to
th
ee

xh
au

st
iv
eg

ra
ph

-b
as
ed

al
go

rit
hm

an
d
“I
nc

re
m
en
ta
l”
re
fe
rs

to
th
ei
nc

re
m
en
ta
l

gr
ap

h-
ba

se
d
al
go
rit

hm
.

5.33

5. SODM+T: extension of SODM for performance testing

0 10 20 30 40 50

0

0.1

0.2

0.3

0.4

0.5

0.0368

0.0682

0.4588

Size (actions)

T
im

e
(s
ec
on

d
s)

Sequence
Fork-join
Dense

Figure 5.10. Average execution times over 10 runs for the throughput inference al-
gorithm, by graph shape and size.

5.5.4.2 Comparison of the time limit algorithms

Figure 5.11 compares the times required by the LP-based and graph-based time limit
inference algorithms for the three graph shapes listed in Figure 5.8. In this case, because
of the rapid increase in cost of the LP-based algorithm, fork-join and dense models were
limited to 20 and 12 actions, respectively.

For the simple sequence graphs, the LP algorithm is the fastest, as it relies on a native
LP solver instead of an interpreted EOL program. However, the complexity of generating
the LP problem and solving it quickly takes effect in the fork-join and dense graphs: it is
always slower than one of the graph-based algorithms.
On the other hand, the incremental graph-based algorithm is only slower than the

exhaustive graph-based algorithm for very small models. This may be due to the additional
overhead imposed by its more complex design. Nevertheless, it quickly becomes faster
than the exhaustive graph-based algorithm as the models become only slightly larger.

These tests checked that the results produced by both algorithms were the same, except
for a minimal error margin (0.1%) due to floating-point rounding and error propagation.
More formally, if rl and rg were the results of the LP-based and graph-based algorithm for
the same input model, it was verified that |rl − rg|/max{rl, rg} ≤ 0.001.

5.5.4.3 Influence of annotations on the incremental graph-based time limit
algorithm

After concluding that the graph-based time limit algorithm was clearly superior to the LP-
based algorithm, it was decided to study the effect of the manual performance annotations
on the graph-based time limit algorithm. Depending on the actual values used in this
annotation, the algorithm may be unable to discard some paths, reducing the effectiveness
of its optimisations over the LP-based algorithm.

5.34

5.5. Evaluation

0 10 20 30 40 50

10−2

10−1

Size (actions)

T
im

e
(s
)

Sequence

LP-based Exhaustive Incremental

0 4 8 12 16 20

10−2

10−1

100
101

Size (actions)

Fork-join

0 2 4 6 8 11
10−3

10−1

101

103

Size (actions)

Dense

Figure 5.11. Average execution times over 10 runs for the time limit inference algorithms,
by graph shape and size, with L = 100 s. All Action nodes were annotated
with uniform random minimum times (between 0 and 0.5L) and weights
(up to 10). Execution times are represented in a base-10 logarithmic scale.

0 10 20 30 40 50

10−2

10−1

Size (actions)

T
im

e
(s
ec
o
n
d
s)

Sequence

0% 50% 100%

0 10 20 30 40 50

10−2

10−1

100

101

Size (actions)

Fork-join

0 10 20 30 40 50

10−2

10−1

100

Size (actions)

Dense

Figure 5.12. Average execution times over 100 runs for the incremental graph-based
time limit inference algorithm, by graph shape, graph size and percentage
of Activity nodes with uniformly random performance annotations. L was
set to 100 s, minimum time limits ranged between 0 and 0.5L and weights
ranged between 0 and 10. Execution times are represented in a base-10
logarithmic scale.

5.35

5. SODM+T: extension of SODM for performance testing

To study the impact of this issue on performance, the average time required by the
graph-based time limit algorithm over 100 runs for each graph shape and size was measured.
Either 0%, 50% or 100% of all ExecutableNodes with randomly generated performance
annotations were annotated. Results are shown in Figure 5.12.
It is interesting to note that only fork-join models show notable differences between

annotating 0%, 50% or 100% of all ExecutableNodes. This is obvious for sequence models,
which only have 1 path, but it might be surprising for dense models, which have f ! paths
for a model with f levels. This is because of (A.5) and the structure of the dense models.
When choosing between a subpath (m,w) that does not run a certain node with minimum
time ma and weight wa, and a subpath (m + ma, w + wa) that does, (A.5) will discard
(m,w) and only keep (m+ma, w + wa). For this reason, at each DecisionNode only one
subpath will need to be considered to find the strictest path from the InitialNode to the
FinalNode. The observed faster-than-linear growth for dense models can be attributed to
the need to traverse all O(f 2) edges to precompute Mm(n) for each node.

Going back to fork-join models, it can be seen that annotating all ExecutableNodes with
custom local performance annotations is more expensive than always using the default
zero minimum time and unit weight. This can also be explained through (A.5): when
using the default performance annotations, it is always the case that a = c = 0 and (A.5)
can be simplified into b ≤ d, which is a total order. In that case, many more paths can be
removed and the optimisations are much more effective. Otherwise, some paths may not
be comparable (as �s(L) is a partial order) and execution costs will increase. Nevertheless,
even when all ExecutableNodes are annotated, execution times do not show the exponential
growth of the exhaustive algorithm.

5.5.4.4 Worst case of the incremental graph-based time limit inference algorithm

So far, it has been shown that removing redundant paths is effective in avoiding the
exponential growth in cost that affected the exhaustive time limit inference algorithm.
However, its effectiveness depends on the values of the annotations used in the model.
A closer look at (A.5) shows that it depends on the relative magnitude of the minimum
time limits and weights with regards to the global time limit L. The left operand of
(b−d)L < bc−ad, part of (A.5), grows as L increases and reduces the number of comparable
pairs of paths.

An additional study was performed to clarify how common the absolute worst case was
and study its relationship with L. A sample was conducted with L = 0.5 s and L = 1.5 s
of the space of all fork-join models with 3 levels which contained a 2-level fork-join with 4
incomparable paths. Minimum times for the ExecutableNodes ranged from 0 to min{L, 1},
in steps of 0.1 s. Weights ranged from 0 to 10, in steps of 1 unit. Inconsistent models
were discarded. For each model, the number of incomparable paths at the initial node
(“top-level paths”) was measured: in a 3-level fork-join model, there can be between 1 and
23 = 8 such paths.

Evaluating 1.99 × 106 fork-join activities for L = 0.5 s and 7.16 × 109 for L = 1.5 s
produced the results in Figure 5.13. For L = 0.5 s, less than 10% of these models had
more than 1 incomparable path. With L = 1.5 s, less than 20%s of the models had more
than 2 incomparable paths.
Furthermore, it is interesting to note that for L = 1.5 s, while 31.8% of all 1-level

fork-join models were in the worst case, only 2.5% 2-level fork-join models were in the

5.36

5.6. Conclusions

1 2 3 4 5 6 7 8

0

20

40

60

80

100

1

Top-level incomparable paths

R
el
at
iv
e
fr
eq
u
en

cy
(%

)

L = 0.50s
L = 1.50s

Figure 5.13. Percentages of sampled 3-level fork-join models with a certain number of
top-level incomparable paths, 4 incomparable paths at the second level
and 2 incomparable paths at the last level, by values of the global time
limit L.

worst case. With 3 levels, it was further reduced to 0.05%s. This suggests that the absolute
worst case becomes harder to find as models become more complex, explaining why average
times did not grow exponentially in Figure 5.12. Additionally, it indicates that the worst
case becomes more common as L grows in relation to the values used in the annotations.

5.6 Conclusions
This chapter has presented the first version of SODM+T, an extended version of the
SODM methodology which provides guidance on defining the performance requirements of
the service-oriented system. SODM+T extends the service process and service composition
models with global performance requirements and local performance annotations, which
are combined to derive local performance requirements.

The current extensions model throughput and response times using a custom notation
backed by automated validation, Eclipse-based model editors and several performance
inference algorithms. Bounded and well-structured iteration can be represented in the
models using the appropriate annotations.

The throughput inference algorithm is a simple algorithm based on traversing the graph
in topological order. Inferring time limits was much more complex: the first formulation
was based on producing a sequence of linear programming problems, but had exponential
cost as models became larger. For this reason, two graph-based algorithms were developed:
a simple exhaustive algorithm that visited all the paths, and a more advanced incremental
algorithm that discarded uninteresting subpaths as soon as possible.

An initial theoretical evaluation of the algorithms showed that the throughput inference
algorithm had O(n2) cost for dense graphs and that all the time limit inference algorithms

5.37

References

had exponential upper bounds, due to the potentially exponential number of paths from
the initial nodes in the graph.
This initial evaluation was checked by running the algorithm against three kinds of

automatically generated models, confirming the expected bounds of the inference algorithm
and the LP-based and exhaustive time limit inference algorithms. However, the incremental
time limit inference algorithm did not show an exponential order of growth in the average
case. A later study backed this claim by verifying that the absolute worst case for the
algorithm became more rare as models increased in size, thanks to its optimisations. This
means that the incremental time limit inference algorithm can be used with models of
considerable size, even in the presence of an exponential number of paths.

References
[1] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-based performance

prediction in software development: a survey. IEEE Transactions on Software
Engineering, May 2004. doi: 10.1109/TSE.2004.9. 5.1

[2] M. A. Bender, G. Pemmasani, S. Skiena, and P. Sumazin. Finding least common
ancestors in directed acyclic graphs. Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’01), pages 845–853, 2001. doi: 10.1.1.15.
9161. 5.7

[3] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality of service for
workflows and web service processes. Web Semantics: Science, Services and Agents
on the World Wide Web, April 2004. doi: 10.1016/j.websem.2004.03.001. 5.1

[4] Eclipse Foundation. Graphical Modeling Project, 2013. URL http://www.eclipse.
org/modeling/gmp/. Last checked: November 6th, 2013. 5.4

[5] Eclipse Foundation. Emfatic project homepage, 2013. URL http://www.eclipse.
org/modeling/emft/emfatic/. Last checked: November 6th, 2013. 5.6

[6] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: a modeling language for
mathematical programming. Thomson/Brooks/Cole, California, EEUU, 2003. ISBN
9780534388096. 5.24

[7] A. García-Domínguez. Homepage of the SODM+T project, April 2013. URL https:
//neptuno.uca.es/redmine/projects/sodmt. 5.28, 5.32

[8] D. Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys, 23(1):5–48, 1991. doi: 10.1145/103162.103163.
5.8

[9] D. S. Kolovos, L. M. Rose, R. F. Paige, and A. García-Domínguez. The Epsilon book,
2013. URL http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/
trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf. Last checked: Novem-
ber 6th, 2013. 5.8

5.38

http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/emft/emfatic/
http://www.eclipse.org/modeling/emft/emfatic/
https://neptuno.uca.es/redmine/projects/sodmt
https://neptuno.uca.es/redmine/projects/sodmt
http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf
http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf

References

[10] Object Management Group. UML Profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE) 1.1, June 2011. URL http://www.omg.org/spec/
MARTE/1.1/. Last checked: November 6th, 2013. 5.28

[11] L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. C. Polack. Model migration with
Epsilon Flock. In D. Hutchison, T. Kanade, J. Kittler, et al., editors, Theory and
Practice of Model Transformations, volume 6142, pages 184–198. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-13687-0. 5.13

[12] G. A. Silver, A. Maduko, J. Rabia, J. Miller, and A. Sheth. Modeling and simulation
of quality of service for composite web services. In Proceedings of 7th World Multicon-
ference on Systemics, Cybernetics and Informatics, pages 420–425. Int. Institute of
Informatics and Systems, November 2003. 5.1

5.39

http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MARTE/1.1/

6
Generation of test artefacts with

SODM+T and MARTE

6.1. The MARTE profile

The previous chapter presented the first version of SODM+T, an extended version of
SODM which added custom performance annotations to the service process and service
composition models. These annotations were used to do an early estimation of the
performance requirements of each service, according to the global requirements of each
model.
This chapter will improve on SODM+T by mapping the annotations to the standard

OMG MARTE profile, which has better support from industrial tooling. This will be
followed by some minor refinements that were later made to the performance inference
algorithms. The rest of the chapter will discuss a novel approach to generating performance
test artefacts from the annotated models and the final implementations of the services, by
using model weaving. This approach is applied to two scenarios: repurposing unit tests for
Java code, and generating language-independent performance tests for WSDL-based WS.

6.1 The MARTE profile
UML is widely used as a general purpose modelling language for software systems (for a
short introduction, see Section 4.3.1). However, UML cannot model non-functional aspects
such as performance requirements.

For this reason, the OMG proposed in 2005 the SPT profile [17], which extended UML
with a set of stereotypes describing scenarios that various analysis techniques could take
as inputs. In 2008, OMG proposed the QoS/FT profile [18], with a broader scope than
SPT and a more flexible approach: users formally defined their own quality of service
vocabularies to annotate their models.

When UML 2.0 was published, OMG saw the need to update the SPT profile and
harmonise it with other new concepts. This resulted in the MARTE profile [19], published
in 2009. Like the QoS/FT profile, the MARTE profile defines a general framework for
describing quality of service aspects. The MARTE profile uses this framework to define a
set of pre-made UML stereotypes, as those in the SPT profile.

The rest of this section presents the architecture of the MARTE specification and focuses
on the key subset on which the performance annotations have been mapped.

6.1.1 Architecture
The MARTE profile is a complex specification, spanning over 700 pages. It is organised
into several subprofiles and includes a normative model library with predefined types
and concepts and an embedded expression language known as the Value Specification
Language (VSL). Figure 6.1 lists each of the packages that constitute MARTE and their
elements:

• The “MARTE foundations” package defines the core concepts that are used through-
out the other profiles, such as the concept of a non-functional property (NFP), how
to model time or resources or how to map the functional elements to the resources.
Resources are modelled through the General Resource Modelling (GRM) subprofile.

• The “MARTE analysis model” package is used to annotate application models to
support analysis of system properties. The GQAM subprofile uses the foundations
package and the normative model library to provide a base set of concepts for the

6.1

6. Generation of test artefacts with SODM+T and MARTE

Figure 6.1. Architecture of the MARTE profile [19]

two kinds of analysis supported by MARTE: schedulability analysis and performance
analysis. Schedulability analysis predicts whether a set of software tasks meets its
timing constraints and is modelled using the Schedulability Analysis Modelling (SAM)
subprofile. Performance analysis determines whether a system with non-deterministic
behaviour can provide adequate performance, and is supported through the PAM
subprofile.

• The “MARTE design model” package provides the required concepts for modelling
the features of real-time and embedded (RT/E) systems. The Generic Component
Modelling (GCM) subprofile provides additional core concepts for Real Time/Embed-
ded (RT/E) systems. The High-Level Application Modelling (HLAM) subprofile
provides the concept of a real-time execution unit that manages several resources
and a queue of messages with various real-time requirements. Finally, the Detailed
Resource Modelling (DRM) subprofile provides facilities for describing the software
and hardware resources used by the system.

• The “MARTE annexes” package includes the Value Specification Language (VSL)
used for all MARTE expressions, the Repetitive Structured Modelling (RSM) pack-
age for describing available software and hardware parallelism, and the normative
MARTE model library.

The normative MARTE library defines the set of standard primitive types (such as
real numbers or integers) and derived types (such as vectors of integers or NFPs
involving a real value), among many other concepts.

6.2

6.2. Changes in SODM+T for MARTE

6.1.2 GQAM
Using the GQAM subprofile requires the definition of an AnalysisContext, which is formed
by a WorkloadBehavior object (the workload to be run) and a ResourcesPlatform object
(the resources to be used). An AnalysisContext may also include a set of user-defined
context parameters, which will be available as variables in the VSL expressions of the
NFP.
The workload is then divided into the WorkloadEvent describing the request arrival

pattern, and the BehaviorScenario specifying how these requests should be handled and
the NFPs for them. A BehaviorScenario is further divided into Steps which are ordered
using PrecedenceRelations of several kinds, such as sequential, branching, merging, forking
or joining relations. Each Step may have NFPs of its own. These NFPs include response
time, throughput, utilisation or the expected number of repetitions.
Finally, the GQAM concepts are mapped to UML stereotypes. For instance, Analy-

sisContext, BehaviourScenario and Step are mapped to the �GaAnalysisContext�,
�GaScenario� and �GaStep� stereotypes, respectively.

6.1.3 VSL
As mentioned above, the GQAM BehaviorScenario and Step classes can contain NFPs
for many aspects. However, properly describing the value of a NFP requires more than
a simple scalar value: it is required to describe aspects such as measurement sources,
measurement unit, precision and so on. In addition, the value of a NFP may be derived
from a complex expression using several context parameters. All these features can be
described using the Value Specification Language (VSL) embedded within the MARTE
profile.
VSL provides a set of datatypes that extends the primitive types available in UML with

composite types (such as intervals, collections or tuples) and subtypes. It also provides a
textual syntax for complex expressions that may use conditional, arithmetic or relational
operators, evaluate time expressions or process collections, among other features. Both can
be combined: for instance, (expr=2+3*f,ms,req) is a VSL tuple that represents a duration
in milliseconds (ms) that has been required by the developer (req) and is computed from
the f context parameter as 2 + 3f .

6.2 Changes in SODM+T for MARTE
Having introduced MARTE more in depth, this section will present the changes that were
performed in the SODM+T models and algorithms from Chapter 5 to better support
MARTE and handle more complex UML constructions.

6.2.1 Revised annotations
The models are used for early performance inference, and so the Performance Analysis
Modelling (PAM) subprofile would appear to be the best starting point. However, the
focus of the algorithms is different than the one favoured by PAM, which is predicting
the performance of the whole system from its parts. Instead, the algorithms infer the

6.3

6. Generation of test artefacts with SODM+T and MARTE

From To Changes

Performance-
Annotation

a

GaScenario s,
GaAnalysis-
Context

c

s.respT = a.secsTimeLimit (source = req).
s.throughput = a.concurrentUsers (source =
req).
c.contextParam has one entry per
ExecutableNode (its slack per unit of
weight).

Local-
Performance-
Annotation

a

GaStep s

s.rep = a.reps.
s.hostDemand = m + ws, where m is
a.minimumTime, w is a.weight and s is the
context parameter for a.execNode (source =
req).
Inferred time limits are added to
s.hostDemand (source = calc).
Inferred throughputs are added to
s.throughput (source = calc).

ControlFlow c
(annotated)

ControlFlow c′

(not annotated),
GaStep s

s.prob = c.probability.

Table 6.1. Mapping from the SODM+T custom annotations to MARTE

performance needed in each part of the system from the global requirements. For this
reason, only the generic analysis core has been used: the GQAM subprofile.

To keep the models simple, the notation only uses the three stereotypes in Section 6.1.2.
The mapping is summarised in Table 6.1. Figure 6.2 shows an example model, which
is simpler than the one in Figure 5.4 due to space restrictions. Inferred annotations are
highlighted in bold:

1. The activity is annotated with a�GaScenario� stereotype, in which respT specifies
that every request is completed within 1 second, and throughput specifies that 1
request per second needs to be handled. These expressions have their source attribute
set to req, as they represent explicit requirements from the developer.

2. In addition, the activity declares a set of context parameters in the contextParam
field of the �GaAnalysisContext� stereotype. These variables represent the slack
per unit of weight that must be allocated to their corresponding activity in addition
to the minimum required time. Their values are computed by the time limit inference
algorithm.

3. Each action in the activity is annotated with �GaStep�, using in hostDemand
a VSL expression of the form m + ws, where m is the minimum time limit, w is
the weight of the action for distributing the remaining time, and s is the context
parameter linked to that action. These expressions also have their source attribute
set to req, for the same reasons as those in �GaScenario�. The estimated number
of repetitions is stored in reps.

6.4

6.2. Changes in SODM+T for MARTE

�
G
a
S
te
p
�

{h
o
st
D
e
m
a
n
d
=
{(

e
x
p
r=

0
.4
+
0
*
sw

E
P
,
u
n
it
=
s,

so
u
rc
e
=
re
q
),

(
v
a
lu

e
=

0
.4

,
u
n
it
=

s
,
s
o
u
r
c
e
=

c
a
lc
)
},

t
h
r
o
u
g
h
p
u
t
=

{(
v
a
lu

e
=

1
.0

,
u
n
it
=

H
z
,
s
o
u
r
c
e
=

c
a
lc
)
}}
}

E
v
a
lu
a
te

O
rd

e
r

[a
c
e
p
]
�

G
a
S
te
p
�
{p

ro
b
=
0
.8
}

�
G
a
S
te
p
�

{h
o
st
D
e
m
a
n
d
=
{(

e
x
p
r=

0
+
1
*
sw

C
R
,
u
n
it
=
s,

so
u
rc
e
=
re
q
),

(
v
a
lu

e
=

0
.2

,
u
n
it
=

s
,
s
o
u
r
c
e
=

c
a
lc
)
,
t
h
r
o
u
g
h
p
u
t
=

{(
v
a
lu

e
=

0
.8

,
u
n
it
=

H
z
,
s
o
u
r
c
e
=

c
a
lc
)
}}
}

C
re
a
te

In
v
o
ic
e

�
G
a
S
te
p
�

{h
o
st
D
e
m
a
n
d
=
{(

e
x
p
r=

0
+
1
*
sw

R
P
,
u
n
it
=
s,

so
u
rc
e
=
re
q
),

(
v
a
lu

e
=

0
.2

,
u
n
it
=

s
,
s
o
u
r
c
e
=

c
a
lc
)
,
t
h
r
o
u
g
h
p
u
t
=

{(
v
a
lu

e
=

0
.8

,
u
n
it
=

H
z
,
s
o
u
r
c
e
=

c
a
lc
)
}}
}

P
e
rf
o
rm

P
a
y
m
e
n
t

�
G
a
S
te
p
�

{h
o
st
D
e
m
a
n
d
=
{(

e
x
p
r=

0
+
1
*
sw

N
P
,
u
n
it
=
s,

so
u
rc
e
=
re
q
),

(
v
a
lu

e
=

0
.4

,
u
n
it
=

s
,
s
o
u
r
c
e
=

c
a
lc
)
,
t
h
r
o
u
g
h
p
u
t
=

{(
v
a
lu

e
=

0
.8

,
u
n
it
=

H
z
,
s
o
u
r
c
e
=

c
a
lc
)
}}
}

S
e
n
d

O
rd

e
r

[e
ls
e
]
�

G
a
S
te
p
�
{p

ro
b
=
0
.2
}

�
G
a
S
te
p
�

{h
o
st
D
e
m
a
n
d
=
{(

e
x
p
r=

0
+
1
*
sw

C
P
,
u
n
it
=
s,

so
u
rc
e
=
re
q
),

(
v
a
lu

e
=

0
.2

,
u
n
it
=

s
,
s
o
u
r
c
e
=

c
a
lc
)
,
t
h
r
o
u
g
h
p
u
t
=

{(
v
a
lu

e
=

1
.0

,
u
n
it
=

H
z
,
s
o
u
r
c
e
=

c
a
lc
)
}}
}

C
lo
se

O
rd

e
r

�
G
a
S
c
e
n
a
ri
o
�
{r

e
sp

T
=
{(

v
a
lu
e
=

1
.0
,
u
n
it

=
s,

so
u
rc
e
=

re
q
)}

,
th

ro
u
g
h
p
u
t=
{(

v
a
lu
e
=

1
.0
,
u
n
it

=
H
z
,
so

u
rc
e
=

re
q
)}
}

�
G
a
A
n
a
ly
si
sC

o
n
te
x
t�
{c

o
n
te
x
tP

a
ra

m
s
=
{$

s
w
E
P
=

0
,
$
s
w
C
R
=

0
.2

,
$
s
w
R
P
=

0
.4

,
$
s
w
N

P
=

0
.2

,
$
s
w
C
P
=

0
.2
}}

M
a
n
a
g
e
O
rd

e
r

F
ig
ur
e
6.
2.

Si
m
pl
e
ex
am

pl
e
m
od

el
an

no
ta
te
d
by

th
e
pe

rfo
rm

an
ce

in
fe
re
nc
e
al
go
rit

hm
s

6.5

6. Generation of test artefacts with SODM+T and MARTE

Figure 6.3. Screenshot of the Eclipse Papyrus editor, showing the example from Fig-
ure 5.4 ported to MARTE and the Eclipse MDT UML2 metamodel.

The time limit inference algorithm adds a new constraint to hostDemand, indicating
the exact time limit to be enforced. The throughput inference algorithm extends
throughput with a constraint that lists how many requests per second should be
handled. As these constraints have been automatically inferred, their source attribute
is set to calc (calculated).

4. Outgoing edges from condition nodes also use �GaStep� but only for the prob
attribute, which is set by the user to the estimated probability it is traversed.

6.2.2 Revised algorithms
Among the algorithms described in Chapter 5, the throughput algorithm and the incre-
mental graph-based time limit inference algorithm were migrated to MARTE annotations.
In addition to this change, the algorithms were improved in several other ways:

1. The algorithms now operate on models conforming to the metamodel from the
Eclipse Model Development Tools (MDT) UML2 project [9]. Instead of using a
custom model editor, the models are produced using the Papyrus model editor [10]
(shown in Figure 6.3), which supports both UML2 and MARTE. Users apply the
MARTE stereotypes and invoke the inference algorithms through several extensions
written on the Epsilon Wizard Language [16].

2. Instead of only having Actions and StructuredActivityNodes, the algorithms now
partition all UML activity model elements into two classes: the subclasses of

6.6

6.3. Overall approach for test artefact generation

ExecutableNode (which can be annotated and have performance requirements) and
the rest (DecisionNodes, ForkNodes and so on).

3. After revisiting the full UML metamodel, it was found that another ActivityNode
could contain nodes in a different way than the StructuredActivityNode: the LoopNode.

Instead of simply nesting nodes inside each other, these nodes divide their contents
into three sections: setup (which is only run once, before the rest), test (which is run
once per iteration until it fails) and body (which is run once per iteration if the test
passed). Figure 6.3 shows a modified version of the running example from Figure 5.4
using a LoopNode: the setup section is the “Divide into Segments” Action, the test
section is the new “Has More Segments” Action and the body section is the original
StructuredActivityNode with the contents of the loop itself.

Supporting these LoopNodes required changing two assumptions. First, not every
set of activities (nested or not) started at an InitialNode and ended at one or more
FinalNodes: instead, they started at a source and ended at one or more sinks. A
source is a node that has no incoming edges, and a sink is a node that has no
outgoing edges. The sources of the entire Activity and any StructuredActivityNodes
are easy to find. For the LoopNode, the algorithm tries to find the sources first in the
setup part, then in the test part and then in its body part. An equivalent approach
is followed for the sinks.

Second, the execution precedence of the ExecutableNodes was not always indicated
through ControlFlows: e.g. the setup part went before the test part without any
such edge connecting them. Instead, the concepts of the next and previous nodes
of a certain node n were defined. If a node has incoming edges, the previous nodes
are the sources of these edges: otherwise, the previous nodes are the sinks of the
previous LoopNode section. Likewise, if a node has outgoing edges, the next nodes
are the targets of these edges: otherwise, the next nodes are the sources of the next
LoopNode section.

6.3 Overall approach for test artefact generation
The models used so far are dedicated to early performance requirement design, and are
thus entirely abstract: at that level of detail, they cannot be executed automatically. They
need to be implemented through some other means.

After a model has been implemented, it would be useful to take advantage of the model
to generate the performance test artefacts for its implementation. However, the model
lacks the required details to produce executable artefacts. To solve this issue, several
approaches could be considered:

1. The abstract model could be extended with additional information, but that would
clutter it and make it harder to understand.

2. On the other hand, the implementation models could be annotated with performance
requirements, but this would also pollute their original intent.

6.7

6. Generation of test artefacts with SODM+T and MARTE

3. Finally, a separate model that links the abstract and concrete models could be used.
This is commonly known as a weaving model. Several technologies already exist for
implementing these, such as the AMW [8] or Epsilon ModeLink [15]. While AMW
uses a generic weaving metamodel, ModeLink is a more lightweight approach that
requires defining custom weaving metamodels for every pair of metamodels.

In order to preserve the cohesiveness of the abstract performance model and the design
and implementation models, the third approach was chosen. The weaving model needs to
allow users to annotate the links with the additional information required by the testing
process, the target technologies and the generation process itself. Target technologies refer
not only to the performance testing framework or tool which will run the generated tests,
but also all the components which will be part of the test infrastructure. As Section 6.5 will
later show, this may include IDEs (e.g. Eclipse) or build automation tools (e.g. Maven).

Some of the information may be shared by a set of tests (possibly all of them), and some
of the information will be specific to a particular link between a design/implementation
artefact and a performance requirement. For instance, while the number of threads used to
exercise the system under test may need to be the same for all the tests, the interpretation
of the time limit requirement as a median, an average or a percentile may change from
test to test.
After establishing the required links, the next step is generating the tests themselves.

To do so, a regular M2T transformation could be used, written in a specialised language
such as the Epsilon Generation Language (EGL) [16]. In case it were necessary to slightly
refine or validate the weaving model before, an intermediate M2M transformation could
be added. Figure 6.4 illustrates the models and steps involved in the overall approach.

In some cases, it may be desirable to allow users to easily customise certain interesting
parts of the tests, while abstracting them from the details that are less interesting. These
interesting parts could be written into a custom domain-specific language instead of
code, which would be interpreted as the tests were executed by augmenting the testing
infrastructure accordingly. Section 6.5.4 will later present such an example, written in the
TestSpec language.

The next sections will show two applications of the overall approach in Figure 6.4,
using different technologies to assist in generating performance test artefacts in different
environments. Both approaches have been implemented and are freely available under the
open source Eclipse Public License (EPL) at [12]. In order to develop these transformations,
a bottom-up approach was used: a manually developed performance test environment was
gradually replaced by automatically generated fragments until only the weaving model
remained. After the entire process had been automated, the generators were refined to
allow for more flexibility and convenience.

6.4 Reusing Java unit tests as performance tests
Generating executable performance test cases from scratch automatically will usually
require many detailed models and complex transformations, which are expensive to
produce and maintain. The initial effort required may deter potential adopters. An
alternative inexpensive approach is to repurpose existing functional tests as performance
tests as a starting point. This is the aim of libraries such as ContiPerf [6].

6.8

6.4. Reusing Java unit tests as performance tests

Performance model Design/impl. model

Model discovery

Code

Weaving model

M2M refinement
transformation

Refined
weaving model

M2T transformation

Test artefacts (code
+ scripts + textual
DSL-based models)

Figure 6.4. Overall approach for generating performance test artefacts from abstract
performance models

UML+MARTE
time limits and
throughputs

MoDisco Java model

MoDisco

JUnit test
cases (Java)

Java-MARTE
weaving model

EGL M2T
transformation

ContiPerf test cases

Figure 6.5. Instance of the above approach for wrapping JUnit tests into ContiPerf
tests

6.9

6. Generation of test artefacts with SODM+T and MARTE

Listing 6.1 Java code wrapping the TFunctionalJUnit4 JUnit 4 test suite with ContiPerf
@RunWith(ContiPerfSuiteRunner.class)
@SuiteClasses(TFunctionalJUnit4.class)
@PerfTest(invocations = 100, threads = 10)
@Required(max=1000)
public class InferredLoadTest {}

Figure 6.6. MoDisco model browser showing a model generated from a Java project

Listing 6.1 shows how ContiPerf is normally used. Instead of using Java objects,
ContiPerf uses Java 6 annotations, which are easier to generate automatically. The
@PerfTest annotation indicates that the test will be run 100 times using 10 threads, so
each thread will perform 10 invocations. @Required indicates that each of these invocations
should finish within 1000 milliseconds at most. @SuiteClasses points to the JUnit 4
test suites to be reused for performance testing, and @RunWith tells JUnit 4 to use the
ContiPerf test runner.

The rest of the section will show how the overall approach in Figure 6.4 was customised
for this particular use case. The resulting transformation chain is shown in Figure 6.5.

6.4.1 Model extraction
The code above is straightforward to generate. However, the generated code must integrate
correctly with the existing code, and if the code was not produced using a model-driven
approach, there will not be a design or implementation model to link to. Instead, this
approach extracts a model from the existing code using the Eclipse MoDisco model
discovery tool [7].

Eclipse MoDisco can generate models from Java code such as that shown in Figure 6.6.
The models can span entire projects if desired, but in this case only the test sources need
to be inspected. MoDisco provides its own metamodel for the Java language, which is
quite complex, having 126 classes1. Nevertheless, it is enough to know which classes and

1http://help.eclipse.org/kepler/topic/org.eclipse.modisco.java.doc/

6.10

http://help.eclipse.org/kepler/topic/org.eclipse.modisco.java.doc/

6.4. Reusing Java unit tests as performance tests

Figure 6.7. UML class diagram of the simplified subset of the MoDisco Java metamodel
used for weaving and code generation

methods use the Java annotations from the JUnit test framework. A simplified version
of this subset of the MoDisco metamodel is shown in Figure 6.7: a Model refers to a
hierarchy of Packages, which contain ClassDeclarations. These ClassDeclarations and
their MethodDeclarations may have Annotations of a certain Type. Since a Type is a
NamedElement, these can be filtered by the attribute name. In some cases, it may also
be necessary to know the exceptions thrown by a certain method: these are stored in the
thrownExceptions association of the AbstractMethodDeclaration.

6.4.2 Weaving metamodel
Once the performance and the implementation models have been produced, the next step
is to link them using a new weaving model that conforms to the metamodel in Figure 6.8.
Some of the types in the weaving metamodel refer to types in the uml and java packages
from the UML metamodel and the above MoDisco Java metamodel, respectively.
Each model consists of an instance of PerformanceRequirementLinks, which provides

several global configuration parameters and contains a set of PerformanceRequirementLink
instances. Users can set the number of samples which should be collected for each test,
the number of threads over which these should be distributed and the directory under
which the code should be generated.

Every PerformanceRequirementLink relates an UML ExecutableNode with a Java class:
if no MethodDeclarations are specified, all tests will be reused. Otherwise, only the selected
methods will be reused. Finally, the target time limit may be enforced as a maximum
value (MAX), average (AVERAGE), median (MEDIAN) or a percentile (the rest).

6.4.3 Code generation
Models are populated by combining the standard EMF tree-based editors and the three-
pane Epsilon ModeLink editor (as in Figure 6.9). ModeLink provides a drag-and-drop

6.11

6. Generation of test artefacts with SODM+T and MARTE

Figure 6.8. Java-MARTE weaving metamodel

Figure 6.9. Screenshot of the Epsilon ModeLink editor weaving the MARTE perform-
ance model and the MoDisco model

6.12

6.5. Generating performance tests for WSDL-based Web Services

Listing 6.2 Java code wrapping one test from OriginalSuite using ContiPerf
@Required(throughput=2, max=400)
public class WrapSomeTests extends OriginalSuite {
@Rule public MethodRule f = new FilterByClassRule(this.getClass());

@Rule public ContiPerfRule i = new ContiPerfRule();

@PerfTest(invocations=1000, threads=5) @Test @Override
public void first() throws Exception {
super.first();

}

// protected region customTests off begin
// Add your own tests here
// protected region customTests end
}

approach to model linking that is convenient for model weaving. The EMF editors have
been manually customised so users may only pick JUnit 4 test suites and test methods.
The code is generated using a set of EGL templates. When all tests are reused as

performance tests, the generated code will use the test runner class ContiPerfSuiteRunner,
as in Listing 6.1. In addition, the EGL template creates a protected region where developers
may add their own custom code. This code will be preserved even if the rest of the file is
overwritten.

However, when only some tests are wrapped the code will resemble that in Listing 6.2.
The ContiPerfRule would normally convert all tests into performance tests. By using the
FilterByClassRule helper class (also generated with EGL), the generated code will be able
to specify that only some of those tests need to be reused as performance tests.

6.5 Generating performance tests for WSDL-based Web
Services

In the previous section, the approach was applied to existing JUnit test cases, repurposing
them as performance test cases. This approach could be applied to Web Services as is:
Listing 6.3 shows an example fragment of Java code that implements a simple “HelloWorld”
Web service using standard Java API for XML Web Services (JAX-WS) [14] annotations.
This example could be easily tested as a regular Java method using standard Java tooling.

However, testing in this way would not exercise the serialisation and deserialisation
of the input and output messages and other aspects that may raise issues during real
world usage. Ideally, the WS should be tested using realistic invocations that exercised
the entire technology stack involved. Instead of a Java unit testing framework, a proper
WS performance testing tool should be used.

In practice, the WS developed by JAX-WS and other similar frameworks are consumed
through the Web Services Description Language (WSDL) [22] documents they produce
from the code. This XML-based document is an abstract and language-independent
description of the available operations for the service and the messages to be exchanged
between the service and its consumers. Therefore, it is an good starting point for a weaving
model for generating performance test artefacts in a language-agnostic manner.

The rest of this section will discuss how to generate performance test artefacts for a Web

6.13

6. Generation of test artefacts with SODM+T and MARTE

Listing 6.3 Java code using JAX-WS for a “HelloWorld” Web Service
@WebService public class HelloWorld {
@WebMethod public String greet(@WebParam(name="name") String name) {
return "Hello␣" + name;

}
}

Service, from scratch and in a language agnostic manner, using a specialised performance
testing tool. The implemented solution is outlined in Figure 6.10.

6.5.1 Target performance testing tool: The Grinder
The previous section reused unit tests written in a particular language (Java) and a
particular framework (JUnit). Therefore, the target technology was an extension upon this
framework (ContiPerf). However, since the WSDL description of a Web Services (WS)
does not depend on the language that it is implemented in, an approach based on a
WSDL document would not be limited to a specific language for the tests. In particular, it
could use a dedicated performance testing tool that is independent of the implementation
language of the software under test.

For this Thesis, the following tools were evaluated according to the ease with which test
specifications could be generated for them, by developing a simple performance test on a
single service with each of them and studying the files required by the tools:

• The Grinder [4] used textual configuration files to configure the test environment,
which executes Jython scripts that use the public API provided by the tool.

• Apache JMeter [2] used reflective XML documents. Most of their contents were
directly translated into API calls of the underlying Java code, tightly coupling the
transformation to their internal code structure.

• Eviware loadUI [11] had the most complicated input format out of the three. It
used both binary and textual artefacts. Some of the textual artefacts were trees of
Java classes, which would have to be generated and then packed together with the
binaries.

The Grinder was selected among the available tools, as its input format was the easiest
to generate and provided the most flexibility. In addition, it is easy to scale up depending
on the testing requirements. It can launch several processes that spawn a certain number
of threads which will repeatedly run the test and optionally distribute work over several
machines: one of them provides a graphical console and acts as the master, and the rest
are agents that manage a set of worker processes.

6.5.2 Model extraction
Since WSDL documents are declarative and language-independent descriptions of the
WS, they were originally intended to be used as design models. After transforming
automatically the XML Schema description of the WSDL document format into a regular

6.14

6.5. Generating performance tests for WSDL-based Web Services

WSDL-MARTE
weaving model

UML+MARTE
time limits and

throughputs
Service catalogue

ServiceAnalyzer

WSDL document(s)
XML Schema
declarations

SpecGeneratorCustom code
EGL M2T trans-

formations

Eclipse project
with Maven nature

Message templates

The Grinder con-
fig. + test script

Maven project
using the maven-
grinder-plugin

TestSpec declara-
tions of test inputs

TestGenerator

Test inputs

Figure 6.10. Instance of the above approach for WSDL-based Web Services. In com-
parison with the approach specifically targeted for Java, this approach
requires integrating several technologies, such as a build automation tool
(Maven), three custom WS-oriented tools (ServiceAnalyzer, SpecGener-
ator and TestGenerator) and a dedicated performance testing tool (The
Grinder), among others.

6.15

6. Generation of test artefacts with SODM+T and MARTE

Figure 6.11. ServiceAnalyzer service catalogue metamodel

ECore metamodel [20], WSDL documents would be loaded as regular Eclipse Modeling
Framework models, reusing most of the technologies mentioned in Section 6.4.
In practice, however, WSDL documents are too complex to be used as-is for model

weaving and model transformation. WSDL documents can be divided across multiple
files and machines and combine type and message declarations in the WSDL and XML
Schema formats. In addition, XML Schema and WSDL are highly flexible, allowing many
possibilities that may or may not be implemented by vendors. This has led to the definition
of specifications such as the Web Services Interoperability Basic Profile (WS-I BP) [21],
which restricts these standards to a consistent subset that is well-implemented across
vendors.

Therefore, it was decided to extract models from the WSDL documents themselves using
a new custom tool, ServiceAnalyzer [12]. ServiceAnalyzer produces a “service catalogue”
from a set of local or remote WSDL documents that conform to the WS-I BP. Service
catalogues can be loaded as an EMF model by using their XML Schema definition, as
originally intended for WSDL.
The service catalogue metamodel is shown in Figure 6.11. Models are instances of

ServiceType, which contains a set of TypeServices with their own TypePorts. Each TypePort
has a collection of TypeOperations that may have an input, an output, and/or several fault
messages. Message descriptions are divided into a TypeTemplate containing an Apache
Velocity [1] template, and a TypeDecls that declares the variables used within the Velocity
template. Variables may belong to one of the predefined types in TypeGA, which are
based on the XML Schema primitive types, or they may belong to a custom type defined
with a TypeTypedef.

Services store their names and namespace URIs, ports store their names and the URLs
they are listening at, and operations and faults store their names. Type definitions must
specify at least a name and a base type, but they usually specify additional restrictions
such as a pattern based on a regular expression (pattern), minimum or maximum values
(min or max) or a set of accepted values, among others.

6.16

6.5. Generating performance tests for WSDL-based Web Services

Figure 6.12. ServiceAnalyzer-MARTE weaving metamodel

6.5.3 Weaving metamodel
The weaving model needs to relate the ExecutableNodes in the UML activity diagram with
the TypeOperations in the ServiceAnalyzer service catalogue. For instance, a developer
might want to ensure that every invocation of the evaluate operation of the Order service
finishes within a certain time while handling a certain number of requests per second.

The weaving metamodel is shown in Figure 6.12. It is quite similar to that in Figure 6.11,
but the global options in the PerformanceRequirementLinks class have been changed to
reflect the target technologies for this transformation:

• eclipseProjectName is the name of the Eclipse project which will be generated by
the transformer. By default, it is set to “performance.tests”.

• The attributes ranging from process to useConsole are directly mapped to the
configuration options of The Grinder with the same name.
process is the number of worker processes that will be used by each agent, starting from
1 and increasing by processIncrement every processIncrementInterval milliseconds
(by default, by 1 every second). Each worker process will spawn as many as
threadsPerProcess threads and repeat the tests the number of times indicated in
runs. If useConsole is set to “true”, the console process at consoleHost will distribute
work over the agents connected to it.

• The rest of the attributes can be used to customise the metadata of the Maven
project that is generated by the transformer.

As for the options for the testing process itself, updateInputsOnSpecChanged and
numberInputsOnSpecChanged indicate if the test inputs should be updated when the .spec

6.17

6. Generation of test artefacts with SODM+T and MARTE

Listing 6.4 Apache Velocity template extracted from the ServiceAnalyzer catalog for
producing the test input message

<w:evaluate xmlns:w="http://ws.sodmt.uca.es/">
#foreach($V1 in $evaluate)
<newOrder>
#foreach($V2 in $V1)
<articleQuantities>
<articleID>$V2.get(0)</articleID>
#foreach($V3 in $V2.get(1))
<quantity>$V3</quantity>
#end

</articleQuantities>
#end

</newOrder>
#end

</w:evaluate>

Listing 6.5 TestGenerator .spec extracted from the ServiceAnalyzer catalog describing
the inputs for the template in Listing 6.4

typedef int (min=0, max=100) TArtID;
typedef float (min=0.01, max=2000) TPrice;
typedef list (element=TPrice, min=1, max=1) TL_float;
typedef tuple (element={TArtID, TL_float}) TArticleQtys;
typedef list (element=TArticleQtys, min=0) TOrder;
typedef list (element=TOrder, min=1, max=1) TEvaluate;
TEvaluate evaluate;

file describing their format changes, and how many should be generated each time.
The default options should be good enough for most users. The next sections will mention

again some of them as the following steps in the generation process are introduced.

6.5.4 Test data generation
In order to run performance tests, it is necessary to provide them with test inputs so
they can exercise the WS appropriately. This can be quite difficult for WS, as their
inputs are complex XML documents following the advanced XML Schema type system.
The present approach divides the generation of the messages into three parts to make it
more manageable: a Velocity template that produces the test input message, a TestSpec
document that describes how the template inputs should be generated, and the file with
the template inputs themselves. Users may customise any of these three parts to suit their
needs.

First, the tools extract the appropriate Velocity templates and variable declarations from
the ServiceAnalyzer service catalogue to separate files. Listing 6.4 shows an Apache Velocity

Listing 6.6 Template inputs produced by TestGenerator from the .spec in Listing 6.5
#set($evaluate = [
[[[85, [1530.1414]], [3, [1652.419]], [50, [550.96515]]]],
[[[92, [1682.8262]], [45, [1593.5898]]]],
[[[79, [72.64899]], [22, [603.8968]], [8, [1278.9677]]]]

])

6.18

6.5. Generating performance tests for WSDL-based Web Services

Listing 6.7 Example grinder.properties file with workload configuration parameters
grinder.processes=5
grinder.runs=100
grinder.processIncrement=1
grinder.processIncrementInterval=1000

template which can produce every valid request for an order evaluation service, according
to its WSDL and XML Schema declarations. As a template language, the Velocity
language is kept simple, providing only the most common programming constructs, such
as conditionals (#if), loops over a list (#foreach), variable assignments (#set) or field
references ($var.field). Velocity templates are expanded during test execution with the
variables loaded into their contexts. This template produces a <newOrder> element for
each item in $evaluate. In turn, the template produces a <articleQuantities> element
for each item, with the appropriate article identifier and requested quantities.
Listing 6.5 shows the TestSpec document that was extracted from the same catalogue

entry. The TestSpec language is implemented by the TestGenerator tool, also available
from [12]. It is a simple domain-specific language (inspired on C declarations) which allows
users to define new scalar, list and tuple types based on a set of primitive types inspired by
the XML Schema type system. These new types can have additional constraints, such as
having minimum or maximum values or lengths, adhering to a certain regular expression or
having a certain number of digits. TestGenerator can apply a strategy on these declarations
to produce an arbitrary number of tests and store them as Velocity templates: the default
strategy produces uniformly distributed random values, but it may use other random
distributions or combinatorial testing techniques if manually indicated.
The Velocity files produced by TestGenerator contain the input data to be fed to the

message templates. They consist of a sequence of variable assignments in which every
variable receives a list of values to be used within each test. Listing 6.6 shows three test
cases that were produced from the .spec in Listing 6.5. For instance, the first test requests
1530.14 units of article #85, 1652.419 units of article #3 and 550.965 units of article #50.
Velocity was reused to store test data since it was more flexible than a simple table or
spreadsheet, as it allowed for arbitrarily nested lists.

In the wild, WSDL declarations tend to be quite lax, allowing messages with no upper
bound on their length or elements containing negative integers, even though they are
not accepted. In these cases, users may want to customise the service catalogue before
generating the .spec descriptions from it. This will change the values used for all tests
of the modified operations. Alternatively, users may want to modify a single .spec file
describing the inputs of a particular test. Users may also customise the message templates
with additional logic, or provide manually designed input data instead of generating
random inputs.

6.5.5 Test code generation
After weaving the service catalogue model with the MARTE model and producing some
input data to exercise the Web Services, the next step is generating the test specification
for The Grinder.

The Grinder requires generating two different files: a .properties file indicating several

6.19

6. Generation of test artefacts with SODM+T and MARTE

Listing 6.8 Example Jython script for The Grinder with the contents of the performance
test to be run by each simulated client

class TestRunner:
def __call__(self):
def invoke():
response = HTTPRequest().POST(
"http://localhost:8080/orders",
"(...␣SOAP␣message␣...)")

stats = grinder.statistics.getForCurrentTest()
stats.success = (response.statusCode != 200 and stats.time < 150)
test = Test(1, "Query␣order␣by␣ID").wrap(invoke)
test()

Operation Passed Failed Bytes/s Mean resp. length
Close Order 60 0 66,590 332.95
Evaluate Order 60 0 64,333.33 321.67

Table 6.2. Example test metrics produced by Grinder Analyzer (overall results, through-
put and message sizes)

parameters of the workload to be generated, and a Jython script with the test to be run
by each simulated client. Listings 6.7 and 6.8 show simplified examples for these two files.
These files are automatically generated using EGL.

The .properties file in Listing 6.7 indicates that 5 processes should each run the test
100 times, starting with 1 process and adding one more every 1000 milliseconds. On the
other hand, the test itself consists of sending an appropriate SOAP message to a specific
URL and checking that the response has the OK (200) HTTP status code and that it was
received within 150 milliseconds. These values are extracted from the global options in
the PerformanceRequirementLinks object of the model. consoleHost and useConsole are
also used in the .properties file.

The actual generated Jython script is over 180 lines long and takes advantage of several
language features to avoid code repetition. In addition to running the tests themselves,
it can regenerate test data if the .spec files have been customised by the user since the
last run. Every time a test is run, a set of input values is randomly selected from the
available test data. This input data is used to generate the SOAP message from the
message templates, invoke the service and check the non-functional attributes of the reply.
One limitation with the current version of the scripts is they can only check maximum
response times, unlike the approach in Section 6.4, which can handle averages, medians
and percentiles.

6.5.6 Test infrastructure and report generation
The approach in Section 6.4 was straightforward: as it simply produced Java code based
on the ContiPerf library, users would simply need to add ContiPerf to their development
environments and the run the tests using standard tools. However, running the tests
produced by this approach would require setting up TestGenerator, The Grinder, and
Apache Velocity.

For this reason, the tools implement an additional EGL transformation that produces an

6.20

6.5. Generating performance tests for WSDL-based Web Services

0

1,000

2,000

3,000

T
hr
ou

gh
pu

t

0 0.2 0.4
0
1
2
3
·10−2

Elapsed time

R
es
p.

tim
e
(s
)

Figure 6.13. Example of an overall performance graph produced by Grinder Analyzer

Operation
Mean
resp.
time

Resp.
time std.
dev.

Mean
time
DNS

Mean
time
conn.

Mean
time first

byte
Close Order 14.35 15.62 0.00 0.13 13.18
Evaluate Order 8.98 6.01 0.00 0.37 5.93

Table 6.3. Example test metrics produced by Grinder Analyzer (timing information).
Times are measured in milliseconds.

6.21

6. Generation of test artefacts with SODM+T and MARTE

Apache Maven [3] project description that automatically downloads all dependencies, runs
the performance tests and produces test reports from the results. The Grinder is integrated
through the open source plug-in available at [13]. Maven also enforces a standard directory
layout for all the generated artefacts.
This infrastructure allows users to run the entire testing process with a single mvn

post-integration-test command, which also invokes the Grinder Analyzer tool [5] on
the raw logs to produce an HTML report including (but not limited to) the information
shown in Figure 6.13 and Tables 6.2 and 6.3. On this example, the report shows that
all tests passed and that the mean response time for the “Evaluate Order” service was
8.98 milliseconds. This short time is to be expected, as the tests in the example were run
against local Web Services using an in-memory object-relational database.

6.6 Conclusion
This chapter has presented an overall approach for generating performance test artefacts
from the abstract performance models produced by the inference algorithms in Chapter 5.
To generate concrete test artefacts while keeping the abstract performance models separated
from any design or implementation details, the approach links the performance model to
a design or implementation model using an intermediate weaving model. If a design or
implementation model is not available, it can be extracted from the existing code. The
weaving model can be then optionally refined using a model-to-model transformation, and
finally transformed into the performance test artefacts with a model-to-text transformation.
The general approach has been validated by applying it on two target technologies.

Both approaches have been successfully implemented and are freely available under the
open source Eclipse Public License (EPL) at [12].
The first application weaves JUnit test suites with MARTE models and converts all

or some of their unit tests into performance test cases, using the ContiPerf library. The
implementation model is extracted from the Java code implementing the test cases using
the model discovery tool MoDisco [7], and the weaving model links the ExecutableNodes in
the UML activity diagram to the Java tests in the MoDisco model.
The second application can generate performance test cases for any Web Service that

is described using WSDL. It is independent of the language in which the Web Service
has been implemented, as it is based on a special-purpose performance testing tool: The
Grinder [4]. Users extract service catalogues from a set of WSDL documents and then
weave the service operations in the catalogue with the MARTE models. The service
catalogues also include message templates and template variable declarations, which are
used to generate a set of initial template inputs. Users are able to manually customise
the service catalogue, the message templates, the template variable declarations and the
template inputs. In addition to the inputs, a set of automated model-to-text transformation
produces the Jython code and the configuration file required by The Grinder, and a Maven
project description that enables users to run the tests and produce reports with a single
command (as those in Section 6.5.6).
While these applications show that the overall approach can be reused for different

target technologies, they do currently share several limitations. Transformations only
know the part of the system under test that is strictly needed to generate the tests. For
this reason, users will need to manually customise the tests if they need to restore the

6.22

References

state of the system after a performance test, a memory violation or an aborted operating
system process, or if they want to set up specific mockups for specific subsystems in the
application. Nevertheless, the transformations could be extended with “hooks” where this
kind of logic could be placed, and keeping those “hooks” from being overwritten if the
tests are generated. This is already being done in the Java approach: the generated test
suites use EGL protected areas that are preserved when the files are regenerated.

References
[1] Apache Software Foundation. Apache Velocity Project homepage, November 2010.

URL http://velocity.apache.org. Last checked: November 6th, 2013. 6.16

[2] Apache Software Foundation. Apache JMeter, November 2013. URL http://jakarta.
apache.org/jmeter/. Last checked: November 6th, 2013. 6.14

[3] Apache Software Foundation. Apache Maven homepage, January 2013. URL http:
//maven.apache.org. Last checked: November 6th, 2013. 6.22

[4] P. Aston and C. Fizgerald. The Grinder, a Java Load Testing Framework, 2012. URL
http://grinder.sourceforge.net/. Last checked: November 6th, 2013. 6.14, 6.22

[5] T. Bear. Grinder Analyzer homepage, July 2012. URL http://track.sourceforge.
net/. Last checked: November 6th, 2013. 6.22

[6] V. Bergmann. ContiPerf 2, September 2011. URL http://databene.org/contiperf.
html. Last checked: November 6th, 2013. 6.8

[7] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot. MoDisco: a generic and extensible
framework for model driven reverse engineering. In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, pages 173–174, Antwerp,
Belgium, September 2010. 6.10, 6.22

[8] M. D. Del Fabro, J. Bézivin, and P. Valduriez. Weaving models with the eclipse AMW
plugin. In Proceedings of the 2006 Eclipse Modeling Symposium, Eclipse Summit
Europe, Esslingen, Germany, October 2006. 6.8

[9] Eclipse Foundation. Homepage of the mdt uml2 project, June 2013. URL http:
//www.eclipse.org/modeling/mdt/?project=uml2. Last checked: November 6th,
2013. 6.6

[10] Eclipse Foundation. Homepage of the papyrus project, June 2013. URL http:
//www.eclipse.org/papyrus/. Last checked: November 6th, 2013. 6.6

[11] eviware.com. loadUI homepage, 2013. URL http://www.loadui.org/. Last checked:
November 6th, 2013. 6.14

[12] A. García-Domínguez. Homepage of the SODM+T project, April 2013. URL https:
//neptuno.uca.es/redmine/projects/sodmt. 6.8, 6.16, 6.19, 6.22

6.23

http://velocity.apache.org
http://jakarta.apache.org/jmeter/
http://jakarta.apache.org/jmeter/
http://maven.apache.org
http://maven.apache.org
http://grinder.sourceforge.net/
http://track.sourceforge.net/
http://track.sourceforge.net/
http://databene.org/contiperf.html
http://databene.org/contiperf.html
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/papyrus/
http://www.eclipse.org/papyrus/
http://www.loadui.org/
https://neptuno.uca.es/redmine/projects/sodmt
https://neptuno.uca.es/redmine/projects/sodmt

References

[13] G. Iacono and F. Muñoz-Castillo. grinder-maven-plugin homepage, June 2013. URL
http://code.google.com/p/grinder-maven-plugin/. 6.22

[14] Java.net. JAX-WS reference implementation, November 2013. URL http://jax-ws.
java.net/. Last checked: November 6th, 2013. 6.13

[15] D. S. Kolovos. Epsilon ModeLink, 2012. URL http://eclipse.org/gmt/epsilon/
doc/modelink/. Last checked: November 6th, 2013. 6.8

[16] D. S. Kolovos, L. M. Rose, R. F. Paige, and A. García-Domínguez. The Epsilon book,
2013. URL http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/
trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf. Last checked: Novem-
ber 6th, 2013. 6.6, 6.8

[17] Object Management Group. UML Profile for Schedulability, Performance, and
Time (SPTP) 1.1, January 2005. URL http://www.omg.org/spec/SPTP/1.1/. Last
checked: November 6th, 2013. 6.1

[18] Object Management Group. UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms (QFTP) 1.1, April 2008. URL
http://www.omg.org/spec/QFTP/1.1/. Last checked: November 6th, 2013. 6.1

[19] Object Management Group. UML Profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE) 1.1, June 2011. URL http://www.omg.org/spec/
MARTE/1.1/. Last checked: November 6th, 2013. 6.1, 6.2

[20] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework. Addison-Wesley Professional, second edition, December 2008. ISBN
978-0321331885. 6.16

[21] Web Services Interoperability Organization. Basic profile - version 1.1 (Final), Au-
gust 2004. URL http://www.ws-i.org/Profiles/BasicProfile-1.1.html. Last
checked: November 6th, 2013. 6.16

[22] World Wide Web Consortium. Web Services Description Language (WSDL) Version
2.0 Part 0: Primer, June 2007. URL http://www.w3.org/TR/wsdl20-primer. Last
checked: November 6th, 2013. 6.13

6.24

http://code.google.com/p/grinder-maven-plugin/
http://jax-ws.java.net/
http://jax-ws.java.net/
http://eclipse.org/gmt/epsilon/doc/modelink/
http://eclipse.org/gmt/epsilon/doc/modelink/
http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf
http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf
http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/spec/QFTP/1.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.w3.org/TR/wsdl20-primer

7
Case study

7.1. Overall description

The previous chapters have revised the current state of the art and presented an extended
version of the SODM methodology with improved models that can include performance
annotations, from which performance requirements and tests for specific Web Services (WS)
can be derived.
This chapter is dedicated to providing a complete end-to-end example of the resulting

SODM+T methodology in a manufacturing context, from the high-level description of the
manufacturing enterprise to the generation of the actual performance tests of one of the
Web Servicess involved.

7.1 Overall description

7.1.1 Enterprise profile
Keraben S.A. is a manufacturing enterprise that designs, manufactures and sells various
kinds of pavements and ceramic tiles, using both make-to-order and make-to-stock schedul-
ing. Originally created as Gres de Nules-Keraben in 1974 and later renamed to Keraben in
1984, it is nowadays one of the leading companies in the ceramic tile business worldwide.

The main business goal for Keraben is achieving excellence in design and manufacturing
quality through steady innovation and communication with customers while preserving
the natural environment. Keraben S.A. itself is located at kilometer 44.3 of the Valencia-
Barcelona highway in Nules (Castellón) and the installations span over 250 000 square
meters, which enable the firm to anually produce over 11 million m2 of ceramic tiles.

Nowadays, Keraben accepts orders from over 150 countries. Some of its products include
traditional pavements and tilings made out of white and red clay, rectified pavements,
technical porcelains and enamellings. Keraben continues to research and improve its
technology from collection to collection. Keraben has received numerous awards in
recognition of these efforts, such as the Príncipe Felipe Award for Business Excellence in
the categories of Industrial Quality and Business Competitiveness, the Nova Award from
the Valencia regional government for its business record, the “The Economist — Spencer
Stuart” Business Ethics Award. Keraben also obtained an ISO 9000 certification on Quality
Management for their ceramic tiles business, and a BS OHSAS 18001 certification on
Occupational Health and Safety Management Systems.

The Keraben Group has over 1 000 employees working over several production facilities,
offices, laboratories and stores in the province of Castellón. Its products span six different
trademarks, each covering a particular market segment:

• Keraben: the main brand, focusing on ceramic wall and floor tiles, decorative pieces
and floor tiles for high traffic areas.

• Metropol: ceramic tiles that innovate through design, shapes and colors.

• Atenea: ceramic tiles that suggest natural spaces.

• Acquabella: hydromassage and shower solutions.

• Keratrim: wall decorations and floor coverings.

• Kerafrit: design and manufacture of ceramic glazes.

7.1

7. Case study

CEO

Production

Product design

Preparation of
raw materials

Pressing

Drying

Glazing

Firing

Additional
treatments

Classification
and packaging

Maintenance

Administration

Contracts

Wages

Accounting

Suppliers

Logistics

Stocking

Storage

Expedition

Sales and
Marketing

National sales

Export sales

Samples

Marketing
and PR

Quality

Organisation

Quality control

Human
Resources

Selection,
promotion

and dismissals

Worker rights

Safety training

Continuous
improvement

IT

Information
management

Maintenance

R & D

Innovation
and evalua-
tion of new
alternatives

External
collaborations

Figure 7.1. Organisational chart of Keraben

In addition, the Keraben Group has its own range of stores to sell directly to individual
customers, and has sales representatives all over the world, with offices in Russia, the
Czech Republic, Mexico and the United States.
Among these properties, the present case study will focus on the production facilities

for the Keraben brand of ceramic products. Figure 7.1 shows the relevant organisational
chart for this part of the Keraben group.

7.1.2 Manufacturing process for porcelain stoneware
This case study will focus on a particular manufacturing process within Keraben: the
production of porcelain stoneware. The process starts with the extraction of clays and
other raw materials from a quarry and finishes with the packaging of the tiles into pallets,
ready to be distributed to the customers. Figure 7.2 summarises the steps involved:

1. Preparation of the raw materials, which are selected depending on the desired
composition of the clay. These include white clay, quartz, feldspar and kaolin.

2. Grinding breaks up the raw grains, reducing their diameter from millimetres to
micrometres.

3. Atomisation is a drying process in which hot air at 500 Celsius degrees blows over
the powder suspended in fine water drops, producing a solid mass with a reduced
water content.

7.2

7.1. Overall description

Figure 7.2. Manufacturing process for porcelain stoneware: pieces are produced both
in glazed and unglazed varieties

4. There are several pressing processes: the most common is mechanical dry pressing,
in which the workpieces have between 5% and 7% of water content.

5. Porcelain stoneware goes through an additional drying process that reduces the water
content to 0.2–0.5% in order to ensure the success of the firing step and increase the
mechanical resistance of the workpieces.

6. In some cases, the glazing step covers the workpiece with several layers of vitreous
coating with thicknesses that range between 75 and 500µm. These glazings grant
various technical and aesthetic properties to the workpiece, such as impermeabil-
ity, easy cleaning, colour, gloss, surface finish, chemical resistance or mechanical
resistance.

7. Firing is a key step when manufacturing porcelain stoneware, as it requires longer
times and higher temperatures than with regular glazed tiles.

8. After the tile exits the kiln, it is rectified in order to obtain a piece with straighter
edges and precise dimensions.

9. Classification and packaging is the last step, in which tiles are visually and auto-
matically inspected. Visual inspection checks for colour variations and superficial
defects. Automatic inspection is used to sort the pieces by calibre.

7.1.3 Manufacturing facilities for porcelain stoneware
Keraben has eight production lines for ceramic pavements with four single layer kilns:
two of these lines are dedicated to porcelain stoneware. The firm has two atomisers and
six mills. Boxes with the green (raw) or fired material are transported using Automated
Guided Vehicles (AGVs), with box storage areas at the entrance and exit of every kiln.

After each tile is manufactured, it is classified by quality and packaged into boxes and
stacked in pallets, which are then wrapped and prepared for their expedition. Pallets wait
to be expedited in a reserved area of the firm.

7.3

7. Case study

Figure 7.3. Map of the Keraben manufacturing firm: 1 are the rectification lines,
2 refers to the storage areas for finished products and for products to be
rectified, 3 and 4 contain respectively the production lines for pavement
and coverings, 5 is an office building and 6 is another storage area for
the finished products.

Figure 7.3 shows a simplified plan of the firm, and Figure 7.4 zooms into the part
dedicated to manufacturing porcelain stoneware tile pavements, which will be the main
focus of this case study.

7.1.4 Providers
Keraben acquires raw materials, packaging supplies and furniture for their galleries and
stores through several suppliers. At the moment of the present case study, the suppliers
that participate in the Extended Enterprise (EE) that includes Keraben were:

• Kerafrit provides the glazings, frits and ceramic colours.

• Sibelco Hispania provides the white clay and kaolin.

• Guzmán Global provides the quartz and feldspar.

• Macer S.L. provides and maintains the pressing molds.

• Tarozzi Ibérica provides technical support for most of the machinery.

• SACMI IBÉRICA, S.A. provides technical support for the kilns.

• Cartonajes la Plana provides the packaging supplies.

• EMAT S.L. provides the ceramic showcases for the sample galleries.

7.1.5 Information and material flows
Figure 7.5 summarises the main information and material flows that take part within
Keraben at an abstract level. White boxes represent the various stakeholders that provide
information or material, grey boxes are the main tasks that take place within Keraben
and folders are the information and material stores (normally, information systems and
physical storage areas, respectively) that are used in some of the tasks.

7.4

7.2. Computation-independent models

Figure 7.4. Map of the Keraben porcelain stoneware manufacturing plant (1 and 3
from Figure 7.3).

Keraben periodically refreshes its product lines (task 1) by considering samples of
the available materials from its suppliers, and internal samples produced by the design
department. These product lines are collected into a catalogue: the demand for each
item in the catalogue is estimated (task 2) using information from current bulk orders,
recent market studies and previous sales figures. The demand is then adjusted by the
management of the firm according to their experience.

The estimated demand is used in task 3 to produce a high-level production plan, which
is again adjusted according to production capacity and used to produce a bill of materials
for every interval in the plan. Task 4 fleshes out the production plan by using priorities
and machine availability in order to generate a detailed production schedule. At the same
time, task 5 ensures that the required stock is available at the beginning of every week in
the production plan.
Finally, the production schedules are used to drive the machinery and transform the

raw materials into finished products (task 6), which are later sold to the make-to-order
and make-to-stock customers (task 7).

7.2 Computation-independent models
The previous section introduced Keraben S.A., a ceramic tile and decoration manufacturing
firm, and provided a more detailed description of the manufacturing firm that produces its
Keraben tiles and more specifically, the manufacturing process for its stoneware porcelain
tiles.

From this section on, the extended SODM+T methodology will be used on a subset of
the functionality required for the stoneware porcelain tile manufacturing firm. SODM+T
inherits the top-down approach inherited from SODM (§4.3 and [4]), which is based on

7.5

7. Case study

Figure 7.5. Information and material flows within Keraben: white boxes represent
participants, grey boxes represent tasks and folders represent information
or material stores.

7.6

7.2. Computation-independent models

the OMG MDA® approach [13]. Therefore, the first step is to develop the computation-
independent models that describe the environment in which the system will operate and
the goals that it must support.

7.2.1 Value models

Figure 7.6 shows the Gordijn value model for Keraben. The value model shows the value
exchanges that take part in every step of the production process at Keraben. There are
clearly two kinds of value exchanges in the model: while external suppliers and customers
give or take value objects of some sort in exchange for money, exchanges with other units
in Keraben consist mostly of passing information (reports and/or orders) between them.
The process is initiated from the start stimuli in the “Acquisition” and “Demand

estimation” value activities in the “Customers” market segment and in the “Marketing”
value actor, respectively. Large customers in the construction sector can place bulk or
customised orders on demand, and the marketing department decides how much additional
stock needs to be made to cover demand from individual homeowners. In some cases,
production capacity concerns may require changes in how this demand is handled.
The “Planning” value action then talks with the logistics department and the raw

material suppliers to obtain the required materials, passing control to the “Scheduling”
action. “Scheduling” then refines the long-term production plan into several shorter-term
schedules by taking into account the available machines and the required preventive
maintenance. The “Manufacturing” action executes the schedule, repairing the machines
in the event of an unexpected breakdown and transporting the finished goods as necessary.
Some of the finished goods are directly packaged for the large customers, and the rest is
used to stock showcases in stores. Finally, the “Sales” action sends the acquired goods to
the customers.

7.2.2 Business process model

The next step in SODM+T (as defined by SODM) is creating the model for the high-level
business process that needs to be supported by the system. Figure 7.7 shows a BPMN 2.0
process with the overall business model of Keraben.

The process takes into account the fact that Keraben uses both the make-to-stock (from
the demand set by the Sales and Marketing department) and make-to-order manufacturing
strategies. These two information sources are combined to produce a detailed demand for
materials based on the definitions of the products themselves (grain types, tile composition,
glazings and so on), the production rules and other consumables, such as packaging
material or showcases.
At that point, the manufacturing process starts. If manufacturing completes without

issues, both the customers and the sales department are informed and the products are
shipped through the logistics company. Otherwise, the impact of the issue is analysed and
then reported to the customers and the Sales and Marketing department. After correcting
the issue (possibly communicating with the material or machine suppliers), manufacturing
restarts.

7.7

7. Case study

R
aw

m
at
er
ia
l
su
p
p
li
er
s

L
og
is
ti
cs

O
th
er

su
p
p
li
er
s

C
u
st
o
m
er
s

P
ro
d
u
ct
io
n
p
ro
ce
ss

S
al
es

&
M
ar
ke
ti
n
g

P
ro
d
u
ct

d
es
ig
n

M
ac
h
in
e
su
p
p
li
er
s

A
cq
u
is
it
io
n

D
is
tr
ib
u
ti
on

T
ra
n
sp
or
t

E
ss
en
ti
al
s

P
ac
ka
gi
n
gs

S
h
ow

ca
se
s

D
em

a
n
d
es
ti
m
at
io
n

C
at
al
og

d
es
ig
n

M
ai
n
te
n
an

ce
R
ep
a
ir
s

P
la
n
n
in
g

S
ch
ed
u
li
n
g

M
an

u
fa
ct
u
ri
n
g

P
ac
ka
gi
n
g

E
x
p
o
si
ti
o
n

S
al
es

[M
o
n
e
y
]

[B
u
lk

o
rd

e
rs

]

[E
st

im
a
te

d
d
e
m

a
n
d
] [P

ro
d
u
c
ti

o
n

re
su

lt
s]

[M
o
n
e
y
]

[R
a
w

m
a
te

ri
a
ls

]

[M
o
n
e
y
]

[T
ra

n
sp

o
rt

]

[P
ro

d
u
c
t

sp
e
c
ifi

-
c
a
ti

o
n
s]

[M
a
ch

in
e

c
o
n
fi
g
u
-

ra
ti

o
n
s]

[M
a
in

te
n
a
n
c
e
]

[M
o
n
e
y
]

[M
o
n
e
y
]

[T
ra

n
sp

o
rt

]

[R
e
p
a
ir

s]

[M
o
n
e
y
]

[M
o
n
e
y
]

[M
a
te

ri
a
ls

]

[M
o
n
e
y
]

[M
a
te

ri
a
ls

]

[M
o
n
e
y
]

[T
ra

n
sp

o
rt

]

[M
o
n
e
y
]

[M
a
te

ri
a
ls

]

F
ig
ur
e
7.
6.

G
or
di
jn

va
lu
e
m
od

el
fo
r
K
er
ab

en

7.8

7.2. Computation-independent models

F
ig
ur
e
7.
7.

BP
M
N

2.
0
di
ag
ra
m

of
th
e
hi
gh

-le
ve
lb

us
in
es
s
pr
oc
es
s
fo
r
K
er
ab

en

7.9

7. Case study

7.2.3 Business service list
The last artefact at the CIM level is the business service list: a textual description of
all the services that constitute a certain business and which satisfy a need from an end
consumer.
According to SODM, the first step is finding all the end consumers by inspecting the

value model in Figure 7.6 and looking for the value actors that provide the start stimuli
for the value exchanges. These are the customers that buy the tiles from Keraben, and
the Sales and Marketing department in Keraben itself. These two value actors represent
the two manufacturing strategies in the company: make-to-order and make-to-stock,
respectively. The system needs to be able to support both.
The second step is finding out the business services required by each end consumer.

SODM suggests two sources for them: the value exchanges between the end consumers
and the other actors, and the activities in the business process models which fulfil the
needs of the end consumers.
From these two sources, it can be concluded that “Customer” requires the following

business services:

• Order submission, from the “Receive orders” task in the BPMN process and the
value exchange in the value model,

• Order status reporting, from the “Report order completion” task in the BPMN
process, and

• Order issue notification and response from the “Report impact” task in the BPMN
process, focusing on the message flows between the process and the “Customers”
pool.

“Sales and Marketing” needs the following business services:

• Estimated demand submission, from the “Receive estimated demand” task in the
BPMN process and the value exchange in the value model,

• Production status reporting, from the “Report order completion” task in the BPMN
process and the value exchange in the value model, and

• Production issue notification and response service, from the “Report impact” task
in the BPMN process, focusing on the message flows between the process and the
“Sales & Marketing” pool.

The next steps will derive increasingly detailed descriptions of these business services
that can be supported by a computer system.

7.3 Platform-independent models
The previous section derived a set of CIM models that described the value exchanges and
the business services that the system would need to support. This section will produce
the PIM models that prescribe what the system should do, without delving into specific
implementation details.

7.10

7.3. Platform-independent models

Figure 7.8. Use case model for Keraben

7.3.1 Use case model
The first step for the PIM models is to map the business services to use cases and limit
the scope of the system to the desired subset. This section does not limit the scope of the
system yet: the use case model in Figure 7.8 has all the business services above.

7.3.2 Extended use case models
The next step of the SODM methodology requires decomposing each use case in Figure 7.8
into its own extended use case model. In these extended use case models, high-level use
cases may include simpler use cases, and a certain use case may have multiple variants.
Figure 7.9 shows the extended use case model for “Order submission”. Submitting

an order requires checking it is feasible within the desired time frame and production
parameters, ensuring that it can be shipped to the destination address and finalising the
order after the customer has reviewed the order total and paid for it.

The “Order status reporting” extended use case model is shown in Figure 7.10. In this
case, the order can be looked up by the username of the customer or by its unique ID.
After finding the desired order, the customer can enquire the system about its current and
previous statuses and the estimated time of arrival of the ordered goods.
The “Order issue notification” extended use case model in Figure 7.11 also looks up

the order by customer username or order identifier. However, in this case the customer is
informed of pending issues that may delay the order or may require changing some of the
order details. Depending on the issues, the customer may decide to split the order into
several smaller ones, cancel the order, change the ordered quantities of each product or
change the deadline.
Figure 7.12 presents the extended use case model for “Estimated demand submission”.

Periodically, staff from the Sales department specify the estimated demand of each product
either month-by-month (for made-to-stock articles) or by deadlines (for made-to-order
articles). These demands are then checked against the current production capabilities and

7.11

7. Case study

Figure 7.9. Extended use case model: “Order submission”

Figure 7.10. Extended use case model: “Order status reporting”

7.12

7.3. Platform-independent models

Figure 7.11. Extended use case model: “Order issue notification”

Figure 7.12. Extended use case model: “Estimated demand submission”

7.13

7. Case study

Figure 7.13. Extended use case model: “Production status reporting”

Figure 7.14. Extended use case model: “Production issue notification”

then readjusted. After the demands meet the available production capabilities, the weekly
production plans are created from them.

The “Production status reporting” extended use case model in 7.13 is similar to the one
for “Order status reporting”. However, instead of looking up orders and reporting on their
status, it operates on the weekly production plans.
Finally, Figure 7.14 contains the extended use case model for “Production issue no-

tification”. In this model, the Sales employee uses the system to analyse the pending
manufacturing issues (e.g. equipment breakdowns, unexpected personnel leaves, material
supply issues or product definitions issues) and then review the existing production plans
after negotiating with affected customers.

7.3.3 Service process models
The above extended use case models divide the high-level use cases into finer steps that
would be easier to implement, but do not specify the order in which they should be

7.14

7.3. Platform-independent models

Figure 7.15. Service process model: “Order submission”

Figure 7.16. Service process model: “Order status reporting”

performed and in which situations. This is the purpose of the SODM service process
models, which can be initially created following the procedure presented in Section 4.3.3.3,
to be later fine-tuned by hand.
Figures 7.15 to 7.17 show the service models for three of the six extended use case

models in Section 7.3.2. The other three models were excluded from the present case
study due to their similarity to the considered models. While the performance inference
algorithms from Chapter 5 could be applied at this stage, it was decided to postpone their
usage to the extended service composition models: these would include all the information
required to derive performance test cases from them using the approach in Chapter 6.

The service process model for “Order submission” in Figure 7.15 is a simple ordering of
the elements in the extended use case model of Figure 7.9.

In the case of “Order status reporting”, the mapping from the extended use case model
in Figure 7.10 to the service process model in Figure 7.16 is slightly more contrived. The

7.15

7. Case study

Figure 7.17. Service process model: “Order issue notification”

“Locate order” action decides whether the order should be looked up by username or ID,
and then a loop answers to the queries from the customer. This loop was introduced
manually after performing the initial mapping.

The “Order issue notification” service process model in Figure 7.17 is also a straightfor-
ward mapping of the original extended use case model, in which the action corresponding
to each use case extension is picked through a UML decision node.

7.3.4 Service composition models
The last set of platform-independent models are the SODM service composition models,
which describe not only what should be done and in which order, but also who should do it.
Additionally, some actions may be further subdivided to make them easier to implement
or to distribute responsibilities among the actors of the process (holons the present case).

Due to space restrictions and the similarity of the models that would be produced, the
present case study has only produced the service composition model (Figure 7.18) for the
“Order submission” service process (Figure 7.15).

In order to simplify the layout of the model and make it fit into a single page, an
alternative notation from the traditional swimlane-based drawings was used to represent
the UML activity partitions in the model. In this notation, the activity partitions are

7.16

7.4. Platform-specific models

not explicitly drawn: instead, the names of the partitions to which each action belongs
are embedded into their names. For instance, if action “A” should be performed within
partition “P”, the decorated action would use “(P) A” as its label. This notation is also
allowed by the UML specification [14] (§12.3.10, Figure 12.58).
The actions are distributed among the following actors, which take the role of the

highest-level holons or manufacturing agents in the composition:

• The customer interacts with the business-to-business system that manages the orders
and provides an accessible web interface.

• The business-to-business (B2B) system interacts with the other automated actors
in the composition on behalf of the user and informs the user of the status of the
ordering process and its end result.

• The manufacturing execution system (MES) provides the live plant status information
required to produce a reasonably accurate ETA for the order.

• The logistics system (Logistics) is external to the manufacturing firm, belonging
to one or more shipping companies contracted by Keraben. Interaction with these
companies is assumed to be automated through Web Services.

• The Finances department is informed of the amount that should be charged to the
customer and takes care of the payment itself.

Most of the actions in the original process model have been divided in two: one for the
side of the customer and one for the side of the relevant automated system. In order to
illustrate the ability of the algorithms to deal with nested actions, “Review order feasibility”
was subdivided using a UML structured activity node instead of being decomposed into
multiple separate action nodes.

7.4 Platform-specific models
Throughout the previous sections, the methodology has descended from a high-level
description of the enterprise under study and its business processes to specific composition
models detailing what should be done in each service composition and who should do it.

The next layer in the OMG Model-Driven Architecture® (MDA®) approach consists of
the Platform Specific Models (PSMs) which extend the previous models with the details
required for a specific methodology. In addition, these models will contain the performance
annotations that will be used to derive their early performance requirements.

7.4.1 Extended service composition models
At this stage, extended service composition models are built by simply annotating the
actions that should become Web Servicess with the «WS» stereotype. In the case of
“Order submission”, the following actions were annotated:

• (B2B) Check product availability

• (MES) Estimate production dates

7.17

7. Case study

Figure 7.18. Service composition model: “Order submission”

• (Logistics) Check shipping information

• (Finances) Perform payment

Additionally, the model received the following performance annotations:

• The entire process should never take longer than 5 seconds while handling 5 requests
per second.

• “Customer” nodes have 0 minimum time and 0 weight (these are actions taken by
the user: not by the system).

• “Review order feasibility” has 0 minimum time and weight 5, as generating a schedule
can be much more expensive than just checking an item in an inventory.

• “Estimate production dates” originally had weight 3, but after some performance
testing (described later) it was revised to have minimum time 0.4 s and weight 2.

• The rest of the nodes have minimum time 0 and weight 1, which are the default
recommended values.

• The outgoing edges for the decision nodes have been annotated according to these
estimations:
– 10% of all orders refer to a missing or discontinued product.

7.18

7.4. Platform-specific models

– 20% of the remaining orders have unfeasible or unacceptable manufacturing
deadlines.

– 20% of the remaining orders have unfeasible or unacceptable shipping deadlines.
– 10% of the remaining orders are cancelled after reviewing the order total.
– 5% of the remaining orders cannot be processed due to problems during payment.

As mentioned above, the experience obtained in this case study suggests that the
performance inference algorithms should be applied on the service composition models
and/or the extended service composition models, but not on the process models. This
is because of two reasons. The first reason is that the process models will need to be
further decomposed in any case and the inferred performance requirements will not be
directly usable for testing. The second reason is that process models would not contain
information about who performs the action, and so it would be difficult to estimate if the
inferred value would be feasible or not.

After applying the performance inference algorithms, the following performance require-
ments (rounded to 2 decimal places) were detected for each non-Customer activity:

• “Check product availability”: 0.94 s while handling 5 requests/s.

• “Check shipping information”: 0.44 s, 4 requests/s.

• “Compute order total”: 0.44 s, 3.2 requests/s.

• “Confirm order”: 0.44 s, 2.74 requests/s.

• “Estimate production dates”: 2.28 s, 4.5 requests/s.

• “Perform payment”: 0.44 s, 2.88 requests/s.

• “Report bad product”: 2.28 s, 0.5 requests/s.

• “Report cancelled order”: 1.33 s, 0.8 requests/s.

7.4.2 Web Service interface models
The final step in the original SODM methodology was creating the WS interface models
for each of the actions that was tagged with «WS» in the extended service composition
models. These models were UML class diagrams annotated with stereotypes from a custom
profile inspired on the Web Services Description Language (WSDL) specification (§4.3.4).
Following this approach, the SODM WS profile was implemented according to the

Eclipse UML implementation [5] using the Papyrus model editors [6]. The resulting profile
is shown in Figure 4.5. While implementing the profile, several changes were made from
the original version in Figure 4.5:

• The restrictions for the association ends in AssociationOperationMessage, Type-
Schema and AssociationPartElement were modelled using explicit executable OCL
constraints instead of implicit associations (shown as blue dog-eared annotations).

• Endpoint was revised to include a location attribute instead of a name, following
more closely its practical usage in WSDL documents.

7.19

7. Case study

• Some types were renamed to follow common style conventions more closely: Association-
OperationMessage was renamed to OperationMessageAssociation and Association-
PartElement was renamed to PartElementAssociation.

• PartElementAssociation was simplified, removing its two child classes PartElement
and PartType. Current best practices in WS development recommend using elements
and not types, for the sake of simplicity and interoperability.

Using this profile, the WS interface model for “Estimate production dates” shown in
Figure 7.20 was created. In this simple model, the definition MES would contain all the
WS that would be provided by the manufacturing execution system. In particular, it
has a SchedulerService with a binding to an interface with a single operation (“Estimate-
ProductionDates”). This operation takes the reason for the query, the ID of the ISA-95
product production rule (§7.5.1), the requested quantity and its unit of measurement. The
operation can reply either with a tentative scheduled (ID, earliest start date and latest
end date), or with an error message.

While the model was simple to produce after implementing the UML profile, its usefulness
as a separate model is unclear. The model operates at almost the same level of abstraction
as WSDL and lacks the specific tooling that most WSDL editors have. Therefore, it can be
concluded this particular kind of model could be directly replaced by WSDL documents.

7.5 Implementation
At this point, all the SODM models have been created, and some of these models have
been annotated with performance requirements. Before these requirements can be used to
generate performance tests, it is necessary to implement the system itself.

This section shows how the relevant part of the manufacturing execution system holon
(or manufacturing agent) was designed and implemented from scratch. The holon was
divided into three large parts:

• A data model describing the concepts it would internally work with, implemented as
a persistence layer using Spring Roo [9] and Hibernate [11]. The data model is an
adaptation of the ISA-95 data model [10]: several changes were required to make it
amenable for the simple scheduler implemented within the “Estimate production
dates” WS.

• A web interface which would allow users to manipulate its internal data model, e.g.
to model the manufacturing processes within Keraben with it and observe the results
produced by the WS below. The web interface was implemented using the above
persistence layer, Spring Roo and the Spring MVC framework [8].

• A set of WS providing functionality to other holons using machine-oriented and
interoperable interfaces. In particular, the current implementation focused on the
“Estimate production dates” WS that was described above and was implemented
using the Apache CXF framework [1].

The following subsections provide additional details about each of these components of
the MES holon.

7.20

7.5. Implementation

F
ig
ur
e
7.
19
.

R
ev
ise

d
W
eb

Se
rv
ic
e
in
te
rfa

ce
m
et
am

od
el

af
te
r
im

pl
em

en
ta
tio

n
w
ith

th
e
Pa

py
ru
s
to
ol
.

Fi
lle
d
ar
ro
w
s
re
pr
es
en
t

“e
xt
en
sio

n”
of

ex
ist

in
g
U
M
L
co
nc
ep
ts

or
m
et
ac
la
ss
es
.
T
he

do
g-
ea
re
d
an

no
ta
tio

n
no

de
s
(s
ha

de
d
in

ye
llo

w
)
sp
ec
ify

ad
di
tio

na
lO

C
L
co
ns
tr
ai
nt
s
on

va
lid

st
er
eo
ty
pe

us
ag
e.

St
er
eo
ty
pe

s
ar
e
sh
ad

ed
in

bl
ue
.

7.21

7. Case study

Figure 7.20. Web Service interface model for “Estimate production dates”

7.22

7.5. Implementation

7.5.1 Persistence layer: adaptation of the ISA-95 object model
In order to implement the “Estimate production dates” WS it was necessary to write a
simple scheduler, and the scheduler itself would need a description of the current resources
and processes available in the enterprise. Consequently, an appropriate data model had to
be developed.

The persistence layer is based on the object model in ISA-95 part 2, with some changes
attempting to reduce the large amount of duplication present in the specification. It is
divided into a main package (domain), and several subpackages with each of the conceptual
areas within ISA-95:

• The main domain package (shown in Figure 7.21) provides several common basic
concepts that are reused throughout the data model. Most of these concepts are
not explicitly represented in ISA-95, being implicitly repeated throughout the entire
specification instead.
For instance, the idea of a Unit is left in ISA-95 as a single string (“meters”),
without regards for the complex issues involving unit-based arithmetic, conversions
and comparisons. In the adapted data model, Units may be based on others (e.g.
“decimeters” is based on “meters” with a conversion factor equal to 0.1) and may
have a fractional part (“meters/second” has “second” as its fractional part), which is
useful for multiplications. While users are free to define their own Units, the system
needs to treat some basic units specially: these are the SystemUnitTypes. Quantity-
WithUnit implements a full set of arithmetic, conversion and comparison operators
for numeric values annotated with units, while ensuring that illegal operations are
reported (e.g. comparing litres with meters).
In addition to better unit handling, the domain package contains Property, a base
class for all the property classes within the data model, and several enumerations
used throughout several classes (ExecutionDependencyType and CapabilityType).
Priority levels are also modelled as a separate entity, so users can define their own.

• Three subpackages describe the three kinds of resources available in a manufacturing
firm, according to ISA-95: people, equipment and material. These packages closely
follow the originals.
The people package (Figure 7.22) provides the concept of a Person which may
belong to zero or more PersonClasses. Both Person and PersonClass objects may
have properties of their own. Some of the properties in a person class may be
certified for a particular person through a QualificationTestSpec and a positive
QualificationTestResult.
The equip package (Figure 7.23) follows a similar pattern: a piece of Equipment may
belong to zero or more EquipmentClasses, and both types of objects may have their
own properties. Some of the properties in an EquipmentClass may be tested for a
certain piece of Equipment through a EquipmentCapabilityTestSpec and a positive
EquipmentCapabilityTestResult.
Additionally, Equipment may belong to a certain EquipmentType in the ISA-95
equipment hierarchy (e.g. site, area or process cell). Equipment may also undergo
maintenance: a MaintenanceWorkOrder contains a set of MaintenanceRequests

7.23

7. Case study

submitted for certain machines and a set of MaintenanceResponses with the work
performed at a certain time.
The material package (Figure 7.24) is defined around the concept of a Material-
Definition, which belongs to one or more MaterialClasses and may be available
throughout several MaterialLots, which are arbitrarily subdivided into Material-
Sublots. Classes, definitions and lots may have their own properties: definition
or class properties may be tested on particular lots through QATestResult and
QATestSpec.

• Two subpackages are dedicated to representing the available manufacturing processes
(psegment) and the products that can be manufactured (product).
The psegment package (Figure 7.25) defines the concept of a ProcessSegment: a step
of a manufacturing process which may contain lower level ProcessSegments, may
depend on other ProcessSegments and may have certain ProcessSegmentParameters.
The personnel, equipment and material requirements for the ProcessSegments are
included as PersonnelSegmentSpecs, EquipmentSegmentSpecPropertys and Material-
SegmentSpecs, respectively. These three kinds of SegmentSpecs may have their own
properties as well.
The product package (Figure 7.26) builds upon psegment by describing Product-
ProductionRules as collections of ProductSegments. ProductSegments map to Process-
Segments and also allow for nesting, parameters and inter-segment dependencies.
They also allow for extending the original ProcessSegment with additional personnel,
equipment and material requirements through PersonnelSpecs, EquipmentSpecs and
MaterialSpecs and their properties.

• The last three subpackages are used for scheduling: capability models the available
and committed production capacities, schedule models the production currently
planed, and perform represents the achieved production results.
The capability package (Figure 7.27) has been reorganised, adding a common
Capability parent class for ProductionCapability and ChildCapability. ChildCapability
itself is a new parent class for the three kinds of capabilities (PersonnelCapability,
EquipmentCapability and MaterialCapability) that a certain ProductionCapability
may contain.
The schedule package (Figure 7.28) is largely unchanged, however: a Production-
Schedule contains a set of ProductionRequests, which in turn may contain Segment-
Requirements for a certain ProductSegment. SegmentRequirements may include
parameters or detailed personnel, equipment and material requirements through the
ProductionParameter, PersonnelRequirement, EquipmentRequirement and Material-
Requirement, respectively.
The perform package (Figure 7.29) largely mirrors the schedule package: the
ProductionPerformance reports the results from a certain ProductionSchedule, which
are divided into ProductionResponses for each ProductionRequest and Segment-
Responses for each SegmentRequirement. SegmentRequirements detail actual produc-
tion information and usage of resources through the ProductionDate, PersonnelActual,
EquipmentActual and MaterialActual, respectively.

7.24

7.5. Implementation

Figure 7.21. UML class diagram for the domain base package

While these packages cover a large part of the concepts required in a data model of
a manufacturing firm, there are some important omissions. One of the most important
ones is the lack of any description of the supply chain: for instance, suppliers are not
represented anywhere in the data model. Other issues became apparent when trying to
use this ISA-95 inspired data model for scheduling: there is no explicit distinction between
make-to-stock and make-to-order production strategies, and setup operations need to be
modelled as explicit process segments with their own fixed duration instead of being part
of the process segment they are related to.
Other issues have already been discussed: there is a large amount of duplication

throughout the original specification, and units are not well modelled. Nevertheless,
ISA-95 has shown to be a good starting point, even though it would need considerable
changes to use it to implement a full-fledged MES.

The presented data model has been implemented as a set of Java classes using the tools
from the Spring Roo project, which generate code targeting the Hibernate framework.
Using these Java classes, two kinds of databases were automatically generated: in-memory
HSQLDB databases for internal testing [15], and a traditional PostgreSQL [16] database
for deployment and performance testing. The resulting databases are reasonably complex:
for instance, the PostgreSQL database has 109 interrelated tables.

7.5.2 Web interface: specification of rectification processes with
ISA-95

Having implemented the data model as a persistence layer, the next step for implementing
the “Estimate production dates” was specifying the Keraben tile rectification resources,
processes and production capacities with it.

7.25

7. Case study

Figure 7.22. UML class diagram for the people subpackage

Figure 7.23. UML class diagram for the equip subpackage

7.26

7.5. Implementation

Figure 7.24. UML class diagram for the material subpackage

Figure 7.25. UML class diagram for the psegment subpackage

7.27

7. Case study

Figure 7.26. UML class diagram for the product subpackage

To this effect, a web interface (shown in Figure 7.30) was built for manipulating the
entities of the data model. A first version of the web interface was originally generated from
the persistence layer itself, using Spring Roo and targeting the Spring MVC framework [8].
This first version was then manually improved in regards to usability by grouping related
concepts together, simplifying data entry and improving the way in which information
was simplified.

For instance, the default navigational menu was replaced with a set of HTML5 collapsible
menus with persistent local state. The web interface was also extended with the ability to
define production capacity templates and instantiate them for a particular time period:
this way, the current daily capacity can be defined as a ProductionCapability with no time
period and then be quickly duplicated for each day of the present week. This was used to
generate the estimated production capabilities for every working day until December 2013.

According to the above data model, the Keraben plant consists of the following resources:

• 2 person classes (“Operators” and “Plant Managers”). There are 4 operators, only
identified by a number (“Operator 1” to “Operator 4”).

• 1 equipment class for each kind of machine in the rectification process and the produc-
tion lines themselves: “EQC-Feeders”, “EQC-Cutters”, “EQC-HRectifiers”, “EQC-
VRectifiers”, “EQC-Dryers”, “EQC-Inspectors”, “EQC-BoxLoaders” and “EQC-
RectifyingLines”. There are 2 matching pieces of equipment for each class, represent-
ing the two rectification lines in the firm.

• Additional equipment classes model the rest of the ISA-95 equipment hierarchy,

7.28

7.5. Implementation

Figure 7.27. UML class diagram for the capabilities subpackage

Figure 7.28. UML class diagram for the schedule subpackage

7.29

7. Case study

Figure 7.29. UML class diagram for the perform subpackage

several Equipment instances have been defined for the Keraben enterprise group (“EQ-
Group”), the Keraben firm (“EQ-FirmTiles”), the production area (“EQ-AreaProd”)
and the storage areas for raw and finished products (“EQ-AreaStorageRaw” and
“EQ-AreaStorageFinished”).

• 3 material classes: consumables (grinding wheels and replacement belts), source
materials (medium-, large- and custom-sized raw tiles) and rectified tiles (medium-,
large- and custom-sized raw tiles rectified on 2 or 4 sides).

• 2 material lots with 300 medium raw tiles and 300 large raw tiles, respectively.
Custom tiles are produced on demand by cutting large raw tiles.

The rectification processes have been modelled as follows:

• 14 process segments for each step of the rectification process, including line setup
times (with fixed times) and considering different variable times for each tile size:
– “SG-R-Setup-LM”, “SG-R-Setup-C”: line setup for large/medium tiles and

custom tiles.
– “SG-R-Feeder-L”, “SG-R-Feeder-M”: piece feeding for large or medium tiles,

respectively.
– “SG-R-Cutter”: piece cutting for producing custom tile sizes.
– “SG-R-HRectifying-L”, “SG-R-HRectifying-M” and “SG-R-HRectifying-C”:

rectification of the horizontal edges.
– “SG-R-VRectifying-L”, “SG-R-VRectifying-M” and “SG-R-VRectifying-C”:

rectification of the vertical edges.
– “SG-R-Drying”, “SG-R-Inspection” and “SG-R-BoxLoading”: the remaining

steps of drying the pieces, inspecting them and loading them into boxes.

7.30

7.5. Implementation

Figure 7.30. Screenshot of the web administration panel

Each process segment has segment specifications requiring an operator and an
appropriate machine (or the entire line for the setup tasks). “SG-R-Feeder-L”
and “SG-R-Feeder-M” have material specifications requiring the raw tiles, and the
rectifying segments take the raw tiles (after cutting for the custom-sized ones) and
produce rectified tiles (first on 2 edges, and then on 4 edges).

For the sake of simplicity, each process segment takes batches of 30 tiles. Process
segment dependencies indicate the appropriate order: feeding should come first, then
cutting (if required), then horizontal and vertical rectification, and finally drying,
inspection and packaging.

• 6 product production rules for each tile size (large, medium and custom) and finish
(rectified on 2 edges or 4 edges). Each production rule contains a root product
segment with no process segment that ensures that entire production lines are
reserved during the manufacturing of a single batch of tiles, and one child product
segment one product segment for every process segment required to produce it.

For instance, “PPR-RC2” (the rule for producing custom-sized tiles rectified on 2
edges) has “PPR-RC2-Parent” as its root product segment. “PPR-RC-Parent” in
turn contains “PPR-RC2-Setup”, “PPR-RC2-Cut”, “PPR-RC2-HRectifying” and so
on.

Finally, the available production capability was modelled by defining a template of the
current production capacity, in which each production line could produce 1000 pieces a
day and operators could work part-time (4 hours a day).

7.31

7. Case study

7.5.3 Web service: provision of a scheduler WS

So far, the rectifying processes have been described using the implemented data model.
The final step was implementing the “Estimate production dates” WS itself. For the
purpose of this case study, this WS was kept as a simple scheduler that would use the
stored production capabilities to produce a ProductionSchedule doing the required work as
soon as possible while balancing the workload over both production lines.
The WS uses the same persistence layer as the web interface and offers its services

through a SOAP WS (§3.1.2.4). Most of the low-level communication details are abstracted
away by the Apache CXF framework [1], which generates the required code from the WSDL
document that was produced from the WS interface model in Figure 7.20 (page 7.20).
After some initial manual testing using the soapUI tool [7], the WS underwent functional
testing using the facilities in the Spring framework.

7.6 Performance test generation and execution

Having defined the performance requirements and implemented the “Estimate production
dates” WS backed by an appropriate data model and a formalisation of the Keraben
processes, the performance tests can now be generated using the approach described in
Chapter 6 (Figure 6.10 in page 6.10).

First, a message catalogue was automatically derived from the WSDL document for the
“Estimate production dates” WS by using the . The catalogue is shown in Listing 7.1. In
particular, the required information for generating input messages for the “generateSched-
ule” operation (line 5) of the “SchedulerImplService” (line 4) is contained in lines 6–20.
Lines 7–11 indicate the variables that must be populated to produce a single message, and
lines 12–19 are the template that will be used to produce the message itself.
The “generateSchedule” operation in line 5 is then weaved with the the “Estimate

production dates” action in the extended use case model based on Figure 7.18, using the
Epsilon ModeLink editor [12]. The model-to-text transformations described in Section 6.5
generated almost all the required code, test data, configuration files and launch scripts
required for performance testing with The Grinder [2] tool and the Grinder Analyzer [3]
Maven plugin.

However, it was necessary to manually customise the TestSpec document describing the
test data to be generated so it would use existing product production rules, meaningful
quantities and valid units. The resulting TestSpec document is shown in Listing 7.2, and
illustrates how the generated code can be still customised to fit a particular domain.
After running the performance tests, the Grinder Analyzer showed that the WS could

handle about 30 transactions per second while replying under 0.5 s, which is well within
the estimated time limit of 2.28 s while handling 5 requests per second. For the purposes
of this case study, tests were run on a server running at the same machine, which stayed
otherwise idle during the test: regular users would be advised to mimic their production
environment as much as possible for the test.

7.32

7.6. Performance test generation and execution

Listing 7.1 Message catalogue generated from the WSDL document of the “Estimate
production dates” Web Service

1 <?xml version="1.0" encoding="UTF−8"?>
2 <mes:services xmlns:mes="http://serviceAnalyzer/messageCatalog">
3 <mes:service name="SchedulerImplService" uri="http://impl.scheduler.isa95study.sodmt.uca.es/">
4 <mes:port address="http://localhost:8080/ws−mes−impl/scheduler" name="SchedulerImplPort">
5 <mes:operation name="generateSchedule">
6 <mes:input>
7 <mes:decls>
8 <mes:typedef min="1" name="TQuantity" type="int"/>
9 <mes:typedef element="string,␣string,␣TQuantity,␣string" name="TGenerateSchedule" type="tuple"/>
10 <mes:variable name="generateSchedule" type="TGenerateSchedule"/>
11 </mes:decls>
12 <mes:template><![CDATA[
13 <s:generateSchedule xmlns:s="http://www.uca.es/sodmt/isa95study/scheduler">
14 <reason>$generateSchedule.get(0)</reason>
15 <productRuleId>$generateSchedule.get(1)</productRuleId>
16 <quantity>$generateSchedule.get(2)</quantity>
17 <unitId>$generateSchedule.get(3)</unitId>
18 </s:generateSchedule>
19]]></mes:template>
20 </mes:input>
21 <mes:output>
22 <mes:decls>
23 <mes:typedef element="string,␣dateTime,␣dateTime" name="TGenerateScheduleResponse" type="tuple"/>
24 <mes:variable name="generateScheduleResponse" type="TGenerateScheduleResponse"/>
25 </mes:decls>
26 <mes:template><![CDATA[
27 <s:generateScheduleResponse xmlns:s="http://www.uca.es/sodmt/isa95study/scheduler">
28 <productionScheduleId>$generateScheduleResponse.get(0)</productionScheduleId>
29 <earliestStart>$generateScheduleResponse.get(1)</earliestStart>
30 <latestEnd>$generateScheduleResponse.get(2)</latestEnd>
31 </s:generateScheduleResponse>
32]]></mes:template>
33 </mes:output>
34 <mes:fault name="GenerateScheduleFault_Exception">
35 <mes:decls>
36 <mes:variable name="generateScheduleFault" type="string"/>
37 </mes:decls>
38 <mes:template><![CDATA[
39 <s:generateScheduleFault xmlns:s="http://www.uca.es/sodmt/isa95study/scheduler">
40 <message>$generateScheduleFault</message>
41 </s:generateScheduleFault>
42]]></mes:template>
43 </mes:fault>
44 </mes:operation>
45 </mes:port>
46 </mes:service>
47 </mes:services>

Listing 7.2 Customised TestSpec specification of the input data for testing “Estimate
production dates”.

typedef int (min=1, max=100) TQuantity;
typedef string (values={"Pieces"}) Unit;
typedef tuple (element={string, ProductProductionRule, TQuantity, Unit}) TGenerateSchedule;

typedef string (values={
"PPR−RC2", "PPR−RC4", "PPR−RM2", "PPR−RM4", "PPR−RL2", "PPR−RL4"

}) ProductProductionRule;

TGenerateSchedule generateSchedule;

7.33

7. Case study

Figure 7.31. Performance testing results for “Estimate production dates”

7.34

7.7. Conclusion

7.7 Conclusion
The present chapter has shown a complete example of how the SODM+T methodology
would be used in a manufacturing context, focusing on a specific manufacturing holon
(the manufacturing execution system in a certain firm) and a certain service within it (the
scheduler used to estimate production dates).
The Keraben S.A. manufacturing enterprise was selected as a considerable amount

of information on its business practices was collected during a collaboration with Lledó
Prades Martell from the Universitat Jaume I. Starting with a high-level description of
the enterprise, later sections provided additional details on the manufacturing process for
porcelain stoneware, the available facilities, providers and information and material flows.

This high-level information was used to derive the first layer of the SODM+T methodo-
logy, comprised by the Computation Independent Models (CIMs). These models included a
Gordijn value model with the value exchanges between the Keraben firm, its collaborators
in the supply chain and its customers, and a BPMN diagram with the overall business
model followed by the firm. From this high-level business model, a subset of the business
services dedicated to customer order and production schedule handling was selected.

The next layer of SODM+T was dedicated to the Platform Independent Models (PIMs).
While the use case model could be easily extracted from the previous business service
list, the extended use case models required adding manually new insights. The use cases
in these models were then arranged into service process models, focusing on the order
handling service processes for the sake of simplicity. Finally, the “Order submission”
service process was fully fleshed out as a service composition model by distributing the
work involved among the relevant actors (holons).

The PIM layer was followed with the Platform Specific Models (PSMs), in which some of
the actions in the “Order submission” service composition model were tagged with the «WS»
stereotype to indicate that they were to be implemented as Web Servicess, producing an
extended service composition model. This model was tagged with performance annotations
from which specific performance requirements were derived for each action in the model.

Before using the inferred performance requirements to generate performance tests, it was
necessary to implement the modelled part of the system: the “Estimate production dates”
WS of the MES holon in the Keraben firm. This required adapting the ISA-95 object
model to current object-oriented programming best practices and implementing it as a
reusable persistence layer, using the Spring Roo toolset and the Hibernate object-relational
mapping framework. This persistence layer was then reused to develop a web interface for
validating the data model and formalising the rectification processes within Keraben, and
for implementing the “Estimate production dates” WS itself.
Implementing the ISA-95 object model using current tools and using it to describe a

manufacturing process revealed several issues in the ISA-95 specification. Some of these
issues could be attributed to the lack of a reference implementation for the object model
itself: developing a simple web interface such as the one in this case study could have
been useful to find some of them. The main issue is the high degree of duplication present
throughout the specification: for instance, instead of having a central “Property” concept,
the same attributes are repeated on every kind of property. In other cases, there is a lack
of attention to detail on aspects that are important for data quality and consistency, such
as proper handling of units, more restrictive specifications for identifiers (e.g. for process

7.35

References

segments, pieces of equipment and so on) or how to model certain situations (make-to-stock
versus make-to-order). In summary, this confirms that future specifications of the sort
should follow a user-centred approach in which the document is developed in parallel with
a simplistic reference implementation that helps find inconsistencies or unclear points.
The case study also highlighted several points in which SODM+T should be changed.

The WS interface model inherited from SODM did not produce the expected productivity
benefits when compared to directly developing the WSDL document, as it operated at the
same level of abstraction: therefore, future applications of SODM+T would be advised to
skip them. While the performance inference algorithms could have been applied as early
as when the service process models were first developed, their performance requirements
would not have helped much, since these models do not indicate who should perform
each task. For this reason, the performance inference step is best delayed to the very last
step before implementation: extended service composition models. These minor issues do
not detract from the overall success of this case study: SODM+T showed that it could
guide the user from high-level descriptions to implementation and then assist the user in
producing the concrete performance tests themselves.

References
[1] Apache Software Foundation. Apache CXF, November 2013. URL https://cxf.

apache.org/. Last checked: November 6th, 2013. 7.20, 7.32

[2] P. Aston and C. Fizgerald. The Grinder, a Java Load Testing Framework, 2012. URL
http://grinder.sourceforge.net/. Last checked: November 6th, 2013. 7.32

[3] T. Bear. Grinder Analyzer homepage, July 2012. URL http://track.sourceforge.
net/. Last checked: November 6th, 2013. 7.32

[4] M. V. de Castro. Aproximación MDA para el desarrollo orientado a servicios de
sistemas de información web: del modelo de negocio al modelo de composición de
servicios web. PhD thesis, Universidad Rey Juan Carlos, March 2007. 7.5

[5] Eclipse Foundation. Homepage of the mdt uml2 project, June 2013. URL http:
//www.eclipse.org/modeling/mdt/?project=uml2. Last checked: November 6th,
2013. 7.19

[6] Eclipse Foundation. Homepage of the papyrus project, June 2013. URL http:
//www.eclipse.org/papyrus/. Last checked: November 6th, 2013. 7.19

[7] eviware.com. soapUI home page, 2012. URL http://www.soapui.org/. 7.32

[8] GoPivotal. Spring Framework homepage, November 2013. URL http://projects.
spring.io/spring-framework/. Last checked: November 6th, 2013. 7.20, 7.28

[9] GoPivotal. Spring Roo homepage, August 2013. URL http://projects.spring.
io/spring-roo/. Last checked: November 6th, 2013. 7.20

[10] International Electrotechnical Commission. IEC/FDIS 62264-2:2004 – enterprise-
control system integration – part 2: Model object attributes, 2004. 7.20

7.36

https://cxf.apache.org/
https://cxf.apache.org/
http://grinder.sourceforge.net/
http://track.sourceforge.net/
http://track.sourceforge.net/
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/papyrus/
http://www.eclipse.org/papyrus/
http://www.soapui.org/
http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-roo/
http://projects.spring.io/spring-roo/

References

[11] JBoss Community. Hibernate homepage, November 2013. URL http://hibernate.
org/. Last checked: November 6th, 2013. 7.20

[12] D. S. Kolovos. Epsilon ModeLink, 2012. URL http://eclipse.org/gmt/epsilon/
doc/modelink/. Last checked: November 6th, 2013. 7.32

[13] Object Management Group. MDA Guide version 1.0.1, June 2003. URL http:
//www.omg.org/cgi-bin/doc?omg/03-06-01. Last checked: November 6th, 2013.
7.7

[14] Object Management Group. Unified Modeling Language (UML) 2.4.1, August 2011.
URL http://www.omg.org/spec/UML/2.4.1/. Last checked: November 6th, 2013.
7.17

[15] The hsql Development Group. HSQLDB homepage, January 2013. URL http:
//hsqldb.org/. Last checked: November 6th, 2013. 7.25

[16] The PostgreSQL Gobal Development Group. PostgreSQL homepage, November 2013.
URL http://www.postgresql.org/. Last checked: November 6th, 2013. 7.25

7.37

http://hibernate.org/
http://hibernate.org/
http://eclipse.org/gmt/epsilon/doc/modelink/
http://eclipse.org/gmt/epsilon/doc/modelink/
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/spec/UML/2.4.1/
http://hsqldb.org/
http://hsqldb.org/
http://www.postgresql.org/

8
Conclusions and future work

8.1. Obtained results

The present chapter closes the Thesis by listing the obtained results in Section 8.2,
outlining the future lines of work branching from this Thesis in Section 8.2 and listing the
publications produced during the present Thesis in Section 8.3.

8.1 Obtained results
Throughout the years, market forces have required more advanced products at ever
decreasing costs, forcing manufacturing enterprises to specialise in their core strengths and
collaborating with others for those activities that are outside their value-adding activities.
This has resulted in an accelerating trend towards increasingly distributed manufacturing
systems, where networks of manufacturing agents collaborate in a variety of configurations,
which can range from the rigid hierarchic model to the highly flexible but hard to manage
heterarchical model.

One of these configurations is known as a holarchy: a network of holons or entities that
are both wholes (hol-) and parts (-on). A holon can be part of several higher-level holons
and also be formed by several lower-level holons. Holonic manufacturing has received
considerable attention in the area of manufacturing control while implemented as multi-
agent systems, but not so much in the area of enterprise integration, where the emergent
behaviour may make it difficult to offer the necessary behaviour and performance guarantees
that inter-enterprise integration requires. In addition, intelligent agent platforms usually
have issues of their own: they may have a high learning curve for existing IT workers, they
are hard to integrate with legacy technologies and the widely available options may be
immature in comparison with other technologies.

In the last few years, these issues have prompted researchers to integrate service-based
technologies into intelligent agents. Services are pieces of software that can be reused from
anywhere in the organisation to perform a certain task. Their implementations tend to be
based on the same standards as the Web (making them Web Services) and use off-the-shelf
technology that is easier to integrate with existing systems. Nevertheless, the issues with
their emergent behaviour in some contexts still stand.

The present Thesis has proposed relaxing the tight link commonly seen between holons
and agents and instead starting from the view of holons as services, which may need
varying degrees of intelligence to perform their role: from business holons that need to
be predictable and repeatable and may use a combination or composition of services, to
machine control holons that may exhibit emergent behaviour by using intelligent agents
with more advanced communication primitives. The Thesis has focused on the business
and high-level manufacturing management holons which constitute the interface between
levels 3 and 4 of the ISA-95 enterprise integration architecture. The holarchy formed by
these business holons underlying each high-level manuafacturing agent can be seen as a
Service Oriented Architecture: a view of the organisation as a well-organised catalogue of
services, normally implemented as Web Services.
While a SOA is a good fit for implementing a holarchy of business holons, developing

one is not an easy task. For this reason, a multitude of methodologies have been suggested
prior to the beginning of this Thesis. The survey presented in this Thesis studied a
considerable range of methodologies, from the high-level conceptual methodology by Erl
to the comprehensive IBM SOMA methodology. Since many Spanish manufacturing firms
are small or medium enterprises with fewer resources dedicated to internal IT, other more

8.1

8. Conclusions and future work

lightweight methodologies such as BPSOM or SODM were considered. In particular, the
SODM methodology was found to have a good balance between cost and capabilities, and
its model-driven approach based on constructing increasingly detailed representations of
the SOA ensured a certain degree of formalisation and automation.
Nevertheless, a common shortcoming in all these methodologies was found: none of

them explicitly assisted users in developing test cases for the services themselves. For that
reason, the present Thesis suggested two basic approaches for extending SODM so it could
help potential users test their services: adding high-level performance requirements that
would trickle from the high-level service compositions to the individual WS, and specifying
service contracts which would describe the expected behaviour of the services. These
two extension paths would assist non-functional and functional testing of the services,
respectively.
This thesis has developed the side dedicated to supporting non-functional testing,

resulting in an extended SOA methodology called SODM+T (SODM with Testing)
that can be used to analyse and design the holarchies of business holons in distributed
manufacturing systems. SODM+T reimplements most of SODM on top of the state-of-the-
art Epsilon toolkit and extends the SODM service process and service composition models
with local and global performance annotations on the expected load and response times of
each action and the whole workflow, respectively. The global performance annotations are
mandatory, while the local performance annotations that deal with the modeller’s partial
knowledge of the computational cost of each action in the model: this partial knowledge
may include minimum times or a relative weight. Repetitive activities can be modelled
using local annotations indicating the estimated number of times that an action and its
contents will be executed.
These partially annotated extended models are then processed by two algorithms that

infer the expected load and required response time for each action in the activity, helping
developers study the implications and feasibility of the performance requirements at an
early stage of development of the SOA, before concrete services have been implemented.
The load or throughput inference algorithm is rather simple: essentially, it propagates the
load received through the start of the process or composition to the rest of the actions by
computing a certain expression in each action, while ensuring that actions are not traversed
before their predecessors. In contrast, the response time or time limit inference algorithm
has gone through many revisions, resulting in three high-level alternative implementations:

• A formulation based on linear programming (LP) using the glpsol solver from the
GNU Linear Programming Kit. The annotated models are transformed automatically
into a problem written in the GNU MathProg language, which is solved by glpsol:
the results are fed back to the model.
This formulation is easy to understand and verify, but suffers from performance
issues due to the exponential growth of the number of paths in a model as more
nodes are added. It is also complicated by the need for invoking an external tool
and interpreting its results.

• A simpler formulation based on an ad hoc graph-based algorithm that enumerates
all the paths from the initial node to the final nodes and traverses the paths from
the most to the least strict ones.
The first versions used fixed point techniques and had no support for minimum times,

8.2

8.1. Obtained results

weights or expected iteration counts. Later versions solved these issues and were
considerably simplified, while still producing equivalent results to the LP formulation.
Nevertheless, the basic performance issues still remained, as the overall ideas had
not changed.

• A more advanced incremental graph-based algorithm that automatically discarded
uninteresting subpaths as soon as possible, by defining a novel partial relation order
on subpaths. This partial relation order was devised after several attempts using
graph transformations and model aggregating and is justified in Appendix A.
Interestingly, this version does not have the performance problems of the previous
versions. While the worst case could still have exponential cost, the observed average
case is much more manageable and has below-exponential cost. Additional studies
show that performance is better with stricter time limits, but not exceedingly so.

After performing theoretical and empirical studies on the above algorithms, the next
step was to standardise the ad hoc notation that was being used. The throughput
inference algorithm and the advanced incremental graph-based algorithm were ported
from the SODM service process and service composition models to standard UML activity
models developed with the Eclipse Papyrus editor, annotated with a selected subset of the
Generic Quantitative Analysis Modelling (GQAM) subpackage of the OMG Modelling and
Analysis of Real-Time and Embedded Systems (MARTE) profile. During this process, the
algorithms were further improved by adding support for UML structured and loop nodes.

So far, the MARTE-based models could only be used to design the performance require-
ments at an early stage. The next step in this Thesis was developing a general approach
that used model extraction and model weaving to link the final design or implementation of
the service with the original performance requirements, add the required technology-specific
information and produce the first version of a set of performance test artefacts. These test
artefacts could be then used to repeatedly check if a service met the requirements that
were originally set. In particular, this general approach was implemented for two different
target technologies and applied on a simple case study:

• Repurposing regular tests based on the popular JUnit testing framework for Java-first
Web Services, using the facilities provided by the ContiPerf library.

• Generating new tests for the The Grinder performance testing framework for contract-
first Web Services. In contrast with the previous implementation, this implementation
can be used with Web Services written in any language, as long as they are described
using a Web Services Description Language (WSDL) document. The Grinder was
used instead of JMeter or PerfUnit due to its code-based approach, which was more
amenable to the model-driven approach followed in the Thesis.
In addition to the The Grinder configuration files, the tool generates TestGenerator
descriptions to generate the input data, Velocity templates for producing the input
messages from the input data and Jython code to kickstart the use of The Grinder.
Each of these intermediate results are plain text documents that can be manually
customised to make them better suited to the needs of the tester. TestGenerator
itself is a new domain-specific language that was implemented during this Thesis to
help generate the required test data: due to size constraints, only a short description
of the language has been included.

8.3

8. Conclusions and future work

After extending SODM with the above algorithms and test generation facilities, a
larger case study was conducted in a manufacturing context by applying the SODM+T
methodology from start to end on a part of a ceramic tile manufacturing firm. The case
study pointed to some places in which the inherited elements from SODM or the extensions
themselves could be improved: for instance, the SODM WS interface models were not found
to have a positive effect on productivity, and the performance inference algorithms were
delayed until the final extended service composition models were produced. Nevertheless,
the overall results were satisfactory: SODM+T managed to guide the modeller from
a high-level description of the firm to concrete performance tests for some of the Web
Services. The case study also revealed a few issues in the quality of the object model
of the ISA-95 specification: missing conceptual areas (e.g. suppliers), a high degree of
duplication of information and lack of attention to some issues that may highly impact
data quality.
In summary, SODM+T users can now design the performance requirements of their

SOA at an early stage without worrying about the performance of the inference algorithms
and using readily available tools. After these models are ready and the services have been
implemented by other means, the models can be reused to generate performance testing
artefacts for Java-first or contract-first Web Services, further increasing their value.
It is important to note that in addition to the contributions directly related to the

present Thesis, the Epsilon model management framework used to implement SODM+T
was also improved in many large and small ways as issues and opportunities emerged.
After participating in the Epsilon community since 2009, the author of the present Thesis
was invited to become an official Epsilon developer in 2011 and has continued sending
contributions ever since (more than 380 commits to date), such as better tooling for unit
testing and debugging Epsilon-based model management tasks, improving the Eugenia
graphical editor generator, updating the ModeLink model weaving tools and refining some
aspects of model validation and in-place transformations in Epsilon. These contributions
have not only benefited SODM+T, but also the increasingly large community of users
behind Epsilon.

8.2 Future work
The author intends to continue the work presented in this Thesis in several areas. Some of
this work is already underway at an early stage. Some of these areas are:

• Extending the case study in this Thesis to cover a larger subset of the described
enterprise and plant management activities. Due to space limitations, the current
case study only covered a specific WS within a certain holon. Extending the case
study to multiple holons and multiple WS should be easier now with the insights
gained from implementing the ISA-95 object model.

• Defining an improved notation for describing manufacturing processes that would
simplify the data entry into a ISA-95 based system such as the one implemented
for the case study in this Thesis. Manually introducing each step and relating it to
the others was found to be a cumbersome and error-prone activity which would be
highly amenable to computer-based modelling.

8.4

8.3. Publications

• Providing additional guidelines for defining the minimum time limits and weights
used in the performance annotations. While some general rules have been proposed
in the relevant chapters, a step-by-step methodology would greatly simplify the
process for potential users.

• Adding a higher level of autonomy and intelligence to some of the holons, by
integrating Enterprise Service Buses, Complex Event Processing and/or intelligent
agent technologies into the service-based holons that require it. Again, this is the
opposite approach to what is usually done by the artificial intelligence community:
grafting service-oriented capabilities to the agents.

In particular, a quick survey of the field shows ASEME to be a strong contender for
a lightweight intelligent agent methodology that could potentially be combined with
SODM+T.

• Supporting functional testing in addition to non-functional testing, as was originally
suggested when SODM was selected as a base technology. These functional tests
required descriptions of the intended behaviour of the services: originally, WSCoL
was selected as a good candidate notation.

During a recent 3-month stay, the WSCoL language was updated to a recent Web
Service composition engine and rebased on top of the standard W3C XQuery 1.0
language to solve some important issues in its implementation. With a proper
notation for service contracts, the next step is using the contracts to derive or
evaluate test cases through several testing techniques in the literature.

8.3 Publications
The publications derived from the work in the present Thesis are listed below, from most
recent to least recent. Some of the publications are under review and are noted as such.
In addition to the publications, the Eclipse-based tools developed during the present

Thesis have been published as open source under the Eclipse Public License (EPL), and
are available from the SODM+T website at http://neptuno.uca.es/~sodmt.

8.3.1 Journal articles
• Under review: A. García-Domínguez, I. Medina-Bulo and M. Marcos Bárcena,

“Early inference of performance requirements in Web Service composition models”,
Information and Software Technology (JCR 2012: 1.522), ISSN 0950-5849.

• Under review: Dimitrios S. Kolovos, A. García-Domínguez, Louis M. Rose and
Richard F. Paige, “Towards Automated Generation of Graphical Model Editors from
Annotated Metamodels”, Software and Systems Modeling (JCR 2012: 1.250), ISSN
1619-1374.

• L. Prades, F. Romero, A. Estruch, A. García-Domínguez and J. Serrano, “Defin-
ing a Methodology to Design and Implement Business Process Models in BPMN

8.5

http://neptuno.uca.es/~sodmt

8. Conclusions and future work

According to the Standard ANSI/ISA-95 in a Manufacturing Enterprise”, Pro-
cedia Engineering, no. 63, p. 115-122, September 2013, ISSN 1877-7058. DOI:
10.1016/j.proeng.2013.08.283.

• A. García-Domínguez, M. Marcos-Bárcena, I. Medina-Bulo and L. Prades-Martell,
“Towards an Integrated SOA-based Architecture for Interoperable and Responsive
Manufacturing Systems”, Procedia Engineering, no. 63, p. 123–132, September 2013,
ISSN 1877-7058. DOI: 10.1016/j.proeng.2013.08.268.

• A. García-Domínguez, I. Medina-Bulo and M. Marcos Bárcena, “Performance Test
Case Generation for Java and WSDL-based Web Services from MARTE”, Interna-
tional Journal on Advances in Internet Technology, vol. 5, no. 3–4, p. 173–185,
December 2012, ISSN 1942-2652.
This is a considerably extended version of the early work presented in ICIW 2012,
after implementing the general approach outlined in the article on top of two different
technologies.

• A. García-Domínguez, M. Marcos-Bárcena and I. Medina-Bulo, “A Comparison of
BPMN 2.0 with Other Notations for Manufacturing Processes”, Key Engineering
Materials, no. 502, p. 1–6, February 2012, ISSN 1013-9826.
This is an improved version of the MESIC 2011 paper, which was selected among
the papers from the conference.

• A. García-Domínguez, I. Medina-Bulo and M. Marcos-Bárcena. “Hacia la Integración
de Técnicas de Pruebas en Metodologías Dirigidas por Modelos para SOA”, Novática
204, p. 62–68, ISSN 0211-2124.
This is an extended and revised version of the JSWEB 2009 paper, which was selected
among the papers in the conference to be part of a special number on Web Services
and SOA.

8.3.2 Conference papers
ICIW 2012 A. García-Domínguez, I. Medina-Bulo and M. Marcos-Bárcena, “An Approach

for Performance Test Artefact Generation for Multiple Technologies from MARTE-
Annotated Workflows”, Proceedings of the 7th International Conference on Internet
and Web Applications and Services, p. 221–226, June 2012, Stuttgart, Germany.
ISBN: 978-1-61208-200-4.

TTC 2011 Louis M. Rose, A. García-Domínguez, James R. Williams, Dimitrios S. Kolovos,
Richard F. Paige and Fiona A. C. Polack, “Saying Hello World with Epsilon -
A Solution to the 2011 Instructive Case”, Electronic Proceedings in Theoretical
Computer Science, vol. 74, p. 332–339, November 2011, Zurich, Switzerland. DOI:
10.4204/EPTCS.74.27.

MoDELS 2011 A. García-Domínguez, Dimitrios S. Kolovos, Louis M. Rose, Richard F.
Paige and I. Medina-Bulo, “EUnit: a Unit Testing Framework for Model Management
Tasks”, Proceedings of the ACM/IEEE 14th International Conference on Model

8.6

8.3. Publications

Driven Engineering Languages and Systems, vol. 6981/2011, p. 395–409, October
2011, Wellington, New Zealand. DOI: 10.1007/978-3-642-24485-8_29.

MESIC 2011 A. García-Domínguez, M. Marcos-Bárcena and I. Medina-Bulo, “A Compar-
ison of BPMN 2.0 with Other Notations for Manufacturing Processes”, Proceedings
of the 4th Manufacturing Engineering Society International Conference, vol. 1431, p.
593–600, September 2011, Cádiz, Spain. DOI: 10.1063/1.4707613.

ICSOFT 2011 A. García-Domínguez, I. Medina-Bulo and M. Marcos-Bárcena, “Model-
driven Design of Performance Requirements with UML and MARTE”, Proceedings
of the 6th International Conference on Software and Data Technologies, vol. 2, p.
54–63, July 2011, Seville, Spain. ISBN 978-989-8425-77-5.

QSIC 2011 A. García-Domínguez, I. Medina-Bulo and M. Marcos-Bárcena, “Model-
Driven Design of Performance Requirements”, Proceedings of the 11th Interna-
tional Conference on Quality Software, p. 76–85, July 2011, Madrid, Spain. DOI:
10.1109/QSIC.2011.16.

IPROMS 2010 A. García-Domínguez, I. Medina-Bulo and M. Marcos-Bárcena, “Inference
and propagation of performance constraints from abstract to concrete business
workflows”, Proceedings of the Sixth Virtual International Conference of the EU
FP6 I*PROMS Network of Excellence, November 2010.

JISBD 2010 A. García-Domínguez, I. Medina-Bulo and M. Marcos-Bárcena, “SODM+T:
Inferencia de restricciones de rendimiento”, Actas de las XV Jornadas de Ingeniería
del Software y Bases de Datos, p. 103–106, September 2010, Valencia, Spain. ISBN
978-84-92812-51-6.

MoSE 2010 A. García-Domínguez, I. Medina-Bulo and M. Marcos-Bárcena. “Inference
of performance constraints in Web Service composition models”, CEUR Workshop
Proceedings of the 2nd International Workshop on Model-Driven Service Engineering,
vol. 608, p. 55–66, June 2010, Málaga, Spain. ISSN 1613-0073.

MESIC 2009 I. Medina-Bulo, A. García-Domínguez, F. Aguayo, L. Sevilla and M. Marcos-
Bárcena. “Proposal of a Methodology for Implementing a Service-Oriented Architec-
ture in Distributed Manufacturing Systems”, Proceedings of the 3rd Manufacturing
Engineering Society International Conference, AIP Conference Proceedings, vol.
1181, no. 622, p. 622–632, November 2009, Alcoy, Spain. ISBN 978-0-7354-0722-0.

JSWEB 2009 A. García-Domínguez, I. Medina-Bulo, M. Marcos-Bárcena. “Hacia la
Integración de Técnicas de Pruebas en Metodologías Dirigidas por Modelos para
SOA”, Actas de las V Jornadas en Servicios Web y SOA, p. 167–180, October 2009,
Madrid, Spain. ISBN 987-84-692-6832-2.

8.3.3 Book chapters
• A. Jiménez-Rielo, D. Granada and A. García-Domínguez, Eugenia, in “Desarrollo

de software dirigido por modelos: conceptos, métodos y herramientas”, Ra-Ma, 2013.
ISBN 978-84-9964-215-4.

8.7

8. Conclusions and future work

• A. García-Domínguez, I. Medina-Bulo, M. Marcos-Bárcena, An Approach for Model-
Driven Design and Generation of Performance Test Cases with UML and MARTE,
in “Software and Data Technologies”, Communications in Computer and Information
Science, Springer Berlin Heidelberg, no. 303, p. 136–150, January 2013. ISBN
978-3-642-36176-0.

8.8

A
Related proofs

A.1. Path ordering simplification

sinkana1

bnb1

cnc1source

Figure A.1. General situation when comparing two paths pa = {a1, . . . , an, sink} and
pb = {b1, . . . , bn, sink}: the ancestors pc = {source, c1, . . . , cn} are not
known a priori

This appendix is dedicated to collecting some of the long proofs that are used throughout
the text. The proofs were moved here in order to simplify the reading of the original
chapters, while preserving these important details.

A.1 Path ordering simplification
If all paths between the source and the sinks need to complete in L > 0 seconds, Section 5.4.2
defined the set of valid node and path constraints as:

C(L) = {(m,w) |m ∈ [0, L], w ∈ R+
0 } (A.1)

The elements of C(L) must be ordered to know which constraints are always stricter
than others.
Roughly speaking, c(pa) is less or just as strict as c(pb) if the slack assigned per unit

of weight in any path of the form pc + pa is greater or equal than that in pc + pb, for any
time limit t ≤ L and any path pc formed by common ancestors from pa and pb, ensuring
that w(pc + pa), w(pc + pb) > 0. Figure A.1 illustrates the idea.
It would be very inefficient to actually test for all pc + pa and pc + pb in the graph.

Instead, any possible c(pc) = (x, y) ∈ C(L) for which c(pc + pa), c(pc + pb) ∈ C(L) will be
considered. �s(L) could be defined as:

(a, b) �s(L) (c, d)
⇔ ∀t ∈ [0, L]∀x ∈ [0, L]∀y ∈ R+

0

b+ y, d+ y > 0 ∧ t− (a+ x), t− (c+ x) ≥ 0

⇒ t− (a+ x)
b+ y

≥ t− (c+ x)
d+ y

(A.2)

However, the definition in (A.2) is too abstract to be useful in an actual algorithm. A
simpler predicate must be derived from it:

∀t ∈ [0, L]∀x ∈ [0, L]∀y ∈ R+
0

b+ y, d+ y > 0 ∧ t− (a+ x), t− (c+ x) ≥ 0

⇒ t− (a+ x)
b+ y

≥ t− (c+ x)
d+ y

⇔ ∀t ∈ [0, L]∀x ∈ [0, L] ∀y ∈ R+
0

b+ y, d+ y > 0 ∧ t− x ≥ a, t− x ≥ c

⇒ t− (a+ x)
b+ y

≥ t− (c+ x)
d+ y

A.1

A. Related proofs

⇔ ∀t ∈ [0, L]∀x ∈ [0, L] ∀y ∈ R+
0

b+ y, d+ y > 0 ∧ t− x ≥ a, t− x ≥ c

⇒ (t− a− x)(d+ y) ≥ (t− (c+ x))(b+ y)
⇔ ∀t ∈ [0, L]∀x ∈ [0, L] ∀y ∈ R+

0

b+ y, d+ y > 0 ∧ t− x ≥ a, t− x ≥ c

⇒ dt− ad− dx+ yt− ay − xy ≥ bt− bc− bx+ yt− cy − xy
⇔ ∀t ∈ [0, L]∀x ∈ [0, L] ∀y ∈ R+

0

b+ y, d+ y > 0 ∧ t− x ≥ a, t− x ≥ c

⇒ dt− ad− dx− ay ≥ bt− bc− bx− cy
⇔ ∀t ∈ [0, L]∀x ∈ [0, L] ∀y ∈ R+

0

b+ y, d+ y > 0 ∧ t− x ≥ max{a, c}
⇒ dt− bt− dx+ bx ≥ ad− bc+ ay − cy

⇔ ∀t ∈ [0, L]∀x ∈ [0, L] ∀y ∈ R+
0

b+ y, d+ y > 0 ∧ t− x ≥ max{a, c}
⇒ (d− b)t− (d− b)x ≥ ad− bc+ (a− c)y

⇔ ∀t ∈ [0, L]∀x ∈ [0, L] ∀y ∈ R+
0

b+ y, d+ y > 0 ∧ t− x ≥ max{a, c}
⇒ (d− b)(t− x) ≥ ad− bc+ (a− c)y

t and x have been moved to one side of the inequation and y to the other. Since ≥ for
R is transitive, it is only necessary to find the conditions required so

min{(d− b)(t− x) | 0 ≤ t, x ≤ L ∧ t− x ≥ c}
≥ max{ad− bc+ (a− c)y | y ∈ R+

0 }

In order for ad− bc+ (a− c)y to have an upper bound, it must be that a ≤ c, as y can
grow indefinitely. In that case, the maximum is equal to ad− bc, for y = 0.
Computing min{(d − b)(t − x)} requires considering the sign of d − b and the new

assumption, a ≤ c, which is equivalent to max{a, c} = c:

min{(d− b)(t− x)} =

(d− b) min{t− x} = (d− b)c d− b ≥ 0
(d− b) max{t− x} = (d− b)L otherwise.

Collecting the previous results, the relation �s(L) for this case is defined as:

(a, b) �s(L) (c, d)⇔ a ≤ c ∧ (d ≥ b ∧ (d− b)c ≥ ad− bc
∨ d < b ∧ (d− b)L ≥ ad− bc) (A.3)

Equation (A.3) can be simplified further when d ≥ b: (d− b)c ≥ ad− bc is equivalent to
dc− bc ≥ ad− bc, cd ≥ ad, c ≥ a and finally a ≤ c, which is checked in a previous term.
Therefore, this term can be removed. Cleaning up some other terms to improve readability
results in the following definition, equivalent to the previous one:

(a, b) �s(L) (c, d)⇔ a ≤ c ∧ (b ≤ d ∨ b > d ∧ (b− d)L ≤ bc− ad) (A.4)

A.2

A.2. Path ordering as a partial order

The predicate in (A.4) implies the predicate in (A.2), by construction. However, this
means that all pairs (L, x) and (L, y) are considered just as strict regardless of their weights,
which is unintuitive and may hinder early validation of the constraints. Equation (A.4)
will be revised to forbid that (L, b) �s(L) (L, c) when b > c:

(a, b) �s(L) (c, d)⇔ a ≤ c ∧ (b ≤ d ∨ a < L ∧ b > d ∧ (b− d)L ≤ bc− ad) (A.5)

The definition in (A.5) can be simplified one step further, as b > d is simply the negation
of the b ≤ d:

(a, b) �s(L) (c, d)⇔ a ≤ c ∧ (b ≤ d ∨ a < L ∧ (b− d)L ≤ bc− ad) (A.6)

The version in A.6 is the one used in the final algorithm.

A.2 Path ordering as a partial order
In the previous section, the original definition of �s(L) was simplified. This section will
prove that �s(L) is a partial order on C(L).

Lemma 1. �s(L) is reflexive in C(L).

Proof. Let (a, b) ∈ C(L). It is trivially true that a ≤ a and b ≤ b. Therefore, a ≤ a∧ b ≤ b
holds and, by definition of �s(L), (a, b) �s(L) (a, b).

Lemma 2. �s(L) is antisymmetric in C(L).

Proof.

(a, b) �s(L) (c, d) ∧ (c, d) �s(L) (a, b)
⇒ a ≤ c ∧ (b ≤ d ∨ a < L ∧ b > d ∧ (b− d)L ≤ bc− ad)
∧ c ≤ a ∧ (d ≤ b ∨ c < L ∧ d > b ∧ (d− b)L ≤ ad− bc)

⇒ a = c ∧ (b ≤ d ∨ a < L ∧ b > d ∧ (b− d)L ≤ bc− ad)
∧ (d ≤ b ∨ c < L ∧ d > b ∧ (d− b)L ≤ ad− bc)

⇒ a = c ∧ (b ≤ d ∨ a < L ∧ b > d ∧ (b− d)L ≤ ba− ad)
∧ (d ≤ b ∨ a < L ∧ d > b ∧ (d− b)L ≤ ad− ba)

⇒ a = c ∧ (b ≤ d ∨ a < L ∧ b > d ∧ (b− d)L ≤ (b− d)a)
∧ (d ≤ b ∨ a < L ∧ d > b ∧ (d− b)L ≤ (d− b)a)

⇒ a = c ∧ (b ≤ d ∨ a < L ∧ b > d ∧ L ≤ a)
∧ (d ≤ b ∨ a < L ∧ d > b ∧ L ≤ a)

⇒ a = c ∧ (b ≤ d ∨ ⊥) ∧ (d ≤ b ∨ ⊥)
⇒ a = c ∧ b ≤ d ∧ d ≤ b

⇒ a = c ∧ b = d

⇒ (a, b) = (c, d)

A.3

A. Related proofs

Lemma 3. �s(L) is transitive in C(L).

Proof. Expanding �s(L) results in a rather long formula:

(a, b) �s(L) (c, d) ∧ (c, d) �s(L) (e, f)
⇒ a ≤ c ∧ (b ≤ d ∨ a < L ∧ b > d ∧ (b− d)L ≤ bc− ad)
∧ c ≤ e ∧ (d ≤ f ∨ c < L ∧ d > f ∧ (d− f)L ≤ de− cf)

⇒ a ≤ c ≤ e

∧ (b ≤ d ∧ d ≤ f

∨ b ≤ d ∧ c < L ∧ d > f ∧ (d− f)L ≤ de− cf
∨ a < L ∧ b > d ∧ (b− d)L ≤ bc− ad ∧ d ≤ f

∨ a < L ∧ b > d ∧ (b− d)L ≤ bc− ad
∧ c < L ∧ d > f ∧ (d− f)L ≤ de− cf)

It can already be concluded that a ≤ e, using the transitivity of ≤ in R. However,
the rest of the formula is rather complicated. This predicate will now be converted into
Disjunctive Normal Form and then each of its 4 conjunctive clauses will be proved to
imply (a, b) �s(L) (c, d) separately.

1. The first conjunctive clause is

a ≤ c ≤ e ∧ b ≤ d ∧ d ≤ f

Since ≤ in R is transitive, b ≤ f . It is already known that a ≤ e, so it can be
concluded that (a, b) �s(L) (e, f) in this case.

2. The second conjunctive clause is

a ≤ c ≤ e ∧ b ≤ d ∧ c < L ∧ d > f ∧ (d− f)L ≤ de− cf

This conjunctive clause relates b with d and d with f , but not b with f . To solve this
issue, the trivially true term b ≤ f ∨ b > f will be added. Converting the resulting
expression into Disjunctive Normal Form produces 2 conjunctive clauses:
a) The first one includes b ≤ f , immediately implying that (a, b) �s(L) (e, f), since

it is already known that a ≤ e.
b) The second one includes b > f . As c < L and a ≤ c, concluding that a < L.

Only (f − b)L ≤ be− af needs to be proved, following these steps:

a ≤ c ∧ b ≤ d ∧ (e, f) ∈ C(L) ∧ (d− f)L ≤ de− cf
⇒ a ≤ c ∧ b ≤ d ∧ e ≤ L ∧ (d− f)L ≤ de− cf
⇒ a ≤ c ∧ b ≤ d ∧ e− L ≤ 0 ∧ (d− f)L ≤ de− cf
⇒ a ≤ c ∧ b(e− L) ≥ d(e− L) ∧ (d− f)L ≤ de− cf
⇒ a ≤ c ∧ b(e− L) ≥ d(e− L) ∧ −fL ≤ d(e− L)− cf
⇒ a ≤ c ∧ −fL ≤ b(e− L)− cf
⇒ a ≤ c ∧ bL− fL ≤ be− cf
⇒ a ≤ c ∧ (b− f)L ≤ be− cf
⇒ (b− f)L ≤ be− af

A.4

A.2. Path ordering as a partial order

3. The third conjunctive clause is
a ≤ c ≤ e ∧ a < L ∧ b > d ∧ (b− d)L ≤ bc− ad ∧ d ≤ f

This has the same problem as in the previous clause. It can be solved it in the same
way, by adding the trivially true term b ≤ f ∨ b > f , converting into Disjunctive
Normal Form and studying each conjunctive clause:
a) Again, the first one includes b ≤ f , implying that (a, b) �s(L) (e, f)).
b) The second one includes a < L and b > f . It is already known that a ≤ e, so it

is only necessary to prove that (b− f)L ≤ be− af . The process is as follows:
c ≤ e ∧ a < L ∧ d ≤ f ∧ (b− d)L ≤ bc− ad
⇒ c ≤ e ∧ L− a > 0 ∧ d ≤ f ∧ (b− d)L ≤ bc− ad
⇒ c ≤ e ∧ d(L− a) ≤ f(L− a) ∧ (b− d)L ≤ bc− ad
⇒ c ≤ e ∧ d(L− a) ≤ f(L− a) ∧ bL− dL ≤ bc− ad
⇒ c ≤ e ∧ d(L− a) ≤ f(L− a) ∧ bL ≤ bc+ (L− a)d
⇒ c ≤ e ∧ bL ≤ bc+ (L− a)f
⇒ bL ≤ be+ (L− a)f
⇒ bL− fL ≤ be− af
⇒ (b− f)L ≤ be− af

4. The fourth conjunctive clause is
a < L ∧ b > d ∧ (b− d)L ≤ bc− ad

∧ c < L ∧ d > f ∧ (d− f)L ≤ de− cf)

It is already known that a < L and since b > d ∧ d > f , it can be concluded that
b > f . (b− f)L ≤ be− af has to be proved. The steps required are as follows:

a, c < L ∧ b, d > f ∧ (e, f) ∈ C(L)
∧ (b− d)L ≤ bc− ad ∧ (d− f)L ≤ de− cf

⇒ L− a, L− c > 0 ∧ b, d > f ∧ (e, f) ∈ C(L)
∧ (b− d)L ≤ bc− ad ∧ (d− f)L ≤ de− c)

⇒ L− a, L− c > 0 ∧ b, d > f ∧ f ≥ 0
∧ (b− d)L ≤ bc− ad ∧ (d− f)L ≤ de− cf

⇒ L− a, L− c > 0 ∧ b, d > 0
∧ (b− d)L ≤ bc− ad ∧ (d− f)L ≤ de− cf

⇒ L− a, L− c > 0 ∧ b, d > 0
∧ bL− dL ≤ bc− ad ∧ dL− fL ≤ de− cf

⇒ L− a, L− c > 0 ∧ b, d > 0
∧ bL− bc ≤ dL− ad ∧ dL− de ≤ fL− cf

⇒ L− a, L− c > 0 ∧ b, d > 0
∧ b(L− c) ≤ d(L− a) ∧ d(L− e) ≤ f(L− c)

⇒ L− a, L− c > 0 ∧ b, d > 0
∧ (L− c)/(L− a) ≤ d/b ∧ (L− e)/(L− c) ≤ f/d

A.5

A. Related proofs

⇒ (L− c)(L− e)
(L− a)(L− c) ≤

df

bd

⇒ L− e
L− a

≤ f

b

⇒ (L− e)b ≤ (L− a)f
⇒ bL− fL ≤ be− af
⇒ (b− f)L ≤ be− af

Theorem 1. The minimum element in C(L) according to �s(L) is (0, 0).

Proof. From the definition of C(L), it is known that for every (a, b) ∈ C(L), 0 ≤ a∧ 0 ≤ b
is true, and therefore (0, 0) �s(L) (a, b). It will now be proved that (a, b) ∈ C(L)−{(0, 0)}∧
(c, d) = (0, 0)⇒ (a, b) �s(L) (c, d):

• If a > 0, a � c and so (a, b) �s(L) (c, d).

• If b > 0, b � d. It is true that b > d, but simplifying (b− d)L ≤ bc− ad in this case
results in bL ≤ 0, which is a contradiction, as b, L > 0.

Since (0, 0) �s(L) (a, b) for all (a, b) ∈ C(L) and (a, b) �s(L) (0, 0) for all (a, b) ∈
C(L)− {(0, 0)}, it follows that (0, 0) is the minimum element of �s(L) in C(L).

Theorem 2. �s(L) defines a partial order on C(L).

Proof. From Lemmas 1, 2 and 3, it can be concluded that �s(L) is reflexive, antisymmetric
and transitive in C(L).

A.6

B
The Epsilon EUnit testing

framework

B.1. Motivation

EUnit is an unit testing framework specifically developed during this work to test model
management tasks, based on the Epsilon Object Language (EOL) and the Epsilon Ant
workflow tasks. It provides assertions for comparing models, files and directories. Tests
can be reused with different sets of models and input data, and differences between the
expected and actual models can be graphically visualised. It is available as open source
from the official Epsilon website1.

This chapter discusses the motivation behind EUnit, describes how tests are organized
and written and shows two examples of how a model-to-model transformation can be
tested with EUnit. This is followed by a discussion of how EUnit can be extended to
support other modelling and model management technologies. Finally, two cases studies
are shown on its usage for performing regression testing for the EuGENia graphical model
editor generator and for performing unit testing for the SODM with Testing (SODM+T)
performance inference algorithms of Chapter 5.

B.1 Motivation
Model-driven approaches are being adopted in a wide range of demanding environments,
such as finance, health care or telecommunications [9]. In this context, validation and
verification is identified as one of the many challenges of Model Driven Software Engineering
(MDSE) [21].

MDSE in practice involves creating models, and thereafter managing them, via various
tasks, such as model transformation, validation and merging. The validation and verifica-
tion of each type of model management task has its own specific challenges. Kolovos et al.
list testing concerns for Model to Model (M2M) and Model to Text (M2T) transforma-
tions, model validations, model comparisons and model compositions in [13]. Baudry et al.
identify three main issues when testing model transformations [2]: the complexity of the
input and output models, the immaturity of the model management environments and
the large number of different transformation languages and techniques.

B.1.1 Common issues
While each type of model management task does have specific complexity, some of the
concerns raised by Baudry can be generalized to apply to all model management tasks:

• There is usually a large number of models to be handled. Some may be created
by hand, some may be generated using hand-written programs, and some may be
generated automatically following certain coverage criteria.

• A single model or set of models may be used in several tasks. For instance, a model
may be validated before performing an in-place transformation to assist the user,
and later on it may be transformed to another model or merged with a different
model. This requires having at least one test for each valid combination of models
and sets of tasks.

• Test oracles are more complex than in traditional unit testing [16]: instead of checking
scalar values or simple lists, entire graphs of model objects or file trees may have to

1http://eclipse.org/epsilon

B.1

http://eclipse.org/epsilon

B. The Epsilon EUnit testing framework

be compared. In some cases, complex properties in the generated artifacts may have
to be checked.

• Models and model management tasks may use a wide range of technologies. Models
may be based on Ecore [20], XML files or Java object graphs, among many others.
At the same time, tasks may use technologies from different platforms, such as
Epsilon, openArchitectureWare (oAW) [10] or the ATLAS Model Management
Architecture (AMMA) [5]. Many of these technologies offer high-level tools for
running and debugging the different tasks using several models. However, users
wishing to do automated unit testing need to learn low-level implementation details
about their modelling and model management technologies. This increases the initial
cost of testing these tasks and hampers the adoption of new technologies.

• Existing testing tools tend to focus on the testing technique itself, and lack integration
with external systems. Some tools provide graphical user interfaces, but most do
not generate reports which can be consumed by a continuous integration server, for
instance.

B.1.2 Testing with JUnit
The previous issues are easier to understand with a concrete example. This section shows
how a simple transformation between two Eclipse Modeling Framework (EMF) models in
the Epsilon Transformation Language (ETL) using JUnit 4 [3] would be normally tested,
and points out several issues due to JUnit’s limitations as a general-purpose unit testing
framework for Java programs.
For the sake of brevity, only an outline of the JUnit test suite is included. All JUnit

test suites are defined as Java classes. This test suite has three methods:

1. The test setup method (marked with the @Before JUnit annotation) loads the
required models by creating and configuring instances of EmfModel. After that, it
prepares the transformation by creating and configuring an instance of EtlModule,
adding the input and output models to its model repository.

2. The test case itself (marked with @Test) runs the ETL transformation and uses the
generic comparison algorithm implemented by EMF Compare to perform the model
comparison.

3. The test teardown method (marked with @After) disposes of the models.

Several issues can be identified in each part of the test suite. First, test setup is
tightly bound to the technologies used: it depends on the Application Programming
Interface (API) of the EmfModel and EtlModule classes, which are both part of Epsilon.
Later refactorings in these classes may break existing tests.
The test case can only be used for a single combination of input and output models.

Testing several combinations requires either repeating the same code and therefore making
the suite less maintainable, or using parametric testing, which may be wasteful if not all
tests need the same combinations of models.

Model comparison requires the user to manually select a model comparison engine and
integrate it with the test. For comparing EMF models, EMF Compare is easy to use and

B.2

B.2. Test organisation

readily available. However, generic model comparison engines may not be available for
some modelling technologies, or may be harder to integrate.
Finally, instead of comparing the obtained and expected models, several properties

could have been checked in the obtained model. However, querying models through Java
code can be quite verbose.

B.1.3 Selected approach
Several approaches could be followed to address these issues. A first instinct would be
to extend JUnit and reuse all the tooling available for it. A custom test runner would
simplify setup and teardown, and modelling platforms would integrate their technologies
into it. Since Java is very verbose when querying models, the custom runner should run
tests in a higher-level language, such as EOL. However, JUnit is very tightly coupled to
Java, and this would impose limits on the attainable level of integration. For instance,
errors in the model management tasks or the EOL tests could not be reported from their
original source, but rather from the Java code which invoked them. Another problem
with this approach is that new integration code would need to be written for each of the
existing platforms.
Alternatively, a new language exclusively dedicated to testing could be added to the

Epsilon family. Being based on EOL, model querying would be very concise, and with
a test runner written from scratch, test execution would be very flexible. However, this
would still require all platforms to write new code to integrate with it, and this code would
be tightly coupled to Epsilon.

As a middle ground, EOL could be decorated to guide its execution through a new test
runner, while reusing the Apache Ant [1] tasks already provided by several of the existing
platforms, such as AMMA or Epsilon. Like Make, Ant is a tool focused on automating the
execution of processes such as program builds. Unlike Make, Ant defines processes using
XML buildfiles with sets of interrelated targets. Each target contains in turn a sequence of
tasks. Many Ant tasks and Ant-based tools already exist, and it is easy to create a new
Ant task.

Among these three approaches, EUnit follows the last one. Ant tasks take care of model
setup and management, and tests are written in EOL and executed by a new test runner,
written from the ground up.

B.2 Test organisation
EUnit has a rich data model: test suites are organized as trees of tests, and each test is
divided into many parts which can be extended by the user. This section is dedicated to
describing how test suites and tests are organized. The next section indicates how they
are written.

B.2.1 Test suites
EUnit test suites are organized as trees: inner nodes group related test cases and define
data bindings. Leaf nodes define model bindings and run the test cases.

B.3

B. The Epsilon EUnit testing framework

root

data
x = 1

test A

model
X

model
Y

test B

data
x = 2

test A

model
X

model
Y

test B

Figure B.1. Example of an EUnit test tree

Data bindings repeat all test cases with different values in one or more variables. They
can implement parametric testing, as in JUnit 4. EUnit can nest several data bindings,
running all test cases once for each combination.
Model bindings are specific to EUnit: they allow developers to repeat a single test

case with different subsets of models. Data and model bindings can be combined. One
interesting approach is to set the names of the models to be used in the model binding
from the data binding, as a quick way to try several test cases with the same subsets of
models.

Figure B.1 shows an example of an EUnit test tree: nodes with data bindings are marked
with data, and nodes with model bindings are marked with model. EUnit will perform a
preorder traversal of this tree, running the following tests:

1. A with x = 1 and model X.

2. A with x = 1 and model Y.

3. B with x = 1 and both models.

4. A with x = 2 and model X.

5. A with x = 2 and model Y.

6. B with x = 2 and both models.

Optionally, EUnit can filter tests by name, running only A or B. Similarly to JUnit,
EUnit logs start and finish times for each node in the tree, so the most expensive test
cases can be quickly detected. However, EUnit logs CPU time2 in addition to the usual
wallclock time.

Parametric testing is not to be confused with theories [18]: both repeat a test case
with different values, but results are reported quite differently. While parametric testing
produces separate test cases with independent results, theories produce aggregated tests
which only pass if the original test case passes for every data point. Figure B.2 illustrates
these differences. EUnit does not support theories yet: however, they can be approximated
with data bindings.

2CPU time only measures the time elapsed in the thread used by EUnit, and is more stable with varying
system load in single-threaded programs.

B.4

B.3. Test specification

root

data1

test1 test2

data2

test1 test2
(a) Parametric testing

root

test1

data1 data2

test2

data1 data2
(b) Theories

Figure B.2. Comparison between parametric testing and theories

B.2.2 Test cases
The execution of a test case is divided into the following steps:

1. Apply the data bindings of its ancestors.

2. Run the model setup sections defined by the user.

3. Apply the model bindings of this node.

4. Run the regular setup sections defined by the user.

5. Run the test case itself.

6. Run the teardown sections defined by the user.

7. Tear down the data bindings and models for this test.

An important difference between JUnit and EUnit is that setup is split into two parts:
model setup and regular setup. This split allows users to add code before and after model
bindings are applied. Normally, the model setup sections will load all the models needed
by the test suite, and the regular setup sections will further prepare the models selected
by the model binding. Explicit teardown sections are usually not needed, as models are
disposed automatically by EUnit. EUnit includes them for consistency with the xUnit
frameworks.

Due to its focus on model management, model setup in EUnit is very flexible. Developers
can combine several ways to set up models, such as model references, individual Apache
Ant [1] tasks, Apache Ant targets or Human-Usable Textual Notation (HUTN) [17]
fragments.

A test case may produce one among several results. SUCCESS is obtained if all assertions
passed and no exceptions were thrown. FAILURE is obtained if an assertion failed. ERROR
is obtained if an unexpected exception was thrown while running the test. Finally, tests
may be SKIPPED by the user.

B.3 Test specification
The previous section described how test suites and test cases are organized. This section
will show how to write them.

B.5

B. The Epsilon EUnit testing framework

As discussed before, after evaluating several approaches, it was decided to combine the
expressive power of EOL and the extensibility of Apache Ant. For this reason, EUnit test
suites are split into two files: an Ant buildfile and an EOL script with some special-purpose
annotations. The next subsections describe the contents of these two files and revisit the
previous example with EUnit.

B.3.1 Ant buildfile
EUnit uses standard Ant buildfiles: running EUnit is as simple as using its Ant task.
Users may run EUnit more than once in a single Ant launch: the graphical user interface
will automatically aggregate the results of all test suites.

B.3.1.1 EUnit invocations

An example invocation of the EUnit Ant task using the most common features is shown
in Listing B.1. Users will normally only use some of these features at a time, though.
Optional attributes have been listed between brackets. Some nested elements can be
repeated 0+ times (*) or 0-1 times (?). Valid alternatives for an attribute are separated
with |.

Listing B.1 Format of an invocation of the EUnit Ant task
<ep s i l o n . eun i t s r c=" . . . "

[f a i lOnEr ro r s=" . . . "]
[package=" . . "]
[toDir=" . . . "]
[r epo r t=" yes | no "]>

(<model r e f="OldName" [as="NewName"] />)∗
(<uses r e f="x " [as="y "] />)∗
(<export s r e f=" z " [as="w"] />)∗
(<parameter name="myparam" value="myvalue " />)∗
(<modelTasks><!−− Zero or more Ant t a s k s −−></modelTasks>)?

</ ep s i l o n . eun i t>

The EUnit Ant task is based on the Epsilon abstract executable module task (see [15]),
inheriting some useful features. The attribute src points to the path of the EOL file, and
the optional attribute failOnErrors can be set to false to prevent EUnit from aborting
the Ant launch if a test case fails. EUnit also inherits support for importing and exporting
global variables through the <uses> and <exports> elements: the original name is set
in ref, and the optional as attribute allows for using a different name. For receiving
parameters as name-value piars, the <parameter> element can be used.

Model references (using the <model> nested element) are also inherited from the Epsilon
abstract executable module task. These allow model management tasks to refer by name
to models previously loaded in the Ant buildfile. However, EUnit implicitly reloads the
models after each test case. This ensures that test cases are isolated from each other.

The EUnit Ant task adds several new features to customize the test result reports and
perform more advanced model setup. By default, EUnit generates reports in the XML
format of the Ant <junit> task. This format is also used by many other tools, such as
the TestNG unit testing framework [4], the Jenkins continuous integration server [12] or
the JUnit Eclipse plug-ins. To suppress these reports, report must be set to no.

By default, the XML report is generated in the same directory as the Ant buildfile, but
it can be changed with the toDir attribute. Test names in JUnit are formed by its Java

B.6

B.3. Test specification

package, class and method: EUnit uses the filename of the EOL script as the class and the
name of the EOL operation as the method. By default, the package is set to the string
“default”: users are encouraged to customize it with the package attribute.

The optional <modelTasks> nested element contains a sequence of Ant tasks which will
be run after reloading the model references and before running the model setup sections
in the EOL file. This allows users to run workflows more advanced than simply reloading
model references, such as the one in Listing B.5.

B.3.1.2 Helper targets

Ant buildfiles for EUnit may include helper targets. These targets can be invoked from
anywhere in the EOL script using runTarget("targetName"). Helper targets are quite
versatile: called from an EOL model setup section, they allow for reusing model loading
fragments between different EUnit test suites. They can also be used to invoke the model
management tasks under test. Listing B.5 shows a helper target for an ETL transformation,
and listing B.9 shows a helper target for an ATL transformation.

B.3.2 EOL script
The Epsilon Object Language script is the second half of the EUnit test suite. EOL
annotations are used to tag some of the operations as data binding definitions (@data
or @Data), additional model setup sections (@model/@Model), test setup and teardown
sections (@setup/@Before and @teardown/@After) and test cases (@test/@Test). Suite
setup and teardown sections can also be defined with the @suitesetup and @BeforeClass
and with the @suiteteardown and @AfterClass annotations: these operations will be
run before and after all tests, respectively.

B.3.2.1 Data bindings

Data bindings repeat all test cases with different values in some variables. To define a
data binding, users must define an operation which returns a sequence of elements and is
marked with @data variable. All test cases will be repeated once for each element of the
returned sequence, setting the specified variable to the corresponding element. Listing B.2
shows two nested data bindings and a test case which will be run four times: with x=1
and y=5, x=1 and y=6, x=2 and y=5 and finally x=2 and y=6. The example shows how
x and y could be used by the setup section to generate an input model for the test. This
can be useful if the intent of the test is ensuring that a certain property holds in a class of
models, rather than a single model.

Alternatively, if both x and y were to use the same sets of values, two @data annotations
could be added to the same operation. For instance, Listing B.3 shows 4 test cases could
be specified: x=1 and y=1, x=1 and y=2, x=2 and y=1 and x=2 and y=2.

B.3.2.2 Model bindings

Model bindings repeat a test case with different subsets of models. They can be defined by
annotating a test case with $with map or $onlyWith map one or more times, where map
is an EOL expression that produces a Map. For each key-value pair key = value, EUnit
will rename the model named value to key. The difference between $with and $onlyWith

B.7

B. The Epsilon EUnit testing framework

Listing B.2 Example of a 2-level data binding
@data x
operation firstLevel() { return 1.to(2); }

@data y
operation secondLevel() { return 5.to(6); }

@setup
operation generateModel() { −∗ generate model using x and y ∗− }

@test
operation mytest() { −∗ test with the generated model ∗− }

Listing B.3 Example of reusing the same operation for several data bindings
@data x
@data y
operation levels() { return 1.to(2); }

@setup
operation generateModel() { −∗ generate model using x and y ∗− }

@test
operation mytest() { −∗ test with the generated model ∗− }

is how they handle the models not mentioned in the Map: $with will preserve them as
is, and $onlyWith will make them unavailable during the test. $onlyWith is useful for
tightly restricting the set of available models in a test and for avoiding ambiguous type
references when handling multiple models using the same metamodel.

Listing B.4 shows two tests which will be each run twice. The first test uses $with, which
preserves models not mentioned in the Map: the first time, model A will be the default
model and model B will be the Other model, and the second time, model B will be the
default model and model A will be the Other model. The second test uses two $onlyWith
annotations: on the first run, A will be available as Model and B will not unavailable, and
on the second run, only B will be available as Model and A will be unavailable.

Listing B.4 Examples of model bindings
$with Map {"" = "A", "Other" = "B"}
$with Map {"" = "B", "Other" = "A"}
@test
operation mytest() {
−∗ use the default and Other models, while keeping the rest as is ∗−

}

$onlyWith Map { "Model" = "A" }
$onlyWith Map { "Model" = "B" }
@test
operation mytest2() {
−− first time: A as ’Model’, B is unavailable
−− second time: B as ’Model’, A is unavailable

}

B.8

B.3. Test specification

Signature Description
runTarget(name : String) Runs the specified target of the Ant buildfile which invoked

EUnit.
exportVariable(name :
String)

Exports the specified variable, to be used by another ex-
ecutable module.

useVariable(name : String) Imports the specified variable, which should have been
previously exported by another executable module.

loadHutn(name : String,
hutn : String)

Loads an EMF model with the specified name, by parsing
the second argument as an HUTN [17] fragment.

antProject :
org.apache.tools.ant.Project

Global variable which refers to the Ant project being ex-
ecuted. This can be used to create and run Ant tasks from
inside the EOL code.

Table B.1. Extra operations and variables in EUnit

B.3.2.3 Additional variables and built-in operations

EUnit provides several variables and operations which are useful for testing. These are
listed in Table B.1.

B.3.2.4 Assertions

EUnit implements some common assertions for equality and inequality, with special versions
for comparing floating-point numbers. EUnit also supports a limited form of exception
testing with assertError, which checks that the expression inside it throws an exception.
Custom assertions can be defined by the user with the fail operation, which fails a test
with a custom message. The available assertions are shown in Table B.2. Table B.3
lists the available option keys which can be used with the model equality assertions, by
comparator.
More importantly, EUnit implements specific assertions for comparing models, files

and trees of files. Model comparison is not implemented by the assertions themselves:
it is an optional service implemented by some EMC drivers. Currently, EMF models
will automatically use EMF Compare as their comparison engine. The rest of the EMC
drivers do not support comparison yet. The main advantage of having an abstraction layer
implement model comparison as a service is that the test case definition is decoupled from
the concrete model comparison engine used.

Model, file and directory comparisons take a snapshot of their operands before comparing
them, so EUnit can show the differences right at the moment when the comparison was
performed. This is especially important when some of the models are generated on the fly
by the EUnit test suite, or when a test case for code generation may overwrite the results
of the previous one.
Figure B.3 shows a screenshot of the EUnit graphical user interface. On the left, an

Eclipse view shows the results of several EUnit test suites. It can be seen that the load-
models-with-hutn suite failed. The Compare button to the right of “Failure Trace” can
be pressed to show the differences between the expected and obtained models, as shown

B.9

B. The Epsilon EUnit testing framework

on the right side. EUnit implements a pluggable architecture where difference viewers are
automatically selected based on the types of the operands. There are difference viewers
for EMF models, file trees and a fallback viewer which converts both operands to strings.

Table B.2. Assertions in EUnit
Signature Description
assertEqualDirectories(
expectedPath : String,
obtainedPath : String)

Fails the test if the contents of the directory in obtainedFile
differ from those of the directory in expectedPath. Directory
comparisons are performed on recursive snapshots of both
directories.

assertEqualFiles(
expectedPath : String,
obtainedPath : String)

Fails the test if the contents of the file in obtainedPath differ
from those of the file in expectedPath. File comparisons are
performed on snapshots of both files.

assertEqualModels(
[msg : String,]
expectedModel : String,
obtainedModel : String
[, options : Map])

Fails the test with the optional message msg if the model
named obtainedModel is not equal to the model named
expectedModel. Model comparisons are performed on snap-
shots of the resource sets of both models. During EMF
comparisons, XMI identifiers are ignored. Additional
comparator-specific options can be specified through op-
tions.

assertEquals(
[msg : String,]
expected : Any,
obtained : Any)

Fails the test with the optional message msg if the values
of expected and obtained are not equal.

assertEquals(
[msg : String,]
expected : Real,
obtained : Real,
ulps : Integer)

Fails the test with the optional message msg if the values
of expected and obtained differ in more than ulps units of
least precision. See this site for details.

assertError(expr : Any) Fails the test if no exception is thrown during the evaluation
of expr.

assertFalse(
[msg : String,]
cond : Boolean)

Fails the test with the optional message msg if cond is
true. It is a negated version of assertTrue.

assertLineWithMatch(
[msg : String,]
path : String,
regexp : String)

Fails the test with the optional message msg if the file at
path does not have a line containing a substring matching
the regular expression regexp3.

Continues on next page

3See java.util.regex.Pattern for details about the accepted syntax for regular expressions.

B.10

http://download.oracle.com/javase/6/docs/api/java/lang/Math.html#ulp(double)

B.4. Examples: testing a model transformation with EUnit

Continued from previous page
Signature Description

assertMatchingLine(
[msg : String,]
path : String,
regexp : String)

Fails the test with the optional message msg if the file
at path does not have a line that matches the regular
expression regexp4 from start to finish.

assertNotEqualDirectories(
expectedPath : String,
obtainedPath : String)

Negated version of assertEqualDirectories.

assertNotEqualFiles(
expectedPath : String,
obtainedPath : String)

Negated version of assertEqualFiles.

assertNotEqualModels(
[msg : String,]
expectedModel : String,
obtainedModel : String)

Negated version of assertNotEqualModels.

assertNotEquals(
[msg : String,]
expected : Any,
obtained : Any)

Negated version of assertEquals([msg : String,] expected :
Any, obtained : Any).

assertNotEquals(
[msg : String,]
expected : Real,
obtained : Real,
ulps : Integer)

Negated version of assertEquals([msg : String,] expected :
Real, obtained : Real, ulps : Integer).

assertTrue(
[msg : String,]
cond : Boolean)

Fails the test with the optional message msg if cond is
false.

fail(msg : String) Fails a test with the message msg.

B.4 Examples: testing a model transformation with
EUnit

B.4.1 Models and tasks in the buildfile
After describing the basic syntax, this section will show how to use EUnit to test an ETL
transformation.
The Ant buildfile is shown in Listing B.5. It has two targets: run-tests (lines 2–16)

invokes the EUnit suite, and tree2graph (lines 17–22) is a helper target which transforms
4See footnote for assertLineWithMatch for details about the syntax of the regular expressions.

B.11

B. The Epsilon EUnit testing framework

Comparator and key Usage
EMF, “whitespace” When set to “ignore”, differences in at-

tribute values due to whitespace will be
ignored.

EMF, “ignoreAttributeValueChanges” Can contain a Sequence of strings of the
form “package.class.attribute”. Differ-
ences in the values for these attributes
will be ignored. However, if the attrib-
ute is set on one side and not on the
other, the difference will be reported as
normal.

Table B.3. Available options by model comparator

Figure B.3. Screenshot of the EUnit graphical user interface

B.12

B.4. Examples: testing a model transformation with EUnit

Listing B.5 Ant buildfile for EUnit with <modelTasks> and a helper target
<project>
<target name="run−tests">
<epsilon.eunit src="test−external.eunit">
<modelTasks>
<epsilon.emf.loadModel name="Tree" modelfile="tree.model"

metamodelfile="tree.ecore" read="true" store="false"/>
<epsilon.emf.loadModel name="GraphExpected" modelfile="graph.model"

metamodelfile="graph.ecore" read="true" store="false"/>
<epsilon.emf.loadModel name="Graph" modelfile="transformed.model"

metamodelfile="graph.ecore" read="false" store="false"/>
</modelTasks>

</epsilon.eunit>
</target>
<target name="tree2graph">
<epsilon.etl src="${basedir}/resources/Tree2Graph.etl">
<model ref="Tree"/>
<model ref="Graph"/>

</epsilon.etl>
</target>

</project>

Listing B.6 EOL script using runTarget to run ETL
@test
operation transformationWorksAsExpected() {
runTarget("tree2graph");
assertEqualModels("GraphExpected", "Graph");

}

model Tree into model Graph using ETL. The <modelTasks> nested element is used to
load the input, expected output and output EMF models. Graph is loaded with read set to
false: the model will be initially empty, and will be populated by the ETL transformation.
The EOL script is shown in Listing B.6: it invokes the helper task (line 3) and checks

that the obtained model is equal to the expected model (line 4). Internally, EMC will
perform the comparison using EMF Compare.

B.4.2 Models and tasks in the EOL script

In the previous section, the EOL file is kept very concise because the model setup and
model management tasks under test were specified in the Ant buildfile. In this section,
the models and the tasks will be inlined into the EOL script instead.

The Ant buildfile is shown in Listing B.7. It is now very simple: all it needs to do is run
the EOL script. However, since HUTN will be parsed in the EOL script, the EPackages
of the metamodels must be previously registered.
The EOL script used is shown in Listing B.8. Instead of loading models through the

Ant tasks, the loadHutn operation has been used to load the models. The test itself is
almost the same, but instead of running a helper target, it invokes an operation which
creates and runs the ETL Ant task through the antProject variable provided by EUnit,
taking advantage of the support in EOL for invoking Java code through reflection.

B.13

B. The Epsilon EUnit testing framework

Listing B.7 Ant buildfile which only runs the EOL script
<project>
<target name="run−tests">
<epsilon.emf.register file="tree.ecore"/>
<epsilon.emf.register file="graph.ecore"/>
<epsilon.eunit src="test−inlined.eunit"/>

</target>
</project>

Listing B.8 EOL script with inlined models and tasks
@model
operation loadModels() {
loadHutn("Tree", ’@Spec {Metamodel {nsUri: "Tree" }}

Model {
Tree "t1" { label : "t1" }
Tree "t2" {
label : "t2"
parent : Tree "t1"

}
}
’);

loadHutn("GraphExpected", ’@Spec {Metamodel {nsUri: "Graph"}}
Graph { nodes :
Node "t1" {
name : "t1"
outgoing : Edge { source : Node "t1" target : Node "t2" }

},
Node "t2" {
name : "t2"

}
}
’);

loadHutn("Graph", ’@Spec {Metamodel {nsUri: "Graph"}}’);
}

@test
operation transformationWorksAsExpected() {
runETL();
assertEqualModels("GraphExpected", "Graph");

}

operation runETL() {
var etlTask := antProject.createTask("epsilon.etl");
etlTask.setSrc(new Native(’java.io.File’)(
antProject.getBaseDir(), ’resources/etl/Tree2Graph.etl’));

etlTask.createModel().setRef("Tree");
etlTask.createModel().setRef("Graph");
etlTask.execute();

}

B.14

B.5. Extending EUnit

B.5 Extending EUnit
EUnit is based on the Epsilon platform, but it is designed to accommodate other technolo-
gies. This section will explain several strategies to add support for these technologies to
EUnit.
EUnit uses the Epsilon Model Connectivity abstraction layer to handle different mod-

elling technologies. Adding support for a different modelling technology only requires
implementing another driver for EMC. Depending on the modelling technology, the
driver can provide optional services such as model comparison, caching or reflection [15].
Currently, Epsilon has built-in support for EMF models, Java object graphs and plain
XML files. Third-party drivers for MetaData Repository (MDR) and Z models are also
available.

B.5.1 Adding model management tasks
EUnit uses Ant as a workflow language: all model management tasks must be exposed
through Ant tasks. It is highly encouraged, however, that the Ant task is aware of the EMC
model repository linked to the Ant project. Otherwise, users will have to shuffle the models
out from and back into the repository between model management tasks. As an example,
a helper target for an ATLAS Transformation Language (ATL) [11] transformation with
the existing Ant tasks needs to:

1. Save the input model in the EMC model repository to a file, by invoking the
<epsilon.storeModel> task.

2. Load the metamodels and the input model with <atl.loadModel>.

3. Run the ATL transformation with <atl.launch>.

4. Save the result of the ATL transformation with <atl.saveModel>.

5. Load it into the EMC model repository with <epsilon.emf.loadModel>.

Listing B.9 shows the Ant buildfile which would be required for running these steps,
showing that while EUnit can use the existing ATL tasks as-is, the required helper task is
quite longer than the one in Listing B.5. Ideally, Ant tasks should be adapted or wrapped
to use models directly from the EMC model repository.
Another advantage in making model management tasks EMC-aware is that they can

easily “export” their results as models, making them easier to test. For instance, the EVL
Ant task allows for exporting its results as a model by setting the attribute exportAsModel
to true. This way, EOL can query the results as any regular model (see Listing B.10). This
is simpler than transforming the validated model to a problem metamodel, as suggested
in [8]. The example in Listing B.10 checks that a single warning was produced due to the
expected rule (LabelsStartWithT) and the expected model element.

B.15

B. The Epsilon EUnit testing framework

Listing B.9 Testing an ATL model transformation with EUnit
<project>
<!−− ... omitted ... −−>
<target name="atl">
<!−− Create temporary files for input and output models −−>
<tempfile property="atl.temp.srcfile" />
<tempfile property="atl.temp.dstfile" />

<!−− Save input model to a file −−>
<epsilon.storeModel model="Tree" target="${atl.temp.srcfile}" />

<!−− Load the metamodels and the source model −−>
<atl.loadModel name="TreeMM" metamodel="MOF" path="metamodels/tree.ecore" />
<atl.loadModel name="GraphMM" metamodel="MOF" path="metamodels/graph.ecore" />
<atl.loadModel name="Tree" metamodel="TreeMM" path="${atl.temp.srcfile}" />

<!−− Run ATL and save the model −−>
<atl.launch path="transformation/tree2graph.atl">
<inmodel name="IN" model="Tree" />
<outmodel name="OUT" model="Graph" metamodel="GraphMM" />

</atl.launch>
<atl.saveModel model="Graph" path="${atl.temp.dstfile}" />

<!−− Load it back into the EUnit suite −−>
<epsilon.emf.loadModel name="Graph" modelfile="${atl.temp.dstfile}"
metamodelfile="metamodels/graph.ecore" read="true" store="false" />

<!−− Delete temporary files −−>
<delete file="${atl.temp.srcfile}" />
<delete file="${atl.temp.dstfile}" />

</target>
</project>

Listing B.10 Testing an EVL model validation with EUnit
@test
operation valid() {
var tree := new Tree!Tree;
tree.label := ’1n’;
runTarget(’validate−tree’);
var errors := EVL!EvlUnsatisfiedConstraint.allInstances;
assertEquals(1, errors.size);
var error := errors.first;
assertEquals(tree, error.instance);
assertEquals(false, error.constraint.isCritique);
assertEquals(’LabelsStartWithT’, error.constraint.name);

}

B.16

B.6. Case studies

Listing B.11 Inline model generation in EUnit
@data nlevels
operation levels() { return 0.to(4); }

@model
operation generate() {
// Load an empty model and populate it
loadHutn(’Tree’, ’@Spec { Metamodel { nsUri: "Tree" }} Model {}’);
generateBinaryTree(new Tree!Node, nlevels);

}

operation generateBinaryTree(root, nlevels) {
if (nlevels > 0) {
for (n in Sequence { new Tree!Node, new Tree!Node }) {
n.parent := root;
generateBinaryTree(n, nlevels − 1);

}
}

}

/∗ ... tests ... ∗/

B.5.2 Integrating model generators

By design, EUnit does not implement any model generation technique, since it is considered
that running the tests is orthogonal to generating them. Several model generation tools
already exist, such as OMOGEN [6] or Cartier [19]. To EUnit, model generation is just
another kind of model management task. There are basically two ways in which models
can be generated: batch model generation generates all models before repeating every test
through them, and inline model generation invokes the generator in every test, producing
the required models.
Batch model generation can be implemented by calling the Ant task of the model

generator before invoking EUnit, and then using a data binding to repeat the tests over
every generated model. The Ant tasks required to load these models can be set up by
EUnit on the fly in a @model operation, using the antProject built-in variable. Inline
model generation uses data bindings to set the parameters for generating each model, and
then invokes the Ant task of the model generation tool in a @model operation.

Listing B.11 shows a simple example of inline model generation, using EOL code instead
of invoking the Ant task of a model generation tool. Several Tree models are generated by
combining data and model bindings. The data variable nlevels indicates the number of
levels the generated binary tree should have. The @model operation loads an empty model
and populates it as needed. All tests will be repeated 5 times, with complete binary trees
of 0 to 4 levels.

B.6 Case studies

This section will show two practical applications of the EUnit test framework: EUnit is
now internally used for several tests of the Epsilon framework, and is also used to test the
performance inference algorithms in Chapter 5.

B.17

B. The Epsilon EUnit testing framework

B.6.1 Regression tests for EuGENia
One of the most popular components in Epsilon is its Eugenia [14] tool, which simplifies the
creation of graphical model editors based on the Eclipse Graphical Modeling Framework
(GMF) [7]. GMF editor models can be very complex, and creating them from scratch can
be daunting to a new user. Eugenia can do most of the initial work required to obtain an
usable editor, and can automate the customisations that the developer needs.

Testing Eugenia can be difficult, however, as the transformations it uses are implemented
in a mix of several languages. The models produced are too complex to verify using manual
assertions, and can also change with no warning with a new version of GMF. The ideal
approach in this case would be to use regression testing, but before developing EUnit this
was an entirely manual process, as it was deemed too difficult to automate.

After developing EUnit, it was internally adopted for adding regression tests for the
Eugenia model transformations. A new Ant task for Eugenia was created, and defined the
EUnit test suite as follows:

• The Ant buildfile contains a single target which prepares a test environment, runs
Eugenia on the test environment and invokes EUnit.

• The EUnit test suite uses a data binding to repeat the tests over each of the six
models produced by Eugenia: .ecore, .genmodel, .gmfgraph, .gmftool, .gmfmap
and .gmfgen.

• Test setup creates, configures and runs <epsilon.emf.loadModel> Ant tasks to load
the expected and obtained models.

• Test execution compares the expected and obtained models using the pluggable
model comparator that was developed for EMF models, using the Eclipse EMF
Compare project.

Using regular Ant tasks to integrate external tools has the added benefit that the same
Ant tasks used for testing can also help end-users in automating their own workflows. If a
new extension framework for EUnit had been defined, end-users would not be able to take
advantage of these improvements.
EUnit has reduced the amount of code required to do the tests, by repeating tests

implicitly through data bindings and encapsulating model comparison as a simple assertion.
The antProject variable supplied by EUnit helped simplify the Ant buildfile as well: instead
of specifying everything in it, part of the required Ant tasks are created on the fly inside the
EOL script. Together, the tests only require about 180 lines of Java code (Eclipse-specific
test setup), 30 lines of Apache Ant configuration (EUnit invocation), and 39 lines of EOL
code (the tests themselves).

B.6.2 Unit testing for SODM+T
The SODM+T methodology presented in this work has been tested using a combination
of EUnit and JUnit. Before EUnit was developed, some of the tests had to be written
using regular Java code, which was very verbose and repetitive, due to the nature of the
language and the API offered by the Eclipse Modeling Framework (EMF).

B.18

B.6. Case studies

Listing B.12 Several model validation tests for SODM+T using EUnit
@setup
operation setUp() {
−− available directly within the @test
var sp = new SP!ServiceProcess;

}

@test
operation ExactlyOneProcessStart_noStart() {
validate();
assertHasProblem(’ExactlyOneProcessStart’);

}

@test
operation ExactlyOneProcessStart_oneStart() {
sp.newInitial();
validate();
assertNoProblem(’ExactlyOneProcessStart’);

}

@test
operation ExactlyOneProcessStart_twoStart() {
sp.newInitial();
sp.newInitial();
validate();
assertHasProblem(’ExactlyOneProcessStart’);

}

After developing EUnit, most of the Java code doing the actual tests was removed.
Instead, some of the EUnit tests had to be supported by Java code in order to integrate
them with external tooling, such as Eclipse, the Maven build system and the Jenkins
continuous integration server. Nevertheless, the code required is quite trivial in most cases,
as will be shown below.

B.6.2.1 Model validation

The model editors provide automatic model validation, backed by a set of Epsilon Validation
Language (EVL) scripts. Testing these validation scripts requires building a large number
of both valid and invalid models and ensuring that the scripts classified them properly
and found the expected errors.

Using Java, this would have required either manually creating over 140 models or using
the cumbersome EMF APIs to generate them on the fly. In addition, each of these models
would need its own test case.

Instead, by using EUnit, the tests only take up 1390 lines of EOL code and 143 lines of
Java code. This includes generating the models, running the test cases and verifying their
results. The Java code allows JUnit-aware tools to run the tests and provides an additional
EOL operation validate() that runs the EVL validation scripts on the current model.
Listing B.12 shows an excerpt of the EUnit setup operation that creates the main

element of the model under test and the three first test cases, which are quite simple. The
ServiceProcess class has been augmented with newXXX() EOL context operations for easily
creating new nodes inside its instances, and the assert*Problems() assertions have been
implemented in only 30 lines of EOL code. This shows that the conciseness of EOL and
the focus on code reuse in EUnit allow tests to be short and readable.

B.19

B. The Epsilon EUnit testing framework

Listing B.13 Java class used to run EUnit from JUnit-compatible tools
@RunWith(EUnitTestRunner.class)
public class FourNodeExhaustiveTest implements IEUnitSuite {
@Override
public URI getModuleURI() throws Exception {
return new File("exhaustive−4nodes.eunit").toURI();

}

@Override
public List<IModel> prepareModels() throws Exception {
// use the Epsilon Model Connectivity layer to load an empty model
final EmfModel model = new EmfModel();
model.setName("Model");
model.setMetamodelUri(ServiceProcessPackage.eNS_URI);
model.setModelFile("dummy.model");
model.setReadOnLoad(false);
model.setStoredOnDisposal(false);
model.load();
return Arrays.asList((IModel)model);

}

@Override
public OperationContributor getOperationContributor() {
// no additional EOL operations are needed for this test
return null;

}
}

B.6.2.2 Performance inference (custom annotations)

The performance inference algorithms in Chapter 5 were originally tested using pure Java
code. The tests ran the throughput and time limit inference algorithms on a selection of
models, checking their results and ensuring that their results were equivalent. These tests
required 343 lines of Java code to run. By switching to EUnit, this was dropped to 142
lines of EOL code and 74 lines of Java code (for compatibility with JUnit-based tools).

In addition, inline model creation (as shown in Section B.5.2) was used to implement an
exhaustive test suite on a sample of over 100000 two-level fork-join models (see Figure 5.8
on page 5.30) with varying minimum times and weights. The tests checked that the
incremental time limit algorithm honored the global time limit was honored on all its
paths. This only required adding 90 lines of EOL code and 40 lines of Java code for the
JUnit bridge. The JUnit bridge in Listing B.13: essentially, developers only need to add a
@RunWith annotation to a class that implements the IEUnitSuite interface.

B.6.2.3 Performance inference (MARTE annotations)

The tests for the MARTE-based performance inference algorithms ensure that the through-
put and time limit inference algorithms produced the expected results on a selection of
models. The tests also validate the first stage of the incremental graph-based algorithm,
in which some information is aggregated over the model while traversing it in reverse
topological order.

Similarly to the algorithms that used custom annotations, the MARTE-based algorithms
were originally written using only JUnit. The models produced by the Papyrus editor
were considerably more complex to work with than the models using the original custom
editor, so the test suites required 468 lines of Java code in total.

B.20

References

After switching to EUnit, this was reduced to 216 lines of EOL code for the tests
themselves. 101 lines of Java support code (similar to that in Listing B.13) were also
needed.

B.6.2.4 Conclusions

The above sections show that EUnit can be considerably more concise and readable than
the equivalent Java code, while providing more functionality. EUnit has been successfully
used to test the SODM+T model validators and the two families of ad hoc performance
inference algorithms (based on different annotations).
On the two migrated test suites, EUnit has required about 50% less lines by itself.

However, this reduction is dampened to about 25% after adding some of the Java support
code required to reuse EUnit tests as standard Eclipse JUnit plug-in tests. The Java
support code is much simpler than the original Java code and can be easily reused over
several test cases, but ideally it should not be necessary. It is planned to improve EUnit
in future releases to avoid having to write these support classes in most cases.
In addition to being more concise, the inline model creation facilities in EUnit allow

for testing some of the performance inference algorithms with over 100000 automatically
generated models while using very little code. This proves the usefulness of the model and
data binding concepts presented by EUnit.

References
[1] Apache Foundation. Apache Ant 1.7.1, June 2008. URL http://ant.apache.org/.

B.3, B.5

[2] B. Baudry, S. Ghosh, F. Fleurey, R. France, Y. Le Traon, and J. Mottu. Barriers to
systematic model transformation testing. Communications of the ACM, 53:139–143,
June 2010. ISSN 0001-0782. B.1

[3] K. Beck. JUnit.org, April 2013. URL http://www.junit.org/. B.2

[4] C. Beust. TestNG, March 2013. URL http://testng.org/. B.6

[5] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. The AMMA platform support
for modeling in the large and modeling in the small. Research Report 04.09, LINA,
University of Nantes, Nantes, France, February 2005. B.2

[6] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. Le Traon. Metamodel-based
test generation for model transformations: an algorithm and a tool. In Proc. of the
17th Int. Symposium on Software Reliability Engineering, pages 85–94, Los Alamitos,
California, USA, 2006. IEEE Computer Society. doi: 10.1109/ISSRE.2006.27. B.17

[7] Eclipse Foundation. Graphical Modeling Project, 2013. URL http://www.eclipse.
org/modeling/gmp/. Last checked: November 6th, 2013. B.18

[8] Frédéric Jouault, Jean Bezívin. Using ATL for Checking Models. In Proc. International
Workshop on Graph and Model Transformation (GraMoT), Tallinn, Estonia, September
2005. B.15

B.21

http://ant.apache.org/
http://www.junit.org/
http://testng.org/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/

References

[9] M. Guttman and J. Parodi. Real-Life MDA: Solving Business Problems with Model
Driven Architecture. Morgan Kaufmann, first edition, December 2006. ISBN
0123705924. B.1

[10] A. Haase, M. Völter, S. Efftinge, and B. Kolb. Introduction to openArchitectureWare
4.1. 2. In Proceedings of the MDD Tool Implementers Forum, TOOLS Europe 2007,
2007. B.2

[11] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: a model transformation tool.
Science of Computer Programming, 72(1-2):31–39, June 2008. ISSN 0167-6423. doi:
10.1016/j.scico.2007.08.002. B.15

[12] K. Kawaguchi. Jenkins CI, April 2013. URL http://jenkins-ci.org/. B.6

[13] D. S. Kolovos, R. F. Paige, L. M. Rose, and F. A. Polack. Unit testing model
management operations. In Proceedings of the IEEE International Conference on
Software Testing Verification and Validation Workshop, 2008 (ICSTW ’08), pages
97–104, 2008. B.1

[14] D. S. Kolovos, L. M. Rose, S. B. Abid, R. F. Paige, F. A. C. Polack, and G. Botterweck.
Taming EMF and GMF using model transformation. In D. C. Petriu, N. Rouquette,
and O. Haugen, editors, Model Driven Engineering Languages and Systems, volume
6394 of LNCS, pages 211–225. Springer-Verlag, Berlin, Germany, 2010. ISBN 978-3-
642-16144-5. B.18

[15] D. S. Kolovos, L. M. Rose, R. F. Paige, and A. García-Domínguez. The Epsilon book,
2013. URL http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/
trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf. Last checked: Novem-
ber 6th, 2013. B.6, B.15

[16] J. Mottu, B. Baudry, and Y. Le Traon. Model transformation testing: oracle issue.
In Proc. of the 2008 IEEE Int. Conf. on Software Testing Verification and Validation,
pages 105–112, Lillehammer, Norway, April 2008. ISBN 978-0-7695-3388-9. doi:
10.1109/ICSTW.2008.27. B.1

[17] Object Management Group. Human-Usable Textual Notation (HUTN) 1.0, August
2004. URL http://www.omg.org/technology/documents/formal/hutn.htm. Last
checked: November 6th, 2013. B.5, B.9

[18] D. Saff. Theory-infected: or how I learned to stop worrying and love universal
quantification. In Companion to the 22nd ACM SIGPLAN Conf. on Object-oriented
Programming Systems and Applications, OOPSLA ’07, pages 846–847, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-865-7. doi: 10.1145/1297846.1297919. B.4

[19] S. Sen, B. Baudry, and J. Mottu. Automatic model generation strategies for model
transformation testing. In R. F. Paige, editor, Theory and Practice of Model Trans-
formations, volume 5563, pages 148–164. Springer-Verlag, Berlin, Germany, 2009.
ISBN 978-3-642-02407-8. B.17

B.22

http://jenkins-ci.org/
http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf
http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf
http://www.omg.org/technology/documents/formal/hutn.htm

References

[20] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework. Addison-Wesley Professional, second edition, December 2008. ISBN
978-0321331885. B.2

[21] R. Straeten, T. Mens, and S. Baelen. Challenges in Model-Driven software engineering.
In M. R. V. Chaudron, editor, Models in Software Engineering, volume 5421 of LNCS,
pages 35–47. Springer-Verlag, Berlin, Germany, 2009. ISBN 978-3-642-01647-9. B.1

B.23

C
List of acronyms

ACM Application Component Model

AGV Automated Guided Vehicle

AMICE European CIM Architecture

AMMA ATLAS Model Management Architecture

AMPL A Mathematical Programming Language

AMW ATLAS Model Weaver

API Application Programming Interface

ATL ATLAS Transformation Language

B2MML Business to Manufacturing Markup Language

BCM Business Component Model

BDI Belief-Desire-Intention

BDM Business Domain Model

BFU Basic Fractal Unit

BMS Biological Manufacturing System

BPMN Business Process Modelling Notation

BPSOM Business Process Service Oriented Methodology

BSD Berkeley Software Distribution

CAD Computer Aided Design

CAE Computer Aided Engineering

CAM Computer Aided Manufacturing

CASE Computer Assisted Software Engineering

CBD Component-Based Development

CIMOSA Computer-Integrated Manufacturing Open System Architecture

CIM Computer Integrated Manufacturing

CIM Computation Independent Model

CNC Computer Numerical Control

CN Collaborative Network

CORBA Common Object Request Broker Architecture

C.1

C. List of acronyms

CSV Comma-Separated Values

DAG Directed Acyclic Graph

DNS Domain Name System

DRM Detailed Resource Modelling

DTD Document Type Definition

EE Extended Enterprise

EGL Epsilon Generation Language

EMC Epsilon Model Connectivity

EMF Eclipse Modeling Framework

EOL Epsilon Object Language

EPL Eclipse Public License

ERP Enterprise Resource Planning

ESPRIT European Strategic Programme for Research in Information Technology

ETL Epsilon Transformation Language

EVL Epsilon Validation Language

EWL Epsilon Wizard Language

FIPA Foundation for Intelligent Physical Agents

FrMS Fractal Manufacturing System

GCM Generic Component Modelling

GERAM Generalised Enterprise Reference Architecture and Methodology

GIM GRAI Integrated Methodology

GLPK GNU Linear Programming Kit

GMF Graphical Modelling Framework

GMPL GNU MathProg Language

GPL General Public License

GQAM Generic Quantitative Analysis Modelling

GRAI Graphes et Résultats et Activités Interreliés

GRM General Resource Modelling

C.2

HLAM High-Level Application Modelling

HMS Holonic Manufacturing System

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HUTN Human-Usable Textual Notation

ICM Implementation Component Models

IDE Integrated Development Environment

IMS Intelligent Manufacturing Systems

IT Information Technology

JADE Java Agent DEvelopment

JAX-WS Java API for XML Web Services

JET Java Emitter Templates

JSP Java Server Pages

KM3 Kernel Meta Meta Model

LCA Least Common Ancestor

LGPL Lesser General Public License

LP Linear Programming

M2M Model to Model

M2T Model to Text

MARTE Modelling and Analysis of Real-Time and Embedded Systems

MASCOT Multi-Agent Supply Chain cOordination Tool

MAS Multi-Agent System

MDA® Model-Driven Architecture®

MDR MetaData Repository

MDSE Model Driven Software Engineering

MDT Model Development Tools

MES Manufacturing Execution System

MILP Mixed Integer Linear Programming

C.3

C. List of acronyms

MIME Multipurpose Internet Mail Extensions

MMT Model to Model Transformation

MOFM2T MOF Model to Text Transformation

MOF Meta-Object Facility

MRP Material Requirements Planning

MRP II Manufacturing Resource Planning

NC Numerical Control

NFP non-functional property

oAW openArchitectureWare

OCL Object Constraint Language

OMG Object Management Group

PAM Performance Analysis Modelling

PERA Purdue Enterprise Reference Architecture

PIM Platform Independent Model

PROSA Product-Resource-Order-Staff Architecture

PSL Process Specification Language

PSM Platform Specific Model

QVT Query/View/Transformation

QoS/FT Quality of Service and Fault Tolerance Characteristics and Mechanisms

QoS Quality of Service

RMI Remote Method Invocation

RSM Repetitive Structured Modelling

RT/E Real Time/Embedded

SAM Schedulability Analysis Modelling

SF Software Factories

SGML Standard Generalised Markup Language

SLA Service Level Agreement

SLCA Set of Least Common Ancestors

C.4

SME Small and Medium Enterprise

SOAP Simple Object Access Protocol

SOA Service-Oriented Architecture

SODM+T SODM with Testing

SODM Service Oriented Development Method

SOMA Service Oriented Modeling and Architecture

SPT Schedulability, Performability and Time

SVG Scalable Vector Graphics

TAFIM Technical Architecture Framework for Information Management

TOGAF The Open Group Architecture Framework

UDDI Universal Description, Discovery and Integration

UML Unified Modelling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

VE Virtual Enterprise

VSL Value Specification Language

VSM Value Stream Mapping

W3C World Wide Web Consortium

WADE Workflows and Agents Development Environment

WFMS Workflow Management System

WS-BPEL Web Services Business Process Execution Language

WS-I BP Web Services Interoperability Basic Profile

WS-I Web Services Interoperability Organisation

WSDL Web Services Description Language

WS Web Services

XML eXtensible Markup Language

Yams Yet Another Manufacturing System

C.5

D
Bibliography

[22] S. Adhau, M. Mittal, and A. Mittal. A multi-agent system for distributed multi-
project scheduling: An auction-based negotiation approach. Engineering Applications
of Artificial Intelligence, December 2011. ISSN 0952-1976. doi: 10.1016/j.engappai.
2011.12.003.

[23] F. Aguayo González. Diseño y Fabricación de Productos en Sistemas Holónicos:
Aplicación al Desarrollo de un Módulo Holónico de Diseño. PhD thesis, University
of Cádiz, 2003.

[24] F. Aguayo González, J. Lama Ruiz, M. Sánchez Carrilero, R. Bienvenido Bárcena,
J. González Madrigal, and M. Marcos Bárcena. Concepción holónica de la ergonomía
en sistemas de fabricación automatizados. Anales de Ingeniería Mecánica, pages
1087–1095, 2004.

[25] F. Aguayo González, M. Marcos Bárcena, M. Sánchez Carrilero, and J. Lama Ruiz.
Sistemas Avanzados de Fabricación Distribuida. Ra-Ma, Madrid, España, 2007.
ISBN 9788478978045.

[26] R. S. Aguilar-Savén. Business process modelling: Review and framework. Interna-
tional Journal of Production Economics, 90(2):129–149, July 2004. ISSN 0925-5273.
doi: 10.1016/S0925-5273(03)00102-6.

[27] M. Alhaj and D. C. Petriu. Approach for generating performance models from UML
models of SOA systems. In Proceedings of the 2010 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON ’10, pages 268–282, New
York, USA, 2010. ACM. doi: 10.1145/1923947.1923975.

[28] Apache Foundation. Apache Ant 1.7.1, June 2008. URL http://ant.apache.org/.

[29] Apache Software Foundation. Apache Velocity Project homepage, November 2010.
URL http://velocity.apache.org. Last checked: November 6th, 2013.

[30] Apache Software Foundation. Apache JMeter, November 2013. URL http://
jakarta.apache.org/jmeter/. Last checked: November 6th, 2013.

[31] Apache Software Foundation. Apache Maven homepage, January 2013. URL
http://maven.apache.org. Last checked: November 6th, 2013.

[32] Apache Software Foundation. Apache CXF, November 2013. URL https://cxf.
apache.org/. Last checked: November 6th, 2013.

[33] D. Ardagna and B. Pernici. Adaptive service composition in flexible processes. IEEE
Transactions on Software Engineering, 33(6):369–384, 2007. doi: 10.1109/TSE.2007.
1011.

[34] P. Aston and C. Fizgerald. The Grinder, a Java Load Testing Framework, 2012.
URL http://grinder.sourceforge.net/. Last checked: November 6th, 2013.

[35] C. Atkinson, P. Bostan, D. Brenner, G. Falcone, M. Gutheil, O. Hummel, M. Juhasz,
and D. Stoll. Modeling components and Component-Based systems in KobrA.
In The Common Component Modeling Example, volume 5153 of Lecture Notes in

D.1

http://ant.apache.org/
http://velocity.apache.org
http://jakarta.apache.org/jmeter/
http://jakarta.apache.org/jmeter/
http://maven.apache.org
https://cxf.apache.org/
https://cxf.apache.org/
http://grinder.sourceforge.net/

D. Bibliography

Computer Science, pages 54–84. Springer Berlin, Heidelberg, Alemania, 2008. ISBN
978-3-540-85288-9. doi: 10.1007/978-3-540-85289-6_4.

[36] A. Avritzer and E. J. Weyuker. Deriving workloads for performance testing. Software:
Practice and Experience, 26(6):613–633, 1996. ISSN 1097-024X.

[37] R. Babiceanu and F. Chen. Development and applications of holonic manufacturing
systems: A survey. Journal of Intelligent Manufacturing, 17(1):111–131, 2006. ISSN
0956-5515. doi: 10.1007/s10845-005-5516-y.

[38] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-based performance
prediction in software development: a survey. IEEE Transactions on Software
Engineering, May 2004. doi: 10.1109/TSE.2004.9.

[39] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini. A timed extension
of WSCoL. In Proceedings of the IEEE International Conference on Web Services,
2007 (ICWS 2007), pages 663–670, 2007. doi: 10.1109/ICWS.2007.25.

[40] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: an
overview. In Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices, pages 49–69. Springer Berlin, 2005.

[41] B. Baudry, S. Ghosh, F. Fleurey, R. France, Y. Le Traon, and J. Mottu. Barriers to
systematic model transformation testing. Communications of the ACM, 53:139–143,
June 2010. ISSN 0001-0782.

[42] T. Bear. Grinder Analyzer homepage, July 2012. URL http://track.sourceforge.
net/. Last checked: November 6th, 2013.

[43] K. Beck. JUnit.org, April 2013. URL http://www.junit.org/.

[44] M. A. Bender, G. Pemmasani, S. Skiena, and P. Sumazin. Finding least common
ancestors in directed acyclic graphs. Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’01), pages 845–853, 2001. doi: 10.1.1.15.
9161.

[45] V. Bergmann. ContiPerf 2, September 2011. URL http://databene.org/
contiperf.html. Last checked: November 6th, 2013.

[46] S. Bernardi, J. Merseguer, and D. C. Petriu. A dependability profile within
MARTE. Software & Systems Modeling, 2009. ISSN 1619-1366. doi: 10.1007/
s10270-009-0128-1.

[47] S. Bernardi, J. Campos, and J. Merseguer. Timing-Failure risk assessment of UML
design using time petri net bound techniques. IEEE Transactions on Industrial
Informatics, 2010. ISSN 1551-3203. doi: 10.1109/TII.2010.2098415.

[48] C. Beust. TestNG, March 2013. URL http://testng.org/.

[49] J. Bézivin, F. Jouault, P. Rosenthal, and P. Valduriez. The AMMA platform support
for modeling in the large and modeling in the small. Research Report 04.09, LINA,
University of Nantes, Nantes, France, February 2005.

D.2

http://track.sourceforge.net/
http://track.sourceforge.net/
http://www.junit.org/
http://databene.org/contiperf.html
http://databene.org/contiperf.html
http://testng.org/

[50] R. Bienvenido Bárcena, M. Álvarez Alcón, J. González Madrigal, M. Marcos Bárcena,
and M. Sánchez Carrilero. Holonic manufacturing systems: an emergent proposal
for the 21st century. The International Journal for Manufacturing Science and
Production, 1999.

[51] C. Bock. Interprocess communication in the process specification language. Technical
Report NISTIR 7348, National Institute of Standards and Technology, Gaithersburg,
MD, USA, October 2006.

[52] C. Bock and M. Gruninger. PSL: a semantic domain for flow models. Soft-
ware & Systems Modeling, 4(2):209–231, 2005. ISSN 1619-1366. doi: 10.1007/
s10270-004-0066-x.

[53] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. Le Traon. Metamodel-based
test generation for model transformations: an algorithm and a tool. In Proc. of the
17th Int. Symposium on Software Reliability Engineering, pages 85–94, Los Alamitos,
California, USA, 2006. IEEE Computer Society. doi: 10.1109/ISSRE.2006.27.

[54] J. Browne, I. Hunt, and J. Zhang. The Extended Enterprise (EE). In L. M.
Camarinha-Matos, H. Afsarmanes, and V. Merik, editors, Intelligent Systems for
Manufacturing: Multi-Agent Systems and Virtual Organizations, pages 3–30. Kluwer
Academic Publishers, Londres, 1998.

[55] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot. MoDisco: a generic and
extensible framework for model driven reverse engineering. In Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering, pages
173–174, Antwerp, Belgium, September 2010.

[56] H. V. Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, and P. Peeters. Reference
architecture for holonic manufacturing systems: PROSA. Computers in Industry, 37
(3):255–274, November 1998. ISSN 0166-3615.

[57] S. Brückner, J. Wyns, P. Peeters, and M. Kollingbaum. Designing agents for
manufacturing control. In Proceedings of the 2nd AI & Manufacturing Research
Planning Workshop, pages 40–46, 1998.

[58] L. Burdy, Y. Cheon, and D. R. Cok. An overview of JML tools and applications.
International Journal on Software Tools for Technology Transfer (STTT), 7(3):
212–232, June 2005.

[59] S. Bussmann. An agent-oriented architecture for holonic manufacturing control. In
Proceedings of the First Open Workshop IMS Europe, Lausanne, Switzerland, 1998.
URL http://stefan-bussmann.de/downloads/ims98.pdf.

[60] S. Bussmann and K. Schild. An agent-based approach to the control of flexible
production systems. In 2001 8th IEEE International Conference on Emerging
Technologies and Factory Automation, 2001. Proceedings, volume 2, pages 481 –488
vol.2, October 2001. doi: 10.1109/ETFA.2001.997722.

[61] J. Bézivin. On the unification power of models. Software and Systems Modeling, 4
(2):171–188, May 2005. ISSN 1619-1366. doi: 10.1007/s10270-005-0079-0.

D.3

http://stefan-bussmann.de/downloads/ims98.pdf

D. Bibliography

[62] G. Caire, D. Gotta, and M. Banzi. WADE: a software platform to develop mission
critical applications exploiting agents and workflows. In Proceedings of the 7th inter-
national joint conference on Autonomous agents and multiagent systems: industrial
track, pages 29–36, 2008.

[63] L. M. Camarinha-Matos and H. Afsarmanesh. Elements of a base VE infrastructure.
Computers in Industry, 51(2):139–163, June 2003. ISSN 01663615. doi: 10.1016/
S0166-3615(03)00033-2.

[64] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut. Quality of service for
workflows and web service processes. Web Semantics: Science, Services and Agents
on the World Wide Web, April 2004. doi: 10.1016/j.websem.2004.03.001.

[65] D. Chen, B. Vallespir, and G. Doumeingts. GRAI integrated methodology and its
mapping onto generic enterprise reference architecture and methodology. Computers
in Industry, 33(2–3):387–394, September 1997. ISSN 0166-3615. doi: 10.1016/
S0166-3615(97)00043-2.

[66] P. P.-s. Chen. The entity-relationship model: Toward a unified view of data. ACM
Transactions on Database Systems, 1:9–36, 1976.

[67] C.-M. Chituc, C. Toscano, and A. Azevedo. Interoperability in collaborative networks:
Independent and industry-specific initiatives – the case of the footwear industry.
Computers in Industry, 59(7):741–757, September 2008. ISSN 0166-3615.

[68] J. H. Christensen. Holonic manufacturing systems: Initial architecture and standards
directions. In Proceedings of the First European Conference on Holonic Manufacturing
Systems, Hannover, Germany, December 1994.

[69] G. Confessore, S. Giordani, and S. Rismondo. A market-based multi-agent system
model for decentralized multi-project scheduling. Annals of Operations Research,
150(1):115–135, 2007. ISSN 0254-5330. doi: 10.1007/s10479-006-0158-9.

[70] P. I. Cowling, D. Ouelhadj, and S. Petrovic. Dynamic scheduling of steel casting and
milling using multi-agents. Production Planning & Control, 15(2):178–188, 2004.

[71] M. V. de Castro. Aproximación MDA para el desarrollo orientado a servicios de
sistemas de información web: del modelo de negocio al modelo de composición de
servicios web. PhD thesis, Universidad Rey Juan Carlos, March 2007.

[72] V. De Castro, E. Marcos, and J. M. Vara. Applying CIM-to-PIM model trans-
formations for the service-oriented development of information systems. In-
formation and Software Technology, 53(1):87–105, 2011. ISSN 0950-5849. doi:
10.1016/j.infsof.2010.09.002.

[73] S. M. Deen. HMS/FB architecture and its implementation. In Agent Based Manufac-
turing: Advances in the Holonic Approach. Springer, July 2003. ISBN 9783540440697.

[74] M. D. Del Fabro, J. Bézivin, and P. Valduriez. Weaving models with the eclipse
AMW plugin. In Proceedings of the 2006 Eclipse Modeling Symposium, Eclipse
Summit Europe, Esslingen, Germany, October 2006.

D.4

[75] A. Delgado, F. Ruiz, I. de Guzmán, and M. Piattini. Business process service oriented
methodology (BPSOM) with service generation in SoaML. In H. Mouratidis and
C. Rolland, editors, Advanced Information Systems Engineering, volume 6741 of
Lecture Notes in Computer Science, pages 672–680. Springer Berlin / Heidelberg,
2011. ISBN 978-3-642-21639-8.

[76] D. M. Dilts, N. P. Boyd, and H. H. Whorms. The evolution of control architectures
for automated manufacturing systems. Journal of Manufacturing Systems, 10(1):
79–93, 1991. ISSN 0278-6125.

[77] G. Doumeingts, Y. Ducq, B. Vallespir, and S. Kleinhans. Production management
and enterprise modelling. Computers in Industry, 42(2–3):245–263, June 2000. ISSN
0166-3615. doi: 10.1016/S0166-3615(99)00074-3.

[78] D. F. D’Souza and A. C. Wills. Objects, Components, and Frameworks with UML:
The Catalysis(SM) Approach. Addison-Wesley Professional, October 1998. ISBN
0201310120.

[79] Eclipse Foundation. Eclipse wiki – Xcore, 2012. URL http://wiki.eclipse.org/
Xcore.

[80] Eclipse Foundation. Eclipse Modeling Framework, 2013. URL http://eclipse.
org/modeling/emf/. Last checked: November 6th, 2013.

[81] Eclipse Foundation. Graphical Modeling Project, 2013. URL http://www.eclipse.
org/modeling/gmp/. Last checked: November 6th, 2013.

[82] Eclipse Foundation. Main page of the Model to Text project (M2T), 2013. URL
http://www.eclipse.org/modeling/m2t/. Last checked: November 6th, 2013.

[83] Eclipse Foundation. Model Development Tools (MDT) project homepage, 2013. URL
http://www.eclipse.org/modeling/mdt/?project=ocl. Last checked: November
6th, 2013.

[84] Eclipse Foundation. Model to Model Transformation (MMT) project homepage,
2013. URL http://www.eclipse.org/mmt/. Last checked: November 6th, 2013.

[85] Eclipse Foundation. Emfatic project homepage, 2013. URL http://www.eclipse.
org/modeling/emft/emfatic/. Last checked: November 6th, 2013.

[86] Eclipse Foundation. Graphiti project homepage, 2013. URL http://www.eclipse.
org/graphiti/. Last checked: November 6th, 2013.

[87] Eclipse Foundation. Homepage of the mdt uml2 project, June 2013. URL http:
//www.eclipse.org/modeling/mdt/?project=uml2. Last checked: November 6th,
2013.

[88] Eclipse Foundation. Homepage of the papyrus project, June 2013. URL http:
//www.eclipse.org/papyrus/. Last checked: November 6th, 2013.

D.5

http://wiki.eclipse.org/Xcore
http://wiki.eclipse.org/Xcore
http://eclipse.org/modeling/emf/
http://eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/modeling/m2t/
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/mmt/
http://www.eclipse.org/modeling/emft/emfatic/
http://www.eclipse.org/modeling/emft/emfatic/
http://www.eclipse.org/graphiti/
http://www.eclipse.org/graphiti/
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/papyrus/
http://www.eclipse.org/papyrus/

D. Bibliography

[89] G. Engels, A. Hess, B. Humm, O. Juwig, M. Lohmann, J. Richter, M. Voß, and
J. Willkomm. A method for engineering a true Service-Oriented Architecture. In
J. Cordeiro and J. Filipe, editors, Proceedings of the 10th International Conference
on Enterprise Information Systems, pages 272–281, Barcelona, España, 2008. ISBN
978-989-8111-38-8.

[90] T. Erl. SOA: Principles of Service Design. Prentice Hall, Indiana, EEUU, 2008.
ISBN 0132344823.

[91] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. The daikon system for dynamic detection of likely invariants. Science
of Computer Programming, 69(1-3):35–45, 2007.

[92] eviware.com. soapUI home page, 2012. URL http://www.soapui.org/.

[93] eviware.com. loadUI homepage, 2013. URL http://www.loadui.org/. Last checked:
November 6th, 2013.

[94] M. Fletcher, E. Garcia-Herreros, J. Christensen, S. Deen, and R. Mittmann. An open
architecture for holonic cooperation and autonomy. In 11th International Workshop
on Database and Expert Systems Applications, 2000. Proceedings, pages 224–230,
2000. doi: 10.1109/DEXA.2000.875031.

[95] Foundation for Intelligent Physical Agents. FIPA abstract architecture specifica-
tion SC00001L, December 2002. URL http://www.fipa.org/specs/fipa00001/
SC00001L.pdf. Last checked: November 6th, 2013.

[96] Foundation for Intelligent Physical Agents. FIPA standard status specifica-
tions, 2002. URL http://www.fipa.org/repository/standardspecs.html. Last
checked: November 6th, 2013.

[97] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: a modeling language for
mathematical programming. Thomson/Brooks/Cole, California, EEUU, 2003. ISBN
9780534388096.

[98] M. S. Fox, J. F. Chionglo, and M. Barbuceanu. The integrated supply chain man-
agement system. Technical report, University of Toronto, Department of Industrial
Engineering, 1993.

[99] Frédéric Jouault, Jean Bezívin. Using ATL for Checking Models. In Proc. Interna-
tional Workshop on Graph and Model Transformation (GraMoT), Tallinn, Estonia,
September 2005.

[100] G. Doumeingts, B. Vallespir, M. Zannittin, and D. Chen. GIM-GRAI integrated
methodology, a methodology for designing CIM systems, version 1.0. Technical
report, University Bordeaux, Bordeaux, France, May 1992.

[101] A. García-Domínguez. Homepage of the SODM+T project, April 2013. URL
https://neptuno.uca.es/redmine/projects/sodmt.

D.6

http://www.soapui.org/
http://www.loadui.org/
http://www.fipa.org/specs/fipa00001/SC00001L.pdf
http://www.fipa.org/specs/fipa00001/SC00001L.pdf
http://www.fipa.org/repository/standardspecs.html
https://neptuno.uca.es/redmine/projects/sodmt

[102] S. Ghosh, A. Arsanjani, and A. Allam. SOMA: a method for developing service-
oriented solutions. IBM Systems Journal, 47(3):377–396, 2008.

[103] A. Giret Boggino. ANEMONA: una metodología multiagente para sistemas holónicos
de fabricación. PhD thesis, Universidad Politécnica de Valencia, July 2005.

[104] D. Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys, 23(1):5–48, 1991. doi: 10.1145/103162.103163.

[105] D. Goldberg, V. Cicirello, M. B. Dias, R. Simmons, S. Smith, and A. Stentz. Task
allocation using a distributed market-based planning mechanism. In Proceedings
of the second international joint conference on Autonomous agents and multiagent
systems, pages 996–997, 2003.

[106] C. F. Goldfarb. The roots of SGML – a personal recollection, 1996. URL http:
//www.sgmlsource.com/history/roots.htm. Last checked: November 6th, 2013.

[107] J. González Madrigal, J. Sánchez Sola, M. Marcos Bárcena, and M. Sánchez Carrilero.
Aproximaciones a los sistemas de fabricación holónicos. Informacion de Máquinas-
Herramientas y Equipos, pages 59–65, 1998.

[108] GoPivotal. Spring Framework homepage, November 2013. URL http://projects.
spring.io/spring-framework/. Last checked: November 6th, 2013.

[109] GoPivotal. Spring Roo homepage, August 2013. URL http://projects.spring.
io/spring-roo/. Last checked: November 6th, 2013.

[110] J. Gordijn and H. Akkermans. Value-based requirements engineering: exploring
innovative e-commerce ideas. Requirements Engineering, 8(2):114–134, July 2003.
doi: 10.1007/s00766-003-0169-x.

[111] J. Gordijn and H. Akkermans. e3value™ toolset, August 2006. URL http://www.
e3value.com/tools/.

[112] R. Gorrieri, H. Wehrheim, F. Jouault, and J. Bézivin. KM3: a DSL for metamodel
specification. In Formal Methods for Open Object-Based Distributed Systems, volume
4037 of Lecture Notes in Computer Science, pages 171–185. Springer Berlin Heidel-
berg, 2006.

[113] J. Greenfield. Software factories: Assembling applications with patterns, models,
frameworks, and tools, November 2004. URL http://msdn.microsoft.com/en-us/
library/ms954811.aspx. Last checked: November 6th, 2013.

[114] J. Greenfield, K. Short, S. Cook, S. Kent, and J. Crupi. Software Factories: As-
sembling Applications with Patterns, Models, Frameworks, and Tools. Wiley, first
edition, August 2004. ISBN 9780471202844.

[115] M. Guttman and J. Parodi. Real-Life MDA: Solving Business Problems with Model
Driven Architecture. Morgan Kaufmann, first edition, December 2006. ISBN
0123705924.

D.7

http://www.sgmlsource.com/history/roots.htm
http://www.sgmlsource.com/history/roots.htm
http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-roo/
http://projects.spring.io/spring-roo/
http://www.e3value.com/tools/
http://www.e3value.com/tools/
http://msdn.microsoft.com/en-us/library/ms954811.aspx
http://msdn.microsoft.com/en-us/library/ms954811.aspx

D. Bibliography

[116] A. Haase, M. Völter, S. Efftinge, and B. Kolb. Introduction to openArchitectureWare
4.1. 2. In Proceedings of the MDD Tool Implementers Forum, TOOLS Europe 2007,
2007.

[117] D. Harel and B. Rumpe. Meaningful modeling: what’s the semantics of “semantics”?
Computer, 37(10):64–72, 2004. ISSN 0018-9162. doi: 10.1109/MC.2004.172.

[118] P. Hoyer, M. Gebhart, I. Pansa, A. Dikanski, and S. Abeck. Service-oriented
integration using a model-driven approach. International Journal On Advances in
Software, 3(1):304–317, September 2010. ISSN 1942-2628.

[119] G. Iacono and F. Muñoz-Castillo. grinder-maven-plugin homepage, June 2013. URL
http://code.google.com/p/grinder-maven-plugin/.

[120] IBM Corporation, MESA International, and Capgemini. SOA in Manufacturing
Guidebook, May 2008.

[121] IFAC/IFIP Task Force. GERAM: generalised enterprise reference architecture
and methodology, March 1999. URL http://www.ict.griffith.edu.au/~bernus/
taskforce/geram/versions/geram1-6-3/v1.6.3.html.

[122] International Electrotechnical Commission. IEC/FDIS 62264-1:2003 – enterprise-
control system integration – part 1: Models and terminology, 2003.

[123] International Electrotechnical Commission. IEC/FDIS 62264-2:2004 – enterprise-
control system integration – part 2: Model object attributes, 2004.

[124] International Electrotechnical Commission. Function blocks - part 1: Architecture.
Technical Report IEC 61499-1, IEC, 2005.

[125] International Electrotechnical Commission. IEC/DIS 62264-3:2007 – enterprise-
control system integration – part 3: Activity models of manufacturing operations
management, 2007.

[126] International Standards Organization. ISO 8879:1986 – information processing –
text and office systems – standard generalized markup language (SGML), 1986.

[127] International Standards Organization. ISO 15704 – industrial automation systems –
requirements for enterprise-reference architectures and methodologies, August 1999.

[128] International Standards Organization. ISO 18629-1 – process specification language
– part 1: Overview and basic principles, 2004.

[129] International Standards Organization. ISO 19439 – enterprise integration – framework
for enterprise modelling, 2006.

[130] International Standards Organization. ISO 19440 – enterprise integration – constructs
for enterprise modelling, 2007.

[131] P. R. James and P. Chalin. Faster and more complete extended static checking
for the java modeling language. Journal of Automated Reasoning, 44(1-2):145–174,
February 2010. ISSN 0168-7433. doi: 10.1007/s10817-009-9134-9.

D.8

http://code.google.com/p/grinder-maven-plugin/
http://www.ict.griffith.edu.au/~bernus/taskforce/geram/versions/geram1-6-3/v1.6.3.html
http://www.ict.griffith.edu.au/~bernus/taskforce/geram/versions/geram1-6-3/v1.6.3.html

[132] Java.net. JAX-WS reference implementation, November 2013. URL http://jax-ws.
java.net/. Last checked: November 6th, 2013.

[133] JBoss Community. Hibernate homepage, November 2013. URL http://hibernate.
org/. Last checked: November 6th, 2013.

[134] K. Johansen, M. Comstock, and M. Winroth. Coordination in collaborative man-
ufacturing mega-networks: a case study. Journal of Engineering and Technology
Management, 22(3):226–244, September 2005. ISSN 0923-4748.

[135] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: a model transformation
tool. Science of Computer Programming, 72(1-2):31–39, June 2008. ISSN 0167-6423.
doi: 10.1016/j.scico.2007.08.002.

[136] K. Kawaguchi. Jenkins CI, April 2013. URL http://jenkins-ci.org/.

[137] A. Knutilla, C. Schlenoff, S. Ray, S. T. Polyak, A. Tate, S. C. Cheah, and R. C.
Anderson. Process specification language: An analysis of existing representations.
Technical Report NISTIR 6133, National Institute of Standards and Technology,
Gaithersburg, MD, USA, 1998.

[138] A. Koestler. Some general properties of self-regulating open hierarchic order (SOHO).
In A. Koestler and J. R. Smythies, editors, Beyond Reductionism: New Perspectives
In The Life Sciences. Houghton Mifflin Co, 1971. ISBN 0807015350.

[139] A. Koestler. The Ghost in the Machine. Penguin Books, June 1990. ISBN 978-
0140191929.

[140] D. S. Kolovos. Epsilon ModeLink, 2012. URL http://eclipse.org/gmt/epsilon/
doc/modelink/. Last checked: November 6th, 2013.

[141] D. S. Kolovos, R. F. Paige, L. M. Rose, and F. A. Polack. Unit testing model
management operations. In Proceedings of the IEEE International Conference on
Software Testing Verification and Validation Workshop, 2008 (ICSTW ’08), pages
97–104, 2008.

[142] D. S. Kolovos, L. M. Rose, S. B. Abid, R. F. Paige, F. A. C. Polack, and G. Botterweck.
Taming EMF and GMF using model transformation. In D. C. Petriu, N. Rouquette,
and O. Haugen, editors, Model Driven Engineering Languages and Systems, volume
6394 of LNCS, pages 211–225. Springer-Verlag, Berlin, Germany, 2010. ISBN
978-3-642-16144-5.

[143] D. S. Kolovos, L. M. Rose, R. F. Paige, and A. García-Domínguez. The Epsilon book,
2013. URL http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/
trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf. Last checked: Novem-
ber 6th, 2013.

[144] K. Kosanke. CIMOSA – overview and status. Computers in Industry, 27(2):101–109,
October 1995. ISSN 0166-3615. doi: 10.1016/0166-3615(95)00016-9.

D.9

http://jax-ws.java.net/
http://jax-ws.java.net/
http://hibernate.org/
http://hibernate.org/
http://jenkins-ci.org/
http://eclipse.org/gmt/epsilon/doc/modelink/
http://eclipse.org/gmt/epsilon/doc/modelink/
http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf
http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/doc/org.eclipse.epsilon.book/EpsilonBook.pdf

D. Bibliography

[145] K. Kosanke and M. Zelm. CIMOSA modelling processes. Computers in Industry,
40(2–3):141–153, November 1999. ISSN 0166-3615. doi: 10.1016/S0166-3615(99)
00020-2.

[146] K. Kosanke, F. Vernadat, and M. Zelm. CIMOSA: enterprise engineering and
integration. Computers in Industry, 40(2–3):83–97, November 1999. ISSN 0166-3615.
doi: 10.1016/S0166-3615(99)00016-0.

[147] B.-R. Lea, M. C. Gupta, and W.-B. Yu. A prototype multi-agent ERP system: an
integrated architecture and a conceptual framework. Technovation, 25(4):433–441,
2005. ISSN 0166-4972. doi: 10.1016/S0166-4972(03)00153-6.

[148] Y.-H. Lee, S. R. T. Kumara, and K. Chatterjee. Multiagent based dynamic resource
scheduling for distributed multiple projects using a market mechanism. Journal of
Intelligent Manufacturing, 14(5):471–484, 2003. ISSN 0956-5515. doi: 10.1023/A:
1025753309346.

[149] P. Leitão. Agent-based distributed manufacturing control: A state-of-the-art survey.
Engineering Applications of Artificial Intelligence, 22(7):979–991, October 2009.
ISSN 0952-1976.

[150] M. Lohmann, S. Sauer, and G. Engels. Executable visual contracts. In Proceedings
of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing,
pages 63–70, 2005. doi: 10.1109/VLHCC.2005.35.

[151] M. Lohmann, G. Engels, and S. Sauer. Model-driven monitoring: generating
assertions from visual contracts. In Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering, 2006 (ASE ’06), pages 355–356,
2006. ISBN 1527-1366. doi: 10.1109/ASE.2006.52.

[152] M. Lohmann, L. Mariani, and R. Heckel. A model-driven approach to discovery,
testing and monitoring of web services. In Test and Analysis of Web Services,
pages 173–204. Springer Berlin, 2007. ISBN 978-3-540-72911-2. doi: 10.1007/
978-3-540-72912-9_7.

[153] J. P. López-Grao, J. Merseguer, and J. Campos. From UML activity diagrams to
Stochastic Petri nets: application to software performance engineering. SIGSOFT
Softw. Eng. Notes, 2004. doi: 10.1145/974043.974048.

[154] H. Lucas. Performance evaluation and monitoring. ACM Computing Surveys,
September 1971. doi: 10.1145/356589.356590.

[155] F. Macia-Perez, J. V. Berna-Martinez, D. Marcos-Jonquera, I. Lorenzo-Fonseca, and
A. Ferrandiz-Colmeiro. A new paradigm: cloud agile manufacturing. International
Journal of Advanced Science and Technology, 45:47–54, August 2012. ISSN 2005-
4238.

[156] C. M. MacKenzie, K. Laskey, F. McCabe, P. Brown, and R. Metz. Reference
Model for Service Oriented Architecture 1.0, October 2006. URL http://docs.
oasis-open.org/soa-rm/v1.0/soa-rm.pdf. Last checked: November 6th, 2013.

D.10

http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

[157] Manufuture High Level Group. Manufuture: a vision for 2020. Technical report,
European Commission, Brussels, Belgium, November 2004. ISBN 92-894-8322-9.

[158] M. Marcos, F. Aguayo, M. Sánchez Carrilero, L. Sevilla, and J. R. Lama. Toward the
next generation of manufacturing systems. Frabiho: a synthesis model for distributed
manufacturing. In Proceedings of the First I*proms Virtual Conference, pages 35–40.
Elsevier, 2005.

[159] M. Marcos Bárcena, M. Álvarez Alcón, M. Sánchez Carrilero, and J. Sánchez Sola.
Sistemas de fabricación holónicos: una propuesta para el siglo XXI. Anales de
Ingeniería Mecánica, 12(3):275–281, 1998.

[160] V. Marik, M. Fletcher, and M. Pechoucek. Holons & agents: Recent developments
and mutual impacts. In V. Marik, O. Stepankova, H. Krautwurmova, and M. Luck,
editors, Multi-Agent Systems and Applications II, volume 2322 of Lecture Notes
in Computer Science, pages 89–106. Springer Berlin / Heidelberg, 2002. ISBN
978-3-540-43377-4.

[161] Martin Fowler. UmlAsSketch, August 2012. URL http://martinfowler.com/
bliki/UmlAsSketch.html. Last checked: November 6th, 2013.

[162] R. J. Mayer, C. P. Menzel, M. K. Painter, P. S. de Witte, T. Blinn, and B. Perakath.
IDEF3 process description capture method report. Interim Technical Report AL-
TR-1995-XXXX, Knowledge Based Systems Inc., Texas, USA, September 1995.

[163] L. Monostori, J. Váncza, and S. Kumara. Agent-based systems for manufacturing.
CIRP Annals - Manufacturing Technology, 55(2):697–720, 2006. ISSN 0007-8506.
doi: 10.1016/j.cirp.2006.10.004.

[164] J. Mottu, B. Baudry, and Y. Le Traon. Model transformation testing: oracle issue.
In Proc. of the 2008 IEEE Int. Conf. on Software Testing Verification and Validation,
pages 105–112, Lillehammer, Norway, April 2008. ISBN 978-0-7695-3388-9. doi:
10.1109/ICSTW.2008.27.

[165] G. J. Myers. The Art of Software Testing. John Wiley & Sons, 2 edition, 2004. ISBN
0471469122.

[166] L. Mönch, M. Stehli, and J. Zimmermann. FABMAS: an agent-based system
for production control of semiconductor manufacturing processes. In V. Marík,
D. McFarlane, and P. Valckenaers, editors, Holonic and Multi-Agent Systems for
Manufacturing, volume 2744 of Lecture Notes in Computer Science, pages 258–267.
Springer Berlin / Heidelberg, 2003. ISBN 978-3-540-40751-5.

[167] F. Nachira. Towards a network of digital business ecosystems fostering the local de-
velopment. Discussion paper, European Commission, Brussels, Belgium, September
2002. URL http://www.digital-ecosystems.org/doc/discussionpaper.pdf.
Last checked: November 6th, 2013.

[168] Y.-E. Nahm and H. Ishikawa. A hybrid multi-agent system architecture for enterprise
integration using computer networks. Robotics and Computer-Integrated Manufac-
turing, 21(3):217–234, June 2005. ISSN 0736-5845. doi: 10.1016/j.rcim.2004.07.016.

D.11

http://martinfowler.com/bliki/UmlAsSketch.html
http://martinfowler.com/bliki/UmlAsSketch.html
http://www.digital-ecosystems.org/doc/discussionpaper.pdf

D. Bibliography

[169] D. K. Nguyen, W.-J. van den Heuvel, M. Papazoglou, V. de Castro, and E. Marcos.
GAMBUSE: a gap analysis methodology for engineering SOA-Based applications. In
Conceptual Modeling: Foundations and Applications, volume 5600 of Lecture Notes
in Computer Science, pages 293–318. Springer Berlin Heidelberg, 2009.

[170] C. Nikolai and G. Madey. Tools of the trade: A survey of various agent based
modeling platforms. Journal of Artificial Societies and Social Simulation, 12(2):2,
2009.

[171] OASIS. Web Service Business Process Execution Language (WS-BPEL) 2.0,
April 2007. URL http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.
0-OS.html. Last checked: November 6th, 2013.

[172] Object Management Group. MDA Guide version 1.0.1, June 2003. URL http:
//www.omg.org/cgi-bin/doc?omg/03-06-01. Last checked: November 6th, 2013.

[173] Object Management Group. Human-Usable Textual Notation (HUTN) 1.0, August
2004. URL http://www.omg.org/technology/documents/formal/hutn.htm. Last
checked: November 6th, 2013.

[174] Object Management Group. UML Profile for Schedulability, Performance, and Time
(SPTP) 1.1, January 2005. URL http://www.omg.org/spec/SPTP/1.1/. Last
checked: November 6th, 2013.

[175] Object Management Group. UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms (QFTP) 1.1, April 2008. URL
http://www.omg.org/spec/QFTP/1.1/. Last checked: November 6th, 2013.

[176] Object Management Group. Business process model and notation 2.0, January 2011.
URL http://www.omg.org/spec/BPMN/2.0/. Last checked: November 6th, 2013.

[177] Object Management Group. UML Profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE) 1.1, June 2011. URL http://www.omg.org/
spec/MARTE/1.1/. Last checked: November 6th, 2013.

[178] Object Management Group. Meta-Object Facility (MOF) 2.4.1, August 2011. URL
http://www.omg.org/spec/MOF/2.4.1/. Last checked: November 6th, 2013.

[179] Object Management Group. Query/View/Transformation (QVT) 1.1, January 2011.
URL http://www.omg.org/spec/QVT/1.1/. Last checked: November 6th, 2013.

[180] Object Management Group. Unified Modeling Language (UML) 2.4.1, August 2011.
URL http://www.omg.org/spec/UML/2.4.1/. Last checked: November 6th, 2013.

[181] Object Management Group. Object Constraint Language Specification (OCL)
2.3.1, January 2012. URL http://www.omg.org/spec/OCL/2.3.1/. Last checked:
November 6th, 2013.

[182] Object Management Group. Service oriented architecture modeling language (SoaML)
1.0.1, May 2012. URL http://www.omg.org/spec/SoaML/1.0.1/.

D.12

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/technology/documents/formal/hutn.htm
http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/spec/QFTP/1.1/
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MOF/2.4.1/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/SoaML/1.0.1/

[183] Organization for the Advancement of Structured Information Standards. Universal
Description Discovery and Integration Standard 3.0, October 2004. URL http:
//uddi.org/pubs/uddi_v3.htm. Last checked: November 6th, 2013.

[184] Organization for the Advancement of Structured Information Standards. Web
service implementation methodology, July 2005. URL https://www.oasis-open.
org/committees/documents.php?wg_abbrev=fwsi. Last checked: November 6th,
2013.

[185] D. Ouelhadj and S. Petrovic. A survey of dynamic scheduling in manufacturing
systems. Journal of Scheduling, 12(4):417–431, 2009. ISSN 1094-6136. doi: 10.1007/
s10951-008-0090-8.

[186] M. P. Papazoglou and W.-J. V. D. Heuvel. Service-oriented design and development
methodology. Int. J. Web Eng. Technol., 2(4):412–442, 2006.

[187] H. V. D. Parunak. Manufacturing experience with the contract net. Distributed
Artificial Intelligence, 1:285–310, 1987.

[188] D. C. Petriu and H. Shen. Applying the UML Performance Profile: Graph Grammar-
based Derivation of LQN Models from UML Specifications. In Proceedings of the
12th Int. Conference on Computer Performance Evaluation: Modelling Techniques
and Tools (TOOLS 2002), volume 2324 of Lecture Notes in Computer Science, pages
159–177, London, UK, 2002. Springer Berlin.

[189] A. Poggi, M. Tomaiuolo, and P. Turci. An agent-based service oriented architecture.
In Proc. 8th AI* IA/TABOO Joint Workshop From Objects to Agents: Agents and
Industry: Technological Applications of Software Agents, Genova, pages 157–165,
2007.

[190] R. Poler, F. Lario, and G. Doumeingts. Dynamic modelling of decision systems
(DMDS). Computers in Industry, 49(2):175–193, October 2002. ISSN 0166-3615. doi:
10.1016/S0166-3615(02)00083-0. URL http://www.sciencedirect.com/science/
article/pii/S0166361502000830.

[191] J. T. Pollock. The big issue: Interoperability vs integration. eAI Journal, Octo-
ber 2001. URL http://me.jtpollock.us/pubs/2001.08-BigIssue_eAIJournal.
pdf.

[192] L. Ribeiro, J. Barata, and P. Mendes. MAS and SOA: complementary automation
paradigms. In A. Azevedo, editor, Innovation in Manufacturing Networks, volume
266 of IFIP International Federation for Information Processing, pages 259–268.
Springer Boston, 2008. ISBN 978-0-387-09491-5.

[193] L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. C. Polack. Model migration with
Epsilon Flock. In D. Hutchison, T. Kanade, J. Kittler, et al., editors, Theory and
Practice of Model Transformations, volume 6142, pages 184–198. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2010. ISBN 978-3-642-13687-0.

[194] J. Rothenberg. The nature of modeling. Artificial Intelligence, Simulation, and
Modeling, pages 75–92, 1989.

D.13

http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
https://www.oasis-open.org/committees/documents.php?wg_abbrev=fwsi
https://www.oasis-open.org/committees/documents.php?wg_abbrev=fwsi
http://www.sciencedirect.com/science/article/pii/S0166361502000830
http://www.sciencedirect.com/science/article/pii/S0166361502000830
http://me.jtpollock.us/pubs/2001.08-BigIssue_eAIJournal.pdf
http://me.jtpollock.us/pubs/2001.08-BigIssue_eAIJournal.pdf

D. Bibliography

[195] M. Rother and J. Shook. Learning to See: Value Stream Mapping to Add Value and
Eliminate MUDA. Lean Enterprise Institute, June 1999. ISBN 978-0966784305.

[196] K. Ryu and M. Jung. Agent-based fractal architecture and modelling for developing
distributed manufacturing systems. International Journal of Production Research,
41(17):4233–4255, 2003. ISSN 0020-7543. doi: 10.1080/0020754031000149275.

[197] N. M. Sadeh, D. W. Hildum, and D. Kjenstad. Agent-based e-supply chain decision
support. Journal of Organizational Computing and Electronic Commerce, 13(3-4):
225–241, 2003.

[198] D. Saff. Theory-infected: or how I learned to stop worrying and love universal
quantification. In Companion to the 22nd ACM SIGPLAN Conf. on Object-oriented
Programming Systems and Applications, OOPSLA ’07, pages 846–847, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-865-7. doi: 10.1145/1297846.1297919.

[199] M. Sánchez Carrilero, M. Marcos Bárcena, M. Álvarez Alcón, J. Sánchez Sola, and
R. Bienvenido Bárcena. El diseño en los sistemas de fabricación holónicos. In Actas
del X Congreso Internacional de Ingeniería Gráfica, pages 312–330, 1998.

[200] M. Sánchez Carrilero, F. Aguayo González, J. Lama Ruiz, R. Bienvenido Barcena,
and M. Marcos Barcena. Integración de modelos biónicos, holónicos y fractales para
fabricación distribuida. Anales de Ingeniería Mecánica, pages 395–403, 2004.

[201] SAP News. Microsoft, IBM, SAP to discontinue UDDI web services registry ef-
fort, January 2006. URL http://soa.sys-con.com/node/164624. Last checked:
November 6th, 2013.

[202] D. C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):25–31, 2006.
ISSN 0018-9162.

[203] E. Seidewitz. What models mean. Software, IEEE, 20(5):26–32, 2003. ISSN
0740-7459. doi: 10.1109/MS.2003.1231147.

[204] S. Sen, B. Baudry, and J. Mottu. Automatic model generation strategies for model
transformation testing. In R. F. Paige, editor, Theory and Practice of Model
Transformations, volume 5563, pages 148–164. Springer-Verlag, Berlin, Germany,
2009. ISBN 978-3-642-02407-8.

[205] W. Shen, Q. Hao, H. J. Yoon, and D. H. Norrie. Applications of agent-based systems
in intelligent manufacturing: An updated review. Advanced Engineering Informatics,
20(4):415–431, October 2006. ISSN 1474-0346.

[206] G. A. Silver, A. Maduko, J. Rabia, J. Miller, and A. Sheth. Modeling and simulation
of quality of service for composite web services. In Proceedings of 7th World Mul-
ticonference on Systemics, Cybernetics and Informatics, pages 420–425. Int. Institute
of Informatics and Systems, November 2003.

[207] A. Sinha and A. Paradkar. Model-based functional conformance testing of web
services operating on persistent data. In Proceedings of the 2006 workshop on Testing,
analysis, and verification of web services and applications, pages 17–22, Portland,
Maine, 2006. ACM. ISBN 1-59593-458-8. doi: 10.1145/1145718.1145721.

D.14

http://soa.sys-con.com/node/164624

[208] C. U. Smith and L. G. Williams. Software performance engineering. In L. Lavagno,
G. Martin, and B. Selic, editors, UML for Real: Design of Embedded Real-Time
Systems, pages 343–366, The Netherlands, May 2003. Kluwer.

[209] N. Spanoudakis and P. Moraitis. Using ASEME methodology for model-driven
agent systems development. In D. Weyns and M.-P. Gleizes, editors, Agent Oriented
Software Engineering XI, volume 6788 of Lecture Notes in Computer Science (LNCS),
pages 106–127. Springer-Verlag Berlin Heidelberg, 2011.

[210] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework. Addison-Wesley Professional, second edition, December 2008. ISBN
978-0321331885.

[211] Z. Stojanović. A Method for Component-Based and Service-Oriented Software
Systems Engineering. PhD thesis, Delft University of Technology, 2005.

[212] R. Straeten, T. Mens, and S. Baelen. Challenges in Model-Driven software engineering.
In M. R. V. Chaudron, editor, Models in Software Engineering, volume 5421 of LNCS,
pages 35–47. Springer-Verlag, Berlin, Germany, 2009. ISBN 978-3-642-01647-9.

[213] D. Tapia, S. Rodríguez, J. Bajo, and J. Corchado. FUSION@: a SOA-based multi-
agent architecture. In J. Corchado, S. Rodríguez, J. Llinas, and J. Molina, editors,
International Symposium on Distributed Computing and Artificial Intelligence 2008
(DCAI 2008), volume 50, pages 99–107. Springer Berlin/Heidelberg, 2009.

[214] E. Tatara, M. North, C. Hood, F. Teymour, and A. Cinar. Agent-based control of
spatially distributed chemical reactor networks. In S. Brueckner, G. Di Marzo Seru-
gendo, D. Hales, and F. Zambonelli, editors, Engineering Self-Organising Systems,
volume 3910 of Lecture Notes in Computer Science, pages 222–231. Springer Berlin
/ Heidelberg, 2006. ISBN 978-3-540-33342-5.

[215] A. Tharumarajah, A. Wells, and L. Nemes. Comparison of emerging manufacturing
concepts. In Proceedings of the 1998 IEEE International Conference on Systems,
Man, and Cybernetics, pages 325–331, California, EEUU, 1998.

[216] The hsql Development Group. HSQLDB homepage, January 2013. URL http:
//hsqldb.org/. Last checked: November 6th, 2013.

[217] The Open Group. The Open Group Architecture Framework (TOGAF) Version 9.1.
The Open Group, 2011. ISBN 978-90-8753-679-4.

[218] The PostgreSQL Gobal Development Group. PostgreSQL homepage, November
2013. URL http://www.postgresql.org/. Last checked: November 6th, 2013.

[219] M. Tribastone and S. Gilmore. Automatic extraction of PEPA performance models
from UML activity diagrams annotated with the MARTE profile. In Proceedings of
the 7th Int. Workshop on Software and Performance, pages 67–78, Princeton, NJ,
USA, 2008. ACM. doi: 10.1145/1383559.1383569.

D.15

http://hsqldb.org/
http://hsqldb.org/
http://www.postgresql.org/

D. Bibliography

[220] M. M. Tseng, M. Lei, C. Su, and M. E. Merchant. A collaborative control system
for mass customization manufacturing. CIRP Annals - Manufacturing Technology,
46(1):373–376, 1997. ISSN 0007-8506. doi: 10.1016/S0007-8506(07)60846-4.

[221] M. Ulieru and M. Cobzaru. Building holonic supply chain management systems: an
e-logistics application for the telephone manufacturing industry. IEEE Transactions
on Industrial Informatics, 1(1):18–30, 2005. ISSN 1551-3203. doi: 10.1109/TII.2005.
843827.

[222] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based testing, April
2006. URL http://researchcommons.waikato.ac.nz/handle/10289/81. Last
checked: November 6th, 2013.

[223] J. Vaario and K. Ueda. Biological concept of self-organization for dynamic shop-
floor configuration. In N. Okino, T. Hiroyuki, and F. Susumu, editors, Selected,
revised proceedings of the IFIP TC5/WG5.7 International Conference on Advances
in Production Management Systems, volume 114 of IFIP Conference Proceedings,
pages 55–66, Kyoto, Japan, November 1996. Chapman & Hall. ISBN 0-412-82350-0.

[224] J. Vara Mesa, E. Marcos, and M. V. de Castro. Obteniendo modelos de sistemas de
información a partir de modelos de negocios de alto nivel: un enfoque dirigido por
modelos. In Actas de las IV Jornadas Científico-Técnicas en Servicios Web y SOA,
pages 15–28, Sevilla, España, October 2008.

[225] J. Warmer, K. Thoms, M. Boger, F. Filipelli, M. Bauer, and J. Reichert. Spray project
homepage, 2012. URL https://code.google.com/a/eclipselabs.org/p/spray/.
Last checked: November 6th, 2013.

[226] H. Warnecke. The Fractal Company: A Revolution in Corporate Culture. Springer-
Verlag, August 1997. ISBN 038756537X.

[227] Web Services Interoperability Organization. Basic profile - version 1.1 (Final), Au-
gust 2004. URL http://www.ws-i.org/Profiles/BasicProfile-1.1.html. Last
checked: November 6th, 2013.

[228] M. Weidlich, G. Decker, A. Großkopf, and M. Weske. BPEL to BPMN: the myth
of a straight-forward mapping. In On the Move to Meaningful Internet Systems:
OTM 2008, volume 5331 of Lecture Notes in Computer Science, pages 265–282,
Monterrey, Mexico, November 2008. Springer Berlin. ISBN 978-3-540-88870-3. doi:
10.1007/978-3-540-88871-0_19.

[229] T. J. Williams, editor. A Reference Model for Computer Integrated Manufacturing
(CIM). Instrument Society of America, North Carolina, USA, second edition, 1989.
ISBN 1-55617-225-7.

[230] T. J. Williams. The Purdue enterprise reference architecture. Computers in Industry,
24(2–3):141–158, September 1994. ISSN 0166-3615. doi: 10.1016/0166-3615(94)
90017-5.

D.16

http://researchcommons.waikato.ac.nz/handle/10289/81
https://code.google.com/a/eclipselabs.org/p/spray/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html

[231] M. Woodside, G. Franks, and D. Petriu. The future of software performance
engineering. In Proceedings of Future of Software Engineering 2007, pages 171–187,
Los Alamitos, CA, USA, 2007. IEEE Computer Society. doi: 10.1109/FOSE.2007.32.

[232] Workflow Management Coalition. WFMC-TC-1011: terminology and glossary
3.0, February 1999. URL http://www.workflowpatterns.com/documentation/
documents/TC-1011_term_glossary_v3.pdf. Last checked: November 6th, 2013.

[233] World Batch Forum. Business to manufacturing markup language (B2MML), 2008.
URL http://www.isa.org/Content/NavigationMenu/General_Information/
Partners_and_Affiliates/WBF/Working_Groups2/XML_Working_Group/B2MML/
B2MML.htm. Last checked: November 6th, 2013.

[234] World Wide Web Consortium. XML Schema Part 0: Primer (Second Edition).
Technical report, November 2004. URL http://www.w3.org/TR/xmlschema-0/.
Last checked: November 6th, 2013.

[235] World Wide Web Consortium. Web services architecture, February 2004. URL
http://www.w3.org/TR/ws-arch/. Last checked: November 6th, 2013.

[236] World Wide Web Consortium. Web services glossary, February 2004. URL http:
//www.w3.org/TR/ws-gloss/. Last checked: November 6th, 2013.

[237] World Wide Web Consortium. Extensible Markup Language (XML) 1.1 (Second Edi-
tion), August 2006. URL http://www.w3.org/TR/xml11/. Last checked: November
6th, 2013.

[238] World Wide Web Consortium. Web Services Description Language (WSDL) Version
2.0 Part 0: Primer, June 2007. URL http://www.w3.org/TR/wsdl20-primer. Last
checked: November 6th, 2013.

[239] World Wide Web Consortium. SOAP version 1.2 part 0: Primer, April 2007. URL
http://www.w3.org/TR/soap12-part0/. Last checked: November 6th, 2013.

[240] J. A. Zachmann. The Zachman Framework™: the Official Concise
Definition, 2008. URL http://www.zachmaninternational.com/index.php/
the-zachman-framework. Last checked: November 6th, 2013.

D.17

http://www.workflowpatterns.com/documentation/documents/TC-1011_term_glossary_v3.pdf
http://www.workflowpatterns.com/documentation/documents/TC-1011_term_glossary_v3.pdf
http://www.isa.org/Content/NavigationMenu/General_Information/Partners_and_Affiliates/WBF/Working_Groups2/XML_Working_Group/B2MML/B2MML.htm
http://www.isa.org/Content/NavigationMenu/General_Information/Partners_and_Affiliates/WBF/Working_Groups2/XML_Working_Group/B2MML/B2MML.htm
http://www.isa.org/Content/NavigationMenu/General_Information/Partners_and_Affiliates/WBF/Working_Groups2/XML_Working_Group/B2MML/B2MML.htm
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/wsdl20-primer
http://www.w3.org/TR/soap12-part0/
http://www.zachmaninternational.com/index.php/the-zachman-framework
http://www.zachmaninternational.com/index.php/the-zachman-framework

	Introduction
	Goals and scope
	Context
	Hypotheses
	Document structure

	Concepts of next-generation manufacturing systems
	Challenges in manufacturing information systems
	Evolution of production control systems
	Holons, agents and services
	Issues with existing methodologies

	Extended enterprises
	Enterprise integration
	GRAI Integrated Methodology (GIM)
	Purdue Enterprise Reference Architecture (PERA)
	Computer-Integrated Manufacturing Open System Architecture (CIMOSA)
	Generalised Enterprise Reference Architecture and Methodology (GERAM)
	EN/ISO 19439 and EN/ISO 19440
	The Open Group Architecture Framework (TOGAF)
	IEC 62264 / ISA-95

	Process modelling
	Integrated DEFinition for Process Description Capture Method (IDEF)
	Process Specification Language (PSL)
	Value Stream Mapping (VSM)
	Business Process Modelling Notation (BPMN)
	Comparison through a case study

	Multi-agent systems
	Applications
	Agent platforms

	Concepts of software and service engineering for distributed manufacturing
	Service-oriented architectures
	Definitions and goals
	Web Services

	Performance engineering
	Notations
	Algorithms

	Model-driven software engineering
	Definitions
	Existing approaches
	Available technologies

	Existing service-oriented methodologies
	State of the art
	Prior work on component-based systems
	IBM SOMA
	SODM
	BPSOM
	Hoyer

	Selection of a base methodology
	Detailed description of SODM
	UML subset used by SODM
	Computation-independent models
	Platform-independent models
	Platform-specific models

	Extending SODM for testing
	System tests: performance requirements
	Function and integration tests: service contracts

	Conclusion

	SODM+T: extension of SODM for performance testing
	Introduction
	Extended metamodels
	Extended service process metamodel
	Extended service composition metamodel

	Extended model editors
	Computing least common ancestors
	Model validation
	Migration of service processes to service compositions

	Performance inference algorithms
	Input and output values
	Basic definitions
	Running example
	Throughput inference
	Time limit inference

	Evaluation
	Limitations
	Implementation
	Theoretical performance
	Empirical performance

	Conclusions

	Generation of test artefacts with SODM+T and MARTE
	The MARTE profile
	Architecture
	GQAM
	VSL

	Changes in SODM+T for MARTE
	Revised annotations
	Revised algorithms

	Overall approach for test artefact generation
	Reusing Java unit tests as performance tests
	Model extraction
	Weaving metamodel
	Code generation

	Generating performance tests for WSDL-based Web Services
	Target performance testing tool: The Grinder
	Model extraction
	Weaving metamodel
	Test data generation
	Test code generation
	Test infrastructure and report generation

	Conclusion

	Case study
	Overall description
	Enterprise profile
	Manufacturing process for porcelain stoneware
	Manufacturing facilities for porcelain stoneware
	Providers
	Information and material flows

	Computation-independent models
	Value models
	Business process model
	Business service list

	Platform-independent models
	Use case model
	Extended use case models
	Service process models
	Service composition models

	Platform-specific models
	Extended service composition models
	Web Service interface models

	Implementation
	Persistence layer: adaptation of the ISA-95 object model
	Web interface: specification of rectification processes with ISA-95
	Web service: provision of a scheduler WS

	Performance test generation and execution
	Conclusion

	Conclusions and future work
	Obtained results
	Future work
	Publications
	Journal articles
	Conference papers
	Book chapters

	Related proofs
	Path ordering simplification
	Path ordering as a partial order

	The Epsilon EUnit testing framework
	Motivation
	Common issues
	Testing with JUnit
	Selected approach

	Test organisation
	Test suites
	Test cases

	Test specification
	Ant buildfile
	EOL script

	Examples: testing a model transformation with EUnit
	Models and tasks in the buildfile
	Models and tasks in the EOL script

	Extending EUnit
	Adding model management tasks
	Integrating model generators

	Case studies
	Regression tests for EuGENia
	Unit testing for SODM+T

	List of acronyms
	Bibliography

