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Random variables may be compared with respect to their location by comparing
certain functionals ad hoc, such as the mean or median, or by means of stochas-
tic ordering based directly on the properties of the corresponding distribution
functions. These alternative approaches are brought together in this paper. We
focus on the class of L-functionals discussed by Bickel and Lehmann (1975)
and characterize the comparison of random variables in terms of these measures
by means of several stochastic orders based on iterated integrals, including the
increasing convex order.

1 Introduction

A common problem in many �elds that use the theory of probability as a tool
is to compare two random variables with respect to aspects such as dispersion
and location. The simplest way of doing this is by comparing functionals of
the random variables, such as dispersion and location measures. This makes
cardinal comparisons based on only two single numbers and, therefore, is often
not very informative. In addition, when two random variables are compared
by means of one or a few measures, such as the mean or standard deviation,
choices can be made from a large set of similar functionals and some may pro-
duce contradictory conclusions. The arbitrariness of choice is greatly reduced
if the verdict of comparisons holds for a class of measures that satisfy a set of
reasonable axioms rather than a single measure. This approach leads to ordi-
nal rather than cardinal comparisons. Therefore, if, for example, X and Y are
two random variables with respective distribution functions F and G; and we
consider the class of functionals I! given by

I!(X) =

Z +1

�1
! (t) dF (t); (1)

1Preprint, �nal version published in Statistical Papers 48, 249-263 (2007)
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where ! is a real function, we say thatX is smaller than Y in the usual stochastic
(respectively, increasing convex) order, if and only if

I!(X) � I!(Y ) for all ! 2 


where 
 is the class of increasing (respectively increasing convex) functions for
which the functionals exist (throughout this paper �increasing�means �non-
decreasing�). Standard references for these orders, denoted by X �st Y (respec-
tively, X �icx Y ) are Ross (1983), Stoyan (1983) and Shaked and Shanthikumar
(1994). It is an immediate consequence of the de�nition that X �st Y implies
X �icx Y:
Let F�1 be the corresponding left continuous inverse of F; de�ned by

F�1(t) = inf fx : F (x) � tg ;

(F�1 is also called the quantile function of X). Characterizations of stochastic
orders by integrals in which the quantile functions appear can be found in Arnold
(1987), Muliere and Scarsini (1989), Wang and Young (1998), Fagiuoli et al.
(1999), Ogryczak and Ruszczynski (2002) and Ramos and Sordo (2002), among
others.
Our main concern in this paper is the search for conditions under which two

random variables can be unanimously ranked by large classes of functionals of
the form

T�(X) =

Z 1

0

F�1(t)d�(t) (2)

where � is any distribution function on (0; 1) : The class C of functionals of
the form (2) provides a large and important family of statistical measures that
have been discussed in the literature (see, for example, Shorack (1972), Bickel
and Lehmann (1975), Sendler (1979), or Ser�ing (1980), among others). The
members of C satisfy the axioms of Bickel and Lehmann (1975) for all measures
of location. Important particular cases of (2) are the median and other quantiles
(obtained when �(t) is the distribution function of the probability measure
concentrated at a point) and the trimmed expectations de�ned by

1

� � �

Z �

�

F�1(t)dt;

with 0 � � < � � 1: The mean is the limiting case corresponding to � = 0
and � = 1: When T�(X) is evaluated at the empirical distribution of a sample,
(2) takes the form of an L-statistic, i.e., a linear combination of order sta-
tistics (Ser�ing (1980), provides many examples). By analogy to L-statistics,
functionals of the form (2) are sometimes referred to as L-functionals (Ser�ing
(1980), Bickel and Lehmann (1975), Giovagnoli and Regoli (1993)). L-statistics
often represent estimators of the corresponding L-functionals (see, for example,
Bickel and Lehmann (1975), Andrews et al. (1972), and Huber (1972)) and
asymptotic normality results are available under various restrictions on F and
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� (see Shorack (1972), Sendler (1979), Ser�ing (1980), and Shorack and Wellner
(1986)). Bickel and Lehmann (1975) proved that the measures de�ned by (2)
are robust under mild conditions.
It is easy to see that X �st Y holds, if and only if F�1(t) � G�1(t) for all

t 2 [0; 1] ; or, equivalently, ifZ 1

0

F�1(t)d�p(t) �
Z 1

0

G�1(t)d�p(t);

where �p(t) denotes the distribution function of the probability measure con-
centrated at p: From this observation it follows that

X �st Y () T�(X) � T�(Y ) for all T� 2 C (3)

for which the functionals exist.
Characterization (3) provides us with a means of cheking the unanimous

ordering of random variables in terms of the functionals of C without needing
to agree on the form of �(p): However, as is well recognized, stochastic order
performs poorly in empirical ranking of distributions because a large proportion
of distributions fail to satisfy this condition. In Section 2, the comparisons of
random variables according to the measures of

C1 = fT� 2 C such that � is convexg (4)

are characterized in terms of the increasing convex order. This order can rank
distributions which stochastic order fails to rank, and therefore is empirically
more useful. By requiring additional assumptions on the form of �(p), the
comparisons of the members of C1 are characterized in terms of an order that
is weaker than �icx :
In Section 2 we also present a condition for stochastic equality of two ran-

dom variables under the increasing convex order (this is stated as Theorem 2.2).
We prove, in the spirit of a parallel result obtained by Bhattacharjee and Bhat-
tacharya (2000) regarding the increasing convex order and the functionals of the
form (1), that if X �icx Y and T�(X) = T�(Y ) for some increasing and strictly
convex function �; then X and Y have the same distribution. Other results
in the literature that give conditions, involving various stochastic orders, which
imply stochastic equalities, can be found in Baccelli and Makowski (1989), Bhat-
tacharjee and Sethuraman (1990), Scarsini and Shaked (1990), Bhattacharjee
(1991), Jun (1994), Li and Zhu (1994), Cai and Wu (1997), Scarsini (1998),
Denuit et al. (2000) and Bhattacharjee and Bhattacharya (2000)
The remainder of the paper is organized as follows. The results of Section 2

are applied in Section 3 to characterize the comparison of non-negative random
variables according to a class of generalized L-functionals in terms of the so-
called �(p)order, introduced in Bhattacharjee (1991) (the exact de�nition of
this order is given in Section 3). As a consequence of Theorem 2.2, we obtain a
condition for stochastic equality of (p)-ordered random variables which extends
some results of Jun (1994) and Li and Zhu (1994).
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Finally, Section 4 contains, as an application of a result in Section 2, the
characterization of the dilation order (the exact de�nition of this order is given
in Section 4) by means of the increasing convex order.
As in Ramos and Sordo (2003), some results in this paper are obtained

as a consequence of the theory of submajorization, as applied to decreasing
rearrangements of functions (on this concept, see Hardy et al. (1929), Ry¤
(1963), and Chong, (1974)). If we denote by M (
; �) the set of all extended
real-valued measurable functions on a measure space (
;�; �); the decreasing
rearrangement of f 2M (
; �) is de�ned by

f�(t) = inf fs 2 R : Df (s) � tg ; t 2 [0; � (
)]

where
Df (s) = � (fx : f(x) > sg) ;

for each s 2 [�1;1] : We need the following result from Chong (1974).

Theorem 1:1 Suppose (
;�; �) and (
0;�0; �0) are measure spaces such that
�(
) = �0(
0) = a < 1 and denote by m the Lebesgue measure on R: If
f 2 L1 (
; �) and g 2 L1 (
0; �0) ; thenZ t

0

f�dm �
Z t

0

g�dm for all t 2 [0; a]

if and only ifZ



	(f) d� �
Z

0
	(g) d�0 (5)

for all increasing convex functions 	 : R �! R:

2 Characterizations in terms of the increasing convex order

An useful characterization of the increasing convex order is given in the following
lemma. This result is well known for non-negative random variables, and it
already appears for instance in Muliere and Scarsini (1989); however, we provide
a proof of it which applies also to random variables that need not be non-
negative.

Lemma 2:1 Let X and Y be two random variables with distribution functions
F and G; respectively. Then, X �icx Y if and only ifZ 1

p

F�1(t)dt �
Z 1

p

G�1(t)dt for all p 2 [0; 1] : (6)

4



Proof Let F = 1� F be. Since F�1(t) = F�1(1� t) for all t 2 [0; 1] ; a change
of variable shows that (6) is equivalent toZ p

0

F
�1
(t) dt �

Z p

0

G
�1
(t) dt for all p 2 [0; 1] : (7)

Now, let (
X ;BX ; PX) and (
Y ;BY ; PY ) be the probability spaces on which
X and Y; respectively, are de�ned. De�ne f(!) = X(!) for all ! 2 
 and
g(!) = Y (!) for all ! 2 
Y : Then,

Df (x) = PX f! 2 
X : f (!) > xg = F (x) ; for all x 2 R;

and, analogously,
Dg (x) = G(x); for all x 2 R:

The decreasing rearrangements of f and g are given, respectively, by f�(t) =

F
�1
(t) and g�(t) = G

�1
(t); for all t 2 [0; 1] : From Theorem 1.1 it follows that

(7) holds if and only ifZ

X

	(X) dPX �
Z

Y

	(Y ) dPY

for all increasing and convex functions 	 : R �! R; which is X �icx Y: �

The main results of this section follow. Recall that C1 is the class of func-
tionals T� 2 C such that � is convex. The following result characterizes the
comparison of random variables according to functionals of C1 in terms of in-
creasing convex order.

Theorem 2:1 Let X and Y be two random variables with �nite means. Then,

X �icx Y if and only if T�(X) � T�(Y ) for all T� 2 C1:

P roof (=)) Let F be the distribution function of X and let � : [0; 1] �! R
be an increasing and convex function. Then, there exists an increasing, non-
negative and integrable function � such that

�(p)� �(0) =
Z p

0

�(t)dt; p 2 [0; 1)

(Zygmund, 1959). Consequently, using the properties of the Riemann-Stieltjes
integral (see Apostol, (1973)), we have

T�(X) =

Z 1

0

F�1(p)d�(p) = �
Z 1

0

�(p)dF�12 (p) (8)

where

F�12 (p) =

Z 1

p

F�1(t)dt; p 2 [0; 1] : (9)
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Partial integration of (8) and F�12 (1) = 0 produces the following alternative
expression for (2):

T�(X) = �(0)F
�1
2 (0) +

Z 1

0

F�12 (p)d�(p): (10)

Analogously, if G denotes the distribution function of Y; we have

T�(Y ) = �(0)G
�1
2 (0) +

Z 1

0

G�12 (p)d�(p); (11)

where

G�12 (p) =

Z 1

p

G�1(t)dt; p 2 [0; 1] : (12)

Since X �icx Y; it follows from Lemma 2.1 that

F�12 (p) � G�12 (p) for all p 2 [0; 1] (13)

and, therefore, the inequality

�(0)F�12 (0) +

Z 1

0

F�12 (p)d�(p) � �(0)G�12 (0) +

Z 1

0

G�12 (p)d�(p) (14)

is a consequence of (13), �(0) � 0 and d�(p) � 0 (the increasing nature of �
ensures that the increments d� are non-negative). Combining (10), (11) and
(14) it is seen that T�(X) � T�(Y ) is satis�ed.
((=) Because the function �p(t) de�ned by

�p(t) =

�
0 si t < p

t� p si t � p (15)

is an increasing and convex function of t for each p 2 [0; 1] ; we haveZ 1

0

F�1(t)d�p(t) �
Z 1

0

G�1(t)d�p(t) for all p 2 [0; 1]

or, equivalently, Z 1

p

F�1(t)dt �
Z 1

p

G�1(t)dt for all p 2 [0; 1] ;

which is X �icx Y by Lemma 2.1. �

The next result gives a characterization for stochastic equality of two random
variables under the increasing convex order.

Theorem 2:2 Let X and Y be two random variables with �nite means. If
X �icx Y and if

T�(X) = T�(Y ) (16)
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for some increasing and strictly convex function �; then X and Y have the same
distribution.

Proof Suppose that � is increasing and strictly convex and that X �icx Y:
Since � is strictly convex, its derivative � is strictly increasing. Combining
(10), (11) and (16) it follows that

�(0)
�
G�12 (0)� F�12 (0)

�
+

Z 1

0

�
G�12 (p)� F�12 (p)

�
d�(p) = 0: (17)

From (17) it follows that both �(0)
�
G�12 (0)� F�12 (0)

�
= 0 andZ 1

0

�
G�12 (p)� F�12 (p)

�
d�(p) = 0 (18)

hold, since the left hand sides of both expressions are non-negative. From (13)
and (18) it follows that G�12 (p) = F�12 (p) almost everywhere on [0; 1] : Now,
we claim that G�12 (p) = F�12 (p) for all p 2 [0; 1] : Suppose, by contradiction,
that G�12 (p0) > F�12 (p0) for some p0 2 [0; 1] : Then, there exists an interval
(a; b) � [0; 1] such that p0 2 (a; b) and G�12 (p) > F�12 (p) for all p 2 (a; b) ; since
both F�12 and G�12 are, by de�nition, continuous on [0; 1] : HoweverZ 1

0

�
G�12 (p)� F�12 (p)

�
d�(p) �

Z b

a

�
G�12 (p)� F�12 (p)

�
d�(p) > 0

since � is strictly increasing, and this contradicts (18). ThereforeZ 1

p

F�1(t)dt =

Z 1

p

G�1(t)dt; for all p 2 [0; 1] : (19)

Di¤erentiating (19) we obtain F�1 = G�1; that is, X and Y have the same
distribution. �
From Theorem 2.2 we obtain the following corollary.

Corollary 2:1 Let X1; X2;:::;Xn (n � 2) be a collection of independent and
identically distributed random variables, and let Y1; Y2; :::; Yn (n � 2) be an-
other collection of independent and identically distributed random variables. If
X1 �icx Y1 and

E [max fX1; X2;:::;Xng] = E [max fY1; Y2; :::; Yng]

then X1 and Y1 have the same distribution.

Proof Let F and G denote the distribution functions ofX1 and Y1; respectively.
By taking �(t) = tn; we obtain

E [max fX1; X2;:::;Xng] =
Z 1

0

F�1(t)d�(t)
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and

E [max fY1; Y2; :::; Yng] =
Z 1

0

G�1(t)d�(t):

The result now follows from Theorem 2.2. �

Let F�12 (t) and G�12 (t) be the curves given by (9) and (12), respectively. We
have shown in Theorem 2.1 that non-intersection of these curves is equivalent
to the unanimous ordering generated by the class of functionals of C1: In ad-
dition, since each � 2 C1 is convex, its derivative �0 exists (except possibly at
a countable number of points) and we can obtain a result that allows one to
rank two random variables whose associated curves intersect according to the
functionals of C1, by restricting such derivative to be convex. Use the term C1:1
for the class of functionals of the form (2) where � is increasing, convex and
di¤erentiable almost everywhere (a.e.) with convex derivative, that is,

C1:1 = fT� 2 C1 such that � is convex, where �0(x) = � a.e.g :

Theorem 2:3 Let X and Y be two random variables with means �X and �Y ;
respectively. Then,Z 1

x

F�12 (p)dp �
Z 1

x

G�12 (p)dp for all x 2 [0; 1] and �X � �Y (20)

if and only if
T�(X) � T�(Y ) for all T� 2 C1:1: (21)

Proof First we prove the su¢ ciency condition. It is obvious that (21) implies

�X � �Y : Now, for each p 2 [0; 1] ; the function

�p(x) =

Z x

0

(t� p)+ dt;

where (x)+ = max fx; 0g ; is increasing, convex and has a convex derivative.
Therefore,

T�p(X) =

Z 1

0

F�1(t)d�p(t) =

= �
Z 1

0

(t� p)+ dF�12 (t) = �
�Z 1

p

(t� p) dF�12 (t)

�
belong to C1:1: Since F

�1
2 (1) = 0; integration by parts yields

T�p(X) =

Z 1

p

F�12 (t)dt

and the result follows.
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Now we prove the necessary condition. Let T� 2 C1:1: We can, therefore,
assume that �0 = � a.e. for some increasing convex and non-negative function
�: Then, there exists an increasing and non-negative function � such that

�(p)� �(0) =
Z p

0

�(x)dx =

Z 1

0

(p� x)+d�(x) + p�(0); p 2 [0; 1) ; (22)

where the second equality follows from integration by parts. Using the properties
of the Riemann-Stieltjes again, we have

T�(X) =

Z 1

0

F�1(t)d�(t) = �
Z 1

0

�(p)dF�12 (p): (23)

Combining (22) with (23) we obtain

T�(X) = �
Z 1

0

�
�(0) +

Z 1

0

(p� x)+d�(x) + p�(0)
�
dF�12 (p): (24)

Using the additivity properties of integrals, Fubini�s theorem and that F�12 (0) =
�X and F�12 (1) = 0; it follows that (24) can be rewritten as

T�(X) = �(0)�X �
Z 1

0

�Z 1

0

(p� x)+dF�12 (p)

�
d�(x)

��(0)
Z 1

0

pdF�12 (p): (25)

Integration by parts yieldsZ 1

0

(p� x)+dF�12 (p) = �
Z 1

x

F�12 (p)dp

and Z 1

0

pdF�12 (p) = �
Z 1

0

F�12 (p)dp

and, combining this with (25), we have

T�(X) = �(0)�X +

Z 1

0

�Z 1

x

F�12 (p)dp

�
d�(x) + �(0)

Z 1

0

F�12 (p)dp: (26)

Finally, taking into account that �(0) � 0; �(0) � 0 and d�(x) � 0; from (20)
the result follows. �
Remark 2:1 Functionals of C appear in the theory of choice under uncertainty
(see, for example, Yaari, 1987, and Röel, 1987). In this framework, a random
variable X represents a random loss and (2) is used to evaluate the risk as-
sociated to X: In this context, for non-negative random variables, Wang and
Young (1998) obtained two results that correspond to our theorems 2.1 and 2.3.
However, it should be mentioned that in these results, the weight function �
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in (2) is assumed to be di¤erentiable, and thus inadequate for expressing some
location measures mentioned in Section 1. On the other hand, note that all the
results in this section can be reworded in terms of concave rather than convex
functions. This can be easily seen by taking into account that

T�(X) = �Te�(�X);
with e�(t) = ��(1� t) (note that � is increasing and convex if and only if e� is
increasing and concave).

3 Characterizations in terms of the order �(p)

Let X and Y be two nonnegative random variables with survival functions F
and G; respectively. For p > 0; we say that X �(p) Y ifZ +1

t

xp�1F (x)dx �
Z +1

t

xp�1G(x)dx; for all t � 0;

provided the integrals exist.
The partial ordering �(p) was introduced and studied by Bhattacharjee

(1991). Li and Zhu (1994), Jun (1994) and Cai and Wu (1997) provided some
applications in the context of reliability theory. For nonnegative random vari-
ables, is easy to see that

X �(p) Y () Xp �icx Y p: (27)

The following result characterizes the comparison of random variables according
to the members of a class of generalized L-functionals in terms of the �(p) order.

Corollary 3:1 Let X and Y be two nonnegative random variables with �nite
means and distribution functions F and G; respectively. Then, X �(p) Y if and
only if Z 1

0

�
F�1(t)

�p
d�(t) �

Z 1

0

�
G�1(t)

�p
d�(t)

for all distribution function � convex on (0; 1).

Proof Let F�1p (t) be the quantile function associated to the random variable
Xp: Using (27) and taking into account thatZ 1

0

F�1p (t)d�(t) =

Z 1

0

�
F�1(t)

�p
d�(t)

the result follows easily from Theorem 2.1. �
The following result gives a condition for stochastic equality under the or-

dering �(p) : Other characterizations of stochastic equality under this order can
be found in Jun (1994), Li and Zhu (1994) and Cai and Wu (1997).
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Corollary 3:2 Let X and Y be two nonnegative random variables with �nite
means and distribution functions F and G; respectively. If X �(p) Y andZ 1

0

�
F�1(t)

�r
d�(t) =

Z 1

0

�
G�1(t)

�r
d�(t) (28)

for some r � p and some increasing and strictly convex function �; then X and
Y have the same distribution.

Proof It is well known (Ross, 1983) that if X �icx Y then g(X) �icx g(Y )
for all increasing convex function g on R: Since g(x) = xr; r � 1; x > 0; is an
increasing and convex function of x; it follows from (27) that X �(p) Y implies

Xr �icx Y r for all r � p: (29)

Now, combining (29) and (28), the result follows from Theorem 2.2. �
Application 3:1 Following Bickel and Lehmann (1975), a large and important
class of dispersion measures for symmetric distributions is provided, for each
p � 1; by the class of functionals

J�(X) =

�Z 1

0

h
F�1jX��X j

(t)
ip
d�(t)

� 1
p

(30)

where F is assumed to be symmetric about �X ; FjX��X j denotes the distribution
function of jX � �X j and � is any probability distribution on (0; 1) : Particular
members of this class are the standard deviation of X; given by (30) with p = 2
and � the uniform distribution on (0; 1) ; the doubly trimmed standard devia-
tion, given by (30) with p = 2 and � the uniform distribution on (�; 1� �) and
the �th quantile, obtained from (30) by letting � assign probability 1 to the
point � (this measure is independent of p). A generalization of the standard
deviation is the th power deviation obtained by replacing p by  in (30) and
letting � be the uniform distribution on (0; 1) :
It follows from Corollary 3.1 that ifX is a random variable whose distribution

function F is symmetric about �X ; and Y is another random variable whose
distribution function G is symmetric about �Y ; then, for each p � 1; we have

jX � �X j �(p) jY � �Y j

if and only if
J�(X) � J�(Y ) for all � convex on (0; 1):

From this characterization we think that the �(p) order will play an important
role in the comparisons of symmetric random variables in terms of dispersion.

Application 3:2 Let X1; X2; :::; Xn (n � 2) be a collection of independent,
non-negative and identically distributed random variables, and let Y1; Y2; :::; Yn
(n � 2) another collection of independent, non-negative and identically distrib-
uted random variables (Xi and Yi can be thought of as the lifetimes of the ith
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component of two systems respectively, for i = 1; 2; :::; n): Let F and G denote
the distribution functions of X1 and Y1; respectively. By taking �(t) = tn; we
obtain

E
�
max

�
Xr
1 ; X

r
2;:::;X

r
n

	�
=

Z 1

0

�
F�1(t)

�r
d�(t)

and

E
�
max

�
Y r1 ; Y

r
2;:::;Y

r
n

	�
=

Z 1

0

�
G�1(t)

�r
d�(t):

It follows from Corollary 3.2 that if X �(p) Y and

E
�
max

�
Xr
1 ; X

r
2;:::;X

r
n

	�
= E

�
max

�
Y r1 ; Y

r
2;:::;Y

r
n

	�
for some r � p; then X1 and Y1 have the same distribution. A di¤erent proof
of this result when X1 (or Y1) has a support of the form (0;1) can be found in
Jun (1994).

4 Application to the characterization of the dilation order in terms
of the increasing convex order

Let X and Y be two random variables with respective �nite means �X and �Y :
If X � �X �icx Y � �Y ; then X and Y are said to be ordered according to the
dilation order (denoted by X �dil Y ): It follows from Lemma 2.1 that X �dil Y
if and only ifZ 1

p

�
F�1 (x)� �X

�
dx �

Z 1

p

�
G�1 (x)� �Y

�
dx; for all p 2 (0; 1) ; (31)

(this is also proven in Ramos and Sordo (2003)). Fagiuoli et al. (1999) proved
that X �dil Y if and only if

E
�
X � �X j X � F�1(p)

�
� E

�
Y � �Y j Y � G�1(p)

�
for all p 2 [0; 1) :

(32)
In addition, X �dil Y if and only if

E
�
X � �X j X � F�1(p)

�
� E

�
Y � �Y j Y � G�1(p)

�
for all p 2 (0; 1] :

The following result is a natural extension of these characterizations.

Theorem 4:1 Let X and Y be two random variables with �nite respective
means �X and �Y : Then, X �dil Y if and only if�
X � �X j X � F�1(p)

	
�icx

�
Y � �Y j Y � G�1(p)

	
for all p 2 [0; 1) ; (33)

if and only if�
X � �X j X � F�1(p)

	
�icx

�
Y � �Y j Y � G�1(p)

	
for all p 2 (0; 1] : (34)

Proof We prove that X �dil Y if and only if (33) holds (the equivalence with
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(34) is similarly proven). For each p 2 [0; 1) ; denote the distribution function
of �

X � �X j X � F�1(p)
	

by Fp and let F�1p be the corresponding left inverse distribution function. Then,

Fp(x) =

(
0 x < F�1(p)

F (x+�X)�p
1�p x � F�1(p)

and
F�1p (t) = F�1 [p+ (1� p) t]� �X ; for all t 2 (0; 1) : (35)

Similarly, we obtain

G�1p (t) = G�1 [p+ (1� p) t]� �Y ; for all t 2 (0; 1) : (36)

From (35), (36) and Lemma 2.1 it follows that (33) holds if and only ifZ 1

u

�
F�1 [p+ (1� p) t]� �X

�
dt � (37)

�
Z 1

u

�
G�1 [p+ (1� p) t]� �Y

�
; for all u 2 (0; 1) ; for all p 2 (0; 1) :

A change of variable shows that (37) holds if and only if (31) holds, and this
means X �dil Y: �
To see the usefulness of Theorem 4.1, note that the increasing convex order

is much more informative than a simple inequality between expected values, as
in (32).
When �X = �Y ; the dilation order reduces to the convex order (denoted

�cx; see Shaked and Shanthikumar (1994)). As an immediate consequence of
Theorem 4.1 we have the following result.

Corollary 4:1 Let X and Y be two random variables with equal �nite means.
Then, X �cx Y if and only if�

X j X � F�1(p)
	
�icx

�
Y j Y � G�1(p)

	
for all p 2 [0; 1) ;

and if and only if�
X j X � F�1(p)

	
�icx

�
Y j Y � G�1(p)

	
for all p 2 (0; 1] :
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