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1 Introduction

In actuarial science, special efforts have been made to measure the risk associ-
ated with large-loss events. An important reason for measuring the right-tail
risk is to make risk comparisons and, for this purpose, stochastic orders,
which require unanimous agreement among classes of risk measures, can be
used. For actuarial applications of stochastic orders, we refer to the books
of Goovaerts et al. (1990) and Kaas et al. (1994). For a general overview of
this topic, see the monograph of Shaked and Shanthikumar (2006).

In this paper, we characterize two nested classes of risk measures, C1 and
C2, which include a number of well-known measures, in terms of dispersive or-
der and excess wealth order, respectively. In order to introduce these classes,
consider a random variable X with distribution function F and let F−1 be
the corresponding quantile function, defined by F−1 (t) = inf {x : F (x) ≥ t} .
Let a : [0, 1] 7−→ [0, 1] be a distortion function, that is, an increasing function
that satisfies a(0) = 0 and a(1) = 1. In the context of the premium principle
of Wang (1996), the expectation with respect to the distorted probability
a ◦ P , defined by

Ea(X) =

∫ 0

−∞
{a (P [X > t])− 1} dt+

∫ ∞
0

a (P [X > t]) dt,

represents the certainty equivalent to risk X, that is, the market price for
transferring the risk X. Wang (1998) derives a general class of risk mea-
sures for the right-tail deviation from the difference between the certainty
equivalent and the expected loss:

ρa(X) = Ea (X)− E (X) , (1)

where a is a concave distortion function. As shown by Jones and Zitikis
(2003), if a is piecewise differentiable and A(t) = 1−a (1− t), then Ea(X) =
EA(X), where

EA(X) =

∫ 1

0

F−1 (t) dA(t). (2)

Taking into account that a is a concave distortion function if, and only if,
A is a convex distortion function, it follows that each ρa(X) of the form (1)
can be expressed using the alternative representation

ρA(X) =

∫ 1

0

F−1 (t) dA(t)− E (X) (3)
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where A(t) is a convex distortion function. A number of well-known risk
measures can be expressed under the form (3), including the right-tail devi-
ation suggested by Wang (1998), given by (3) with A(t) = 1 −

√
1− t (see

Jones and Zitikis, 2003) and the Gini’s mean semidifference, given by (3)
with A (t) = t2 (see Nygard and Sandström, 1981).

Note that (3) involves dispersion about the mean of the distribution.
However, a number of authors, including Bickel and Lehmann (1979), Quig-
gin (1982), Muñoz-Pérez (1990), Landsberger and Meilijson (1994a,b), Shaked
and Shanthikumar (1998), Fernández-Ponce et al. (1998), and Chateauneuf
et al. (2004, 2005), instead of looking at dispersion relative to a fixed point,
consider the spread of a random variable throughout its distribution. We
follow this approach by focusing on a class C1 of risk measures of the type

ρA,B (X) =

∫ 1

0

F−1 (t) dA (t)−
∫ 1

0

F−1 (t) dB (t) (4)

where A(t) and B(t) are two distortion functions such that AB−1(t) is convex.
The convexity of AB−1(t) ensures that ρA,B (X) ≥ 0 and allows us to view
(4) as a generalization of (3), which is obtained with B(t) = t. Jones and
Zitikis (2003) note that a number of risk measures, originally expressed using
distorted probabilities, take the form (4) for adequate choices of A(t) and
B(t). This representation of risk measures is very useful, because empirical
estimators of quantities with the form (4) can be obtained using the theory
of L-statistics, which are linear combinations of order statistics; see Jones
and Zitikis (2003, 2007) and Jones et al. (2006), for details. Members of C1

satisfy the next intuitively desirable properties for a measure of variability
(see Bickel and Lehmann, 1979; we refer to Rockafellar et al., 2006, for an
interpretation and discussion of these properties in an actuarial context).

Theorem 1 Each functional ρA,B ∈ C1 has the following properties:
(i) ρA,B(X + c) = ρA,B(X) for all c,
(ii) ρA,B(cX) = cρA,B(X) for all c > 0,
(iii) ρA,B(c) = 0 for any degenerate random variable at c,
(iv) ρA,B(X) ≥ 0 for all random variable X,
(v) ρA,B(X + Y ) = ρA,B(X) + ρA,B(Y ) for X and Y comonotonic.

Proof. Properties (i)−(iii) are easy to see. In order to prove (iv), note that
if A and B are distortion functions and AB−1 is convex, then A(t) ≤ B (t)
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and, therefore,

ρA,B(X) =

∫ 1

0

F−1 (t) d [A(t)−B(t)] =

∫ 1

0

[B(t)− A (t)] dF−1 (t) ≥ 0.

Finally, (v) follows from the fact that comonotonicity implies additivity of
the certainty equivalents (Wang, 1996).

The class C1 includes a number of measures of interest not having the
form (3). One of them is the Wang´s (1998) two-sided deviation, given by
(4) with A(t) = 1 −

√
1− t and B (t) =

√
t (see Jones and Zitikis, 2003).

In order to provide another example, let X1, ...Xn be n independent copies
of a non-negative random variable X and denote their corresponding order
statistics by X1:n, ..., Xn:n. An intuitive measure for the right-tail of X is the
mean of the last sample spacing1, given by

E [Xn:n −Xn−1:n] = n

∫ ∞
0

F n−1 (x)F (x) dx, (5)

where F = 1− F (Kendall and Stuart, 1977, p.368). By making the change
of variable F (x) = t, we see, via integration by parts, that (5) belongs to C
(up to a scale factor) with A (t) = tn and B(t) = tn−1. A third example is,
for each 0 < p < 1, the measure

ESFp(X) = E
[(
X − F−1(p)

)+]
=

∫ 1

p

(
F−1 (t)− F−1(p)

)
dt, (6)

which is called, in actuarial literature2, the expected shortfall at level p (see
Dhaene et al., 2006, 2007) and represents the expected shortfall of the port-
folio with loss X and solvency capital requirement F−1(p). Note that (6)
belongs to C1 with

A(t) = max

(
0,
t− p
1− p

)
and B(t) =

{
0 if t < p
1 if t ≥ p

(7)

(the relevant function AB−1(t) is constantly equal to 0).

1This measure is also of great interest in auction theory, where, for a buyer’s auction,
it represents the expected rent with n bidders (see Li, 2005, and Kochar et al., 2007).

2The function ESFp(X) is known under different names in other fields, such as the
excess wealth transform in the theory of wealth inequality and the right spread function
in reliability theory.
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The class C1 not only unifies a number of risk measures but also provides
a link between the measures and stochastic orders. In Section 2, we charac-
terize the comparison of random variables according to the measures ρA,B of
C1 in terms of the well-known dispersive order (Doksum, 1969; Bickel and
Lehmann, 1979), whose definition is recalled here.

Definition 2 Let X and Y be two random variables with respective distri-
bution functions F and G. Then, X is said to be smaller than Y in the
dispersive order (denoted by X ≤disp Y ) if

F−1(p)− F−1(q) ≤ G−1(p)−G−1(q), for all 0 < q < p < 1. (8)

From this characterization, we deduce that if X and Y are ordered in the
dispersive order, then we can judge between them according to any measures
ρA,B without needing to agree on the form of A(t) and B(t) (except that
AB−1(t) is convex). However, although dispersive order provides an impor-
tant tool for risk comparisons, (8) is a strong requirement and many pair of
distributions can fail to satisfy it. This justifies the convenience, from the
perspective of both decision-makers and empirical researchers, of employing
a weaker order to compare risks. We also prove in Section 2 that, when
dispersive order does not hold, unanimous comparisons are still possible by
restricting our attention to the class

C2 = {measures of C1 with B convex} .

It is straightforward to show that each member of C2 is a difference between
two parameters to the right of the mean. Therefore, a decision-marker who
employs ρA,B in C2 (for example, (5)) is more sensitive to the variability
within the right-tail of the distribution that one who employs ρA,B in C1

(but not in C2). The criterion to obtain unanimous comparisons according
to C2 is the so-called excess wealth order, whose definition is recalled here
(Fernández-Ponce et al., 1998; Shaked and Shanthikumar, 1998).

Definition 3 Let X and Y be two random variables with distribution func-
tions F and G, respectively. Then, we say that X is smaller than Y in the ex-
cess wealth order (denoted by X ≤ew Y ) if ESFp(X) ≤ ESFp(Y ), for all p ∈
(0, 1) .
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The plan of the paper is as follows. The main characterizations are stated
in Section 2. In Section 3 we prove that if two random variables X and Y are
ordered in the excess wealth order and ρA,B(X) = ρA,B(Y ) for some special
ρA,B ∈ C2, then they are identically distributed or they differ by a location
parameter. Section 4 provides conclusions.

In this paper, “increasing” and “decreasing” mean “non-decreasing” and
“non-increasing”, respectively. We shall be assuming throughout this paper
that all the random variables under consideration have finite means.

2 The characterizations

Throughout this section, let Ω1 denote the class of distortion functions and
let Ω2 denote the class of convex distortion functions. In order to obtain the
main characterizations, we first prove that each ρA,B ∈ Ci (i = 1, 2) with B
non-degenerate3, can be expressed as a weighted area under the curve

VB (X, p) =

∫ 1

p

[
F−1 (t)− EB (X)

]
dB (t) , p ∈ (0, 1) , (9)

where

EB (X) =

∫ 1

0

F−1 (t) dB (t) . (10)

Functionals of the form (10) include parameters like the mean (obtained
when B(t) = t) and, more generally, the trimmed expectations, defined by

1

β − α

∫ β

α

F−1 (t) dt, 0 < α < β < 1, (11)

obtained when B is the distribution function of a uniform random variable
on the interval (α, β). Therefore, for each B fixed, (9) can be considered
as a measure of variability to the right of F−1(p). Observe that, for each
distribution function B, VB (X, p) is a continuous function in p on (0, 1) with

VB (X, 0) = VB (X, 1) = 0. (12)

In addition, it is easy to see that VB (X, p) is increasing for 0 ≤ p ≤
F (EB (X)) and decreasing for F (EB (X)) ≤ p ≤ 1, therefore

VB (X, p) ≥ 0 for all p ∈ (0, 1) . (13)

3If B is degenerate, as in (7), then VB (X, p) = 0 for all p.
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Lemma 4 Let ρA,B be a functional of the form (4) with B ∈ Ωi (i = 1, 2),
such that B is non-degenerate. Then, ρA,B ∈ Ci (i = 1, 2), if, and only if,
there exist an increasing function α and such that

ρA,B(X) =

∫ 1

0

VB (X, t) dα(t). (14)

Proof. Assume that ρA,B ∈ Ci (i = 1, 2). Using the notation (10) we
have

ρA,B (X) =

∫ 1

0

[
F−1 (t)− EB (X)

]
dA (t) (15)

where AB−1 is convex and B ∈ Ωi (i = 1, 2). Note that AB−1 (t) is convex

if, and only if, α (t) = dA(t)
dB(t)

is increasing. Therefore, (15) can be rewritten as

ρA,B (X) =

∫ 1

0

α(t)
[
F−1 (t)− EB (X)

]
dB (t)

= −
∫ 1

0

α(t)dVB (X, t) , (16)

with α increasing. Integration by parts of (16) and (12) yield

ρA,B (X) =

∫ 1

0

VB (X, t) dα(t), (17)

as required. The converse is proved similarly.
In order to obtain the next result, we will exploit the well-known re-

lationships between dispersive order and stochastic order (denoted by ≤st)
and between excess wealth order and increasing convex order (denoted by
≤icx). Sordo and Ramos (2007) show that the orders ≤st and ≤icx can be
characterized as follows.

Theorem 5 Let X and Y be two random variables with distribution func-
tions F and G, respectively. Then,
(i) X ≤st Y if, and only if, EB (X) ≤ EB (Y ) for all B ∈ Ω1.
(ii) X ≤icx Y if, and only if, EB (X) ≤ EB (Y ) for all B ∈ Ω2.

The following results are due to Muñoz-Pérez (1990) and Belzunce (1999).
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Theorem 6 4 Let X and Y be two random variables with distribution func-
tions F and G, respectively. Then,
(i) X ≤disp Y ↔ (X − F−1 (p))

+ ≤st (Y −G−1 (p))
+
for all p ∈ (0, 1) .

(ii) X ≤ew Y ↔ (X − F−1(p))+ ≤icx (Y −G−1(p)+ , for all p ∈ (0, 1) .

Now, we are in conditions to prove the following theorem.

Theorem 7 Let X and Y be two random variables with distribution func-
tions F and G, respectively. Then,
(i) If X ≤disp Y, then VB (X, p) ≤ VB (Y, p) , for all p ∈ (0, 1) , for all B ∈ Ω1.
(ii) X ≤ew Y if, and only if, VB (X, p) ≤ VB (Y, p) , for all p ∈ (0, 1) , for all
B ∈ Ω2.

Proof. (i) Suppose that X ≤disp Y. Equivalently, by Theorem 6(i) we have
that (

X − F−1(p)
)+ ≤st (Y −G−1(p)+ , for all p ∈ (0, 1) . (18)

For each p ∈ (0, 1) , let F−1p (t) be the quantile function associated to the

random variable (X − F−1(p))+ . Taking into account that

F−1p (t) =

{
0 if t < p

F−1(t)− F−1(p) if t ≥ p
,

it follows from Theorem 5(i) that (18) is equivalent to∫ 1

p

[
F−1(t)− F−1(p)

]
dB(t) ≤

∫ 1

p

[
G−1(t)−G−1 (p)

]
dB(t), (19)

∀ p ∈ (0, 1) ,∀B ∈ Ω1.

Condition (19) can be rewritten as∫ 1

p

[
F−1(t)−G−1(t)

]
dB(t) ≤ (1−B(p))

(
F−1(p)−G−1 (p)

)
,

∀ p ∈ (0, 1) ,∀B ∈ Ω1.

4Belzunce (1999) obtained (ii) for continuous random variables, but it can be
shown that the continuity assumption is no necessary.
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By differentiation, it can be verified that the latter is equivalent to say that∫ 1

p
[F−1(t)−G−1(t)] dB(t)∫ 1

p
dB(t)

is decreasing in p ∈ (0, 1) , ∀B ∈ Ω1. (20)

From (20) it follows that∫ 1

p
[F−1(t)−G−1(t)] dB(t)∫ 1

p
dB(t)

≤
∫ 1

0

[
F−1(t)−G−1(t)

]
dB(t), (21)

∀ p ∈ (0, 1) ,∀B ∈ Ω1.

Since

EB (X)− EB (Y ) =

∫ 1

0

[
F−1(t)−G−1(t)

]
dB(t)

it is easy to see that (21) is equivalent to

VB (X, p) ≤ VB (Y, p) , for all p ∈ (0, 1) , ∀B ∈ Ω1.

(ii) The proof of sufficiency is analogous to the proof of part (i) but it uses
Theorem 6(ii) and Theorem 5(ii) instead of Theorem 6(i) and Theorem 5(i),
respectively (we omit the details). In order to prove the converse, suppose
that VB (X, p) ≤ VB (Y, p) , for all p ∈ (0, 1) , for all B ∈ Ω1. For each
u ∈ (0, p), the distortion function defined by

Bu (t) = max

(
0,
t− u
1− u

)
is convex. Hence,

VBu (X, p) ≤ VBu (Y, p) , for all p ∈ (0, 1) ,

or, equivalently,∫ 1

p

[
F−1 (t)− EBu (X)

]
dBu (t) ≤

∫ 1

p

[
G−1 (t)− EBu (Y )

]
dBu (t) , (22)

for all p ∈ (0, 1) , for all u ∈ (0, p) .

Since

EBu (X) =
1

1− u

∫ 1

u

F−1(t)dt, u ∈ (0, 1) ,
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and

EBu (Y ) =
1

1− u

∫ 1

u

G−1(t)dt, u ∈ (0, 1) ,

(22) can be rewritten as∫ 1

p
[F−1(t)−G−1(t)] dt

1− p
≤
∫ 1

u
[F−1(t)−G−1(t)] dt

1− u
, for all 0 < u < p < 1

and this is equivalent to X ≤ew Y (see (3.C.4) in Shaked and Shanthikumar,
2006).

In the following result, we characterize the classes C1 and C2 in terms of
dispersive order and excess wealth order, respectively. Note that dispersive
order requires the difference between any two quantiles of X to be smaller
than the corresponding quantiles of Y. As we show below, each interquantile
difference is a member ρA,B of C1 with B degenerate, which implies that it
can not be expressed in terms of the curve VB (X, p) (see footnote 3); for this
reason, the condition in Theorem 7(i) is necessary but not sufficient for the
dispersive order.

Theorem 8 Let X and Y be two random variables with distribution func-
tions F and G, respectively. Then,
(i) X ≤disp Y if, and only if, ρA,B (X) ≤ ρA,B (Y ) for all ρA,B ∈ C1.
(ii) X ≤ew Y if, and only if, ρA,B (X) ≤ ρA,B (Y ) for all ρA,B ∈ C2.

Proof. (i) In order to prove sufficiency, assume X ≤disp Y and let ρA,B ∈
C1. First, we suppose that B is non-degenerate. Then, from Lemma 4, there
exist an increasing α (t) such that (14) holds. Therefore, ρA,B (X) ≤ ρA,B (Y )
or, equivalently, ∫ 1

0

VB (X, t) dα(t) ≤
∫ 1

0

VB (Y, t) dα(t),

follows from Theorem 7(i) and the monotonic nature of α. Now suppose that
B is a degenerate function given by

B(t) =

{
0 if t < p
1 if t ≥ p

(23)
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This implies that A(t) must be equal to zero for all t ≤ p since otherwise,
AB−1(t) is not convex. Then we can write

ρA,B (X) =

∫ 1

p

[
F−1(t)− F−1(p)

]
dA(t), (24)

and ρA,B (X) ≤ ρA,B (Y ) follows from (19). Necessity follows immediately by
noting that each interquantile difference

F−1(p)− F−1(q), 0 < q < p < 1, (25)

belongs to C1 with

A (t) =

{
0 if t ≤ p
1 if t > p

, B(t) =

{
0 if t ≤ q
1 if t > q

(the relevant function AB−1(t) is constantly equal to 0).
(ii) The proof of sufficiency is analogous to the proof of part (i). In order

to prove the converse, suppose that

ρA,B (X) ≤ ρA,B (Y ) for all ρA,B ∈ C2. (26)

The function αp(t), defined by

αp (t) =

{
0 if t < p
1 if t ≥ p

is an increasing function of t for each p ∈ (0, 1) . Using (17), it follows from
(26) that VB (X, p) ≤ VB (Y, p) , for all p ∈ (0, 1) , for all B ∈ Ω2, which is
the same, by Theorem 7(ii), as X ≤ew Y

3 Conditions for stochastic equivalence un-

der excess wealth order

The purpose of this section is to provide some sufficient conditions, in terms
of some special risk measures of the class C2, for stochastic equality of two
excess-wealth ordered random variables. Since dispersive order is stronger
than excess wealth order, these conditions also imply stochastic equivalence
of two random variables ordered in the dispersive order. Many authors have
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investigated the conditions, involving various stochastic orders, under which
two ordered random variables must be stochastically equal (see, for example,
Battacharjee and Sethuraman, 1990, Scarsini and Shaked, 1990, Bhattar-
charjee, 1991, Jun, 1994, Li and Zhu, 1994, Cai and Wu, 1997, Denuit et al.,
2000, Bhattacharjee and Bhattacharya, 2000, and Sordo and Ramos, 2007).
Note that two random variables are equivalent in terms of the excess wealth
order if, and only if, either they are identically distributed or they differ by
a location parameter (Kochar and Carrière, 1997); therefore, the obtained
conditions lead necessarily to the stochastic equivalence up to a location
parameter. In the following results, “ =st ” denotes equality in distribution.

Theorem 9 Let X and Y be two random variables with distribution func-
tions F and G, respectively. If X ≤ew Y and ρA,B (X) = ρA,B (Y ) for some
ρA,B ∈ C2 such that dA(t)/dB(t) = α(t) is strictly increasing on (0, 1), then
X ≡st Y + c, for some real constant c.

Proof. Suppose that X ≤ew Y or, equivalently, that

VB (X, p) ≤ VB (Y, p) , for all p ∈ (0, 1) , for all convex B. (27)

By hypothesis, we have that∫ 1

0

VB (X, t) dα(t) =

∫ 1

0

VB (Y, p) dα(t)

or, equivalently, that∫ 1

0

[VB (Y, t)− VB (X, t)] dα(t) = 0, (28)

for some strictly increasing function α(t). Combining (27), (28) and the
strictly monotony of α, we assert that VB (X, t) = VB (Y, t) for all t ∈ (0, 1) .
Suppose, by contradiction, that there exists an interval (t1, t2) ⊂ (0, 1) such
that VB (X, t) < VB (Y, t) for all t ∈ (t1, t2) . Then∫ 1

0

[VB (Y, t)− VB (X, t)] dϕ(t) ≥
∫ t2

t1

[VB (Y, t)− VB (X, t)] dϕ(t) > 0

since α is strictly increasing, and this contradicts (28). Therefore,

VB (X, t) = VB (Y, t) , for all t ∈ (0, 1) . (29)
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Differentiating both sides of (29) with respect to t we get

F−1X (t) = F−1Y (t) + c, for some real c and for all t. (30)

Finally, it is easy to see that (30) holds if, and only if, X and Y differ by a
location parameter. Hence the result follows.

The Gini’s mean semidifference, defined by

G (X) = E [max (X1, X2)]− µX =
E |X1 −X2|

2
,

where X1, X2 (resp. Y1, Y2) are independent copies of X (resp. Y ), plays
an important role in measuring the right-tail risk (see Wang, 1998). It is
well-known (Kochar and Carrière, 1997; Fernández-Ponce et al. 1998) that
X ≤ew Y implies G (X) ≤ G (Y ) . But more than that is true. In fact, if two
random variables are ordered in the excess wealth order and G(X) = G(Y ),
then they must have the same distribution (up to a location parameter).
This is stated in the next corollary.

Corollary 10 Let X and Y be two random variables with distribution func-
tions F and G, respectively, such that X ≤ew Y . If G (X) = G (Y ) , then
X ≡st Y + c, for some real constant c.

Proof. Note that G(X) is given by (4) with A (t) = t2 and B (t) =
t (hence α(t) = 2t). Therefore, the result is a immediate consequence of
Theorem 9.

If X and Y are non-negative random variables, Corollary 10 can be ex-
tended as follows:

Corollary 11 Let X and Y be two non-negative random variables with dis-
tribution functions F and G, respectively, such that X ≤ew Y . If

E [Xn:n −Xn−1:n] = E [Yn:n − Yn−1:n] (31)

for some n, then X ≡st Y + c, for some real constant c.

Proof. Since E [Xn:n −Xn−1:n] is given, up to a scale parameter, by (4)
with A (t) = tn and B (t) = tn−1 (hence α(t) = nt

n−1). Therefore, the result
follows from Theorem 9.

An analogous result can be stated in terms of Wang’s right-tail deviation,
noted by D(X).
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Corollary 12 Let X and Y be two random variables with distribution func-
tions F and G, respectively, such that X ≤ew Y . If D(X) = D(Y ), then
X ≡st Y + c, for some real constant c.

Proof. Wang’s right-tail deviation belongs to C with A(t) = 1−
√

1− t
and B(t) = t (therefore α(t) = 1/2

√
1− t). The result now follows applying

Theorem 9.

4 Conclusions and final remarks

In this paper, we have characterized two nested classes of risk measures, C1

and C2, in terms of dispersive order and excess wealth order, respectively.
The main result, Theorem 8, can be useful in empirical studies: the class C1

contains a multitude of measures and it is impossible to verify directly the
inequality

ρA,B(X) ≤ ρA,B(Y ), for all ρA,B ∈ C1. (32)

Because X ≤disp Y is sometimes easy to verify (Shaked and Shanthikumar,
2006, point out several simple conditions that imply dispersive order), part
(i) of Theorem 8 provides us with an easy way to check (32). In addition, part
(ii) of Theorem 8 shows that if dispersive order is not available, unanimous
preferences are still possible by restricting our attention to the class C2, which
is more sensitive to the variability within the right-tail of the distribution,
and then the criterion is the excess wealth order.

A subclass of C2 of particular interest is

C3 = {ρA,B ∈ C2 : B(t) = t}

which turn out to be the class of risk measures (3) suggested by Wang (1998).
Ramos and Sordo (2003) characterized this class in terms of the well-known
dilation order (recall that Y is more dispersed than X in the dilation sense,
denoted by X ≤dil Y, if E [Φ (X − µX)] ≤ E [Φ (Y − µY )] for all convex
functions Φ, provided that these expectations exist) as follows:

X ≤dil Y if, and only if, ρA,B (X) ≤ ρA,B (Y ) for all ρA,B ∈ C3.

The two-sided deviation suggested by Wang (1998) and the expected
shortfall at level p are measures of C1 not belonging to C3; in addition, (5),
for n ≥ 2, is a family of measures of C2 that not belongs to C3. These

14



examples show that not every measure of interest of C1 and C2 belongs to C3

and justify the convenience of employing dispersive order and excess wealth
order rather than the weaker dilation order to compare risks.

We have also derived sufficient conditions, in terms of some special risk
measures of the class C2, for stochastic equality of two excess-wealth ordered
random variables. These conditions have interesting statistical applications.
For example, results of Section 3 can be applied to develop suitable tests of
equality of two excess wealth ordered random variables. Specifically, if we
consider the problem of testing the null hypothesis

H0 : X ≡st Y + c, for some constant c > 0

against the alternative
H1 : X <ew Y

given random samples of X and Y, we may use as a measure of depar-
ture from H0 in favor of H1 : ∆ = {E |Y1 − Y2| − E |X1 −X2|} , where
X1, X2 (resp. Y1, Y2) are independent copies of X (resp. Y ). Corollary 10
suggests reject the null hypothesis if ∆ (n,m) > i0, where ∆ (n,m) is an es-
timator of ∆ based on two random samples (x1, ..., xn) and (y1, ..., ym) from
X and Y, respectively, and i0 depends on the null distribution of ∆ (n,m) .
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