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Abstract

In this paper, we consider the dispersive order and the excess
wealth order to compare the variability of distorted distributions.
We know from Sordo (2009a) that the excess wealth order can be
characterized in terms of a class of variability measures associated
to the tail conditional distribution which includes, as a particular
measure, the tail variance. Given that the tail conditional distri-
bution is a particular distorted distribution, a natural question
is whether this result can be extended to include other classes
of variability measures associated to general distorted distribu-
tions. As we show in this paper, the answer is yes, by focussing
on distorted distributions associated to concave distortion func-
tions. For distorted distributions associated to more general dis-
tortions, the characterizations are stated in terms of the stronger
dispersive order.
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1 Motivation

Distorted distributions are of great interest because of their use in the
Rank Dependent Expected Utility model (see Quiggin (1982), Yaari
(1987) and Schmeidler (1989)). They were introduced in actuarial sci-
ence by Denneberg (1990) and Wang (1995, 1996) and have been applied

�This is a working paper. The �nal version has been published in Insurance:
Mathematics and Economics (2011) Volume 49, Issue 1, Pages 11�17
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to a wide variety of insurance problems, most particularly to the deter-
mination of insurance premiums and risk measures (for further details
see Goovaerts, Kaas and Laeven (2010) and the references therein).
In the literature one �nds some papers connecting distorted distrib-

utions and stochastic orderings (for a general survey on this topic, see
Shaked and Shanthikumar (2007); for applications of stochastic orders
in actuarial science, see Müller and Stoyan (2002) and Denuit et al.
(2005)). Two important contributions in this �eld are Chew, Karni and
Safra (1987) and Wang and Young (1998) which show, in the framework
of the distorted expectation hypothesis, that the increasing convex or-
dering (also called the stop-loss ordering) of two risks is equivalent to
saying that one risk is preferred over the other by all decision-makers
with concave distortion function. This result is important since every
law invariant comonotonically additive coherent risk measures can be
expressed as the expectation of a distorted distribution by a concave
distortion function (Kusuoka, 2001).
Risk measures based on distorted expectations focus on the size of

risks. However, although a measure of the size of the risk gives an impor-
tant information about the riskiness of a loss distribution, very often it
is not su¢ cient. This has been pointed out by a number of authors, who
have suggested to complement these measures by using characteristics
of variability to evaluate the uncertainty of the risk. An example of such
characteristics is the tail variance, introduced by Furman and Landsman
(2006) for measuring the variability of the risk along the right tail of its
distribution (see also Furman and Zitikis (2008) and Landsman (2010)).
Sordo (2009a) generalizes the tail variance by considering a class of

variability measures associated to the tail conditional distribution and
characterizes this class in terms of another well-known stochastic order,
namely the excess wealth order (also called the right spread order) of the
risks. The motivation for our work comes from that characterization and
the fact that the tail conditional distribution is nothing but a �particu-
lar�distorted distribution. Thus, the following question emerges: can we
extend this result in order to characterize, by means of stochastic orders,
the comparisons of risks in terms of other variability measures associated
to �general�distorted distributions? The answer to this question is yes,
as we show below, by considering certain general classes of variability
measures associated to distorted distributions (from now on, we refer
to these measures as distorted variability measures) and two stochastic
orders well-known in actuarial context: the dispersive order (Bickel and
Lehmann,1979) and the excess wealth order (Fernández-Ponce et al.,
1998; Shaked and Shanthikumar, 1998). Our results parallel those given
by Wang and Young (1998) in the framework of the distorted expecta-
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tion hypothesis, since we study under which circumstances the dispersive
order and the excess wealth order are equivalent to saying that one risk
is preferred over the other by all decision-makers who judge among them
on the basis of distorted variability measures.
This paper is organized as follows. In Section 2, we introduce the

classes of distorted variability measures and the stochastic orders that
we consider later on. In Section 3 we characterize these stochastic orders
in terms of classes of variance-type measures and in Section 4, we provide
characterizations in terms of classes of Gini-type measures. In Section
5, we obtain some conditions for stochastic equality of two ordered ran-
dom variables in terms of some particular distorted variability measures.
We illustrate the results on some parametric families of distributions in
Section 6 and provide conclusions in Section 7.

2 De�nitions

In order to introduce the families of variability measures that will be con-
sidered in this paper, assume that we have an underlying risk described
by a random variable X de�ned on a probability space (
; B; P ) ; where

 is the sample space, B is the �-algebra and P is the probability mea-
sure. Let F be its distribution function, F (x) = P [X � x] ; and let F =
1�F be its associated survival function. Denote by F�1 the correspond-
ing quantile function, de�ned by F�1(p) = inf fx : F (x) � pg ; 0 � p � 1
and let F

�1
(p) = F�1 (1� p) be the inverse of the survival function.

Consider the set� of continuous, non-decreasing and piecewise di¤er-
entiable functions h : [0; 1] ) [0; 1] ; that satisfy h(0) = 0 and h(1) = 1
(such functions are called distortion functions). For each distortion
h 2 �; the transformation of the survival function of X

F h(x) = h
�
F (x)

�
= h � F (x) (1)

de�nes a new survival function associated to certain random variable
Xh; which is the distorted random variable induced by h:
In insurance pricing and in �nancial risk management, a distortion

typically represents a change in the probability measure. For instance,
consider a risk X with expectation

E [X] = �
Z 0

�1

�
1� F (x)

�
dx+

Z 1

0

F (x) dx

(here and throughout this paper we assume that the integrals exist when-
ever they appear in the text). Under the distorted expectation hypoth-
esis (see Section 2.6 in Denuit et al., 2005, for a review) it is assumed

3



that each decision-maker has a distortion function h and that he values
X as its distorted expectation Eh [X] ; de�ned as

Eh [X] = �
Z 0

�1

�
1� h

�
F (x)

��
dx+

Z 1

0

h
�
F (x)

�
dx: (2)

A concave distortion function gives more weight to higher risk events.
For instance, Wang (1996) suggests to use (2) as a premium principle;
for insurance premiums purposes, Eh [X] must be at least equal to E [X]
and such is the case when h is concave. Some important examples of
distorted distribution with concave distortions are the following:
(a) If, given p 2 (0; 1) ; we take h(t) = min

n
t

1�p ; 1
o
; then we have the

tail conditional distribution (or conditional distribution at quantile p)

Xh �
�
X
��X > F�1(p)

�
:

(b) If h(t) = 1� (1� t)n ; we have the maximum of n independent and
identically distributed under F random variables

Xh � max fX1; :::; Xng :

(c) If h(t) = � (��1 (t) + �) ; � > 0; where � is the standard normal
distribution function, then Xh � XWT is the Wang transformed random
variable (Wang, 2000). The expectation of this random variable is a
well-known risk measure with many desirable properties. This distortion
function was independently proposed by Goovaerts and Laeven (2008)
under the guise of Esscher-Girsanov transform. They characterize a
pricing mechanism involving this transform and also consider its dynamic
extension (see also Labuschagne and O¤wood, 2010).

A decision-maker who is concerned with the variability of extreme
events (which typically represent events with a low frequency and high
impact) may judge risks in terms of the variance associated to the above
random variables or, more generally, in terms of some variability measure
associated to Xh; where h is a concave distortion function. Speci�cally,
we focus on two classes of distorted variability measures. The �rst is the
class of variance-type distorted variability measures, given by measures
of the form

I';h (X) = Eh [' (X � Eh [X])] = �
Z 1

�1
' (x� Eh [X]) dF h(x); (3)

where F h is given by (1) and ' is a convex function de�ned on [0; 1].
The convexity of ' ensures that (3) generalizes the variance of X; which
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is given by the choice h(t) = t and '(t) = t2: Note that a functional
of the form (3) represents a measure of the distance between X and
Eh [X] when the deviations are evaluated under the distorted probability
induced by h: Thus, for example, if we combine the h0s in the above
examples with ' (t) = t2; we obtain, respectively, the tail variance,

V ar
�
X
��X > F�1(p)

�
; (4)

the variance of the maximum of n independent copies of X;

V ar [max fX1; :::; Xng] (5)

and the variance associated to the Wang transformed random variable,

V ar [XWT ] : (6)

The choice ' (t) = (max f0; tg)2 leads to the positive semivariance and,
in general, di¤erent '0s and h�s produce di¤erent variability measures
associated to di¤erent distorted distributions. Note that we can also
take a convex distortion h in (3); in such a case, we are focusing on the
variability of the left-tail of the risk. For example, the choice ' (t) = t2

and h(t) = tn produces the variance of the minimum of n independent
copies of X;

V ar [min fX1; :::; Xng] : (7)

The second class of measures considered in this paper is a family of Gini-
type distorted variability measures, given by functionals of the form

G�;h(X) =

Z 1

0

�
F
�1
h (t)� Eh [X]

�
d�(t) (8)

where � is a concave weight function de�ned on [0; 1] : The concav-
ity of � ensures that (8) generalizes the Gini�s mean di¤erence of X
(denoted by GMD (X)); which is given by the choice h(t) = t and
�(t) = 2

�
1� (1� t)2

�
: If we combine this � with the h0s in the above

examples, we obtain the Gini�s mean di¤erence associated, respectively,
to the conditional distribution at quantile p, the maximum of n inde-
pendent copies of X and the Wang transformed random variable.
In this paper, we are interested in how a collection of decision-makers

order risks by considering orders based on the conditions

I';h (X) � I';h (Y ) for all h 2 	; for all convex ' (9)

and
G�;h(X) � G�;h(Y ) for all h 2 �; for all concave �; (10)
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where 	 and � are certain classes of distortion functions. Judgements
based on this type of comparisons do not depend on subjective distor-
tion functions. A similar problem, involving di¤erent stochastic orders
and measures, has recently been studied by Shaked, Sordo and Suárez-
Llorens (2010).
Now we recall the de�nition of the stochastic orders that we consider

in this paper.

De�nition 1 Let X and Y be two random variables with respective dis-
tribution functions F and G: Then,
(i) X is said to be smaller than Y in the dispersive order (denoted by
X �disp Y ) if F�1(p)�F�1(q) � G�1(p)�G�1(q); for all 0 < q < p < 1:
(ii) X is said to be smaller than Y in the excess wealth order (de-

noted by X �ew Y ) if E
h
(X � F�1(p))+

i
� E

h
(Y �G�1(p))+

i
for

all p 2 (0; 1) ; where x+ = max fx; 0g :

The dispersive order and the excess wealth order have been exten-
sively studied in the literature and have been applied before to insurance
problems by Denuit and Vermandele (1999), Chateauneuf et al. (2004),
Hu, Chen and Yao (2006) and Sordo (2008, 2009a, 2009b). The excess
wealth order is also termed as the right-spread order (Fernández-Ponce,
Kochar and Muñoz-Pérez, 1998) and the shortfall order (Denuit, Goder-
niaux and Sacillet, 2007). Many properties of these orders can be found
in Chapter 3 of Shaked and Shanthikumar (2007). Since X �disp Y
implies X �ew Y and the reverse is not true, the excess wealth order
is useful to compare the variability among random variables when the
dispersive order does not hold.

3 Characterizations in terms of variance-type dis-
torted variability measures

In this section, we consider orders of the form (9) for the following classes
of distorted variability measures

	1 = fI';h of the form (3) with ' convexg

	2 = fI';h 2 	1 with h concaveg : (11)

Some members of 	i; i = 1; 2; are (4), (5) and (6). The functional (7) is
an example of member of 	1 not belonging to 	2: It is clear, from these
examples and the discussion in the previous section, that members of
	1 take into account the variability throughout the whole distribution,
whereas members of 	2 focus on the right tail variability.
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The main results are obtained as a consequence of the theory of ma-
jorization (see Hardy, Littlewood and Pólya (1929) and Chong (1974)).
Denote by M (
; �) the set of all extended real-valued measurable func-
tions on a measure space (
;�; �): The decreasing rearrangement of
f 2M (
; �) is de�ned by

f �(t) = inf fs 2 R : Df (s) � tg ; t 2 [0; � (
)]

where
Df (s) = � (fx : f(x) > sg) ;

for each s 2 [�1;1] : The following result is taken from Chong (1974).

Theorem 2 Suppose (
;�; �) and (
0;�0; �0) are measure spaces such
that �(
) = �0(
0) = a < 1 and denote by m the Lebesgue measure
on R: If f 2 L1 (
; �) and g 2 L1 (
0; �0) ; the following conditions are
equivalent.
(a)

R t
0
f �dm �

R t
0
g�dm for all t 2 [0; a) and

R a
0
f �dm =

R a
0
g�dm:

(b)
R


' (f) d� �

R

0 ' (g) d�

0 for all convex functions ' : R �! R:

First we have to prove the following result.

Theorem 3 Let X and Y be two random variables with distribution
functions F and G; respectively and let h 2 �: For each u 2 [0; 1] denote

LXh (u) =

Z u

0

�
F
�1
h (t)� Eh [X]

�
dt (12)

and

LYh (u) =

Z u

0

�
G
�1
h (t)� Eh [Y ]

�
dt:

Then, I';h (X) � I';h (Y ) for all convex ' if and only if

LXh (u) � LYh (u) for all u 2 (0; 1) : (13)

Proof. Let
�

; B; P hX

�
and

�

0; B0; P hY

�
be the probability spaces on

whichXh and Yh; respectively, are de�ned. De�ne f (!) = X (!)�Eh [X]
for all ! 2 
 and g(!) = Y (!) � Eh [Y ] for all ! 2 
0: The decreasing
rearrangements of f and g are given, respectively, by

f �(t) = F
�1 �

h�1 (t)
�
� Eh [X] (14)

and
g�(t) = G

�1 �
h�1 (t)

�
� Eh [Y ] ; (15)
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for all t 2 [0; 1] : Let us apply Theorem 2 to these probability spaces.
First, note that Theorem 2(b) reads as I';h (X) � I';h (Y ) for all '
convex. In order to verify condition (a), note that the equalityZ 1

0

�
F
�1 �

h�1 (t)
�
� Eh [X]

�
dx =

Z 1

0

�
G
�1 �

h�1 (t)
�
� Eh [Y ]

�
dx

follows as a consequence of the following representation1 for (2) (see
Jones and Zitikis, 2003):

Eh [X] =

Z 1

0

F
�1
(t) dh (t) : (16)

The rest of the condition (a) in Theorem 2 reads asZ u

0

�
F
�1 �

h�1 (t)
�
� Eh [X]

�
dt �

�
Z u

0

�
G
�1 �

h�1 (t)
�
� Eh [Y ]

�
dt; for all u 2 (0; 1) ;

which is equivalent to (13) and this ends the proof.
The following result characterizes the comparisons of functionals of

the form (3) by means of the dispersive order and the excess wealth order.
Part (b) of this theorem extends Theorem 4 of Sordo (2009a) in the fol-
lowing sense: whereas in Sordo (2009a) the excess wealth order is shown
to be monotone with respect to a class of variability measures associ-
ated to the conditional distribution at quantile p (which is a particular
distorted distribution), here this order is shown to be monotone with
respect to general distorted distributions, whenever the corresponding
distortions are concave. Recall that 	1 and 	2 are de�ned in (11).

Theorem 4 Let X and Y be two random variables with distribution
functions F and G; respectively. Then,
(a) X �disp Y if, and only if, I';h (X) � I';h (Y ) for all I';h 2 	1:
(b) X �ew Y if, and only if, I';h (X) � I';h (Y ) for all I';h 2 	2:

Proof. (a) Assume that X �disp Y: Then, from Theorem 7(i) of Sordo
(2008) it follows that (13) holds for all h 2 � and from Theorem 3 it
follows that I';h (X) � I';h (Y ) for all I';h 2 	1: In order to prove the

1Recall that � is the set of continuous and piecewise di¤erentiable distortion
functions, therefore this representation is valid.
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converse, assume that I';h (X) � I';h (Y ) for all I';h 2 	1: In particular,
if we take h = hp;q; with 0 � p < q � 1; de�ned by

hp;q(t) =

8<:
0 if 0 � t < p
t�p
q�p if p � t � q
1 if q < t � 1

;

we have

I';hp;q (X) � I';hp;q (Y ) for all 0 < p < q < 1; for all convex ': (17)

Using the representation (16), we see that

Ehp;q [X] =

R q
p
F
�1
(s) ds

q � p :

Combining (17) and Theorem 3 it follows that

LXhp;q (u) � L
Y
hp;q (u) for all u 2 (0; 1) ; for all 0 < p < q < 1;

or, equivalently,

Z u

0

0@F�1 (t)� R qp F�1 (s) ds
q � p

1A dhp;q (t) �

�
Z u

0

0@G�1 (t)� R qp G�1 (s) ds
q � p

1A dhp;q (t)
for all u 2 (0; 1) ; for all 0 < p < q < 1:

The above expression is the same as

Z u

p

0@F�1 (t)� R qp F�1 (s) ds
q � p

1A dt � Z u

p

0@G�1 (t)� R qp G�1 (s) ds
q � p

1A dt;
for all 0 < p < u < q < 1:

Equivalently, we can write

1

u� p

Z u

p

�
F
�1
(t)�G�1 (t)

�
dt � 1

q � p

Z q

p

�
F
�1
(s)�G�1 (s)

�
du;

for all 0 < p < u < q < 1;
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which means that, for each p 2 (0; 1) ;

1

x� p

Z x

p

�
F
�1
(t)�G�1 (t)

�
dt (18)

is an increasing function of x on (0; 1) : By di¤erentiation, it is seen that
(18) holds if, and only if,Z x

p

�
F
�1
(x)� F�1 (t)

�
dt �

Z x

p

�
G
�1
(x)�G�1 (t)

�
dt (19)

for all x 2 (p; 1) : Now, by contradiction, suppose that X �dip Y . Recall-
ing that X �disp Y if and only if F

�1
(t)�G�1(t) is non-decreasing (see

(3.B.8) in Shaked and Shanthikumar, 2007), the contradiction argument
implies that there exists an interval (p0; x0) � (0; 1) such that

F
�1
(t)�G�1(t) > F

�1
(x0)�G

�1
(x0) for all t 2 (p0; x0) :

This implies thatZ x0

p0

�
F
�1
(x0)� F

�1
(t)
�
dt <

Z x0

p0

�
G
�1
(x0)�G

�1
(t)
�
dt

a contradict with (19). This proves that X �disp Y:
(b) From Theorem 7(ii) of Sordo (2008) it follows that X �ew Y if,

and only if, (13) holds for all concave h and, from Theorem 3, this is
equivalent to say that I';h (X) � I';h (Y ) for all I';h 2 	2:

4 Characterizations in terms of Gini-type distorted
variability measures

In this section, we consider orders of the form (10) for the following
classes of distorted variability measures

�1 = fG�;h of the form (8) with � concaveg

and
�2 = fG�;h 2 �1 with h concaveg :

Note that �1 includes the Gini�s mean di¤erence associated to any dis-
torted distribution, that is, it takes into account the variability through-
out the whole distribution. The class �2 contains measures associated
to distorted distribution whit h concave, that is, it focusses on the vari-
ability of the tail right of distributions.
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Theorem 5 Let X and Y be two random variables with distribution
functions F and G; respectively. Then,
(a) X �disp Y if, and only if, G�;h (X) � G�;h (Y ) for all G�;h 2 �1:
(b) X �ew Y if, and only if, G�;h (X) � G�;h (Y ) for all G�;h 2 �2:

Proof. First, we provide an alternative representation for every G�;h 2
�1: From the concavity of � on [0; 1] ; there exists a non-increasing func-
tion ! such that

�(p)� �(0) =
Z p

0

!(t)dt; p 2 [0; 1) (20)

(see Chow and Teicher (1997), page 428). Now, by using (12) and (20)
we can write

G�;h(X) =

Z 1

0

�
F
�1
h (t)� Eh [X]

�
d�(t) =

Z 1

0

!(t)dLXh (t) :

Integration by parts and the fact that LXh (0) = L
X
h (1) = 0 imply that

G�;h(X) = �
Z 1

0

LXh (t) d!(t): (21)

In order to prove part (a), assume that X �disp Y: Combining theorems
3 and 4, we see that this is equivalent to say that

LXh (u) � LYh (u) for all u 2 (0; 1) ; for all distortion h: (22)

Since d!(t) � 0 in (21), it follows from (21) and (22) that G�;h(X) �
G�;h(Y ) for all G�;h 2 �1: Conversely, assume that G�;h(X) � G�;h(Y )
for all G�;h 2 �1: In particular, by taking the concave function �u(t) =
min ft; ug ; u 2 (0; 1) ; we see that

G�u;h (X) =

Z u

0

�
F
�1
h (t)� Eh [X]

�
dt = LXh (u) (23)

is a member of �1 for each u 2 (0; 1) : Thus,

G�u;h (X) � G�u;h (Y ) ; for all u 2 (0; 1)

holds, which is the same as (22), that is, X �disp Y:
The proof of part (b) follows the same lines as the proof of part (a)

by using that X �ew Y is equivalent to say that

LXh (u) � LYh (u) for all u 2 (0; 1) ; for all concave h (24)

(which follows by combining theorems 3 and 4).
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5 Conditions for stochastic equality of distributions

It is well-known that two random variables with the same variance are
not ordered in the excess wealth order unless they are stochastically
equivalent up to a location parameter. In this section, we provide some
new conditions for stochastic equality of two ordered random variables
under the dispersive order and the excess wealth order in terms of some
special variability measures associated to certain distorted random vari-
ables. For example, it will be proven that two random variables whose
corresponding Wang transformed have the same variance, can not be
ordered in the excess wealth order unless they have, up to a location
parameter, the same distribution.
The �rst result in this section follows from the following result of

Chong (1974).

Theorem 6 Suppose (
;�; �) and (
0;�0; �0) are measure spaces such
that �(
) = �0(
0) = a <1 and denote by m the Lebesgue measure on
R: Assume that f 2 L1 (
; �) and g 2 L1 (
0; �0) : IfZ t

0

f �dm �
Z t

0

g�dm for all t 2 [0; a) and
Z a

0

f �dm =

Z a

0

g�dm (25)

and Z



' (f) d� =

Z

0
' (g) d�0 (26)

for some strictly convex function '; then

� � f�1 = �0 � g�1: (27)

Corollary 7 Let X and Y be two random variables with distribution
functions F and G; respectively. Let h be a distortion function. If

LXh (u) � LYh (u) for all u 2 (0; 1) (28)

and
I';h (X) = I';h (Y ) (29)

for some I';h with strictly convex ', then

F h (t+ Eh [X]) = Gh (t+ Eh [Y ]) for all t: (30)

Proof. Let h be a distortion function and, as in the proof of Theorem
3, let

�

; B; P hX

�
and

�

0; B0; P hY

�
be the probability spaces on which Xh

and Yh; respectively, are de�ned. Consider again the functions f(!) =
X (!) � Eh [X] for all ! 2 
 and g(!) = Y (!) � Eh [Y ] for all ! 2 
0:
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The decreasing rearrangements of f and g are given, respectively, by
(14) and (15). Now the result follows by applying Theorem 6 to these
probability spaces. As in the proof of Theorem 3, condition (25) reads
as (28) and condition (26) reads as (29). Finally, it is easy to see that
(27) is the same as (30).

Corollary 8 Let X and Y be two random variables with distribution
functions F and G; respectively.
(a) If X �disp Y and I';h (X) = I';h (Y ) for some I';h with strictly
convex ' and strictly increasing h; then X and Y have the same distri-
bution, up to a location parameter.
(b) If X �ew Y and I';h (X) = I';h (Y ) for some I';h with strictly convex
' and strictly increasing and concave h; then X and Y have the same
distribution, up to a location parameter.

Proof. (a) If X �disp Y; from (22) it follows that (28) holds for all
distortion function h. It follows from Corollary 7 that

h
�
F (t+ Eh [X])

�
= h

�
G (t+ Eh [Y ])

�
for all t

which, by the strictly increasing of h; is equivalent to say that

X � Eh [X] �st Y � Eh [Y ] :

This means that X and Y have the same distribution, up to a location
parameter.
(b) If X �ew Y; from (24) it follows that (28) holds for all concave
distortion function h and the proof follows the same lines as in part (a).

Example 9 Let X and Y be two random variables with distribution
functions F and G; respectively. Let X1; :::; Xn be independent copies of
X and let Y1; :::; Yn be independent copies of Y .
(a) If X �disp Y and V ar [min (X1; :::; Xn)] = V ar [min (Y1; :::; Yn)] ;
then X and Y have the same distribution, up to a location parameter.
(b) If X �ew Y and V ar [max (X1; :::; Xn)] = V ar [max (Y1; :::; Yn)] ; then
X and Y have the same distribution, up to a location parameter.
(c) If X �ew Y and V ar [XWT ] = V ar [YWT ] ; where XWT and YWT

are the Wang transformed random variables associated to X and Y; re-
spectively, then X and Y have the same distribution, up to a location
parameter.

We also have the following result.

13



Theorem 10 Let X and Y be two random variables with distribution
functions F and G; respectively.
(a) If X �disp Y and G�;h (X) = G�;h (Y ) for some G�;h with strictly
convex � and strictly increasing h; then X and Y have the same distri-
bution, up to a location parameter.
(b) If X �ew Y and G�;h (X) = G�;h (Y ) for some G�;h with strictly
convex � and strictly increasing and concave h; then X and Y have the
same distribution, up to a location parameter.

Proof. (a) If X �disp Y; then (22) holds. Assume that G�;h (X) =
G�;h (Y ) for some G�;h with strictly convex � and strictly increasing h:
By using (21), this means that there exists a strictly decreasing function
! such that Z 1

0

LXh (t) d!(t) =

Z 1

0

LYh (t) d!(t);

or, equivalently, Z 1

0

�
LXh (t)� LYh (t)

�
d!(t) = 0:

From (22) and the strict monotony of !; it follows that LXh (t) = L
Y
h (t)

for all t and, by di¤erentiation, we get

F
�1
h (t)� Eh [X] = G

�1
h (t)� Eh [Y ] ; for all t:

Equivalently, we can write

F
�1 �

h�1 (t)
�
� Eh [X] = G

�1 �
h�1 (t)

�
� Eh [Y ] for all t:

Since h is strictly increasing, this is the same as

F
�1
(u) = G

�1
(u) + (Eh [X]� Eh [Y ])

which means that X and Y have the same distribution, up to a location
parameter.
(b) If X �ew Y; then (24) holds and the proof follows the same lines as
in part (a).

Example 11 Let X and Y be two random variables with distribution
functions F and G; respectively. Let X1; :::; Xn be independent copies of
X; let Y1; :::; Yn be independent copies of Y and let GMD(�) denote the
Gini�s mean di¤erence.
(a) If X �disp Y and GMD [min (X1; :::; Xn)] = GMD [min (Y1; :::; Yn)] ;

14



then X and Y have the same distribution, up to a location parameter.
(b) If X �ew Y and GMD [max (X1; :::; Xn)] = GMD [max (Y1; :::; Yn)] ;
then X and Y have the same distribution, up to a location parameter.
(c) If X �ew Y and GMD [XWT ] = GMD [YWT ] ; where XWT and YWT

are the Wang transformed random variables associated to X and Y; re-
spectively, then X and Y have the same distribution, up to a location
parameter.

6 Application to the comparison of parametric fam-
ilies of distributions

Explicit expressions for some distorted variability measures have been
derived in particular cases. For example, it is well-known (Wang, 2000)
that if X has a Normal distribution, X � N (�1; �1) ; then the Wang
transformed random variable XWT also follows a Normal distribution
with �01 = �1 + ��1 and �

0
1 = �1, therefore

V ar [XWT ] = V ar [X] = �1: (31)

Another distorted variability measure is the tail variance; Furman and
Landsman (2006) show that when X � N (�1; �1) ; the tail variance
equals

V ar
�
X
��X > F�1(p)

�
= �1

�
1 +

' (zp)

1� � (zp)

�
zq �

' (zp)

1� � (zp)

��
(32)

where ' and � are the density function and the distribution function,
respectively, ofN (0; 1) and zp is the corresponding p-quantile, 0 < p < 1:
If Y is another random variable such that Y � N (�2; �2) ; with �1 � �2;
the inequalities

V ar [XWT ] � V ar [YWT ]

and

V ar
�
X
��X > F�1(p)

�
� V ar

�
Y
��Y > F�1(p)� ; p 2 (0; 1)

follow easily from (31) and (32). In many cases, however, direct com-
parisons are not possible since analytic expressions for the variability
measures are not available. In those situations, the results obtained in
sections 2 and 3 can prove to be very useful. Since several well-known
parametric families of distributions are ordered in the dispersive order
according to the value of their parameters, we can, for these families,
compare risks in terms of these measures without needing their explicit
expressions. We give an example to illustrate this application.
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Example 12 Let tn be a t student distribution with n degrees of freedom
and density function given by

f(x) =
�
�
n+1
2

�
p
n� �

�
n
2

� �1 + t2
n

��(n+12 )
;

where � (�) denotes the complete gamma function. Consider two random
variables X(n) and X (m) such that X (n) � tn and X (m) � tm; with
n < m: It is well-known (Arias-Nicolás et al, 2005), that X (m) �disp
X(n) and, from Theorem 4, it follows that

V ar
h
X (m)

���X (m) > F�1X(m)(p)i � V ar hX (n) ���X (n) > F�1X(n)(p)i
for all p 2 (0; 1) ;

V ar [[X (m)]WT ] � V ar [[X (n)]WT ]

and, in general,

I';h (X (m)) � I';h (X (n)) for all distortion h and ' convex.

Similarly, from Theorem 5, it follows that

GMD
h
X (m)

���X (m) > F�1X(m)(p)i � GMD hX (n) ���X (n) > F�1X(n)(p)i
for all p 2 (0; 1) ;

and, in general,

G�;h (X (m)) � G�;h (X (n)) for all distortion h and ' concave.

The intuitive meaning of this is that if we distort two t Student distribu-
tions, one being more variable than the other, the corresponding distorted
distributions are ordered, in terms of variability, in the same direction.

There are many other families of parametric distributions ordered
in the dispersive ordering (and, therefore, in the excess wealth order)
according to the value of their parameters. It is well-known, for ex-
ample, that the normal family is ordered attending to the value of the
variance, the gamma family attending to both the shape and scale pa-
rameters -which in turns includes both the exponential and chi-squared
families-, the uniform family attending to the length of the interval, the
Pareto family attending to both the minimum value and the Pareto in-
dex parameter. These and other examples of dispersive-ordered families
of distributions can be found in Saunders and Moran (1978), Lewis and
Thomson (1981), Shaked (1982), Hickey (1986) and Rojo and He (1991),
among others.
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7 Conclusions

In this paper, we have shown that the dispersive order and the excess
wealth order are monotone with respect to large classes of variability
measures associated with distorted distributions. We have considered
two types of variability measures, variance-type measures and Gini-type
measures, and we have proven that these measures are consistent with
respect to the dispersive order. Moreover, the variability measures as-
sociated to distorted distributions with concave distortion functions are
also consistent with respect to the excess wealth order. Finally, we
have provided some su¢ cient conditions, in terms of these orders and
measures, for stochastic equality (up to a location parameter) of the
underlying distributions.
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