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Abstract

We provide stochastic bounds for conditional distributions of individual risks
in a portfolio, given that the aggregate risk exceeds its value at risk. Expec-
tations of these conditional distributions can be interpreted as marginal risk
contributions to the aggregate risk as measured by the tail conditional ex-
pectation. We first provide general lower and upper stochastic bounds and
then we obtain further improvements of the bounds in the case of a port-
folio consisting of dependent risks. We also derive new characterizations of
comonotonic random vectors.

MSC: IM30
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1 Introduction and motivation

For purposes of risk management and insurance pricing, the risk capital of a
company has often to be allocated to its different business lines. This process
requires decomposing the aggregate risk of the company into individual or
marginal risk contributions. Each marginal contribution assigns part of the
risk to a particular business line and these contributions are then used to allo-
cate capital. Cummins (2000) provides an overview of the various techniques
that have been suggested in the actuarial literature for capital allocating. In
this paper, we provide stochastic bounds for conditional distributions whose
means can be interpreted in terms of marginal risk contributions.

Consider a portfolio of n individual risks X1, ..., Xn and let S = X1 + ...+
Xn be the aggregate risk. Assume that the impact of a possible dependence
among the individual risks is modeled by a random vector X = (X1, ..., Xn)
with some dependence structure. Let Fi be the distribution function of Xi

and let F−1
i be the corresponding quantile function, defined by F−1

i (p) =
inf {x : Fi(x) ≥ p} , 0 ≤ p ≤ 1. The distribution function of S is denoted
by FS and the corresponding quantile function is denoted by F−1

S . In the
literature, one finds different methods and formulae to evaluate marginal risk
contributions which are associated to several commonly used risk measures
(see Dhaene et al., 2011, for a review). One of the most important measures
to evaluate the aggregated risk is the tail conditional expectation (or expected
shortfall) of S defined by

TCES(p) = E
[
S
∣∣S > F−1

S (p)
]
, (1)

for some 0 < p < 1. The tail conditional expectation, which coincides with
the tail value-at-risk under the assumption of continuous distributions (see
Section 2.4 in Denuit et al., 2005) is a coherent risk measure (in the sense of
Artzner et al., 1999) that represents the expected risk given that the total
risk exceeds its p-quantile. Based on the observation that

TCES(p) =
n∑
i=1

E
[
Xi

∣∣S > F−1
S (p)

]
, (2)

it is natural to say that the marginal contribution of the risk Xi, i = 1, ..., n,
to the aggregate risk (as measured by (1)) is given by

E
[
Xi

∣∣S > F−1
S (p)

]
. (3)

1



Using this formula, the company allocates capital in a simple way: the capital
required for the business line i is its expected contribution to the aggregate
risk when the aggregate risk exceeds its value at risk. Contributions of the
form (3) are examples of Euler contributions (see Tasche, 1999, and Overbeck,
2000), which satisfy the additivity rule and some other desirable properties
from an economic point of view. Further references on this allocation are
Venter (2004), Kalkbrener (2005) and, more recently, Dhaene et al. (2011)
and Asimit et al. (2011).

Some authors, including Panjer (2002), Landsman and Valdez (2003),
Cai and Li (2005), Chiragiev and Landsman (2007), Furman and Landsman
(2005, 2008, 2010) and Furman and Zitikis (2008), have obtained explicit
expressions for (3) under several different parametric models. Of course, the
exact calculation of (3) needs the exact distribution of the vector X. Un-
fortunately, in many applications only partial information or no information
about the dependence structure among the n risks X1, ..., Xn is available. In
practice, when only marginal distributions are available, due to the inequality

E
[
Xi

∣∣S > F−1
S (p)

]
≤ TCEXi

(p), for i = 1, ..., n, (4)

(Aubin, 1981), TCEXi
(p) is taken as a measure of the marginal contribution

(3) in the worst case scenario. Inequality (4) motivates the following more
general question: can we bound stochastically, from both below and above,
conditional random variables of the form{

Xi

∣∣S > F−1
S (p)

}
, i = 1, ..., n (5)

if we only know the marginal distribution functions? We address this question
in Section 2. Specifically, for p ∈ (0, 1) and i = 1, ..., n, we show that{
Xi

∣∣Xi < F−1
i (1− p)

}
≤st

{
Xi

∣∣S > F−1
S (p)

}
≤st

{
Xi

∣∣Xi > F−1
i (p)

}
(6)

where ≤st denotes the usual stochastic order. Inequality (6) presents the
following advantages over inequality (4): (i) since stochastic ordering implies
ordering of expectations, the second inequality in (6) is clearly stronger and
more informative than (4); (ii) in particular, (6) provides bounds for the
quantiles (or values at risk) of the random variable (5), for any level of risk;
(iii) the fact that (6) provides a lower bound for (5) allows us to control the
error when we approximate the marginal risk contribution of Xi by its tail
conditional expectation.
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As we show below, the upper bound is reached when the bivariate random
vector (Xi, S) is comonotonic, therefore we study in Section 3 the relationship
between the comonotonicity of X and the comonotonicity of the random vec-
tors (Xi, S) for i = 1, ..., n. As a consequence, we show that X is comonotonic
if and only if

TCES(p) =
n∑
i=1

TCEXi
(p) for all p ∈ (0, 1) .

The fact that the lower bound in (6) is not very informative when p is close to
1 (which is often the case in applications) and the intuition that (3) should be
greater under positive dependence of X than under independence, suggest to
consider the dependence structure of the vector in order to refine this lower
bound. In Section 4, we formalize the idea of “positively dependent” random
vectors by considering “conditionally increasing” random vectors (Muller and
Scarsini, 2001). Under this assumption, we obtain a lower bound on (5) that
is substantially sharper than the lower bound in (6), specifically

Xi ≤st
{
Xi

∣∣S > F−1
S (p)

}
, for i = 1, ..., n, for all p ∈ (0, 1) (7)

which formalizes the intuitive idea that Xi needs more capital in the alloca-
tion process when Xi is part of a conditionally increasing random vector that
when it is considered alone. In Section 5 we illustrate graphically the results
and study the closeness of the bounds. Section 6 contains conclusions.

Throughout this paper, expected values are assumed to exist whenever
they are mentioned. Note that, given a random vector X = (X1, ..., Xn) with
continuous marginal distribution function, the distribution function of the
sum S = X1 + ... + Xn is either continuous or degenerated (this is the case,
for instance, of the random vector (X, 1−X) , where X is uniform on (0, 1)).
However, if S is degenerated, the event

{
S > F−1

S (p)
}

has null probability for
all p ∈ (0, 1) and (5) is not defined. Consequently, unless otherwise stated,
we assume that the sum S is continuous. We use ≡st to denote equality in
distribution.

2 Stochastic bounds and characterizations

Let X and Y be two continuous risks with distribution functions F and G,
respectively. Our first result provides stochastic upper and lower bounds on
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conditional distributions of the form {X |Y > G−1(p)} for any probability
level p ∈ (0, 1) . Recall that, given two random variables X and Y with
respective survival functions F = 1 − F and G = 1 − G, we say that X is
smaller than Y in the stochastic order, denoted by X ≤st Y, if F (x) ≤ G(x)
for all x.

Theorem 1 Let (X, Y ) be an absolutely continuous random vector with re-
spective marginal distribution functions F and G. Given p ∈ [0, 1] we have{

X
∣∣X < F−1(1− p)

}
≤st

{
X
∣∣Y > G−1(p)

}
≤st

{
X
∣∣X > F−1(p)

}
. (8)

Proof. Given p ∈ (0, 1) , we denote by

F {X|Y >G−1(p)} (x) , x ∈ R,

the survival function of the conditional random variable {X |Y > G−1(p)} ,
given by

F {X|Y >G−1(p)} (x) = P
[
X > x

∣∣Y > G−1(p)
]

=
P [X > x, Y > G−1(p)]

1− p

=
F (x)− p+ P [X ≤ x, Y ≤ G−1(p)]

1− p
. (9)

Using the well-known Fréchet-Hoeffding bounds inequality (Fréchet, 1951)
the joint distribution function in the numerator of (9) satisfies

max {F (x) + p− 1, 0} ≤ P
[
X ≤ x, Y ≤ G−1(p)

]
≤ min {F (x), p} . (10)

Therefore,

F (x)− p+ max {F (x) + p− 1, 0}
1− p

≤ F {X|Y >G−1(p)} (x)

≤ F (x)− p+ min {F (x), p}
1− p

,

or, equivalently,

max

{
F (x)− p

1− p
, 0

}
≤ F {X|Y >G−1(p)} (x) ≤ min

{
F (x)

1− p
, 1

}
, for all x. (11)
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It is easy to see that the lower bound in (11) is the survival function of the
random variable {

X
∣∣X < F−1(1− p)

}
and the upper bound is the survival function of the random variable{

X
∣∣X > F−1(p)

}
,

therefore (11) is the same as (8).
Now consider a portfolio of n individual risks X1, ..., Xn with respective

distribution functions F1, ..., Fn and let S = X1+...+Xn be the aggregate risk
with distribution function FS. In this context, we are interested in obtaining
stochastic bounds on conditional distributions of the form (5). The following
result is a direct application of Theorem 1.

Corollary 2 Let X = (X1, ..., Xn) be an absolutely continuous random vector
with marginal distribution functions F1, ..., Fn. Let S = X1 + ... + Xn be the
aggregate risk with distribution function FS. Then,{

Xi

∣∣Xi < F−1
i (1− p)

}
≤st

{
Xi

∣∣S > F−1
S (p)

}
≤st

{
Xi

∣∣Xi > F−1
i (p)

}
(12)

for p ∈ (0, 1) and i = 1, ..., n.

Since the bounds in (12) only depend on marginal distributions, they are
much more tractable than the distribution of the bounded random variable,
which depends on the joint distribution of the vector. Now, taking into
account that

E
[
Xi

∣∣Xi < F−1
i (1− p)

]
= −TCE−Xi

(p), for all p ∈ (0, 1) , (13)

the following corollary easily follows from the previous one. This result pro-
vides lower and upper bounds for the marginal risk contributions (3) in terms
of the tail conditional expectations of the marginals.

Corollary 3 Let X = (X1, ..., Xn) be an absolutely continuous random vector
with marginal distribution functions F1, ..., Fn. Let S = X1 + ...+Xn be the
aggregate risk with distribution function FS. Then,

−TCE−Xi
(p) ≤ E

[
Xi

∣∣S > F−1
S (p)

]
≤ TCEXi

(p) (14)

for p ∈ (0, 1) and i = 1, ..., n.
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The second inequality in (14) was first obtained by Aubin (1981) in the
framework of game theory. Combining (2) and (14) we easily obtain lower
and upper bounds for the tail conditional expectation of the aggregate risk

Corollary 4 Let X = (X1, ..., Xn) be an absolutely continuous random vector
and let S = X1 + ...+Xn be the aggregate risk. Given p ∈ (0, 1) we have

−
n∑
i=1

TCE−Xi
(p) ≤ TCES(p) ≤

n∑
i=1

TCEXi
(p). (15)

The second inequality in (15) is a well-known consequence of the subad-
ditivity of the tail conditional expectation. Since Xi is continuous, we can
write

E
[
Xi

∣∣Xi < F−1
i (1− p)

]
=

∫ 1−p
0

F−1(t)dt

1− p
, 0 < p < 1,

E
[
Xi

∣∣Xi > F−1
i (p)

]
=

∫ 1

p
F−1(t)dt

1− p
, 0 < p < 1,

and (15) can be expressed in the following terms:

n∑
i=1

∫ 1−p

0

F−1
i (t)dt ≤

∫ 1

p

F−1
S (t)dt ≤

n∑
i=1

∫ 1

p

F−1
i (t)dt.

3 The case of comonotonic random vectors

The concept of comonotonicity plays an important role in actuarial theory
(see Dhaene et al., 2002ab). A random vector (X1, ..., Xn) is said to be
comonotonic if there exists a random variable Z and non-decreasing functions
f1, ..., fn on R such that

(X1, ..., Xn) ≡st (f1 (Z) , ..., fn(Z)) .

Therefore, comonotonicity is used for modelling situations where individual
risks are subject to the same external mechanism. In the bivariate case, there
exists a kind of opposite of comonotonicity, namely countermonotonicity. A
random vector (X1, X2) is said to be countermonotonic if it is distributed as
(g1 (Z) , g2(Z)) for some random variable Z, an increasing function g1 and a
decreasing function g2 (this concept does not extend to higher dimensions).
We have the following result as a consequence of Theorem 1.
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Corollary 5 Let X and Y be two continuous risks with distribution func-
tions F and G, respectively.
(a) If (X, Y ) is comonotonic, then{

X
∣∣Y > G−1(p)

}
≡st

{
X
∣∣X > F−1(p)

}
, for all p ∈ (0, 1) .

(b) If (X, Y ) is countermonotonic, then{
X
∣∣Y > G−1(p)

}
≡st

{
X
∣∣X < F−1(1− p)

}
, for all p ∈ (0, 1) .

Proof. It is well-known (see, for example, section 1.9.2 in Dhaene et al.,
2005) that a random vector is comonotonic if and only if its joint distri-
bution function is the Fréchet-Hoeffing upper bound distribution function.
Therefore, if (X, Y ) is comonotonic, the second inequality in (10) becomes
equality and (a) follows. Part (b) follows similarly by taking into account
that the random vector (X, Y ) is countermonotonic if and only if its joint
distribution is the Fréchet-Hoeffing lower bound distribution.

The following corollary is an immediate consequence of the previous one.

Corollary 6 Let X = (X1, ..., Xn) be an absolutely continuous random vector
with marginal distribution functions F1, ..., Fn. Let S = X1 + ... + Xn be the
aggregate risk with distribution function FS.
(a) If (Xi, S) is comonotonic, then{

Xi

∣∣S > F−1
S (p)

}
≡st

{
Xi

∣∣Xi > F−1
i (p)

}
, p ∈ (0, 1) , i = 1, ..., n.

(b) If (Xi, S) is countermonotonic, then{
Xi

∣∣S > F−1
S (p)

}
≡st

{
Xi

∣∣Xi < F−1
i (1− p)

}
, p ∈ (0, 1) , i = 1, ..., n.

Corollary 6 suggests to study the relationship between the comonotonicity
of the initial vector X and the comonotonicity of the pairs (Xi, S) for i =
1, ..., n. It is easy to show that if X is comonotonic then the bivariate vectors
(Xi, S) are comonotonic for i = 1, ..., n. However, in general, comonotonicity
of the pairs (Xi, S), for i = 1, ..., n, will not necessary imply comonotonicity
of X. Consider, for example, the random vector (X, 1−X) , where X is
uniformly distributed on (0, 1) . Then S = 1 and (X, 1) and (1−X, 1) are
both comonotonic, but (X, 1−X) is not comonotonic. However, if FS is
non-degenerate and the vectors (Xi, S) are comontonic for i = 1, ..., n, then
X is also comonotonic.
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Theorem 7 Let X = (X1, ..., Xn) be an absolutely continuous random vector
with marginal distribution functions F1, ..., Fn and let S = X1 + ... + Xn be
the aggregate risk with distribution function FS. Then
(a) If X is comonotonic then the vectors (Xi, S) are comonotonic for i =
1, ..., n.
(b) If FS is non-degenerate and the vectors (Xi, S) are comonotonic for i =
1, ..., n, then X is comonotonic.

Proof. Suppose that X is comonotonic or, equivalently (see Proposition 2.1.a
in Cuesta-Albertos, Rüschendorf and Tuero-Dı́az, 1993), that there exists a
random variable U ≡d U(0, 1) such that for some non-decreasing functions
f1, ..., fn,

X1 = f1 (U) , ..., Xn = fn (U) , (16)

almost surely. Then S = f1 (U)+ ..+fn (U) = g(U) almost surely, where g is
non-decreasing and, therefore, (Xi, S) are also comonotonic for i = 1, ..., n.
Now suppose that FS is non-degenerate and the bivariate vectors (Xi, S)
are comonotonic for i = 1, ..., n. Then, from Proposition 2.1.d in Cuesta-
Albertos, Rüschendorf and Tuero-Dı́az (1993)

Xi = F−1
i ◦ FS (S) almost surely for i = 1, ..., n.

Thus (16) holds almost surely, where fi = F−1
i , for i = 1, ..., n and U =

FS (S) , which implies that X is comonotonic.
Now we provide two characterizations of comonotonic random vectors.

The first one shows that a random vector is comononotonic if and only if the
upper bounds in (12) are attained. This result extends, in particular, a result
of Dhaene et al. (2008, Theorem 3.1) who showed that for a comonotonic
random vector with continuous marginals,

E
[
Xi

∣∣S > F−1
S (p)

]
= E

[
Xi

∣∣Xi > F−1
i (p)

]
,

for all p ∈ (0, 1) and i = 1, ..., n.

Corollary 8 Let X = (X1, ..., Xn) an absolutely continuous random vector
with marginal distribution functions F1, ..., Fn and let S = X1 + ... + Xn be
the aggregate risk with distribution function FS. Then X is comonotonic if
and only if{
Xi

∣∣S > F−1
S (p)

}
≡st

{
Xi

∣∣Xi > F−1
i (p)

}
, for all p ∈ (0, 1) , i = 1, ..., n.

(17)
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Proof. Suppose that X is comonotonic. Then, from Theorem 7(a), (Xi, S)
are comonotonic for i = 1, ..., n and (17) follows from Corollary 6(a). Con-
versely, assume that (17) holds. This assumption implies: (i) that FS is
non-degenerate (otherwise

{
Xi

∣∣S > F−1
S (p)

}
is not defined); (ii) that the

bivariate vectors (Xi, S) are comonotonic for i = 1, ..., n. The result follows
from Theorem 7(b).

Corollary 9 Let X = (X1, ..., Xn) be an absolutely continuous random vec-
tor and assume that the aggregate risk S = X1 +...+Xn has a non-degenerate
distribution function. Then, X is comonotonic if and only if

TCES(p) =
n∑
i=1

TCEXi
(p) for all p ∈ (0, 1) . (18)

Proof. If X is comonotonic, (18) follows from Corollary 8. Now suppose
that (18) holds. Combining (18) and (14), it follows that

E
[
Xi

∣∣S > F−1
S (p)

]
= TCEXi

(p), for i = 1, ..., n. (19)

Taking into account that two stochastically ordered random variables with
the same mean have the same distribution, it follows from (12) and (19) that{

Xi

∣∣S > F−1
S (p)

}
≡st

{
Xi

∣∣Xi > F−1
i (p)

}
, for i = 1, ..., n,

and the result follows from Corollary 8.

4 Improvement of the bounds under positive

dependence

Since any random variable X is stochastically smaller than {X |X > t} for
all t, it follows from Corollary 6(a) that if (Xi, S) is comonotonic, then

Xi ≤st
{
Xi

∣∣S > F−1
S (p)

}
for all p ∈ (0, 1) , i = 1, ..., n. (20)

In particular, (20) implies that

E [Xi] ≤ E
[
Xi

∣∣S > F−1
S (p)

]
for all p ∈ (0, 1) , i = 1, ..., n, (21)

which means thatXi needs a larger amount of capital in the allocation process
when Xi is part of a comonotonic random vector that when it is considered
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alone. In general, not every marginal risk satisfies (21). For example, if the
random vector (Xi, S) is countermonotonic, it follows from Corollary 6(b)
that the marginal risk contribution of Xi is less than the mean. Intuitively,
however, we may expect that a positive dependence structure of the random
vector X (another weaker than comonotonicity) will also imply (20). We
show that this conjecture is true if we formalize the idea of “positively de-
pendent structure” by considering “conditionally increasing random vectors”.
In order to introduce this structure we need a previous notion.

Definition 10 A random vector (X1, ..., Xn) is conditionally increasing in
sequence (CIS) if

{Xi|X1 = x1, ..., Xi−1 = xi−1} ≤st
{
Xi|X1 = x′1, ..., Xi−1 = x′i−1

}
(22)

whenever xj ≤ x′j, j = 1, 2, ..., i− 1.

When (22) holds for n = 2, we say that X2 is stochastically increasing (SI)
in X1.

The CIS notion is a concept of positive dependence that was studied,
among others, by Lehmann (1966) and Barlow and Proschan (1975).

Definition 11 A random vector (X1, ..., Xn) is conditionally increasing (CI)
if, and only if, the random vector

Xπ = (Xπ(1), ..., Xπ(n))

is CIS for all permutations π ∈ Πn.

The CI notion was studied by Müller and Scarsini (2001). This notion is
related to the notion of multivariate totally positive of order 2 (MTP2, see
Karlin and Rinott, 1980). Müller and Scarsini (2001) prove that MTP2 is a
sufficient condition for CI. Another useful concept of bivariate dependence is
positive quadrant dependency (Lehmann, 1966).

Definition 12 We say that the random vector (X1, X2) is positively quad-
rant dependent (PQD) if

X1 ≤st {X1 |X2 > t} for all t such that P [X2 > t] > 0.
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Note that the vector (Xi, S) is PQD if and only if (20) holds. Thus, in
the rest of this section we will show that if (X1, ..., Xn) is CI, then (Xi, S) is
PQD. In order to prove it, we introduce the following standard construction.
Given u = (u1, ..., un) in [0, 1]n, the standard construction for an absolutely
continuous random vector X, denoted by

x̂(u) = (x̂1(u1), x̂2(u1, u2), ..., x̂n(u1, ..., un)),

is defined as follows

x̂1(u1) = F−1
X1

(u1),

x̂i(u1, ..., ui) = F−1

{Xi|
i−1⋂
j=1

Xj=x̂j(uj)}
(ui), for i = 2, ..., n,

where F−1
X denotes the quantile function of X. This construction is widely

used in simulation theory and plays the role of the quantile function in the
multivariate case. It is well-known that

x̂(U) ≡st X, (23)

where U is a random vector with n independent uniform distributed compo-
nents on [0, 1] (see Li, Scarsini and Shaked, 1996).

Before obtaining the main result, we will show that under a CI dependence
structure of the vector X, the aggregate risk S is stochastically increasing
in Xi. More generally, the following result shows that, under a CI structure,
ψ(X) is stochastically increasing in Xi for any increasing ψ from Rn to R.

Theorem 13 Let X = (X1, ..., Xn) be an absolutely continuous CIS random
vector and let ψ be an increasing real function from Rn to R. Then, ψ(X)
is stochastically increasing in X1.

Proof. For all 0 ≤ u1 ≤ v1 ≤ 1, we just need to prove that

{ψ(X)|X1 = x̂1(u1)} ≤st {ψ(X)|X1 = x̂1(v1)} . (24)

First, note that the vector

ẑ(ui, ..., un) = (x̂i(u1, ..., ui), ..., x̂n(u1, ..., un))

11



represents the standard construction evaluated at (ui, ..., un) for the condi-
tional random vector{

(Xi, ..., Xn)

∣∣∣∣∣
i−1⋂
j=1

Xj = x̂j(u1, ..., uj)

}
,

for i = 2, ..., n, where he have omitted (u1, ..., ui−1) in the notation of ẑ for
simplicity. Hence, using (23), it easily holds that

ẑ(Ui, ..., Un) ≡st

{
(Xi, ..., Xn)

∣∣∣∣∣
i−1⋂
j=1

Xj = x̂j(u1, ..., uj)

}
, (25)

where (Ui, ..., Un) is a random vector with n − i + 1 independent uniform
distributed components on [0, 1]. Using (25) for i = 2 we note that

{ψ(X)|X1 = x̂1(u1)} ≡st ψ(x̂1(u1), {(X2, . . . Xn)|X1 = x̂1(u1)})
≡st ψ(x̂1(u1), x̂2(u1, U2), . . . , x̂n(u1, U2, . . . , Un))]

≡st ψ(x̂(u1, U2, . . . , Un)) (26)

where (U2, ..., Un) is a random vector with n − 1 independent uniform dis-
tributed components on [0, 1] and analogously for {ψ(X)|X1 = x̂1(v1)}. On
the other hand, using both that ψ is increasing and the fact that the CIS prop-
erty implies that the standard construction x̂(u) is increasing in u ∈ (0, 1)n,
(see Rubinstein, Samorodnitsky and Shaked, 1985), we obtain that

ψ(x̂(u1, u2, ..., un)) ≤ ψ(x̂(v1, u2, ..., un)) (27)

for all 0 ≤ u1 ≤ v1 ≤ 1. Using both (26) and (27), then (24) follows directly
from Theorem 1.A.1 in Shaked and Shanthikumar (2007).

Corollary 14 Let X = (X1, ..., Xn) be an absolutely continuous CI random
vector and let ψ be an increasing real function from Rn to R. Then, ψ(X)
is stochastically increasing in Xi for i = 1, ..., n.

Proof. For each permutation π ∈ Πn, we consider the orthogonal matrix
Aπ in Mn×n, defined by aπ(j)j = 1 for all j = 1, ..., n and zero for the rest
of components, such that Xπ = (Xπ(1), ..., Xπ(n)) = XAπ. By hypothesis
assumption, the random vector Xπ is CIS for all permutations, π. Then,
using Theorem 13, φ(Xπ) is stochastically increasing inXπ(1) for all increasing
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real functions φ : Rn −→ R and for all permutations, π. Let us consider
now ψ an increasing real function on Rn. The proof follows directly just
considering any permutation such that π(1) = i and taking into account that
ψ(x) can be rewritten as φ(xπ) = ψ(xπA

t
π), which, due to the fact that Atπ

just permutes the components, is also trivially increasing.
We are now in conditions to state the main result in this section.

Corollary 15 Let X = (X1, ..., Xn) be an absolutely continuous CI random
vector and let S = X1 + ... + Xn be the aggregate risk. For i = 1, ..., n
and p ∈ (0, 1) we have:
(a) S is stochastically increasing in Xi,
(b) the vector (Xi, S) is PQD, that is,

Xi ≤st
{
Xi

∣∣S > F−1
S (p)

}
. (28)

Proof. By taking in Corollary 14 the increasing function ψ(X1, ..., Xn) =
X1 + ...+Xn, we see that S is stochastically increasing in Xi for i = 1, ..., n
and this implies that (Xi, S) is PQD (in general, SI implies PQD, see Section
5.2 in Nelsen, 1999).

Corollary 15 formalizes the following intuition: when Xi is part of a
conditionally increasing random vector, it needs more capital in the allocation
process that when it is considered alone. As a consequence, we state the
following result, which improves the bounds given in Corollary 15 for the
conditional distribution

{
Xi

∣∣S > F−1
S (p)

}
under a CI structure.

Corollary 16 Let X = (X1, ..., Xn) be an absolutely continuous CI random
vector with marginal distribution functions F1, ..., Fn. Let S = X1 + ... + Xn

be the aggregate risk with distribution function FS. Then,

Xi ≤st
{
Xi

∣∣S > F−1
S (p)

}
≤st

{
Xi

∣∣Xi > F−1
i (p)

}
for p ∈ (0, 1) and i = 1, ..., n.

5 An Ilustration

In order to illustrate graphically the results, we consider different marginal
random variables under a common CI dependence structure or copula. By
using copulas, we can separate the marginal distributions from the depen-
dence structure of the vector. A copula C is a cumulative distribution

13



function with uniform marginals on [0, 1]. It is well-known that if H is
a n-dimensional distribution function with marginal distribution functions
F1, ..., Fn, then there exists a n-copula C such that, for all (x1, ..., xn) ∈ Rn,
we have H(x1, ..., xn) = C(F1(x1), ..., Fn(xn)). Moreover, if F1, ..., Fn are con-
tinuous, then C is unique (see Nelsen, 1999). As noted by Müller and Scarsini
(2001), most of the multivariate dependence structure properties (included
MTP2 and CI) of a distribution are in the copula. Therefore, given that
MTP2 is a sufficient condition for CI, any distribution with a MTP2 density
has a CI copula. Many examples of MTP2 distributions (and, therefore, of
CI copulas) can be found in Karlin and Rinott (1980), Sarkar and Chang
(1997) and Shaked and Spizzichino (1998). Remarkable examples include
the case of independent risks, the multivariate gaussian copula with nonneg-
ative correlations and certain archimedean copulas (see Müller and Scarsini,
2005, for details). For some recent applications of CI copulas to insurance,
see Balakrishnan et al. (2012), Belzunce, Suárez-Llorens and Sordo (2012),
Cai and Wei (2012a,b) and Lu et al. (2012).

Let X = (X1, ..., Xn) be a random vector with a copula C and let S =
X1 + ...+Xn be the aggregate risk. As a first example we suppose that the
marginal Xi follows a Pareto distribution P (ε, α) with survival function

F (x) =
(x
ε

)−α
, x ≥ ε > 0, α > 0.

For the second example, we assume that the marginal Xi follows an exponen-
tial distribution Exp (λ) with mean λ = 1. Figure 1 shows the bounds on the
survival function of

{
Xi

∣∣S > F−1
S (p)

}
when Xi ∼ P (1, 3) and Xi ∼ Exp (1) ,

respectively, for p = 0.7 and p = 0.95, respectively. The graphs illustrate how
the lower bound in Corollary 2 becomes less significant as p increases and
how this lower bound is substantially refined under a CI copula.

When the random vector X is CI, the filled area represents a “distribution
band” for the conditional random variable

{
Xi

∣∣S > F−1
S (p)

}
, where Xi and{

Xi

∣∣Xi > F−1
i (p)

}
are, respectively, the lower bound and the upper bound

of the band. This means that, given p ∈ (0, 1) , the survival function of
the random variable

{
Xi

∣∣S > F−1
S (p)

}
lies on the set of survival functions

{F : FL ≤ F ≤ FU}, where FL is the survival function of XL = Xi given by

FL(x) = F i(x) for all x (29)
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Figure 1: Graphs (a) and (b) show the lower and upper bounds on the survival function of{
Xi

∣∣∣S > F−1
S (p)

}
when Xi ∼ P (1, 3) for p = 0.7 and p = 0.95, respectively. The filled area corre-

sponds to CI random vectors. Graphs (c) and (d) show the bounds when Xi ∼ Exp (1) .

and FU is the survival function of XU =
{
Xi

∣∣Xi > F−1
i (p)

}
given by

FU(x) =


1, x < F−1

i (p),
F i(x)

1− p
, x > F−1

i (p).
(30)

A natural way to evaluate the uncertainty of the band is to use a proba-
bility metric to measure the closeness between the bounds. There are several
metrics commonly applied to measure distances between random variables
(see Gibbs and Su, 2002, for a summary and Chapter 9 in Denuit et al.,
2005, for applications in actuarial sciences). One possibility is to consider
the Kolmogorov (or uniform) metric, given by

K(XL, XU) = sup
x∈R
|FL(x)− FU(x)|,
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which represents the largest absolute difference between FL and FU . A
straightforward computation yields

|FL(x)− FU(x)| =


1− F i(x) if x ≤ F−1

i (p),

F i(x) p
1−p if x ≥ F−1

i (p).
(31)

It is easy to see that the supremum of (31) over R is achieved at F−1
i (p).

Therefore, K(XL, XU) = p, which reflects that the uncertainty of the band
increases as p increases.

The Kolmogorov metric suffers from the shortcoming that it is completely
insensitive to the losses in the tail of the distributions (this is because the
difference |FL(x) − FU(x)| converges to zero as x increases or decreases).
Another possibility to evaluate the closeness between the bounds is to use
the Kantorovich metric, defined by

d(XL, XU) =

∫ ∞
−∞
|FL(x)− FU(x)| dx, (32)

which provides aggregate information about the deviations between the bounds.
Observe, from (29) and (30), that FU(x) = h(FL(x)), where h is a concave

distortion function1 given by h(t) = min
(

t
1−p , 1

)
and, consequently, (32) can

be expressed as

d(XL, XU) =

∫ ∞
−∞
|FL(x)− h(FL(x))| dx.

López-Dı́az, Sordo and Suárez-Llorens (2012) interpret the Kantorovich met-
ric between the survival function of Xi and its distortion as a characteristic of
the variability2 of Xi. In fact, using expression (21) in that paper, we obtain

d(XL, XU) = E[XU ]− E[XL] = TCEXi
(p)− E[Xi].

It is interesting to note that this distance is consistent with the dilation order,
which is defined as follows. Given two random variables X and Y with finite

1A distortion function is a non-decreasing mapping h : [0, 1] 7−→ [0, 1] such that h(0) =
0 and h(1) = 1.

2Other variability measures based on distorted distributions can be found in Sordo and
Suárez-Llorens (2011).
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expectations, X is said to be smaller than Y in the dilation order, denoted
by X ≤dil Y , if

E [Φ (X − E [X]]] ≤ E [Φ (Y − E [Y ])] for all convex functions Φ,

provided that these expectations exist (see Ramos and Sordo, 2003, for some
applications of this order). The following result is a direct application of
Proposition 4.4 in López-Dı́az, Sordo and Suárez-Llorens (2012).

Theorem 17 Let Xi and Xj be two components of a CI random vector.
Let (XL, XU) and (X ′L, X

′
U) be, respectively, the distributional bands for the

random variables
{
Xi

∣∣S > F−1
S (p)

}
and

{
Xj

∣∣S > F−1
S (p)

}
, respectively, for

some p ∈ (0, 1) . If Xi ≤dil Xj then d(XL, XU) ≤ d(X ′L, X
′
U), where d is the

Kantorovich metric defined by (32).

Theorem 17 reflects the idea that higher marginal variability increases
the gap between the bounds of the distributional band. This is illustrated
with an example in Figure 2: given two random variables X1 ∼ N (0, 1) and
X2 ∼ N (0, 2) , it is well-known that X1 ≤dil X2. The graphs show that, under
a CI copula, the uncertainty of the ditributional band for

{
X2

∣∣S > F−1
S (p)

}
is higher than for

{
X1

∣∣S > F−1
S (p)

}
.
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Figure 2: Graphs (a) and (b) show, respectively, the lower and upper bounds on the survival function

of
{
Xi

∣∣∣S > F−1
S (p)

}
when Xi ∼ N(0, 1) and Xi ∼ N(0, 2), respectively, for p = 0.95. The filled area

corresponds to CI random vectors. It is clear that a higher marginal variance increases the gap between

the bounds.
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6 Conclusions

The tail conditional expectation is one of the most commonly used risk mea-
sures. The calculation of this measure is often followed by a process of allo-
cating the aggregate risk of the portfolio to individual risks based on their
marginal contributions to the total. In this process, conditional distributions
of the form

{
Xi

∣∣S > F−1
S (p)

}
, with p ∈ (0, 1) , where S = X1 + ...+Xn, play

a fundamental role. In this paper, we have obtained general lower and upper
stochastic bounds for these conditional distributions and we have shown that
the lower bound can be improved under a conditionally increasing structure
of the vector. The improved lower bound is interpreted as meaning that
the individual risks require, under the CI assumption, more capital than the
mean in the allocation process. We have also shown that the largest marginal
risk distribution, in the stochastic order, of an individual risk with a given
distribution function Fi will be obtained in a random vector such that (Xi, S)
is comonotonic.
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