
Dispersion measures and dispersive orderings

Abstract

In this paper, the comparison of random variables according to the functionals of a general class of
dispersion measures is characterized in terms of the dilation order. The Gini�s mean di¤erence is a
particular member of this general class. In addition, a new and weaker order, called the second-order
absolute Lorenz ordering, is introduced, and we judge random variables according to certain functionals
of this class when the dilation order is not available.
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1. Introduction

Several approaches have been used in the literature to address the problem of comparing two

probability distributions in terms of dispersion. The conventional approach in many empirical

works is to compare some associated measures of dispersion, such as the variance or the range.

However, such a comparison is based on only two single numbers and therefore, is often not

very informative. A second approach is to make ordinal comparisons by means of orderings of

distributions that satisfy some suitable conditions. This paper provides a bridge that takes us

from the cardinal comparisons (by means of a general class of measures of dispersion) to the safer

ordinal ones (by means of dilation and second-order absolute Lorenz orderings).

Let X be a random variable with distribution function F and �nite mean �X . Let F
�1 be the

left continuous inverse of F; de�ned by

F�1(t) = inf fx : F (x) � tg ; 0 � t � 1:

An intuitive procedure for measuring the dispersion in X is to average the deviations of F�1(p)

from the mean �X . If we consider a linear averaging method based on weights that depend on

relative ranks, we obtain the class C of functionals I! given by

I!(X) =

Z 1

0

!(p)
�
F�1(p)� �X

�
dp (1)

where !(p) is any integrable weight function ! : [0; 1] ! R; which is assumed to be independent

of F:

The functionals I! can be expressed in terms of the function AX(p) de�ned as

AX(p) =

Z p

0

�
F�1(t)� �X

�
dt; 0 � p � 1: (2)

This function is called the absolute Lorenz curve and is used in economics to compare income

distributions (Moyes, 1987). AX(p) coincides with the horizontal axis when X is a degenerate

random variable in �X : It is seen that AX(p) is decreasing for 0 � p � F (�X) and increasing for
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F (�X) < p � 1; it takes the values

AX(0) = AX(1) = 0 (3)

and is a convex function with respect to p (therefore, AX(p) � 0 for all p 2 [0; 1]): Using (2) and

the relationship between the Riemann integral and the Riemann-Stieltjes integral, we �nd that

I!(X) =

Z 1

0

!(t)dAX(t) (4)

and hence, via integration by parts (for Riemann-Stieltjes integrals), we obtain

I!(X) =

Z 1

0

�AX(t)d!(t): (5)

As can be seen from (5), each functional I!(X) is a weighted area between the curve �AX(t) and

the horizontal line.

From (1) and the properties of F�1(see Parzen, 1979) it is easily seen that I!(aX) = aI!(X)

for all a > 0; I!(X + b) = I!(X) for all b and I!(c) = 0 for any degenerate random variable at

c: In addition, from (5) it follows that if !(p) is non-decreasing, then I!(X) � 0 for all random

variable X: Therefore, the members of the class

C1 = fI! 2 C such that ! is non-decreasingg

satisfy the most commonly accepted axioms for all measures of dispersion (see, for example, Bickel

and Lehman, 1976).

The class C1 includes some well known dispersion measures. One of them is the Gini�s mean

di¤erence (Gmd) of X de�ned as

Gmd(X) =

Z 1

�1

Z 1

�1
jy � xj dF (x)dF (y):

The Gini�s mean di¤erence was discussed in the context of the theory of errors of observations

in the late nineteenth century. It was proposed as a measure of dispersion by Gini (1912). It is
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given by (1) with !(p) = 4p. Some theoretical merits of the Gini�s mean di¤erence in the context

of stochastic orderings can be found in Yitzhaki (1982).

Other members of C1 are summarized in Table 7.8 of Nygard and Sandström (1981).

Comparisons of functionals of two random variables sometimes produce stochastic orders (see

Shaked and Shanthikumar (1994) for a detailed treatment of this topic). One of the most used

stochastic order for comparing two random variables in terms of dispersion is the dilation order.

Following Hickey (1986), we say that the random variable Y is more dispersed than X in the

dilation sense (denoted by X �dil Y ) if

E [� (X � �X)] � E [� (Y � �Y )]

for all convex functions �; provided that these expectations exist. This notion generalizes the

use of the variance for comparing distributions in terms of dispersion. Note that dilation involves

dispersion from the mean of a distribution, as in (1). This leads us to consider whether the members

of C1 are preserved under this ordering. However, it should be mentioned here that members of

C1 cannot in general be written in the form E [� (X � �X)] ; with � convex (this is the case, for

example, of the Gini�s mean di¤erence, as shown by the example of Newbery, 1970).

In Section 2, we characterize the comparison of random variables according to the measures

I! of C1 in terms of dilation order. From this result we deduce that if X and Y are ordered in the

dilation sense, then we can judge between them according to any measures I! without needing to

agree on the form of !(p) (except that it be non-decreasing). In addition, this characterization,

together with the de�nition of the dilation order, suggests that this order preserves most of the

measures involving dispersion about the mean of a random variable, independently of its functional

form. This con�rms the leading role that the dilation order plays in measures of dispersion.

Let C2 be the class of measures I! of C such that ! is non-decreasing and convex. Obviously,

C2 � C1: In Section 3, we introduce a new criterion for evaluating the dispersion of random

variables that is consistent and is implied by the unanimous order generated by the class C2:
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The corresponding dispersive ordering, called the second-order absolute Lorenz order, is based on

comparisons of absolute Lorenz areas. We deduce that if X and Y are ordered in the second-order

absolute Lorenz order, then we can judge between them according to any measure I! without

needing to agree on the form of !(p) (except that it be non-decreasing and convex).

In order to prove our �rst result, we require the notion of the decreasing rearrangement of

a function (on this topic, see Hardy et al. (1929) and Chong (1974)). Denote by L1 (
; �) the

set of all extended real-valued integrable functions on a measure space (
;�; �): The decreasing

rearrangement of f 2 L1 (
; �) is de�ned by

f�(t) = inf fs 2 R : Df (s) � tg ; t 2 [0; � (
)]

where

Df (s) = � (fx : f(x) > sg) ;

for each s 2 [�1;1] : Denote by m the Lebesgue measure on R: We have the following result

from Chong (1974).

Theorem 1.1. Let f 2 L1(
; �); g 2 L1(
�; �0); where � (
) = �0 (
0) = a <1: Then,

Z t

0

f�dm �
Z t

0

g�dm for all t 2 [0; a)

and Z a

0

f�dm =

Z a

0

g�dm

if and only if Z



� (f) d� �
Z

�

� (g) d��

for all convex functions � : R! R:

Before ending this introduction, we note that integrals occurring in this paper are interpreted in

the sense of Riemann-Stieltjes. The Riemann-Stieltjes notation allows the simultaneous treatment

of the purely discrete and absolutely continuous cases (as well as combinations thereof).
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2. Characterizations in terms of the dilation order

We need to state the following result before obtaining the main theorem of this section.

Theorem 2.1. Let X and Y be random variables with respective �nite means �X and �Y and

let the corresponding distribution functions be F and G, respectively. Then, X �dil Y if and only

if AX(p) � AY (p); 8p 2 [0; 1] :

Proof . Let (
X ;BX ; PX) and (
Y ;BY ; PY ) be the probability spaces on which X and Y; respec-

tively, are de�ned. De�ne f(!) = X(!)��X for all ! 2 
 and g(!) = Y (!)��Y for all ! 2 
Y :

The decreasing rearrangements of f and g are given, respectively, by f�(x) = F�1(1 � x) � �X

and g�(x) = G�1(1� x)��Y ; for all x 2 [0; 1] : The result is now obtained as a direct application

of Theorem 1.1.

The following result characterizes the comparison of random variables according to the mea-

sures I! of C1 in terms of the dilation order.

Theorem 2.2. Let X and Y be random variables with �nite means. Then

I!(X) � I!(Y ) for all I! 2 C1 () X �dil Y:

Proof . (=)) Suppose that Z 1

0

!(t)dAX(t) �
Z 1

0

!(t)dAY (t) (6)

holds for all non-decreasing functions ! (where we have used the Riemann-Stieltjes notation ob-

tained in (4) for I!(X)). The function !p(t) de�ned by

!p(t) =

8>><>>:
0 if t < p

1 if t � p

is a non-decreasing function of t for each p 2 [0; 1] ; so we haveZ 1

0

!p(t)dAX(t) �
Z 1

0

!p(t)dAY (t); 8p 2 [0; 1] : (7)
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Using (3) it is seen that an equivalent form for (7) is

AX(p) � AY (p); 8p 2 [0; 1] (8)

and the relation X �dil Y follows from Theorem 2.1.

((=) Suppose now that X �dil Y or, equivalently, that (8) holds and take an arbitrary

I! 2 C1: Since AX(p) � 0 for all p 2 [0; 1] and AY (p) � 0 for all p 2 [0; 1] ; it follows from (8) thatZ 1

0

�AX(t)d!(t) �
Z 1

0

�AY (t)d!(t);

because the monotonic nature of ! ensures that the increments d! are non-negative. Using (5) it

is seen that I!(X) � I!(Y ) holds.

Remark 2.1. Many examples of dilation and stronger orderings within parametric families of

distributions can be found in Saunders and Moran (1978), Lewis and Thompson (1981), Shaked

(1982) and Hickey (1986). Often, these orderings are related to the value of a real parameter. It

follows from Theorem 2.2 that the corresponding orderings with respect to the measures I! 2 C1

also hold.

Remark 2.2. Fagiuoli et al. (1999) proved, for random variables with continuous distribution

functions, a result that corresponds to our Theorem 2.1. However, since we do not impose con-

straints on the class of distribution functions to be compared, our result is more general. Moreover,

our proof follows di¤erent lines from the ones followed by these authors.

3. Characterization in terms of the second-order absolute Lorenz order

As can be seen from Theorem 2.1, only random variables that have associated absolute Lorenz

curves that do not intersect are ordered in the dilation sense. It follows from Theorem 2.2 that

only if the absolute Lorenz curves of two random variables do not intersect, can we judge between

them according to any measures I! without needing to agree on the form of ! (except that it be

non-decreasing). We must now ask: Under what conditions can we judge between two random

variables when the corresponding absolute Lorenz curves intersect? Can we �nd a simple criterion
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that is necessary and su¢ cient for judging between them according to any I! without specifying

the particular weight function !? The answer is �yes� if we restrict our attention to the class of

functions !(p) that are non-decreasing and convex. The criterion is a new partial ordering based

on the stochastic comparison of absolute Lorenz areas.

De�nition 3.1. Let X and Y be two random variables with absolute Lorenz curves AX(t) and

AY (t); respectively. We say that X is smaller than Y in the second-order absolute Lorenz order

if
R 1
p
AX(t)dt �

R 1
p
AY (t)dt for all p 2 [0; 1] :

Note that the dilation order implies the second-order absolute Lorenz order.

Let C2 be the class of measures I! of C such that ! is non-decreasing and convex. The

following result characterizes the comparison of random variables according to the measures I! of

C2 in terms of the second-order absolute Lorenz order.

Theorem 3.1. Let X and Y be two random variables with absolute Lorenz curves AX(t) and

AY (t); respectively. Then

I!(X) � I!(Y ) for all I! 2 C2

if and only ifZ 1

p

AX(t)dt �
Z 1

p

AY (t)dt; for all p 2 [0; 1] : (9)

Proof. (=)) Note that for a �xed p 2 [0; 1] ; the function !(t) = (t � p)+ = max ft� p; 0g is

non-decreasing and convex. In addition, from the integration by parts formula, we have thatZ 1

0

(t� p)+ dAX(t) =
Z 1

p

�AX(t)dt: (10)

Thus, the result easily follows .

((=) Let ! : [0; 1] �! R be a non-decreasing and convex function. Then, there exists a

non-decreasing, non-negative, integrable function ' such that

!(t)� !(0) =
Z t

0

'(p)dp; 8t 2 [0; 1)
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(see Zygmund, 1959). Using integration by parts, we have, for t 2 [0; 1) ;

!(t)� !(0) =
Z 1

0

(t� p)+ d'(p) + t' (0) : (11)

On the other hand, from (3) it follows that an alternative expression for (4) is

I!(X) =

Z 1

0

[!(t)� !(0)] dAX(t): (12)

Therefore, combining (11) and (12), shows that

I!(X) =

Z 1

0

�Z 1

0

(t� p)+ d'(p) + t' (0)
�
dAX(t) =

=

Z 1

0

�Z 1

0

(t� p)+ dAX(t)
�
d'(p) + ' (0)

Z 1

0

tdAX(t) (13)

where the last equality follows from the additivity properties of integrals and from Fubini�s theo-

rem. Using integration by parts again, we have that

Z 1

0

tdAX(t) =

Z 1

0

�AX(t)dt: (14)

Therefore, combining (13), (10) and (14) it is seen that

I!(X) =

Z 1

0

�Z 1

p

�AX(t)dt
�
d'(p) + ' (0)

Z 1

0

�AX(t)dt: (15)

Taking into account that Z 1

p

�AX(t)dt � 0 8p 2 [0; 1] ;

d'(p) � 0;

and

' (0) � 0;

from (9) and (15) the result holds.

Example 3.1. Let X be a uniform random variable with distribution function F (x) = x
3 ;

0 < x < 3 and let Y be a power random variable with distribution function G(x) =
�
x
3

�1=2
;

0 < x < 3. The absolute Lorenz curves are, respectively, AX(p) = 3
2

�
p2 � p

�
; 0 � p � 1;
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and AY (p) = p3 � p; 0 � p � 1: It is easy to verify that AX(p) < AY (p) for 0 < p < 1=2

and AX(p) > AY (p) for 1=2 < p < 1: Consequently, (8) fails and Theorem 2.2 cannot be used.

Nevertheless, relation (9) is easily veri�ed and from Theorem 3.1 it follows that I!(X) � I!(Y ) for

all I! 2 C2.

4. Concluding remarks and related topics

In this paper we have studied the consistency of a family of functionals of the form (1), de�ned

on the class of random variables, with two stochastic orderings. The �rst of these orderings is the

well known dilation ordering and the other one is new and weaker.

As a �rst step, we have restricted our attention to the class C1 of functionals with non-

decreasing weight function !: We have connected this class with the dilation order, that has been

proved to be consistent. This result gives us the possibility of ranking parametric families of

distributions according to any I! 2 C1; by using well known results about the dilation ordering

in these families.

The weakest ordering, that has been called the second-order absolute Lorenz, it enables us to

judge between two random variables according to any I! without needing to agree on the form of

! (except that it be non-decreasing and convex) when dilation order is not possible.

Some properties of the class C of functionals given by (1) have been stated in this paper. Other

properties of these functionals have been discussed by Nygard and Sandström (1981, Sec.7.4) in

the context of income distributions, when the underlying random variables are non-negative. They

considered each I! 2 C as an absolute-invariant measure of income inequality (i.e., a measure that

is invariant under a constant addition to incomes). Some particular members of C used in this

context can be found in Table 7.8 of their book. In particular, they discussed functionals belonging

to the class C2; with power weight functions of the form !(p) = apn; with a > 0 and n > 1: The

Piesch�absolute measure, that is de�ned with !(p) = 3
2p
2; is an example of such functionals. The

Nygard and Sandström�s approach and the results of this paper suggest that the dilation order and
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the second-order absolute Lorenz are powerful tools for comparing absolute income inequalities.

If each I! 2 C is normalized by mean income, we obtain the �linear measures of inequality�

discussed by Mehran (1977) in the same context of income distribution (the term �linear�in the

literature on income distribution means linear after arranging incomes in an increasing order).

The basic estimators of the measures I! we form in practice are linear functions of order

statistics. This topic has an extensive literature (see Cherno¤ et al. (1967), Moore (1968),

Shorack (1972) and Stigler (1974)). Observing that �X =
R 1
0
F�1(t)dt; it is easily seen that (1)

can be rewritten as Z 1

0

u(t)F�1(t)dt (16)

where u(t) = !(p)�
R 1
0
!(p)dp. If Xi:n denotes the ith order statistic of a random sample of size

n from X; a natural estimator of (16) is

bI! = 1

n

nX
i=1

u

�
i

n

�
Xi:n:

It follows from Theorem 1 of Shorack (1972) and Proposition 2 of Sendler (1979) that bI! is
asymptotically normal under quite general conditions. Examples of such estimators for particular

members of C1 and C2 together with expressions for their asymptotic variances can be found in

Table 10.1 of Nygard and Sandström (1981).

Finally, it should be noted that the class of functionals discussed in this paper can be general-

ized to include measures with weight function ! that may depend on the distribution function F:

As examples of measures of this generalized class, we have the mean deviation E[jX � �X j]; by

taking

!(p) =

8>><>>:
�1 if p � F (�X)

1 if p > F (�X)

:

Choosing in (1) the weight function !(p) = F�1(p); we obtain the variance of X.
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