
VocVille - A Casual Social

Game for Learning

Vocabulary

Prof. Juan Manuel Dodero Beardo
Departamento de Lenguajes y Sistems Informáticos

Escuela Superior de Ingenieria
Universidad de Cádiz

Michel Jensen
michel.jensen@alum.uca.es
mjensen@uni-koblenz.de

Cádiz, Diciembre 2010

Contents

I Introduction 4

1 Motivation 4

2 Idea of VocVille 5

3 Structure of the Thesis 5

II Fundamentals 7

4 De�nitions 7

4.1 Educational Entertainment . 7
4.2 Casual Gaming . 8
4.3 Social Gaming . 9

5 State of the Art 10

5.1 Facebook . 10
5.1.1 FarmVille . 11
5.1.2 Facebook GraphAPI . 11

5.2 Grails . 13
5.2.1 The Framework . 13
5.2.2 Groovy . 14
5.2.3 Groovy Server Pages . 14
5.2.4 Hibernate and GORM . 15
5.2.5 Spring . 15
5.2.6 Facebook Graph Plug-in 16

5.3 Adobe Flex . 16
5.3.1 Flash . 16
5.3.2 Flex . 17
5.3.3 MXLM . 17
5.3.4 Action Script . 18
5.3.5 Flash Builder . 18

5.4 Grails Plug-ins for Flex Integration 18
5.4.1 Web Service . 18
5.4.2 Flex Plug-in . 19
5.4.3 Flex Sca�old . 19
5.4.4 Flex on Grails . 20
5.4.5 GraniteDS . 20
5.4.6 BlazeDS4 . 20
5.4.7 Descision for BalzeDS4 . 20

III Conceptual Design 22

1

6 Game Story 22

7 Target Group Analysis 23

8 Business Model 23

9 Requirements 24

9.1 Non-functional Requirements . 24
9.2 Functional Requirements . 25

9.2.1 Functional Requirements for the Game Interface 25
9.2.2 Functional Requirements for the Administrative Interface 26

10 System Architecture 26

10.1 Model View Controller . 26
10.2 System components . 28

11 Use Cases 29

11.1 Build an Object . 29
11.2 Show Object/Timer . 32
11.3 Activate Area . 33
11.4 Invite Neighbor . 34
11.5 Visit Neighbor . 35
11.6 Send Gift to Neighbor . 35

IV Implementation 37

12 Data model 37

12.1 Vocables . 39
12.2 Areas . 41
12.3 States of Vocables and Areas . 43
12.4 Translations . 46
12.5 Designs . 47
12.6 Player . 48
12.7 Neighbor Requests . 49
12.8 Gifts . 49

13 Administrative Interface 50

13.1 Game Instances . 50
13.2 Game objects management . 51

14 Game Interface 55

14.1 Home State . 55
14.2 Query Process . 57
14.3 Marketplace . 58
14.4 Move Tool . 59
14.5 Neighbor Requests . 59

2

14.6 Gifts . 59
14.7 Neighbor State . 60

15 Connection between Grails and Flex 61

16 Deployment 62

V Evaluation 63

17 Analytic Evaluation 63

17.1 Requirements . 63
17.1.1 Non-functional . 63
17.1.2 Functional . 63

17.2 Educational Entertainment . 66
17.3 Social and Casual Gaming Aspects 66
17.4 Grails . 67
17.5 Flex . 67
17.6 System Architecture . 68

18 Usability and Accessibility 69

18.1 Game Interface . 69
18.2 Administrative Interface . 69

VI Conclusion 70

VII Appendix 71

19 References 71

20 List of �gures 73

21 List of abbreviations 74

22 Used technologies and tools 75

3

Part I

Introduction

This paper introduces VocVille, a causal online game for learning vocabularies.
I am creating this application for my master thesis of my career as a �Comput-
ervisualist� (computer visions) for the University of Koblenz - Landau which I
terminate as an exchange student at the University of Cádiz.

In the last one and a half year there is a new trend in the Internet. Little
browser games, often called casual games, are played by millions of users. These
games are all really simple to play, accessible from every computer with an
Internet connection, and in general at no charge. The players normally have
very small task to ful�ll. To do so they have to do little actions, like clicking on
a plant they want to seed, and then wait for a long time. These periods of time
are measured in real time. This means the games continue even if the user does
not play. Because there are a lot of parallel task with di�erent amounts of time
to wait for the next step, the user can nearly at any time do a little bit for his
progress. That is the reason why for many people it is possible to play causal
games. Because they do not have to learn complex game functionality like in
online role-plays like World of Warcraft, these games do not need so much time
to play and for a lot of people who have Internet access in their daily life, it is
easy to play for a few moments and then go back to work.

In this �rst part I explain my Motivation for creating this game, give a short
introduction of the idea of the game and describe the structure of this paper.

1 Motivation

Casual gamers, like gamers in general, spend a lot of time and mental energy
in their games and gather a lot of knowledge related to the game. This knowl-
edge comes automatically by just playing a game. For example after a week
of playing FarmVille the users knows which plants he can cultivate and what
amount of time every one of them needs to grow. So there are some kinds of
learning mechanism taking place while playing a game. In every game, espe-
cially in casual games, the user has to repeat task a lot of times. In FarmVille
choosing which plant to grow is a fundamental process in playing the game. So
the user reads and uses the list of available plants a lot of times. This process is
comparable with the process of learning vocabularies. For learning new words
in another language one normally repeats reading, writing or listening to the
translations. The only di�erence between learning content of a game and learn-
ing vocabularies is the motivation. The content of a game is learned because it
is useful in the moment of learning. The motivation for playing a game is not
to learn new things but to enjoy the play time. It is also no intended process of
the player. On the other hand learning vocabularies is a fully intended process
by a learner. The motivation for learning is knowing new vocabularies which
can be used to communicate more precisely in another language. These new

4

words are not used in the moment of learning, like they are used in a game. For
the learner the process appears like working. VocVille tries to use the potential
of casual games to learn content without a lot of e�ort by the user to learn
vocabularies.

2 Idea of VocVille

VocVille is an online browser game based on the idea of the really successful
Facebook game FarmVille[6]. The user can create his own home with everything
in it. For creating an object the user has to give the correct translation of it
several times. After every query he has to wait a certain amount of time to
be queried again. When the correct answer is given su�cient times the object
is built. After building one object the user is allowed to build others. After
building enough objects in one area (i.e. a room, a street etc.) the user can
activate other areas by translating all the vocabularies of the previous area.
Users can also interact with other users by adding them as neighbors and then
visiting their homes or sending them gifts, for which they have to �ll in the
correct word in a given sentence.

3 Structure of the Thesis

The thesis is divided into �ve parts:

� Introduction: A short introduction which describes the topic of the thesis.

� Fundamentals: The second part gives fundamental knowledge the reader
needs to understand the following parts of the thesis. This includes de�ni-
tions of terms and introductions of the used technologies for the project.

� Conceptual design: The conceptual design of VocVille is described in the
third part. First I narrate the game story and the world the game takes
place in. In the target group analysis the supposed users are characterized.
After that I list the requirements for the application and present a possible
business model. At the end of this part the architecture of the program
and the functionality in form of use cases are explained in detail.

� Implementation: The fourth part takes a look at the implementation of
the program. In the data model section the class model is introduced and
the mechanisms of each part of the game are described from a technical
view. This section mainly describes the Grails side of the application. In
the game interface section the graphical representations of the game are
described. This section mainly describes the Flex side of the application.
The next section explains how data is transported from Grails to Flex. At
the end of this part the deployment including the integration to Facebook
is discussed.

5

� Conclusion: The last part summarizes the thesis and gives a brief outlook
on how to advance the application.

� Appendix: The appendix includes beneath the references and a table of
�gures a short glossary and a list of used technologies and tools.

6

Part II

Fundamentals

This part gives the basic knowledge for understanding VocVille and the envi-
ronment around it. The de�nitions section speci�es the three application types
educational entertainment, causal games and social games. VocVille is an ap-
proach to combine aspects of these three types. The second section speci�es
the technologies which have been used to implement VocVille. These are the
social network Facebook, the web application framework Grails and the soft-
ware development kit Adobe Flex as well as methods of communication between
them.

4 De�nitions

4.1 Educational Entertainment

Educational entertainment is a not concrete de�ned concept of products which
trying to educate the user by using entertaining activities. There are also
the terms �Edutainment� and �Entertainment-education� in use for it. Edu-
cational entertainment includes TV productions, �lms, museum exhibits, com-
puter games, and other educational methods which have a focus on the pleasure
of the user while learning. Educational computer games, also often called serious
games, are an important part of educational entertainment.

A lot of commercial computer games create very complex environments in
which the users has to immerse into. This means for being able to play the game
and understand the possible actions one can take, the user has to learn about
the game world as well as the game interface. The worlds are mostly simpli�ed
models of real world environments. Because the main goal at creating the
environment is to improve the entertaining aspect of the game a lot of concepts
are changed and do not represent their real world equivalent. Most of the issues
learned for a game do not bring any bene�t for other situations than the game
their were learned for. The learning process is normally integrated into the
game so that it does not feel like a real learning activity [15]. It is also a
learning process were the learner has an intrinsic motivation because he wants
to know how to play the game. A lot of game designers and persons from the
educational sector try to build games where the learned knowledge is usable
beyond the bounds of the game world. The challenge of creating educational
games is to �nd the right balance between the entertaining and the educational
part of the game. These kind of games normally tend to be highly educational
but less entertaining or the other way around. This is because the rules for a
good, enjoyable game play and the structure of the knowledge mostly are not
very easy to combine.

7

4.2 Casual Gaming

The traditional or sometimes called hardcore computer games are expecting the
player to spend big amounts of time for playing. At the beginning it takes
a lot of time to learn the mostly very complex usage of the game. The user
has to learn how he can manipulate the game objects and how they will react
for certain actions. After that period of learning the game the actual playing
begins. Most games are divided into levels or areas which represent a closed
part of the game story. To complete one of these parts it takes from one up
to several hours. In every part the user has an amount of information about
the current game situation to keep in mind, in order to success the given tasks.
Because of the complexity of this information it is not easy to save the current
state of the game and continue another day. Every time the user continues after
a longer break he must gain all this information again before he can continue
with the actual game goals.

Casual games on the other hand have very easy to understand game controls
and game worlds. One of the most famous casual games is the classical Tetris
game. It has a really simple game story and it just takes a minute to explain how
to play the game. Because of this simplicity of casual games the user can start
playing without a long, initial learning procedure. The Casual Games Market
Report [14] found that in typical casual games the parts of the game story a
really small and in the majority of the games are always the same task with
just a little change. These short parts allow the player to play just a short time
and then continue later with the game. The user does not have to remember a
lot of details of the current game state which also eases to pause within parts of
the game. That is why it is very easy to play a casual game just a few minutes
but a couple of times a day. The overall play time to complete the game is
much smaller than in traditional computer games. All this qualities of casual
games allow a much wider range of users to play these games. Not only the
typical younger hardcore-gamers who have a lot of experience with computers
and games but also people who never played computer games before can use
these simple games. Beneath the usability aspect the small time consumption
of casual games is one of the reasons why they are playable for persons who
usually do not play computer games. Since mobile phones got screen resolution
high enough to display simple games, a lot casual games are developed for them.
Because of the short playing episodes they can be used to �ll waiting times for
example in public transportation.

8

Characteristic Casual Hard-Core Enthusiast

Demographic All ages, male and female,
100% of population

18 - 35 year old males,
< 15% of population

Where Play Home, work, airplane,
transit stop

Home

Why Play Fun, relaxation, escape Exploration,
stimulation, adrenaline
rush

Themes Family friendly scenarios Sci-�, edgy violence,
horror, suspense, war

Time commitment Game time or level 1 - 10
min to complete

Levels: 20 min - 2
hours, MMO: 5 - 40
hours/week

Time to completion Single player story 15
hours to complete

Single player story 15 -
40 hours to complete

Primary Plattform PC, Mac, inexpensice
console

Game consoles, hi-end
PC

Game Price Advertising supported -
$19.99

$39.99 - $59.99

Game Selection Free trials, up-sells Marketing campaigns,
reviews and previews

Hollywood Equivalent Sex and the City, Friends,
ER

Horror, Silence of
Lambs, Reservoir Dogs,
Aliens

Table 1: Gameplay Characteristics of Casual & Hard-Core Enthusiasts, [14]

4.3 Social Gaming

Nearly every actual game has a multiplayer option which allows the user to
play with or against players on other computer within their local network or
over the internet. So called massively multiplayer online games (MMOG) are
just online playable. The user creates an account on the server of the game
developer where his game status is stored. MMOG have a lot in common with
traditional hardcore games, like complex game worlds and time consumption
needed to play successfully. Social games on the other hand can be seen as the
online version of casual games. Their game world is less complex and the time
consumption is as low as the ones from casual games. Social games have a main
focus on the online aspect. The players can either play synchronously together
or interact asynchronously. Playing synchronously means that the users play
at the same time and see the same part of the game world. They also see a
representation of the other player (e.g. the avatar1 of other player) and what
actions he takes. Playing asynchronously means that the users do not have to

1Avatar: graphical user´s representation of himself/herself

9

play at the same time and every player sees his own part of the game world. If
they take actions that in�uence others the game of another player for the other
player these actions happen when he plays the next time. Although games with
these characteristic exists before, the term social game is used for them since
they are deployed through social network sites. Because millions of users already
have accounts at at least one social network, it is really easy to access social
games. In the stand alone game sites the user has to invite and convince their
friends to register for the game and play it, in social networks the friends are
already connected and registered.

5 State of the Art

5.1 Facebook

Facebook is a social network site which means that registered users can create
pro�les about themselves and share them with other users of the network. It was
founded in 2004 by four students of the Harvard University. Today (October
2010) it has 500 million active users. With the registration process a personal
pro�le for the user is created. This pro�le shows information like name, age,
hobbies, interest and a lot of other depending on the users' security settings.
An important part of the pro�les is the so called Wall, where actual information
about the users' activities on Facebook are displayed. Users can connect their
pro�le with pro�les of other users by declaring them as their friends. To create
this connection both of the users have to agree to it. For communicating with
other users there are three di�erent options. Similar to an email system the
users can send private messages to another user who receives them in his in-
box. It is also possible to write on the Wall at the pro�le of another user. This
means that everybody who is allowed to view the users pro�le also can read
this message. The last option is a chat program which works like any instant
messaging application but also is within the Facebook site. Another reason for a
lot of user to use Facebook is the possibility to upload own photos, manage them
in albums and share them with other users. There are a lot of more functions
on the Facebook site, but describing them all is beyond the scope of this thesis.

The function which is interesting for this thesis is the possibility to use and
create applications and games within the Facebook network. At the moment
(October 2010) there are 550,000 applications available on the network [13].
Users can subscribe for applications by going on the site of the application
(within the Facebook network) and click on a start application button. Users
can also recommend other users application they use by their self. At the �rst
start of an application the user has to allow it to access his user data. The
applications are integrated in the Facebook network, which means they have
access to the users data (see 5.1.2)including friend-lists, email addresses etc.
They can also generate message for publishing on the wall of an users pro�le.

10

5.1.1 FarmVille

The most famous one of the Facebook-applications is the casual game FarmVille
[6] by Zynga [11] which is accessible through the Homepage of the developers,
through Facebook, which is one of the reasons of the success of Farmville, and
since June 2010 through iPhones and other mobiles phones. It was released in
June 2009 [12] and after two months it already got 35 million players. At the
moment there are 70 million players [7].

The purpose of the game is a simulation of a small farm. The user can
plant crops and earn money by harvesting them. Between the seeding and
the harvesting it takes, depending on the chosen plant, two hours or up to
three days. For the earned money one can buy new seeds, animals, building or
decorations for the farm on the market. For every action the user performs he
earns experience points which are needed to get to a higher level. Higher levels
allow using better plants and buying more di�erent objects. A really important
aspect of the game is the possibility to invite other players of the users friend
network of Facebook to be their neighbor in FarmVille. Neighbors can visit each
other's farms and see what their friends are doing. They also can help them by
fertilizing the plants or feeding their animals which improves the production of
these objects. The visitor gets experience for this help and the owner of the farm
gets more money when harvesting. Another way of interacting with neighbors
is sending gifts to them. Once a day every user can send every neighbor a
free gift which can be anything also available on the market. The developers
invent continuously new ways of interacting with neighbors. In higher levels it
is possible to build special building like a horse stable for which the user needs
construction materials one can only get as a gift from neighbors.

FarmVille is a very good example of a causal browser game. It is very easy to
play, at the beginning there are a few short text message which explain how to
plant and harvest. Everything else is explained later when the speci�c function
becomes available. Because it is playable within the Facebook site it is very
easy to access it since a lot of people already have a Facebook account. It does
not take a lot of time every day and with the concept of neighborhood it has a
big social component. Mark Skaggs, VP and GM of Zynga's Social RTS studio
described it in one interview with these words: "By combining the best elements
of social gaming, with people's instinct to nurture, we've created an incredibly
fun, wholesome and rewarding experience.� [12].

5.1.2 Facebook GraphAPI

The Facebook Graph API allows developers of Facebook application accessing
the user data the Facebook site has stored for each user. This data is called
open graph (formerly social graph). The open graph of an user contains all
stored data about him like name, friends and others. The objects of the open
graph can be accessed through simple HTTP-Request. The response data are
objects in the JavaScript Object Notation (JSON) which can be treated by the
most web application technologies. The API also allows webmasters to use the

11

authorization function of Facebook for their own internet sites. This means that
the website owner does not have to manage the user accounts and the user does
not have to create an additional account for that page. More than one million
websites use this feature at the moment (October 2010)[13].

The Graph API Reference [4] de�nes the following 19 basic object types:

User An user pro�le.

Application An application registered on Facebook Platform

Page A Facebook Page

Group A FAcebook group

Photo An individual photo within an album

Album A photo album

Checkin A checkin made through Facebook Places or the Graph API

Comment A comment on a Graph API Object

Event A Facebook event

FriendList A Facebook friend list

Insights Statistics about applications, pages, or domain

Link A shared link

Message A message in the new Facebook uni�ed messaging system

Note A Facebook note

Post An individual entry in a pro�le´s feed

StatusMessage A message in the new Facebook uni�ed messaging system

Subscription A subscription to an application to get real-time updates for an
Graph object type

Thread A message thread

Video An individual video

Every instance of these objects has a unique id with which it can be accessed.
With additional query-strings the desired response attributes can be speci�ed.
The objects can have relationships, so called connections, between each other.
With these connections the plain user data becomes a data structure with the
form of a graph. For getting a list of all connections of an object the �meta-
data=1� parameter can be used. The Graph API uses the Oauth 2.0 Protocol
[9] to control the access of the open graph. If an application wants to access
nonpublic data it has to get an access token for the desired data. For getting

12

access tokens the user of the application has to con�rm the access once. With
the correct access token the application can create new objects (like messages
on the wall) and manipulate or delete existing ones. With real-time updates
it is possible to inform an application when user data has changed and take
appropriate reactions.

5.2 Grails

For the main program logic of VocVille I needed a framework which could handle
a large amount of data in a relational database, supports rapid development and
facilitates the development of web applications. I found these requirements in
the open source web application framework (WAF) Grails.

Grails is based on the dynamic programming language Groovy. It is highly
inspired by the WAF Ruby on Rails[10]. Actually the former name of Grails
was Groovy on Grails, but because of the alikeness of the two names the Ruby
on Rails developers team asked for a change of it. Like Ruby on Rails also
Grails is open source. The main goal of Grails is to make web development in
the Java environment more productively. It follows the �Coding by convention�
paradigm, which says that a developer should only change the aspects of his
application which are not complying with the coding convention used by the
majority of developers. Grails uses the Model View Controller design pattern
(MVC) to separate the data, the user interface and the programming logic from
each other. MVC is described in detail in section 10.1.

5.2.1 The Framework

The Grails framework consists of several frameworks and technologies which are
shown in Figure 1. Beneath the Java components there are the already men-
tioned programming language Groovy, the object-relational mapping (ORM)
Hibernate, the Java application framework Spring and the layout-rendering
framework SiteMesh. Because for the development with Grails one has to work
mainly with Groovy, Hibernate and Spring I will discuss them in more detail in
the following sections. Grails binds these technologies together and con�gures
them in a standardized manner following the Coding by Convention paradigm.
This means, that when building a new Grails project, the framework creates a
prototype like runnable application. The developer then can start with creat-
ing the desired model and manipulating the views and controllers. Additional
functionality can be added by the very easy to use plug-in management from
Grails. With just on command-line command a new plug-in can be installed to
a project. The Grails community provides a variety of di�erent plug-ins, which
is constantly growing because everyone can create and publish own plug-ins.

13

Figure 1: Grails architecture

5.2.2 Groovy

Groovy[8] is a dynamic programming language similar to Python, Ruby, Perl
or Smalltalk. As such it executes at runtime common behaviors, like adding
code, extending or de�ning objects, modifying type streams and a lot of more.
It can be used as a scripting language for the Java platform. Grails code can
interoperate with other Java code and libraries, because most Java code is syn-
tactically Groovy code. Java developers can use their knowledge and techniques
and expand them with Groovy techniques. Groovy code is compiled into Java
classes which makes it theoretical usable in any Java application. Although Java
code works �ne in Groovy, the Groovy code is more compact because it does
not require all syntactical elements of Java. For instance parentheses, return
statements and semicolons at the end of statements are optional in Groovy. As a
true object oriented programming language Groovy represents even basic types
as objects and operators as methods. Many existing Java classes functionality
is extended by additional methods. There are many other features which im-
prove development with Groovy like closures, intuitive syntax for lists and maps,
metaprogramming and ranges among a lot of others. Describing all of them is
beyond the scope of this thesis. For further information see the documentation
of Groovy. In the Grails framework the domain, controller and service classes
are written in Groovy.

5.2.3 Groovy Server Pages

Groovy Server Pages (GSP) is a presentation language for web applications
similar to Java Server Pages (JSP). It describes static and dynamic content in
the same document. In the Grails framework GSP is used to describe the views.
GSP o�ers a bundle of built-in tags which implement basic program logic like
conditions and iterations. Like in JSP and a lot of other presentation languages
GSP allows implementing program code in script blocks. Insides these blocks
regular groovy code can be used. All built-in Tags are also available as Groovy
methods and therefore can be called in script blocks as well as in Controllers.

14

5.2.4 Hibernate and GORM

Hibernate is an ORM for Java and, considering its high usage among the Java
development community, can be seen as a de facto standard. It maps object-
oriented models like Java classes to relational databases entities. The software
developer can handle the data like normal objects of his application and does
not have to know the underlying database queries. Through XML or Java
Annotations he can decide how to store the data in the database. In this manner
the application can achieve persistence by storing and retrieving data between
several runtimes.

The Grails Object Relational Mapping (GORM) is an ORM implementation
for Grails that is based on Hibernate. Like Hibernate GORM supports static
typing and additionally dynamic typing. It is adjusted to the needs of Grails
and its conventions so there is less con�guration involved in creating domain
classes. In general every domain class in Grails is mapped to a database table
by GORM. The properties are mapped to a corresponding column in the ta-
ble. GORM supports several types of relationships between objects. Beneath
bidirectional and directional One-to-One relations also One-to-Many and Many-
to-Many relations can be realized. By setting the injected static properties like
belongsTo and hasMany the developer can de�ne these relation types. There are
also static properties to de�ne constrains or even to change the GORM mapping
directly.

5.2.5 Spring

Spring is an open source application framework for the Java platform. It extends
the Java language in several aspects separated in various modules to facilitate
creating and handling the infrastructure of applications. Many developers use it
as a replacement or addition to the Enterprise JavaBean model, even though it
supports a lot of other programming models. Spring supports implementing the
Inversion of Control pattern by providing techniques for using callbacks2. The
integrated Spring Aspect-Oriented Programming Framework supports aspect
oriented programming by integrating with AspectJ. The Data Access Frame-
work provides template classes for several databases like JDBC, Hibernate and
Oracle TopLink. The MVC framework and the Remote access framework pro-
vide functionality to create web applications with the MVC pattern. Beneath
the mentioned modules and frameworks there are a lot of more but describing
them all would be beyond the scope of this thesis. For more information see the
documentation of Spring.

Grails uses the Spring framework intensively. Actual every Grails application
is an (of course modi�ed) Spring MVC application. The basic controller logic
uses subclasses which inherit from Spring classes. Grails validation and data
binding methods are built on Springs MVC functionality. Runtime con�gura-
tions of Grails applications are stored in a Spring ApplicationContext-Object.
Also GORM uses the transaction management of Spring for transactions.

2Callback : Using functions as parameters for other functions

15

5.2.6 Facebook Graph Plug-in

For connecting Grails with Facebook I will use the Facebook Graph Plug-in[5]
since there is just one other Grails plug-in for Facebook connectivity, namely
the Facebook Connect plug-in[3], which is in no actual development and also
does just support the outdated Facebook Connect Service. The Facebook Graph
plug-in o�ers GSP-tags for the login process and a Grails service called Face-
bookGraphService to access the social graph. The service includes methods for
requesting the users' pro�le, the friendlist, the pro�le photo, and for publishing
on the users' wall. An additional method gives access to the complete Graph
API.

5.3 Adobe Flex

To let VocVille be an enjoyable and easy to understand game I wanted it to have
a good look and fell. For accomplishing this I chose the Adobe Flex software
development kit (SDK) for creating a Flash application. With Flex one can
easily build a good looking user interface. Another reason to use Flex was that
it compiles to swf �les which can be played by the Adobe Flash Player. Because
today the Flash Player is installed on the majority of the users systems using
the format helps achieving the accessibility requirement for the application.

Figure 2: Flex architecture

5.3.1 Flash

Adobe Flash is a proprietary development platform owned by the Adobe Systems
Incorporated. The purpose is the creation of interactive multimedia content. It
allows creating applications, so called Flash Movies, which can contain text,
video, audio and navigation controls.

16

These applications can be run within a virtual machine called Flash Player.
The Flash Player is a browser plugin which is available for nearly every actual
browser and all often used operating systems like Windows, Linux, MacOs and
others. There is also a desktop version of the virtual machine called Adobe AIR
but at the moment it is rarely used. The Adobe Flash Professional program
is mainly intended for designers to build graphical parts of Flash applications,
also it can build a complete application that just needs very simple program
logic. The Adobe Catalyst program is designed to be used by both, designer
and programmers because it allows the user to give graphical components a
programmatically logic for their visualization. The third program, Adobe Flash
Builder (formerly Flex Builder) is intended to be used by programmers. It has a
graphical view but also allows manipulating the source code directly. In section
5.3.5 I will describe the Flash Builder tool in more detail.

5.3.2 Flex

The Adobe Flex software development kit is a web application API for creating
rich internet and desktop applications for the Flash platform. It was created
to be a development platform for programmers, because before there was only
the Adobe Flash Professional program available which aimed web designer with
no or less programming experiences. The applications are mostly the client
side in a client-server architecture. For communicating with servers there are
three remote procedure call (RPC) methods: HTTPServie, WebService and
RemoteObject. The Flex sdk itself is open source. It combines the XML dialect
MXML and the scripting language Action Script. MXML is used to build the
graphical interface and action script is used to build the program logic. I will
describe both in more detail in the following sections.

5.3.3 MXLM

MXML is an XML dialect for creating graphical user interfaces (GUI). It pro-
vides components for typical GUI-elements like labels, buttons, and menus,
among a lot of others. The prede�ned components can be modi�ed by changing
their properties within their corresponding tags. It is also possible to create own
versions of the elements by inheritance using Action Script classes. MXML also
o�ers a variety of options to layout the components and changing their graphical
appearance by using styles. The language is composed of three libraries. The
mx-library, also known as �Halo�, includes components for charting and data
visualization as well as classes from Flex Version 3. The fx-library includes top-
level Action Script tags, like the <fx::Script>- tag with holds Actions Script
for the MXML �le. The s-library, also known as �Sparx�, includes new ver-
sions of Flex 3 mx-components, references to the RPC-components and the text
framework which are introduced in Version 4 of the Flex framework.

17

5.3.4 Action Script

Action Script is an ECMA-compliant scripting language that o�ers object ori-
ented programming (OOP) in the Adobe Flex sdk. In a Flex application it
is used for any programmatically logic like event handlers for buttons. As an
OOP language it has the concepts of classes, instances, methods and inheri-
tance. The Action Script code can be written directly into the <fx::Script>-tag
of an MXML-�le or in separate Action Script �les.

5.3.5 Flash Builder

The Adobe Flash Builder[1] is an integrated development environment (IDE) for
Flex applications build on Ecplipse[2]. In contrast to Eclipse the Flash Builder
is a commercial product. It o�ers developers to view applications in two man-
ners. The visual mode shows the GUI-elements like they would be visualized
in the running application. In this mode the components can be manipulated
like in design tools. They can be inserted by drag and drop and their layout
can be manipulated by mouse commands which facilitates the creation process
of GUIs. In the code mode the source code of the �les is shown, as in any other
programming editor. Typical features like syntax highlighting, code-completion,
debugging mode and basic refactoring methods are available. Selecting a com-
ponent in visual mode and then switching to code mode opens the editor at the
corresponding line of the code where the component is de�ned. Since version 4
of the Flash Builder so called data services are introduced. They are wizards
to connect the application with data from remote data sources like BalzeDS,
ColdFusion, HTTP, PHP, or WEBServices, among others.

5.4 Grails Plug-ins for Flex Integration

As I mentioned before I wanted to use Adobe Flex as the graphical front-end
of the application. For this purpose I needed to send the output data of the
Grails functionality of VocVille to the Flex framework. At the moment there
are seven Grails plug-ins to connect Grails with the Flex framework. In the
next sections I will describe how I tried to build test applications with each o�
them. At the end of this chapter I will explain my decision for using the Blazeds
plug-in. Beside these seven plugins there is also a plug-in called Flash Player
plug-in which only supports playback functionality for swf-�les within an Grails
application.

5.4.1 Web Service

The �rst method I tested was using the XFire plug-in to create Web services
which Flex can access through its RPC-functionality using SOAP-Messages3.
The XFire plug-in allows developers to transform their normal Grails services
into Web services by simply changing the static property �expose� of the service

3SOAP = Simple Object Access Protocol

18

to `x�re'. This will instruct XFire to create a WSDL-�le4 for the service and
publishing it on the applications server. Given this description �le of the service,
Flex can access the service methods. To register a Web service in an MXML-�le
the Spark component <s:WebService> is used.

With this method I was able to receive and add data entries. When I tried
to update data entries Flash threw an error message indicating that it has
synchronization problems. Another drawback of this method was that when I
used a database with 65 thousand entries, the SOA-Protocol was not able to
send this amount of data. This may be �xed by dividing the data into smaller
packages.

5.4.2 Flex Plug-in

In the second approach I used the Flex plug-in. The plug-in was created as an
experiment to proof the concept of connecting Grails with Flex and was not
further developed since 2008. It o�ers an embedded Flex compiler which allows
Grails developers to use MXML-�les in their application. If an MXML-�le is
access by the Grails application the Flex compiler compiles the MXML-�le into
a runnable swf-�le. The plug-in can also expose Grails services as remoting
destinations which can be access by a Flex application. To expose a service its
static expose property has to be set to `�ex-remoting'. In the Flex application
the service can be access by an <mx:RemoteObject> component.

In my test application I was able to load MXML-�les and let the embedded
compiler compile them into swf-�les. Admittedly the Flex application could
not localize the Grails service. Another disadvantage of the Flex plug-in is
that it just works with old Flex3 mx-components. The new Sparx-components
introduced in Flex 4 are not available which include a lot of new features for
the Flex framework.

5.4.3 Flex Sca�old

The next approach used the Grails Flex Sca�old plugin which sca�olds Flex code
of views and controllers for Grails domain classes like the Grails sca�old method
generates GSP code. The project has not been updated since December 2009.
The plug-in gives domain class properties additional properties which de�ne
how a domain entity should be represented in the Flex application. It supports
a variety of Flex components to visualize the data and its input views.

In my test application it was not possible to create a running application
because the, internally used by the plug-in, Cubika classes could not be found.
I suppose the plug-in would work properly with appropriate older versions of
Grails and Flex but this would mean, that I have to use very old version of the
frameworks including all bugs of them.

4WSDL = Web Services Description Language

19

5.4.4 Flex on Grails

This approach uses the Flex plug-in combined with the ActiveMQ and the JMS
plug-ins. The Flex plug-in is used to run the Flex application on the server
of the Grails application. For the communication between Grails and Flex the
Java Message Service (JMS) is used. ActiveMQ serves as the message broker
by translating the Grails objects to a JMS concurrent format.

My test application ran correct even with 65 thousand database entries. But
because this approach uses the Flex plug-in it also does not support new Flex 4
components. Another disadvantage of this method is that it requires the Flex
application �les to be nested inside the Grails application directory tree which
means that it is complicated to open it in the Flash Builder.

5.4.5 GraniteDS

This approach uses the GraniteDS Flex plug-in which sole release had been
published in March 2008. It o�ers automatic code generation by using additional
annotation for the Grails domain and service classes. The annotated Grails
objects are exposed as Flex remoting destinations and can be access by Flex
applications. The plug-in also includes a Flex compiler allowing MXML-�les
being compiled by the Grails application.

Since I discovered this method in a later state of the designing process of
VocVille where I already decided which method to use for the Grails-Flex-
integration I did not build a test application for it. Another reason was that
this method also does not support the new Flex 4 components and just works
properly with Flex 3 mx-components.

5.4.6 BlazeDS4

The last approach uses the BlazeDS 4 Integration plug-in. This plug-in uses
the Remoting plugin-in which implements four di�erent protocols in the Ac-
tion Messaging Format (AMF). Hence AMF is a binary format it allows fast
transportation of a huge amount of data. The BlazeDS 4 Integration plug-in
furthermore installs the BlazeDS 4 and the Spring-BlazeDS integration plug-ins.
BlazeDS 4 is used to expose data from Grails to the Flex framework. At the
moment this is the only approach that supports the new Flex 4 components.
The only disadvantage of the plug-in is, that it needs the not actual version
1.2.2 of Grails to run properly.

5.4.7 Descision for BalzeDS4

After I tested all available methods to connect a Grails application with a Flex
front-end I decided to use the BlazeDS4 plugin because of the following reasons.
I could not build a running test application with the Flex Sca�old therefore
this method was no option. Because I wanted to use the actual version four
of the Flex framework and the corresponding version of the Flash Builder the
Flex plug-in, the Flex on Grails approach as well as the GraniteDS plug-in did

20

not match my desired criteria. The Web service solution did not come into
consideration because it does not allow updating data and also does not work
with a large amount of database entries. The only method ful�lling all my
desired criteria is the BlazeDS4 approach. It supports Flex 4 components, runs
with a large amount of data entries and is still maintained. The only de�ciency
at the moment is that it does not support the current version of Grails. This
will hopefully be solved in the next version of the plug-in. Table 2 shows an
overview of approaches, what I was able to realize in a test application and what
problems occurred.

Approach Plug-in Realized Problems

Web service XFire - receive data
- add data to database

- update data
- 65 thousand
entries

Flex Plug-in Flex - compile MXML
-site on server

- access Grails
service
- just Flex 3
supported

Flex Sca�old Grails Flex Sca�old - no runnable
application

Flex on Grails Flex, ActiveMQ,
JMS

- receive, add, update
data
- 65 thousand entries

- just Flex 3
supported

GraniteDS GraniteDS Flex - not tested - just Flex 3
supported

BlazeDS4 BalzeDS 4
Integration

- receive, add, update
data
- 65 thousand entries
- Flex 4 components

- just Grails 1.2.2
supported

Table 2: Integration methods for Grails and Flex

21

Part III

Conceptual Design

6 Game Story

The story of the game is that the user owns his house. He can build objects
like furniture, new rooms or new family members. At the beginning the user
has to build himself, his wife and the house. Starting with the three, probably
already known by the user, easy words �man, women and house� the user will
learn how the building process functions. For this reason, and for giving the
user a �rst feeling of success, the waiting time between the queries for the �rst
words will be short. After building these �rst three objects the user can chose
what he wants to build next.

For buying objects the user needs gold. He can earn it every time when he
answers a query to a vocabulary correct, he �nishes building an object, activates
a new area or if he translates already learned vocabulary. Besides gold there
is another currency in VocVille. The so called Wisdom Stones are much more
worth than gold. But there are really rare in the game. Just when the user
achieves a higher level he earns one Wisdom Stone. There are also some objects
that can only be paid with this currency. Both currencies may be bought for
real money.

Really important for the game experience and the motivation to play the
game are the social gaming components. Every user can invite other users
from his Facebook friend list to be his neighbor in VocVille. Only friends who
themselves play VocVille can be neighbors. Other Facebook users will be asked
if they want to start playing the game before they can be a neighbor. Neighbors
can visit each other's homes. This means, that if a user clicks on the image
of the neighbor on the lower bottom of the game interface, and choses to visit
the neighbor, he will see the house of the neighbor. Now he enters the rooms
and sees the objects and statistics of them. He can also help the neighbor with
objects the neighbor is constructing at the moment. By clicking on an object
that is in construction the user helps his neighbor constructing it. This means
the next time when the owner of the object has to translate the vocabulary he
will get a little tip, like one letter of the answer. The helping neighbor will get
a little amount of gold for his help.

Another way of interaction is the option to send gifts to neighbors. These
can be points the user has to collect to get a new design of one object, new
objects or other things that can help or decorate the house of the friend. When
the neighbor receives the gift he has to solve a question in order to use the
object wihtin the gift. The questions are sentences with blank spaces where the
user has to �ll in translations of vocables. A few possible words are shown and
the user has to select the right solution. Which vocabularies are being used for
the questions depends on the vocabulary the user has already learned. The user
gets the gift if his answer is correct otherwise the gift disappears. Every user

22

can send every neighbor one gift per day.
Because of the design of the application which is separated into an adminis-

trative application and the actual game it is very easy to create another version
of the game and therefore also changing the game story. In such a way one
could create �Vocables� which are mathematical exercises and the �Translation�
would be the solution for it. In this manner VocVille could be used for a lot of
di�erent learning situations. The concept of Game Instances which represent
di�erent versions of the game are discussed in section 13.1.

7 Target Group Analysis

In this section I will describe the assumed user group for VocVille. Knowing the
target group for an application has the bene�t to be able to design the system
exactly for the needs of this group. Since social networks like Facebook are used
by the majority of younger people it can be assumed that this will also count for
VocVille. Also the subject of learning a foreign language is usually more often
in the scope of younger users. As mentioned before players of casual games
are from all ages or genders. Therefore the target group of VocVille also will
be consisting of people from all ages or gender but with a majority of younger
people who have more likely access to Facebook.

8 Business Model

The application will use the business model of selling virtual goods. This means
that the user has the possibility to buy a virtual currency called Wisdom Stones.
The Wisdom Stones allowing the user to buy special items, get help on the game
tasks, and use options which enhance the usability of the game. To get Wisdoms
Stones one has to pay real money by a credit card, Paypal or other payment
methods. Every time the user gets a higher level he also gets one Wisdom Stone.
This mechanism can be seen as an advertising instrument to show the user what
he can do with Wisdom Stones and raise the will to pay for more. The virtual
goods market for the United States for 2010 is expected to have a value of $1.6
billion and will grow even more in the following years[16]. This demonstrates
that people are willing to pay for virtual goods or, as they can also be seen as,
for services.

The following list shows the advantages one can buy with Wisdom Stones:

� Reduce timer: The time the user has to wait till he can be queried about
a new building vocable can be reduced.

� Easier area activation: The number of compulsive built objects in the
previous area for activates a new one can be decreased.

� Tips for vocabulary queries: Helping mechanisms like showing a few letters
of the answer or changing the query into a multiple choice question can
be bought.

23

� Special items: Decorative items that can just be bought with Wisdom
Stones.

� Special designs: Decorative designs for objects that can just be bought
with Wisdom Stones.

� List of vocabulary: A list of vocabulary can be printed.

9 Requirements

Software requirements are typically separated into functional and non-functional
requirements. Functional requirements describe the functionality of an applica-
tion or in other words what �does� an application. Non-functional requirements
describe qualities of an application or in other words �how� does it behave. The
next two sections list the functional and non-functional requirements of VocVille
and specify them.

9.1 Non-functional Requirements

� Available in Facebook: The application is accessible through the Face-
book platform. Therefore it is registered as a Facebook application. The
users can add it to their Facebook account and start it when logged in to
Facebook.

� Easy to use: The usability is a very important aspect of VocVille. The
game interface should be intuitive to be used and hence the user can
start playing instantly. Throughout the process of the game new available
options will be explained in short tutorials.

� Appears more like a game than a vocabulary trainer: Using VocVille
should feel like playing a game. The user should use it because it is fun to
play. The aspect of learning is the second goal of VocVille but it should
not appear like an ordinary vocabulary trainer which appaers more like
working.

� Nice graphics: The graphics to visualize the game object should be in a
nice comic style. They help to identify the player with his avatar and his
house.

� Playable in every browser: VocVille should be runnable in every browser
which has a recent version of the Flash Player plug-in installed. This
also guarantees that it will be runnable in every operation system which
ful�lls these criteria. Using HTML5 instead of Flash for the frontend of
the application would also achieve this requirement without obligating the
user to install the Flash Player plug-in. But since HTML5 is expected to
reach the Candidate Recommendation stage during 2012[20] and therefore
it is possible that elements of the recent version of the speci�cation will
change I decided to use Flash.

24

9.2 Functional Requirements

9.2.1 Functional Requirements for the Game Interface

� Create player account: When a player starts the game for the �rst time
a new player account is created for him. The player can choose a name,
a picture for his avatar, the language he wants to learn and the language
the game interface should use.

� Display home of the user: When the game starts the player sees his home
and the objects he has purchased so far. Already created objects are
painted by their normal visual representation. Vocables and areas that
are in creation (building or activation process) are painted by another
picture to indicate their recent status.

� Save current game state persistent: When the player ends the game ap-
plication and restarts it again the game is shown in the state in which the
player left it before. This includes all areas and objects and their building
status among other state informations.

� Building objects: The player can buy vocable objects in the market and
build them by translating the vocable of the object several times.

� Vocable Query: A query of a vocable shows the vocable in the language
which the player has chosen to use for the game interface. To solve the
query the player has to input the translation of the vocable in the language
he has chosen as his learning language.

� Time between vocable queries: Between the queries of a vocable in the
building process the player has to wait a certain amount of time. Between
the queries the player can do other action within the game or end the
application and open it at a later date.

� Show timer for vocable: When the player hovers the mouse pointer over
an object which is in the building process a timer is shown which displays
the time the player has to wait till he can query this object again.

� Highlight elements with timer zero: The player can quickly indicate which
vocable objects can by queried because they are visual highlighted.

� Statistic for vocables: When the player hovers over a vocable object a
tooltip displays how many times the player has translated the vocable
correct and how many times incorrect.

� Invite neighbors: The player can invite other players to be his/her neigh-
bor. When the other player accepts both become neighbor of each other
and can interact within the game.

� Visit neighbor: The player can select a neighbor in a list for visiting a
neighbor's home. The application then visualizes the home of the neigh-
bor.

25

� Help neighbor: In the neighbor visiting state of the application a visiting
player can select vocables which are in creation state and decide to help
the neighbor. This will give the neighbor a little bonus for this vocable
object. Every player can help each neighbor once each day.

� Gift neighbor: The player can select a neighbor in a list and send him/her
a gift. The gifted neighbor has to solve a question to receive the gift.
Every player can send one gift per day to each of his neighbors.

9.2.2 Functional Requirements for the Administrative Interface

� Login mechanism: Users have to log in with their user name and their
password to access the administrative interface.

� User account: Only administrators can create user account.

� Create GameInstances: Users can create a new instance of the game by
creating or selecting areas and vocables within the areas.

� Edit current GameInstances: Users can edit current game instances by
changing the order or other properties of areas and vocables.

� No access to player data: The user cannot access or manipulate data
which saves information about the current game state of players. Just the
templates to create game objects can be modi�ed.

� Create new game object: The user can create new game objects as tem-
plates which are used by the game interface to generate the game.

10 System Architecture

As a web application VocVille realizes the client-server architectural pattern.
The server side is implemented by a Grails application. The client side is im-
plemented by a Flex application. To use VocVille the user accesses the Flash
application within the Facebook website or from the original website of VocVille.
This application requests data of game objects and state information from the
Grails application and visualizes them in the game. Every action in the game
is re�ected as a change of the database and therefore transferred back to the
Grails application.

Another architectural pattern realized by VocVille is the Model View Con-
troller (MVC) pattern. VocVille uses the pattern in di�erent ways which will
be described in the next section after I give a short overview of MVC.

10.1 Model View Controller

The MVC pattern describes a software architecture where the system is sep-
arated in the three parts model, view, and controller. The separation allows
changing one of the parts without a�ecting another one. Figure 3 demonstrates

26

how these parts interact between each other. The model describes the data
model of the system domain. It consists of data objects the application cre-
ates, stores, displays and manipulates. From an object oriented programming
point of view the model represents the part of the world which is described
by the application. The view consists of the visualization of the model for the
user. The di�erent views are templates which are �lled with the data of the
model. The controller consists of the program code which handles user inputs
and delegates the data from the model to the corresponding view. MVC is in
widespread use for web application development although it can be used for
desktop applications.

The Grails framework is designed to build MVC applications. Therefore
every Grails project has separated folders for the model (\grails-app\model),
the views (\grails-app\views), and the controllers (\grails-app\controllers). The
models are called Grails Domain classes. Domain classes are Groovy classes
which are located in the model folder of the Grails project. They use GORM
methods to describe the model. GORM allows to de�ne constrains for the
properties of the model and how to store them in a database. The views are
Groovy Sever Pages (GSP) which are located in the views folder. GSP-views
usally receive a model from a controller and display it. They also can redirect
to another controller. The controllers are Groovy classes in the controllers
folder which by convention consist of a name (usually the domain class they
are handling) and the su�x �Controller�. Controllers de�ne so-called actions.
Actions are methods which are mapped to an URI of the Grails application
server. For example the action �show� of the VocableController can be accessed
through the URI �APP\Vocable\show\1\�, where APP stands for the name of
the application and 1 stands for an id of an instance of the Vocable domain.
Actions can also be invoked by the GSP-views, which then render the resulting
model.

Although the Flex framework does not force developers to use MVC like
Grails does it supports the implementation of MVC applications. The data
accessed by the RPC methods can be seen as the model. It is also possible to
use the Data Transfer Object pattern (DTO) to implement ActionScript objects
for representing the models data. Obviously the MXML-tags for the control and
data display elements are the views. They allow creating a user interface that
visualizes the data. The ActionScript code within the <fx:Script>-tag which
de�nes the program logic can be seen as the controller of an Flex application.
It handles the user input and accesses the data.

27

Figure 3: The MVC pattern

10.2 System components

The architecture of VocVille can be seen as a multilayered MVC architecture
which is visualized in Fig.3. On the overall layer Grails functions as the Model,
the Flex application functions as the View and the RPC-parts of both function
as the Controller. On a lower level both parts can be seen as a separate MVC
architecture as described in the previous section.

Grails creates, updates, and retrieves the data of VocVille to the database.
Therefore it de�nes the data model in its domain classes. It also runs the server
which allows publishing the data to the Flex framework. The Grails services
handle the incoming requests from the user through the Flex application. The
services of the Grails application are one part of the controller in the overall
MVC architecture. On the Flex side the RPC-services are the other part of
this controller. They transform user input into services request for the Grails
application which then transforms these requests into database queries. The
replies send to the RPC-services of Flex are visualized in the user interface
of the Flex application which means that it represents the view of the overall
MVC-architecture.

The data model of VocVille is separated into two sections. The adminis-
trative section holds the user account and the corresponding roles for them. It
also holds the content for the actual game. This includes the vocables and their
translations and questions, the designs as well as the gifts. The administrative
part cannot be accessed through the Flex application. It is meant to be managed
by a team of the provider of VocVille. This could include a teacher who decides
what vocabulary should be learned with VocVille, a designer who creates the
graphics for the game elements and a game designer who de�nes the balancing
of prices of game objects, the experience points needed to get a higher level and
other values in�uencing the game play. Additionally he can support the teacher
to arrange the order in which the vocables and areas are allowed to learn. To
access the administrative data there is a web front end of the Grails application
which uses the normal Grails GSP-views. This front end will not be accessible

28

through Facebook and hence also not for the players of the game.
The user section of the data model of VocVille holds the game state informa-

tion of the users. Here are the game actions executed by the player represented.
This section includes the avatar of a player which describes his amounts of the
two currencies, his language preferences, his level, and his visual representation.
Furthermore it includes the home of the player which stores vocables the user
has used in his game state as well as the users areas and gifts. VocVille uses
the information of the administrative section like templates to create the game
objects for the player. The user section of the data model is only manipulated
by the Flex application when the user actually plays the game.

11 Use Cases

Fig. 4 shows the use case diagram for VocVille. It displays the six use cases
which each describe one possible action a user can take and how the application
reacts to this action. Each of this six use cases and their corresponding activity
diagrams will be described in the following sections.

Figure 4: Use Case Diagram for VocVille

11.1 Build an Object

Building objects is the main process in VocVille. When the user wants to build
an object he has to buy it in the market. It is depending from the user level and
from the vocable objects he has built before which vocables the player can build.
If he is allowed to build the object and can a�ord it, the user can place it in
the area of the object anywhere he wants. With placing the object the building
process begins. First the translation of the name of the object is displayed for

29

a short time. Then the user has to wait a short time before he will be asked for
the translation the �rst time. If the answer is correct the timer of the object
will be set and the user has to wait till the timer has run down to zero. This can
take from �ve minutes up to a few hours depending on the values in the Vocable
class. If the answer is not correct the translation is shown another time, and
after a very short time the user has to give the translation again. This process of
querying and waiting repeats till the user has translated the new word su�cient
times. Then the object is built and will be displayed in the house of the player
with its normal image.

For building an object the user has to buy it on the market. For this he has
to click on the market symbol of the game interface. The market opens and
shows a list of objects available in the current area. If an object is available it
is painted in normal color, otherwise it is painted in gray. Objects are available
if all the objects the user has to build before are built and the user has the
required level. The market also shows the prices of objects. Object can be
bought with gold or with Wisdom Stones. A few special items are only buyable
with Wisdom Stones. If the user can a�ord the item he can place it somewhere
in the visual representation of the area. After placing an object the program
shows the translation of the word for a few seconds. Then the user has to wait
another few seconds, without seeing the translation. After that the �rst query of
the vocable appears. The user has to input the correct translation of the name
of the object. When he enters the right answer he gets a few experience points
for it and an internal timer is set. The timer says when the user can query the
vocable for the next time. With every correct query the progress property of
the object increases till the object is completely built. For every wrong answer
of a query the progress will be decreased but never less than zero.

30

Figure 5: Activity diagram: Build an Object

31

11.2 Show Object/Timer

For showing the vocable or the timer of an object the user has to hover the
mouse pointer over it. If the object is already built the application shows the
name of the object in the langue the user is learning. Also it shows how many
times the user has translated this vocable correct and how many times not. If
the object is in construction at the moment the application shows how long the
user has to wait till he can translate it another time. In this case the translation
is not shown but the progress of the construction process is displayed.

Figure 6: Activity diagram: Show Object/Timer

32

11.3 Activate Area

The order in which objects can be built is an important issue for the learning
success of the user. The vocabularies are split into areas which represent rooms,
thematic topics or other groups of objects in the game. The vocables are divided
into areas because learning words that are semantically related to each other
leads to better learning results. Before a user can activate an area he has to
build all required areas which are de�ned in the requiredAreas property of the
corresponding AreaInProgress class.

The user can select an area, which he wishes to active in the market. If
the area is available the user can decide if he wants to pay for the activation
with gold or with Wisdom Stones. After the payment process the application
generates a list of vocabularies containing vocables from the required Areas
of the recent area. A randomly chosen vocable of this temporary vocabulary
is queried by the application. If the user gives the correct translation for a
vocable it will be deleted from the temporary vocabulary. A wrong answer
increases an internal error counter. If the counter reached a de�ned limit the
activation process is canceled by the application. Otherwise the vocables of the
temporary vocabulary will be queried till the list is empty. After translating
all the vocabularies right the user gets an award of experience points and gold.
The area is set active and the successive areas states are changed. All the states
of vocables contained in the area are set to visible or available. (The di�erent
states of vocables and areas will be discussed in section 12.3)

Figure 7: Activity diagram: Activate Area

33

11.4 Invite Neighbor

For inviting a new neighbor the user has to click on the �invite friends� button
in the game interface. A list of his Facebook friends is shown where he can select
the one (or more) friend(s) he wants to invite. After clicking on the �invite�
button the new neighbor gets a message via Facebook which requests if the
friend wants to be a neighbor of the requesting person. If the friend accepts the
invitation the user gets a message explaining this. From now on the user sees
the other player as a neighbor in his game.

Figure 8: Activity diagram: Invite Neighbor

34

11.5 Visit Neighbor

For visiting a neighbor the user has to move the mouse pointer over the picture
from the neighbor in the neighbor bar at the bottom of the game interface and
click on �Visit . . . �. Now the house of the neighbor will be loaded. After that
the user can see the neighbor's house like his own. He can hover over objects
to see their translations and the statistic of them. He can also enter rooms and
other areas. When the visited user is constructing any objects the visitor can
help him by clicking on the object. This will have the e�ect, that the owner of
the object will get a little aid at the next query of the vocable. The user who
is helping gets directly a small amount of gold.

Figure 9: Activity diagram: Visit Neighbor

11.6 Send Gift to Neighbor

Users can send each neighbor one gift per day. The gifts are new designs for
objects the neighbor owns or new vocables which the neighbor can build. De-
pending on the own level users can send better gifts. When the user has chosen
a gift a message is sent to the neighbor. If the neighbor opens the message he
sees what the present is. But for opening it he �rst has to solve the question
that is shown. He can choose between three translations to put one of them
into the free space from the question. If the answer is correct the neighbor can
use the gift directly otherwise the gift can not be used at all.

35

There are three ways to initiate the gifting process. Users can chose neigh-
bors in the neighbor bar which is displayed at the in bottom of the game in-
terface, select a separate gifts button which allows sending gifts to more than
one neighbor, or send a gift while visiting a neighbor. After one or more neigh-
bors are selected a list of gifts is shown. Depending on the users level available
gifts are listed. If the user has initiated the gifting process through the �Send
gifts�-button a list of neighbors, which did not get a gift from the user within
the last 24 hours, is shown and the user can select the neighbors he wants to
send a gift. The �nal step on the users' side of the process is that a message is
send to the neighbors using the Facebook API. When receiving this message the
neighbor can accept or ignore it. If he accepts the gift a randomly vocable from
the list of his completed vocabulary will be queried. To use the item within the
gift the neighbor has to translate this vocable correctly otherwise the gift will
be deleted. Gifts have an expiration property which deactivates them over a
certain amount of time after being sent.

Figure 10: Activity diagram: Send Gift to Neighbor

36

Part IV

Implementation

As mentioned in the last chapter (10.2) the application is divided into two sepa-
rate parts. The �rst part is the Grails application which stores all the game data
in a database and o�ers a website for creating and managing templates for game
objects like vocables and areas. The second part is the Flex application which is
the actual game which uses the templates to generate a game. For the commu-
nication between the two applications the Grails side provides remote services
in the Action Message Format. There are two remote services implemented.
The UserService provides methods to receive or update data about the player.
The VocableService provides methods to receive areas and vocable objects as
well as updates about user actions like building objects or changing designs.
The Flex side calls these services to receive the game status of a player and
sends updates whenever a user action needs to be saved in the database. The
separation is also re�ected in the implementation of VocVille. The Grails part
uses Groovy as programming language and GSP for the administrative website.
The Flex part uses MXML for displaying the game interface and ActionScript
for implementing the program logic and calling the remote services.

12 Data model

Also the data model is dived into two separate parts. The main data model
describes the domain classes of the Grails application which are stored in the
database. This includes the templates for the game objects as well as instances
of these templates for every player. The second data model represents the Data
Transfer Objects which the remote services of the Grails application generate
from the main domain model. The DTO objects are send to the Flex application.

37

Figure 11: Main data model

The main class of the data model is the Vocable class. It represents a game
object and the vocable of this object. It has associations to instances of the
Design, Question, LinguisticVocable, and Area classes. The Design class holds
other visual representations for the object. The Question class holds exer-
cises querying the vocable which are used when a player wants to use a gift
from another player. The LinguisticVocable class is a proxy class which holds
translations in di�erent languages for the vocable and o�ers them through the
getTranslation-method. The Area class describes a collection of vocables which
are used in the game as thematic groups.

The Vocable and the Area class both have instance classes (VocableInstance
and AreaInstance) which are related to them. The instance classes avoid storing
redundant information in the database. They represent a unique instance of
the corresponding object for a single player. Instance classes just describe the
properties of an object which can be in di�erent states for every player. The
properties that are equal for all objects are just stored in the Vocable/Area class
and can be accessed through the corresponding association of the instance class.

Another central class of the data model is the Player class. From this class
it is possible to navigate to all classes which store the current game state of
a player. It has association to the Neighbor, Avatar, and Home classes. The
Neighbor class represents other players of VocVille which have agreed to be a
neighbor of the player. The Avatar class contains game relevant information
about the player like his level and his amount of gold. The Home class represents
the actual game status of the player by storing the areas which include the
vocables and the actual status for both of them. Furthermore it holds the gifts
a player has received.

38

Figure 12: DTO data model

The DTO model describes the objects which are provided by the remote
services and used by the Flex application to create the game. When the Flex
application needs a certain objects it calls a remote service. The service than
gathers the required data and packages them into a DTO class. The DTO
classes are de�ned in the scr\java\dto directory of the Grails project. The Vo-
cable and Area objects both have two DTOs. Each has a superclass which holds
just the information needed when the object is built/activated. The specialized
subclasses, AreaInProgressObject and VocableInProgressObject , contain addi-
tional information which is necessary during the building/activation process.
By transferring just the needed data the size of the requests can be reduced.

12.1 Vocables

Vocables are the main object in the application. A vocable (in VocVille) is
an object which can be built by the player and therefore placed in the game
interface. Vocables have translations in di�erent languages and graphical rep-
resentations depend on their status. Every vocable belongs to one area and can
only be bought and build when this area is activated. Within the areas there is
a certain order in which vocables can be built.

39

Figure 13: Vocable classes

The main data model stores information related to vocables in the Vocable
and the VocableInstance classes. The Vocable class represents a template for
vocables. The name attribute is a String which stores the English translation
of the vocable used by the administrative interface as a human readable identi-
�cation. The image attribute contains an image of the object which is painted
on the game interface, if the object is built. The imageInProgress attribute con-
tains an image of the object which is used when the vocable is in construction.
All images in VocVille are stored as byte arrays within the database. It would be
possible to store the images as �les on the server and just store the url pointing
at the image within the database, but storing them in this manner would mean
that the database and the �le system has to be synchronized every time a change
is made. The makesAvailable attribute contains references to other vocables.
If the building process of a vocable is completed, that is the vocable has been
translated su�cient times by the player, the vocables in the makesAvailable at-
tribute will be activated. The process of activating vocables will be described
in more detail in the section 12.3. The isFirstInArea attributeis also used for
the activating process. For buying and building a vocable a player needs a min-
imum level which is stored in the requiredLevel attribute. The price for buying
a vocable in the market is stored in the priceInGold and priceInWisdomStone
attributes. If either of them is zero the vocable cannot be bought with the
corresponding currency. For the building process there are several attributes in
the Vocable class. ProgressHour and progressMinute de�ne the time period be-
tween two queries. ProgressGoldAward and progressXPAward de�ne how much

40

gold and experience points the player gains for a single, correct answered query.
GoldAward and xPAward de�ne the awards the player gains when he completes
the building process of the vocable. The questions attribute is used for the
gifting process which will be described in section 12.8. The availableDesigns
attribute points to di�erent graphical representations for the vocable.

The second class in the main data model is the VocableInstance class. For
every player every Vocable has a unique instance of this class in the database.
It represents the game object of this vocable and the status of the building
process for the vocable. To enable the remote services to generate a DTO
of the corresponding vocable a reference to the Vocable class is stored in the
vocable attribute. The isVisible and isAvailable attributes are needed for the
activation process and therefore will be described in section 12.3. Depending
on the de�nition in the Vocable class the user has two wait a certain amount of
time between two queries. The time when the next query is available is stored
in the nextQueryTime attribute. The progress attribute which is initially zero is
increase at every correct answered query for this vocable. If the progress reaches
100 the building process is completed and the game object is built. The class also
stores statistical information in the timesKnown and timesNotKnow attributes,
which can be displayed to the user by the game interface.They count how many
times the user translated the vocable correct and how many times not. A player
can only change the graphical representation of a vocable with design he owns.
Designs owned by a player are stored in the designs attribute. When a design
for a vocable is changed this information is saved in the activeDesign attribute
which references the recent design of the game object. Players can change the
position of game objects in the area they are belonging to. Therefore x and y
attributes store the coordinates of the game objects.

The DTO data model stores information related to vocables in the Voca-
bleObject and the VocableInProgressObject class. They are dynamically created
be the VocableService which therefore uses combined information from the Voca-
bleInstance and Vocable classes of the main data model. The VocableInProgres-
sObject class is a subclass of the VocableObject class. VocableObjects represent
vocables that have been built by the player and hence do not need information
related to the building process. The image attribute holds the recent graphical
representation for the game object. Depending on the vocable status or the cho-
sen design the VocableService populates this attribute with the progressImage
or image attribute of the Vocable class or the image stored in the Design class.
The translation attribute is a string representation of the translation depending
on the language the player has chosen to learn.

12.2 Areas

Vocables are organized in areas. An area is a group of vocables which are
semantically connected. It can represent a room like the living room but also a
group of vocables describing an abstract set of things like clothes or electronic
devices. Like every vocable within its area also every area is part of an order in
which areas can be built.

41

Figure 14: Area classes

The main data model stores information related to areas in the Area and the
AreaInstance class. Like the Vocable class represents a template for vocables
the Area class represents a template for areas. Since a lot of the attributes
of the Area class have the same identi�ers and semantically function as the
ones fo the Vocable class only the di�erent and additional attributes will be
described here. The vocables of an area are stored in the objects attribute.
The activation process of an area includes a query of all vocables of the area
(or areas) which are before the recent area in the areas order. To gather this
list of vocables the requiredAreas attribute references to the previous areas.
The attribute is automatically populated when an instance of the Area class
is inserted or updated in the database. In these cases Grails adds a reference
of the recent area to the requiredAreas attribute of each area that the recent
area activates, that is the areas in the activatesAreas attribute (of the recent
area). Because the area class is only queried one time it does not need progress
awards and therefore only has attributes for the award gained when the query
is completed.

The AreaInstance class is the equivalent of the VocableInstance class but for
areas. It also represents an instance of an area related to one unique player and
has a reference to its corresponding template in the Area class. AreaInstances
store a unique instance of the VocableInstance class for every vocable that the
corresponding area contains. The VocableInstances are stored in the two at-
tributes vocables and vocablesInProgress. The �rst one holds all vocables that
have been completely built. The second one holds all vocables that are in the
market or in the building process. Because of the activation process instead of
the building process of vocables, an AreaInstace does not need that much at-
tributes for the recent state information. Just the two attributes isVisible and
isAvailable are necessary. Their meaning will be described in the next section.

The DTO data model stores information related to areas in the AreaOb-

42

ject and AreaInProgressObject classes. Corresponding to the DTO classes for
vocables they are dynamically created by the VocableService and combine in-
formation from the Area and the AreaInstance classes. AreaObjects represent
areas that have been completely built, that is all their vocables have been built.
AreaInProgressObjects represent areas that have not been activated yet or not
all of their vocables have been built. The vocables of an area are stored in the
three attributes vocables, vocablesInProgress, and vocablesInMarket. The voca-
bles attribute stores completely built vocables as instances of the VocableObject
class. The vocablesInProgress attribute stores vocables that are recently in the
building process as instances of the VocableInProgressObject class. These two
attributes are de�ned in the AreaObject class. Since this class represents com-
pleted areas they do not have any vocables in progress. So it would be logical
to de�ne the vocablesInProgress attribute in the AreaInProgress subclass. The
reason for de�ning them here is that the method of the VocableService, which
collects areas needed when a player visits a neighbor, needs to collect completed
areas as well as the ones that are recently in the building process. These areas
have to be included so the player can access areas with vocables in the building
process which he can perform the help action on. Since in the neighbor state
neither information about vocables that are in the market nor information about
the state of the area (because it has already been activated) is needed they do
not have to be included in the response for the service method. This has the
consequence that every time the client calls for completed areas the AreaOb-
jects of the response have an empty vocablesInProgress �eld, but on the other
hand the response for requesting neighbor areas does not have all additional
data of the AreaInProgress class which are not needed for that request. The
vocablesInMarket attribute which is only de�ned in the AreaInProgressObject
subclass holds all the vocables of an area which neither are completed nor in
the building process.

12.3 States of Vocables and Areas

As mentioned before vocables and areas have an order which de�nes when they
can be built or activated. This order is assigned when the objects are created
in the administrative application of VocVille. For each object the user can
decide which objects can be built after the building or activating process of it
is completed. In this manner the user can connect each object with each other
and create the building/activation order. To realize this order in the game every
object has four di�erent states which are shown for vocable objects in Fig.15.
In the �rst state, called �visible�, the objects can be seen in the market but
cannot be bought or activated. In the �available� state the objects are in the
market and can be purchased. The �progress� state di�ers between vocables
and areas. Vocables in the progress state are in the building process. Areas in
the progress state have been activated but not all of their vocable objects have
been completely built. The last state is the �built� state in which the objects are
created which means for vocables that they have completed the building process
and for areas that all of their objects are in the built state. The actual state

43

of an object is coded in the two boolean attributes isVisible and isAvailable of
the VocableInstance and the AreaInstance classes. The meaning of the possible
combinations of values for this attributes are explained in table 3.

Figure 15: States of vocable objects

isVisible isAvailable State

true false visible
true true available
false false progress
false true built

Table 3: Codi�action of states

The state changes for vocables and areas are not exactly the same and there-
fore will be described separately. Vocable states are changed when a vocable
object completes the building process. Vocables are created and set to the
visible state when the area they are belonging to is being activated. After the
activation of an area all vocables of it are created and generally set to the visible
state. Vocables that have the isFirstInArea attribute set to true are set to the
second state, namely �available�. Without this initial vocables in an area, no
vocable could be built and hence no other vocable could be set to the available
state. When a vocable object is queried su�cient times so the progress attribute
reaches 100 the vocable changes to the built state. All vocables referenced in
the makesAvailable attribute of the Vocable class for this vocable are set to the
available state. When the vocables are bought in the market they are set to the
progress state and the building process for the vocable starts. At the end of the
building process the cycle starts again for the next vocables.

When a new player starts the game for the �rst time the �rst area is set
to the progress state. All referenced areas in the activates attribute of the
corresponding Area class are created and set to the visible state. After this
initial creation area states are changed whenever the player activates an area
or an area is set to the built state. This happens when the last vocable of an
area completes the building process. At this point all areas which are referenced
in the activates attribute are being checked if they can change to the available
state. An area can change to the available state when all of its previous areas,

44

stored in the requiredAreas attribute, are in the built state. All areas that can
be set to the available state then create their following areas and set them to
the visible state. Because an area can be activated by more than one area it is
possible that referenced areaes are already created. In this case no new area is
created.

Fig. 16 demonstrates an example of the area state changing. First the
initial AreaInstance �living room� is created and set to the progress state (1).
In the Area class for the living room the activates attribute references to the
�kitchen� and the �bedroom� areas. Therefor AreaInstances for them are created
and set to the visible state. When the living room is completed the following
area of kitchen, the �electronics� area, is being created (2). Now the following
areas of the bedroom area are being created, but because the electronics area
already exists just the clothes area is created. After that the player activates the
bedroom area, which just changes the state of this area (3). When the player has
completed all vocables of the bedroom, the areas in the activate attribute are
being checked (4). Because the electronics area needs both, the kitchen and the
bedroom, to be completed just the clothes area is set to the available state. Now
the player activates the kitchen area (5) and completes it (6). The electronics
area is checked again, because it is referenced in the activates attribute of the
kitchen area, and is now set to available because all needed areas are in the built
state.

45

Figure 16: Area states example

12.4 Translations

Translations of vocable or area names are stored in instances of the Linguis-
ticVocable class. This class implements the facade design pattern to simplify
the access at the translations for di�erent languages.

Figure 17: Translations classes

The languages are implemented as subclasses of the Translation class. Every
translation has two strings representing the singular and the plural form of

46

the translation. The LinguisticVocable class has an attribute for each of the
three implemented languages. To provide the translations a linguisticVocable
o�ers the getTranslation- and getTranslationPlural - methods which take a string
as a parameter. The string parameter de�nes the desired language for the
translation in a language code. The codes are two letters in uppercase. �EN�
stands for English, �ES� for Spanish (Español), and �DE� for German (Deutsch).
Which language a player desires is stored in the instance of the Player class.
When the VocableService generates the DTO for vocables or areas it calls the
getTranslation*-method to get the appropriate translation. In this manner it
is very easy to implement more languages simply by creating a new subclass
of the Translation class, adding an attribute to the LinguisticVocable class and
modifying the getTranslation*-methods accordingly.

12.5 Designs

Designs represent alternative graphical representations for vocable objects. To
make the game more customizable the player can change the looks of his objects.

Figure 18: Design classes

In the main data model designs are de�ned in the Design class. The name
attribute is displayed in the market and the interface component for changing
the design of an object. The image attribute obviously represents the picture
of the design with which the object will be displayed when using this design.
Designs can either be bought in the market or sent as a gift to a neighbor. Which
of the two methods is applicable is stored in the Boolean attribute giftable. The
price for a design is stored in the price* attributes. If one of them is zero this
means that the design cannot be bought with this currency. Like other objects in
the game the player has to reach a certain level to be able to buy a design. This
level is saved in the requiredLevel attribute. To gift a neighbor with a design,
the level of the player who wants to send the gift has to be at least the same level
as referenced in the requiredGiftLevel. The DTO for designs, the DesignObject
class, completely re�ects all attributes of the Design class and adds just the
Boolean own. When the player wants to change the design of an object the
game displays all designs the user owns for this object and additionally designs
he can buy at the market. To let the Flex application di�erentiate between
owned designs and buyable ones, the VocableService sets the owend attribute
accordingly.

47

12.6 Player

The Player class in the main data model is the main entry point for navigating
through the model. From a Player instance one can access all data entries
related to the recent player. Most of the VocableService methods have the id of
an Player instance as a parameter to enter the main data model.

Figure 19: Player classes

The Player class stores the Facebook id of the player in a string attribute
called fbid. The learning language and the desired language of the GUI are
stored in the learningLanguage and the guiLanguage attribute. The format of
their values is de�ned by the LinguisticVocable class to di�er between the three
implemented languages. The player class has a collection of instances of the
Neighbor class. For every neighbor the id of the corresponding player and his
level is saved. If the neighbor also has a Facebook account his name and the
URL to the pro�le picture are also stored in the Neighbor class. A player can
help and send a gift to each o� his neighbor once every 24 hours. At what time
the next action is available is stored in the nextGiftTime and the nextHelpTime
attributes.

The Avatar class holds information about the achievements of the player
like his amount of the di�erent currencies, his level and his experience points.
It also includes an image of the �gure that is shown in the game interface. The
home class holds references to all AreaInstances of the player. That is all the
areas and the including vocables the player recently has created, is creating or
can purchase in the market. It also holds references to the gifts the user has
received and not yet opened.

The User class represents a user of the administrative application of VocVille
and therefore does not exist for a regular player of the game. It holds the
properties needed by the ACGI-security plugin for the Grails application.

48

12.7 Neighbor Requests

NeighborRequest are created when a player invites another player to be his
neighbor. The NeighborRequest class in the main data model holds references
to the player who send the invitation and the payer who receives the invitation.
When the invited player accepts the invitation the request object is deleted and
for both players a new instance of the Neighbor class are created and added to
their instance of the Player class. The NeighborRequestObject class of the DTO
data model represents a player which is not a neighbor of the recent player.
This includes player for which no request related to the recent player exists.
The Boolean attributes requested and invited are initially set false and just set
to true if a requests for the certain player exists in the main data model.

12.8 Gifts

Gifts represent game objects that can be sent from one player to another. When
a player wants to use the object in the received gift he/she has to answer a
question. The questions are cloze tests which ask for a vocable the player has
already built.

Figure 20: Gift classes

In the main data model the templates for gifts are represented by the De-
signGift and the ObjectGift domain classes which are both subclasses of the Gift
class. Design gifts contain a design, Object gifts contain a vocable, which the
receiving player will be able to use. When a player sends a gift to another player
a new GiftInstance object will be added to the gift attribute of the second play-
ers entry in the player database table. The GiftInstance class holds information
about the received gift, the time when the gift will expire and therefore will not
be usable anymore as well as references to both players. When a player opens a
gift the application choses randomly a question from all the vocables the player
has built yet. Therefore each vocable template references to questions that be-
long to it. The questions are represented by the Questions domain class which
holds translation for each language. Similar to the Translation class this class

49

o�ers a getTranslation-method to request the corresponding translation for each
player. The translations are subclasses of the QuestionTranslation class which
holds two string attributes representing the textual parts of the question before
and behind the demanded vocable. Additionally it holds the Boolean attribute
singular which says if the vocable translation should be in singular or plural.

In the DTO data model the GiftObject and ReceivedGiftObject classes repre-
sent gifts. The �rst one stores information for all available gifts and if the recent
player can use them. GiftObjects are sent when the game interface has to display
all available gifts. The second class, which is a subclass from GiftObject, rep-
resents gifts, which have been sent to a player. Therefore they store additional
information about the question which is queried when the gift is opened.

13 Administrative Interface

The administrative interface is a website which is created by the Grails appli-
cation of VocVille and will not be accessible on the Facebook plattform. It has
user accounts separated from the user accounts for the Flex application which
represent the players. The administrative users are stored as instances of the
User domain class. Since the administrative interface is not accessible to ev-
eryone the access is restricted by passwords which are also stored in the User
class.

The administrative interface allows access to all domain classes which rep-
resent the templates for game objects but not to data belonging to actual game
states of players. For example Vocables for a certain game object can be created
or manipulated but not VocableInstances for a certain player. This part of the
VocVille application is designed for teachers who want to add vocables, design-
ers who want to change graphics of game instances and for game developers who
want to reorder the areas or create a complete new instance of a game. The
next section explains the concept of game instances and the following describes
how a user can manage them in the administrative interface.

13.1 Game Instances

Because of the design of VocVille which generates the game objects like vocables
and areas depending on the data stored in the database it is very easy to create
di�erent instances of the game. Depending on the order of the vocables and
areas each game instance allows the player to learn other vocables. It is even
imaginable to create game instances which vocables represent other topics of
learning which can be learned by repeated queries. In this manner it would be
easy to build a game instance in which vocables represent multiplication tables
to learn the basics of multiplication. Another game instance could ask for the
capital of countries. These game instances can be manipulated or created in
the administrative interface. A GameInstance represents a set of game objects
which are belonging together through their order. Every GameInstance has an
initial area which is activated when a new player starts to play the game with

50

this particular GameInstance. The initial area links to the next areas which are
activated when the �rst one is completed and these areas link to their following
areas. In this manner the whole game for a Gamegnstance is build.

13.2 Game objects management

The main page of the administrative Interface shows a list of all GameInstances
(Fig. 22). From here new ones can created or existing ones can be edited. As
�gure 23 shows, the dialog for creating a new GameInstance requests all needed
information to build the instance and the initial area for this instance. When
the user clicks on an existing GameInstance the GameInstance view opens (Fig.
24). It shows the properties of the instance and a list of all areas within this
instance. Since the domain class for GameInstances just stores the �rst area
all the other areas are collected dynamically by their order. For each area its
previous and following areas and the image of the area are displayed. From this
GameInstance view the user can navigate to views for editing the properties of
the GameInstance, creating new Areas, editing the existing ones, or viewing a
list of all existing gifts for the objects of this GameInstance. Figure 21 shows
the site map for the administrative interface and how the di�erent views can
be accessed. Since the views are all have the same underlying layout I will
just describe the additional elements of each view. In the area view (Fig. 25)
beneath the properties of the area the vocable objects of it are displayed with
their image and the list of vocables they activate. In the vocable view (Fig.
26) the default image and the image used in the building process are shown.
Next to them all designs for the vocable are displayed. In the vocable and the
area view the corresponding translation attributes are displayed with a template
which creates a list to show the translations in all three languages. Whenever an
object of one of the two classes is created or edited the corresponding translation
attribute is handled accordingly. The design view (Fig. 27) shows the image of
the design next to the properties. The vocable and the design view both check
if the giftable attribute is changed. When this attribute is changed to true an

Figure 21: Sitemap for the Administrative Interface

51

instance of the Gift class for this object is created which means that players can
send this object as a gift to a neighbor. When the giftable attribute is changed
to false the corresponding gift object will be deleted from the database. The
question view (Fig. 28) uses a similar template like the template for translation
to display and edit the di�erent translation of questions.

Figure 22: Main page of Administrative Interface

Figure 23: Creating a new GameInstance

52

Figure 24: GameInstance View

Figure 25: Area View

53

Figure 26: Vocable View

Figure 27: Design View

54

Figure 28: Question View

14 Game Interface

The interface of the game is a typical game interface and hence really simple
and easy to understand for the player. On the top of the screen a status bar
displays information about the game status and buttons to navigate between
areas. The main part of the interface displays an area and its objects. At the
bottom of the game interface the neighbors of the player are shown. The user
can click on them to visit the homes of the neighbors or send them gifts. Next
to the pictures of the neighbors there are buttons to access di�erent features
like the market. The main application (vocville.mxml) has two di�erent states5.
The �normal� state is activated when the player sees his own home. This state
will be used most of the time. The second state, namely �neighbor�, is activated
when the player visits the home of another player. In this state objects and the
interface have a di�erent behavior. In the next section I will describe the normal
state and in the following section I will describe the neighbor state.

14.1 Home State

When the player starts the game the home state is activated. The status bar
contains buttons for every area the player owns. Clicking on them changes the
area which is displayed in the main part of the interface. Next to these area

5The term �state� is used in the Flex framework

55

buttons the gold, wisdom stones and experience point are displayed. Beneath
the experience points a progress bar is indicating how much more points the
user needs to reach the next level. The main interface displays the current area
and the object the user has bought so far. If the user hovers with the mouse
pointer over an object, the object will be highlighted by a colored frame. For
completed objects their translation and a statistic about how many times the
vocabulary has been asked and how many of these queries were answered correct
or incorrect are displayed. If the player clicks on a completed object a popup is
opened where the player can change the design of the object (see �g. 30). For
objects that are in the building process a timer is shown, which indicates how
long the player has to wait till the vocable of that object can be queried again.
When a timer of a vocable is zero the object will be visually highlighted even
when it is not hovered by the mouse. If the player clicks on an object which
timer is zero a popup for the query process will be opened (see next subsection).
Next to the neighbor bar at the bottom of the interface buttons for the market,
overall statistic, neighbor requests and the move-tool are placed. Each of these
features will be described in the next subsections.

Figure 29: Home state

56

Figure 30: Change Design Popup

14.2 Query Process

Figure 31: Vocable Query

When the player clicks on an object which timer is zero a new query popup
is displayed. The query popup shows the name of the vocable (which is the
translation of the vocable in the language of the player) and asks the player to
enter the translation of it. If the user clicks on the check button the application
compares the given answer with the translation of the vocable. If they are
equal, which means the player has translated the vocable correct, the query
popup closes, the timer of the vocable is reset and the progress of the vocable

57

is increased. The application also checks if the object now is completely built.
If so the corresponding actions are taken (see 12.3). If the answer is not correct
the progress of the vocable is increased and the translation of the vocable is
shown for a few moments. After that a waiting screen is shown which asks the
player to remember the translation for another few moments. Then the player
is queried again. This mechanism repeats until the correct answer is given.

14.3 Marketplace

Figure 32: Market

At the top the market shows the recent amounts of gold and Wisdom Stones
the player owns. Beneath this a button for activating new areas is placed.
Under this a row with buttons for each area the player can buy vocables from
is displayed. If the player clicks on one of these areas the vocable objects of this
area are shown in the main interface of the market. Each object is displayed by
its image (from the complete state) and its name. Depending on the building
order of the vocables they are shown as available or not available. Available
objects have additional two buttons under the name. With these buttons the
player can buy the object using gold or Wisdom Stones. The buttons display
the price in the corresponding currency. If an object can only be bought in
one currency just one button is added. When an object is bought the market

58

popup closes and the new object is placed in the area. Not available objects are
displayed with a grey layer over them and a text saying that this object is not
available. To activate a new area the player has to click on the �activate area�
button on the top of the market. Now all areas which are not activated yet
for this player are shown in the main area of the market popup. The areas are
also shown as available or not available. Available areas have the same buttons
like available vocables and not available areas are displayed like not available
vocables. When the player activates an object by clicking on a �activate area�
button a list of all vocables of all areas which are directly before the area in
the area order are displayed in a new popup. The player has to translate all
the vocables correct to activate the new area. If one translation is not correct
the area will not be activated. This means the player has to pay again for the
next try. After the activation the new area is displayed in the market and the
objects of it can be bought. The area is also display in the main application.

14.4 Move Tool

The move tool allows the user to change the position of objects in an area. If the
player clicks on the Move-tool button it is displayed in a down state. Now the
behavior of the objects in the main interface is changed which means clicking on
them will not perform the normal actions like querying or changing the design.
Instead when the player clicks on an object he can change its position by holding
the mouse button down and dragging it to the desired place. Clicking another
time on the move-tool button gives the objects their normal behavior back and
displays the button in normal mode.

14.5 Neighbor Requests

The neighbor requests popup which appears when the player clicks on the cor-
responding button in the main interface allows the player to invite other players
as neighbors or accept invitation from other players. The popup displays a list
of other players and some information about them. This list contains all other
players which are not already a neighbor of the current player. If no request
between a player and the recent player exists an invite button is displayed for a
player item. When the player clicks on it a request is sent to the player which
asks him/her to be a neighbor of the player. If a request between the player
and the recent player exists this is shown by a button which allows the player
to accept an invitation which was send to him/her or to cancel an invitation
which the player has sent to the other player. If a player accepts the invitation
of another player both are added as neighbors for each other and hence can visit
and help each other.

14.6 Gifts

The gifts popup allows the player sending gifts to his neighbors and opening
gifts he has received from them. For each of these functions the popup has a

59

Figure 33: Gifts

separate tab. In the receiving tab all gifts the player has received are displayed
with their image, the name of the player who sent the gift and the date when
the gift will expire. Under each gift a button to open the gift is placed. When
the player clicks on it a new popup appears. This popup shows the questions for
the gift and the image of the queried vocable. To use the item within the gift
the player has to type the correct translation of the demanded vocable. After
clicking on the �check� button the given answer is checked. If the answer is
correct the item of the gift is added to the home of the player. If the answer
is not correct the player cannot gain the item. In both cases the gift will be
deleted after the query.

14.7 Neighbor State

To visit a neighbor the player has to click on the neighbor item in the neighbor
bar and choose �visit neighbor� in the appearing menu. This will activate the
neighbor state of the main application. The neighbor state looks like the home
state but has fewer options than it. It displays the areas of the chosen neighbor.
The player can switch between them like in the home state but he cannot access
the market, the moving tool or the requests popup. Also the behavior of the
vocable objects is di�erent in this state. Designs of completed vocable objects
cannot be changed but their translation and statistics (for the neighbor) are
displayed as tooltips. The player can help the neighbor for vocable objects that
are in the building process. To do so the player has to click on an object. Then
it is checked if the last time the player helped this neighbor is more than 24

60

hours ago. If so the timer of this object is reduced by a small amount and hence
the neighbor can query it a little bit earlier.

15 Connection between Grails and Flex

As mentioned before the VocVille application is separated in two applications:
the Grails application which maintains the main data model and o�ers man-
agement features through the administrative interface and the Flex application
which is the original game the player uses. To transfer the data from one appli-
cation to the other they have to have a connection both sides can implement.
For this reason the Grails application uses the BlazeDS4 plugin which allows
implementing a remote service which can be accessed by the Flex Framework.
The plugin uses the BlazeDS web messaging technology which formerly was a
part of the Adobe LiveCycle Data Services but since 2007 is a self-contained,
open source technology. BlazeDS implements a call and response model for
accessing external data over HTTP services. The service calls and objects are
transferred in the binary Action Message Format. The Grails application of
VocVille implements the two remote services UserService.groovy and Vocable-
Service.groovy. When the Flex application needs data for displaying the game it
calls one of these two services. They generate Data Transfer Objects (DTO) by
gathering the necessary data from the di�erent domain classes in the data base
and sending the response to the Flex application. When the player performs
any action in the game, the Flex application sends information about it to the
remote services. The services transform the received information and save it in
the adequate location and format into the data base.

To describe the services I will now explain how the Flex application initiates
and runs the game. In the process I will discuss the service methods when
they are called by the game. The �rst and most important information the
Flex application needs is the id of the current player. Since the game is either
started directly on the Facebook platform or from the VocVille webpage, where
the player also has to log in using his Facebook account, the Flex application
knows the Facebook id of the player. It uses this id to call the getPlayerByFbId -
method of the UserService. The method searches for a player with the given
id. If no player is found a new player is created and the �rst area is activated.
When the Flex application receives the player DTO it calls the services methods
for receiving the avatar, the neighbors, the areas and the areas which are in the
market. It also switches the language of the game interface depending on the
preferred language of the player. In the Flex application areas are stored in three
di�erent arrays. The areas array holds all areas that are completely built and
therefore just need basic information. For example they do not need information
about their price since they already have been bought. This information is
transferred in AreaObject DTOs. The areasInMarket and the areasInProgress
arrays represent areas that need additional data and therefore are transferred
in the bigger AreaInProgress DTO which include all information needed for
the building process of an area and its vocable objects. The database holds

61

information about the last area that the player has viewed in his game. This
information is stored in the player DTO and can be a completed area or an
area which is recently in the building process. To display this area the Flex
application has to wait till it has received both types of areas. Because the
service calls to the Grails application are asynchron it is not sure when exactly
a call is responded and the transferred data can populate the designated variable
in the Flex application. Therefore when the completed areas are received the
Flex application sends an additional request to get the areas which are recently
in the building process. In this manner the Flex application can be sure that
both, the areas and the areasInProgress arrays, are populated when it receives
the result from the second request. Now it can switch to the last viewed area
of the player.

After the initialization of the game the player can perform several actions
which result in remote service calls. When a vocable query is performed, the
sendQuery-method is called. This method increases or decreases the progress
value of the vocable depending on the correctness of the answer the player has
given. If the progress is increased the method also checks if the vocable is
completely built with the new value and if so takes the corresponding action.
This includes checking if after the building of this vocable all vocables in the
area are built and therefore the area is completed. Another remote service call
is taken when the player changes the position of an object. The moveObject-
method updates the database with the new coordinates of the moved object.
When the player wants to activate an area the Flex application makes a service
call to the getRequiredVocables-method, which collects all vocables which the
player has to translate for activating the area.

16 Deployment

Thanks to the friendly people of daureos.com I could deploy the application on
a real webserver. They set up the subdomain www.michel.daureos.com where
I can run a Tomcat server. Therefore I deployed the Grails application as a
war �le and loaded it into the Tomcat. After that I copied the compiled Flex
application in a subdirectory of Grails application within the server. I use MySql
as the database which the Grails application accesses. In Facebook I created an
application with the name VocVille which points to my Tomcat server on the
daureos page.

62

Part V

Evaluation

17 Analytic Evaluation

17.1 Requirements

In this section I will list all requirements de�ned in chapter 9 and evaluate how
the application realizes them.

17.1.1 Non-functional

Available in Facebook The application is registered in Facebook as �VocVille�
(Application id = 162991117070950). It is accessible through the Facebook plat-
form as well as through the web site of the game (www.michel.daureos.com/vocville).

Easy to use The game interface is designed to be easy to understand and
the player can start playing instantly. At the moment there are no tutorials
which explain the features but they will be implemented in the near future.

Appears more like a game than a vocabulary trainer The player
learns the vocables to build new objects in the game. From the point of view
of the player he primarily creates an object and in the process has to learn the
translation. Because the vocables are game objects which the user can perform
several actions with, they do not appear like abstract learning items like they
do in ordinary vocabulary trainers.

Nice graphics Since the graphical representations of the game objects are
chosen by the users of the administrative interface this requirements depends
on their choices. Nevertheless the possibility to choose a picture for the avatar
helps the player to identify himself with it.

Playable in every browser The application has been tested in four of
the most used browser (Firefox, Opera, Google Chrome, and Internet Explorer)
in di�erent Versions of Microsoft Windows and di�erent Distributions of Linux.
Since none of them had problems running the application it can be assumed that
it will run without problems on most of the recently used systems. Since the
administrative interface generates plain HTML pages it can be assumed that it
will be usable in every environment that is able to display HTML pages.

17.1.2 Functional

Game Interface

63

Create player account When the player starts the game for the �rst
time the Grails application creates a new player account with the Facebook id
of the player after a popup in the game interface asks for his name, his languages
and a picture of the avatar.

Display home of the user The Flex application gathers the required
information to display the home of the user from the remote services of the
Grails application. Every object is painted depending on its current state and
on the location where the player has placed it.

Save current game state persistently Every action the player performs
in the game initiates a remote call to the Grails application which saves the
changes in the database immediately. When the game is started the recent
game state is loaded from the database.

Building objects and vocable query Objects can be bought in the
market depending on their state and the level of the player. The building
process queries the translation of the vocable several times in the language the
player has choosen.

Time between vocable queries The time a player has to wait between
vocable queries is de�ned by the vocable template created in the administrative
interface. Between two queries the user can perform any other action in the
game or end and restart it later.

Show timer for vocable The tooltip for vocables in the building process
shows the amount of time in hours, minutes, and seconds till the next query is
available.

Highlight elements with timer zero Vocables which can be queried
are highlighted by a colored border. In this manner the player can see which
vocables have a timer that is zero without having to hover over every single
object.

Statistic for vocables The tooltips for completed vocables and vocables
in the building process both show the number of time the vocable has been
translated correct and incorrect. For completed Vocables also the translations
are displayed.

Invite neighbors Through the request popup the player can invite other
players as Neighbors as well as accept invitation sent to him.

64

Visit neighbor The neighbor bar enables the player to visit his neighbors
and therefore enter the neighbor state of the game interface. When visiting a
neighbor the player sees the home of the neighbor and can switch between all
areas the neighbor has activated.

Help neighbor In the Neighbor state the player can help for vocables in
the building process depending on the time he has helped the neighbor the last
time.

Gift neighbor The player can send his neighbor gifts and open the re-
ceived ones through the gifts popup. It can be accessed through the neighbor
bar, the separate gifts button or in the neighbor state. To open a received gift
the player has to answer the question belonging to the gift.

Administrative Interface

Login mechanism The login mechanism is realized through the ACGI
plugin for the Grails application. To access the administrative interface the
player has to log in with his/her username and the corresponding password.

User account The Administrative Interface o�ers no registration func-
tionality. Just administrators can access the user account management and
create new users.

Create GameInstances At the main page of the administrative interface
users can create new GameInstances. Therefore they also have to create a new
initial area for the instance.

Edit current GameInstances All templates for areas, vocables, designs,
and gifts can be edited through the administrative interface.

No access to player data No data that stores information about game
states or players can be viewed or edited through the administrative interface.
Just the game interface can access these data through the remote services.

Create new game objects The user can create new game objects. There-
fore the criteria that are de�ned in domain classes of the Grails application have
to be followed. The application just creates objects which are valid to these cri-
teria.

65

17.2 Educational Entertainment

Like for every educational entertainment product the main challenge for VocVille
was to �nd a good balance between the game play and the learning potential.
The �rst task was the integration of the queries of vocable translations into a
game story, or more precisely said creating a game story around the queries.
Creating objects is a good metaphor for learning a vocable in that way that
in both processes the result can be used afterwards. The metaphor also allows
integrating objects that represent vocables that the user can relate to because
they are objects of the real world. A disadvantage of this metaphor is that
only things can be created and therefore only vocables for nouns that can be
represented graphically can be used in the game. However it would be possible
to create areas which do not represent real spaces like a kitchen or a restaurant
but abstract terms like electricity or the weather. In this manner it is also
imaginable to create areas with vocables for adjectives or even verbs.

Another question is how the learning process is in�uenced when a player
does not play for a long time. At the moment the application assumes that the
player knows a translation when he has enter it several times. When the player
starts building an object, translates it a few times and then does not play for
a longer time, it is possible that the desired learning process is not ful�lled.
Instead after the break the learning process of the player starts again from the
beginning but the building process within the game continues at the old state.
Also it is very easy to access translation services on other web pages since the
game takes place when the player already is sur�ng in the internet. But this
problem lies in the responsibility of the player and his/her motivation to really
learn something with the game.

17.3 Social and Casual Gaming Aspects

VocVille can be seen as a casual game because the player has to perform a lot
of small, separated task. The amount of time for a single game session can be
very short. Because every interaction with the game is directly re�ected in the
database the player can choose if he wants to perform a lot of task or just do a
few and continue the game at a later time. The simple game story and the easy
to use game interface allow even inexperienced players to use the game.

With the ability to invite neighbors and visit their homes as well as send them
gifts VocVille has several features that de�ne a social game. The accessibility
through Facebook also indicates that VocVille is a social game. The bene�ts of
playing it together are; having access to game objects that can only be achieved
as gifts and making faster progress by the help of neighbors. Beneath that the
players are making the same game experience and can talk about them outside
the game. Because they learn the same vocabularies it is very easy to have
conversation in the learned language using this common base of vocabulary.

66

17.4 Grails

The Grails framework is a very powerful tool to create web applications that
manage data stored in a database. The programmer does not have to deal
with database related details since Hybernate transforms the domain classes
into tables of the DB and o�ers a simple to use API to create, save, update
and delete entries in these tables. Nevertheless it is necessary to learn the
basics of database management mechanisms in order to create well designed
and functional domain classes. The dynamic methods that are injected by
Grails and Groovy at runtime are also very time-saving mechanisms of the
framework. When building the �rst application with Grails it can be hard to
remember all these methods. Therefore it is really important to use an IDE
which helps the programmer with this by o�ering code compilation. When I
started developing VocVille I used the Grails plugin in for the NetBeans IDE
which does not have code compilation. It made it very time consuming to
consult the Grails reference every time I needed to use a unknown feature of
the framework. At the middle of the project I discovered the IntelliJ IDEA IDE
which (in the commercial �Ultimate Edition�) has full support for Groovy and
Grails including code compilation for the dynamic methods. With this IDE it
was much faster and more comfortable to implement the Grails part of VocVille.

A disadvantage of the Grails framework is its very slow compiling time espe-
cially when compiling the application as a war �le. For this Grails compiles the
application into a war �le and afterwards decompresses this �le into a folder to
run the application on the local host. This process can take up to several min-
utes depending on the size of the project. Because the Blaze4DS plugin needs
the application to run as a war in order to connect with the Flex application
I was forced to compile VocVille this way. Fortunately when developing the
Administrative Interface the application did not need to be compiled as a war
and therefore I could realize the implementation of it much faster.

17.5 Flex

The Flex framework is a very good choice to create graphical interfaces. It
o�ers a variety of typical GUI-components like buttons and text inputs. Because
the components are rendered in the Flash Player plugin they have nearly the
same appearance in all browsers and operating systems. For developing the
Flex application the Adobe Flash Builder was the IDE of choice since it is just
designed for creating Flex applications. Its design-mode allows arranging the
components in a WYSIWYG-manner. In the code-mode standard IDE features
like code compilation and syntax highlighting help to create the program logic
for the GUI-components and the application. Although the recent version 4 has
a lot of new features like the data services it still has some bugs which a�ect the
development process. Every once in a while the IDE throws an error and closes
itself when opening the workspace during the initialization of the IDE. To be
able to open the IDE again one has to delete (or at least rename) the directory
in which the recent workspace is located. This lets the Flash Builder create

67

a new workspace where the project can be imported again. Another annoying
behavior of the IDE is that it very often cannot create a connection to the
Debugger of the Flash Player and therefore does not compile the application.
This can be resolved by cleaning the project and recompile it again.

17.6 System Architecture

The multilayered MVC architecture of VocVille allows a �ne-granular modeling
of the data. The main data model is optimized to reduce redundant data in
the database by separating the data into templates of objects and instances for
game state information. The DTO model is optimized to reduce redundant data
transfers between the two applications of VocVille. When running the game,
the game interface just requests the data it needs in the particular situation. To
achieve these goals it was important where certain functions where implemented.
It would have been possible to implement the whole program logic into either
the Flex application or the Grails application, which both would not be a good
solution. On the other hand it would have been possible to implement the
program logic in both applications which could lead to di�erent behavior. I
decided to implement the most of the logic into the Grails application since it
manages the persistence data which at any time re�ects the recent game state.
This also has the result that new game interfaces, e.g. a HTML5 version of the
game, do not need to implement the whole application again. But to reduce the
number and size of the requests between Flex and Grails I also had to place parts
of the logic into the Flex application. That is why for example in the querying
process, the validation of the user input is implemented in the Flex part since at
that moment it already has the information about the correct translation. After
the validation the result is sent to the Grails application which then performs
the corresponding actions on the database and sends the updated data back
to the game interface. The architecture of VocVille also allows deploying the
application on di�erent servers. The database can be deployed on a separate
database server, the Grails application can be deployed on an application server
and the Flex application can be deployed on a regular web server. In this
manner the application is scalable and can change the deployment environment
according to the required needs.

A small disadvantage of the architecture just shows up when the application
is implemented by a single programmer. This disadvantage is not a unique one
for the VocVille architecture but is typical for web applications in genral. Using
four di�erent programming languages (Groovy, GSP, ActionScript, MXML) in
two di�erent IDEs demands the programmer always to be aware of in which
environment he works at the moment. A good example for this is a regular
variable declaration. In Groovy as a programming language the order for a
declaration is: type de�nition followed by the identi�er. In ActionScript as a
scripting language the order is the other way around.

68

18 Usability and Accessibility

The usability and accessibility requirements vary for the two parts of VocVille
depending on the expected user groups. The game interface which is designed
to be used by the end user has a big focus on these requirements. The adminis-
trative interface which is intended to be used by professionals has a bigger focus
on the correctness and the functionality requirements. The next two sections
describe the di�erent usability and accessibility requirements for each applica-
tion.

18.1 Game Interface

As a casual social game the game interface of VocVille has to be easy to un-
derstand and should be usable intuitively. To achieve this every function of the
program is displayed in a di�erent, modular popup window. Allowing the user
just to open one popup at a time helps him/her to focus on the recent task.
Tasks that a related to vocable objects like querying are accessed by clicking on
the object. This reduces the number of buttons in the interface and therefore
makes it less complex. The highlighting of objects on which certain actions can
be performed also support the user recognizing the recent possible action he/she
can take.

The game will be accessible through the Facebook website. The users can use
their accounts in Facebook and do not have to go through a complete registration
process for playing the game. This also makes it easier to invite friends because
the users can access their already created social network within the Facebook
platform. Another bene�t of using Facebook is that the user, while he is waiting
for repeating vocabulary queries in the game, can do other things on Facebook
and then go back to the game.

18.2 Administrative Interface

The administrative interface will be used by professionals to create and ma-
nipulate the game objects. Therefore it can be expected that these users are
willing to handle a more complex interface. Nevertheless the interface allows
easy access to the database. It visualizes the abstract data entries by displaying
the images of the objects and presenting the properties in a logical order where
related values are shown beneath each other. Relations between the game ob-
jects are shown when a certain object is displayed. For example the view for
a vocable includes links and image for all designs and questions of the certain
vocable object. This helps the user to analyze the structure and order of the
whole game instance. Menu buttons at the top of each site allow to navigate
to the next higher level within the data structure and also help the user to
orientate within the structure.

69

Part VI

Conclusion

With the help of educational entertainment products like VocVille people can
learn things in a more amusable manner. They make it possible to use the
motivation of playing a video game for animating the users to learn otherwise
abstract appearing content. The creation of an educational game requires a
well-de�ned balance between the game play and the educational aspect of the
product. In the case of VocVille it was important to design the game story
interesting enough so it motivates the player to learn the vocabulary in order to
progress in the game. By creating objects the player can see his learning success
directly. The social components of VocVille allowing the comparison with other
users of the game which can result in an even higher motivation.

The administrative interface of VocVille allows authorized users to edit the
existing game objects or create new content for the game. This allows teacher or
game designer to continuously enhance the game and the learning subjects. Also
complete new instances of the game can be created. Because the templates for
game objects are very �exible it is possible to create game instance for learning
other topics than just vocables, like mathematical knowledge or other subjects
that represent knowledge that needs to be memorized.

During this project I once again realized how important the �rst phases of
a software developing process are. The initial analytic of the system helps to
understand what the application should be able to do and what requirements
have to be accomplished for this. In the case of VocVille I started with thinking
about possible use cases. After I �gured out what the application should do
and how it should react on user actions it was easier to de�ne a �rst version
of the data model. Of course the model was modi�ed several times during the
development process. The initial analysis also helped to de�ne a domain speci�c
terminology for the application.

Like every software and especially web applications, the VocVille application
could be improved by new features. It is desirable that the game could also
be used to learn verbs, adjectives and other types of words. In the case of
verbs it would be possible to add animations to vocable objects that visualize
the meaning of the verb. Adjectives could be realized by designs which add
the meaning of the adjective to the game objects. Also features for learning
grammar are imaginable.

70

Part VII

Appendix

19 References

References

[1] Adobe �ash builder homepage. [Online]. Available: http://www.adobe.
com/products/�ashbuilder/

[2] Eclipse homepage. [Online]. Available: http://www.eclipse.org/

[3] Facebook connect plug-in for grails. [Online]. Available: http://www.
grails.org/plugin/facebook-connect

[4] Facebook graph api reference. Just accesseble with a valid Face-
book account. [Online]. Available: http://developers.facebook.com/docs/
reference/api/

[5] Facebook graph plug-in for grails. [Online]. Available: http://www.grails.
org/plugin/facebook-graph

[6] Farmville homepage. [Online]. Available: http://www.farmville.com/

[7] Farmville page on facebook. [Online]. Available: http://www.facebook.
com/FarmVille

[8] Groovy homepage. [Online]. Available: http://groovy.codehaus.org/

[9] Oaouth 2 homepage. http://wiki.oauth.net/OAuth-2.

[10] Ruby on rails. [Online]. Available: http://rubyonrails.org/

[11] Zynga game network inc. [Online]. Available: http://www.zynga.com/

[12] Zyngas farmville becomes largest and fastest growing social game ever.
[Online]. Available: http://www.sys-con.com/node/1084929

[13] (2010, 10) Facebook statistics. [Online]. Available: http://www.facebook.
com/press/info.php?statistics

[14] (2007) Casual games market report 2007. Casual Games Association.

[15] J. Gee, �What video games have to teach us about learning and literacy,�
Innovate 1 (6), vol. 6, 2005.

[16] M. Helft. (2010, Sep) Virtual goods expected to grow by 40 percent next
year, study says. http://bits.blogs.nytimes.com/2010/09/28/virtual-
goods-expected-to-grow-by-40-percent-next-year-study-
says/?scp=2&sq=farmville&st=cse. The New York Times.

71

http://www.adobe.com/products/flashbuilder/
http://www.adobe.com/products/flashbuilder/
http://www.eclipse.org/
http://www.grails.org/plugin/facebook-connect
http://www.grails.org/plugin/facebook-connect
http://developers.facebook.com/docs/reference/api/
http://developers.facebook.com/docs/reference/api/
http://www.grails.org/plugin/facebook-graph
http://www.grails.org/plugin/facebook-graph
http://www.farmville.com/
http://www.facebook.com/FarmVille
http://www.facebook.com/FarmVille
http://groovy.codehaus.org/
http://rubyonrails.org/
http://www.zynga.com/
http://www.sys-con.com/node/1084929
http://www.facebook.com/press/info.php?statistics
http://www.facebook.com/press/info.php?statistics

[17] M. Papastergiou, �Exploring the potential of computer and video games
for health and physical education: A literature review,� Comput. Educ.,
vol. 53, no. 3, pp. 603�622, 2009.

[18] G. Rocher and J. Brown, The De�nitive Guide to Grails, S. Anglin and
T. Welsh, Eds. Apress, Springer-Verlag New York, 2009.

[19] L. Shklar and R. Rosen, Web Application Architecture. John Wiley &
Sons, Ltd, 2003, iSBN-10:0-471-48656-6 ISBN-13:978-0-471-48656-5.

[20] Whatwg wiki. Web Hypertext Application Technology Working Group.
[Online]. Available: http://wiki.whatwg.org/wiki/FAQ#When_will_
HTML5_be_�nished.3F

72

http://wiki.whatwg.org/wiki/FAQ#When_will_HTML5_be_finished.3F
http://wiki.whatwg.org/wiki/FAQ#When_will_HTML5_be_finished.3F

20 List of �gures

List of Figures

1 Grails architecture . 14
2 Flex architecture . 16
3 The MVC pattern . 28
4 Use Case Diagram for VocVille 29
5 Activity diagram: Build an Object 31
6 Activity diagram: Show Object/Timer 32
7 Activity diagram: Activate Area 33
8 Activity diagram: Invite Neighbor 34
9 Activity diagram: Visit Neighbor 35
10 Activity diagram: Send Gift to Neighbor 36
11 Main data model . 38
12 DTO data model . 39
13 Vocable classes . 40
14 Area classes . 42
15 States of vocable objects . 44
16 Area states example . 46
17 Translations classes . 46
18 Design classes . 47
19 Player classes . 48
20 Gift classes . 49
21 Sitemap for the Administrative Interface 51
22 Main page of Administrative Interface 52
23 Creating a new GameInstance . 52
24 GameInstance View . 53
25 Area View . 53
26 Vocable View . 54
27 Design View . 54
28 Question View . 55
29 Home state . 56
30 Change Design Popup . 57
31 Vocable Query . 57
32 Market . 58
33 Gifts . 60

List of Tables

1 Gameplay Characteristics of Casual & Hard-Core Enthusiasts, [14] 9
2 Integration methods for Grails and Flex 21
3 Codi�action of states . 44

73

21 List of abbreviations

AMF ActionMessageFormat Binary format to serialize Action Script objects.

DTO DataTransferObject Design pattern to transfer data between applica-
tions. DTO are objects classes for storing data without any additional
behavior except storage and retrieval behavior. DTO are formely known
as Value Objects (VO). This name is still used by the Adobe Flash Builder.

GORM GrailsObjectRelationalMapping ORM implementation for Grails based
on Hibernate.

GUI GraphicalUserInterfaceInterface for an application allowing the user to
interact with it through graphical items like icons or buttons.

GSP GrailsServerPages Groovy version of JSP.

IDE Integrateddevelopmentenvironment Software application for facilitating soft-
ware development. Usually contains a source editor, a compiler/interpreter,
tools for build automation and a debugger.

JMS JavaMessageService API for sending messages between clients.

JSP JavaServerPages Web application language to describe dynamically gen-
erated web pages .

MVC ModelViewController Architectural pattern, separates domain logic (model),
user interface (view) and program logic (controller) .

ORM ObjectRelationalMapping Technique for converting object instances to
database entities.

SOAP SimpleObjectAccessProtocol Protocol speci�cation for structural infor-
mation about Web services.

VO ValueObject Old term for DTO.

WAF WebApplicationFramework Development framework for dynamic web-
sites, Web applications and Web services.

WSDL WebServicesDescriptionLanguage XML-based language to describing
a Web Service. De�nes methods syntax including their parameters and
return types.

74

22 Used technologies and tools

In the development process of VocVille is used several di�erent technologies
and tools. For better comprehensibility and to help other who may need some
of these tools for their own theses the used version of them are listed below.
To create this thesis and organize the whole project I used furthermore: Lyx,
JabRef, MS Word, MS OneNote, UMLet, DBVisualizer and WinSCP.

Technology/Tool Version

Grails 1.2.2
ACEGI plugin 0.5.3
Hibernate plugin 1.2.2
Remoting plugin 1.1
Tomcat plugin 1.2.2

Facebook-graph plugin 0.4
Blazeds plugin 1.0
NetBeans IDE 6.9.1
IntelliJ IDEA 9.0.4
Flex SDK 4.0.0

Adobe Flash Builder 4.0.0
Rational Software Architecture 7.5.0

75

	I Introduction
	Motivation
	Idea of VocVille
	Structure of the Thesis

	II Fundamentals
	Definitions
	Educational Entertainment
	Casual Gaming
	Social Gaming

	State of the Art
	Facebook
	FarmVille
	Facebook GraphAPI

	Grails
	The Framework
	Groovy
	Groovy Server Pages
	Hibernate and GORM
	Spring
	Facebook Graph Plug-in

	Adobe Flex
	Flash
	Flex
	MXLM
	Action Script
	Flash Builder

	Grails Plug-ins for Flex Integration
	Web Service
	Flex Plug-in
	Flex Scaffold
	Flex on Grails
	GraniteDS
	BlazeDS4
	Descision for BalzeDS4

	III Conceptual Design
	Game Story
	Target Group Analysis
	Business Model
	Requirements
	Non-functional Requirements
	Functional Requirements
	Functional Requirements for the Game Interface
	Functional Requirements for the Administrative Interface

	System Architecture
	Model View Controller
	System components

	Use Cases
	Build an Object
	Show Object/Timer
	Activate Area
	Invite Neighbor
	Visit Neighbor
	Send Gift to Neighbor

	IV Implementation
	Data model
	Vocables
	Areas
	States of Vocables and Areas
	Translations
	Designs
	Player
	Neighbor Requests
	Gifts

	Administrative Interface
	Game Instances
	Game objects management

	Game Interface
	Home State
	Query Process
	Marketplace
	Move Tool
	Neighbor Requests
	Gifts
	Neighbor State

	Connection between Grails and Flex
	Deployment

	V Evaluation
	Analytic Evaluation
	Requirements
	Non-functional
	Functional

	Educational Entertainment
	Social and Casual Gaming Aspects
	Grails
	Flex
	System Architecture

	Usability and Accessibility
	Game Interface
	Administrative Interface

	VI Conclusion
	VII Appendix
	References
	List of figures
	List of abbreviations
	Used technologies and tools

