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Abstract 
 

The coastal habitats are important for the global ocean production and provide 

important ecosystem services. The contribution of coastal ecosystem dominated by 

macrophytes to the global sequestration and burial of carbon could be important, being 

the aim of this study to determine the burial rate of C and N of some characteristic 

habitat from the Cadiz Bay and the sources of the organic matter being buried on long 

term. The experimental design involved the analysis of key biogeochemical properties, 

like plant biomass aboveground and belowground, contents of organic matter, C and N, 

and isotopic fractionation of C and N contents of the sediment, along a transect in the 

Trocadero Island saltmarshes, from a Zoostera noltii dominated bed (S1) in the low 

saltmarsh, bare sediment (S2), an area of bare sediment with scattered Spartina 

maritima plants (S3), to a Spartina maritima dominated sediment in the high saltmarsh 

(S4). This transect represent a sea to land gradient in marine influence. These four 

habitats are characteristic of the Cadiz Bay Natural Park and of many other temperate 

saltmarshes. The horizontal heterogeneity in the biogeochemical characteristics within 

each habitat was high. The major differences in the biogeochemical characteristics of 

the sediment were related to the tidal height of each habitat, this is their position in the 

sea to land gradient. No significant differences were found in the content of organic 

matter between the different habitats. However, the content in carbonates was 

significantly lower in the most terrestrial habitat, S3 and S4, than in S1 and S2, being 

these two habitats more influenced by marine conditions. On the contrary, the organic 

C and total N content of the sediment tended to increase towards the land. In general, 

the vertical profiles of the biogeochemical properties did not show a clear trend with 

depth that might be due to intense mixing of the sediment surface. The analysis of δ
13C 

and δ15N and the comparison with previous data suggest that the sediment organic 

matter seems to have multiple sources, although the organic matter derived from 

macroalgae and suspended particulate matter represented an important fraction. Our 

calculation indicates that between 73 - 123 g OM m-2 y-1 are buried in the inner bay, 

which represents organic C and total N burial rates of between 15.6 – 26.4 g C m-2 y-1, 

and 2.1 – 3.5 g N m-2 y-1, respectively. Thus, the total annual C and N burial rates for 

the inner bay, which has an area of 30 km2, of which the intertidal area is about 13 km2, 

are estimated to be about 630 t-C y-1 and 84 t-N y-1. 

Key words: burial rate, salt marsh, sediment biogeochemistry, Cadiz bay. 



Resumen. 

Los ecosistemas costeros son importantes para la producción oceánica global y 

generan servicios al ecosistema. La contribución de los ecosistemas costeros dominados 

por macrófitos en la captura y enterramiento del carbono pueden ser importantes y esto 

dio lugar a los objetivos del presente estudio, en el cuál se determina el enterramiento de 

C y N en los hábitats característicos de la zona y las fuentes de materia orgánica que 

pueden llegar a ser enterradas durante un largo periodo de tiempo. El diseño 

experimental incluyó el análisis de las propiedades biogeoquímicas más importantes 

para esta determinación, estas fueron la biomasa de las plantas (raíces y tallos), 

contenidos de materia orgánica, C y N y por último la fraccionación isotópica de los 

contenidos de C y N del sedimento; esto se llevo a cabo a lo largo de un transecto linear 

en la marismas de  la isla del Trocadero, desde el lecho dominado por Zostera noltii en 

la marisma baja (S1), el sedimento desnudo (S2), sedimento desnudo donde la Spartina 

maritima empieza a aparecer (S3) y el lecho dominado por Spartina maritima (S4) en la 

marisma alta. Este transecto representa un gradiente de influencia marina desde el mar 

hasta tierra. Estos hábitats son característicos del parque natural de la bahía de Cádiz y 

de otras marismas de climas templados. Se encontró una elevada heterogeneidad en las 

características biogeoquímicas de cada hábitat. Las mayores diferencias biogeoquímicas 

del sedimento se debieron a la posición de cada hábitat en el gradiente mar-tierra y por 

tanto a la altura de marea. No se encontraron diferencias significativas en las 

concentraciones de materia orgánica sin embargo, los carbonatos fueron menores para 

las zonas más alejadas del mar. Por el contrario el contenido de C y N aumento en los 

puntos más cercanos a tierra. Los perfiles verticales no mostraron ninguna clara 

tendencia, quizás debido a la intensa mezcla en la superficie del sedimento. Los análisis 

de δ13C y δ15N y la comparación con datos de otros estudios, mostraron que la materia 

orgánica en el sedimento provenía de varias fuentes aunque las macroalgas y la materia 

particulada suspendida tienen una especial relevancia. Los cálculos realizados indican 

que entre 73-123 gOM m-2 año-1 son enterrados en la bahía interna, lo cuál representa un 

enterramiento de C entre 15.6-26.4 gC m-2 año-1 y de N entre 2.1-3.5 g N m-2 año-1. Por 

lo tanto la velocidad de enterramiento de C y N en la bahía interna con un área de 30 

km2 y en el intermareal con un área de 13 km2  es de 630 t-C año-1 y 84 t-N año-1.  

Palabras clave: Velocidad de enterramiento, marisma, biogeoquímica del sedimento, 

Bahía de Cádiz 
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INTRODUCTION 

1.1 The value of coastal ecosystems 

Coastal ecosystems are among the most productive in the world (Nellemann 

et al., 2010). They support approximately 20% of the total primary production of the 

oceans. This high productivity is because they have an elevated supply of nutrients from 

coastal upwelling, river inputs, human activities (Nielsen et al., 2004) and underground 

water (Niencheski et al., 2007). Because of the important ecosystem services they 

provide, they make an important contribution to the total welfare of the planet. Indeed, 

scientists have attempted to assess the value of coastal ecosystems in terms of 

economics, and suggest that they provide services with an annual value close to 33 

trillion dollars (Costanza et al., 1997). Even considering the huge uncertainties involved 

in this type of study, it is clear that the services provided by coastal ecosystems are very 

important and that destruction of these habitats has implications for human welfare 

(Costanza et al., 1997). Recently the capacity of coastal ecosystems dominated by 

marine macrophytes to sequester and bury carbon has been highlighted as one the 

particularly important ecosystem services that these habitats provide (Nellemann et al. 

2010). Hence, the general purpose of this study is to analyse whether this hypothesis is 

supported in Cadiz Bay, which contains large extensions of seagrasses and saltmarshes. 

1.2 Carbon sequestration and burial in vegetated coastal habitats 

Vegetated coastal areas can act as a carbon sink (Wang and Cai., 2004; 

Sousa et al., 2010) (i.e., remove greenhouse gases from the atmosphere IPCC AR4, 

2007). Coastal shallow habitats rank amongst the most productive areas in the world, 

comparable with agricultural crops and tropical rain forest (Whittaker 1975, Duarte and 

Cebrian 1996). These habitats are able to fix CO2 into organic matter using 

photosynthesis. The majority of this production is grazed by animals, degraded or 

exported to adjacent ecosystems. However, a small amount remains available for 

accumulation within the system. Generally, the detritus produced by different primary 

producers has different degrees of biodegradability (Rice et al., 1981, Enriquez et al 

1993) and can be highly refractory to microbial degradation. For example the 

accumulation of refractory organic carbon is 4 fold higher for higher plants (10-17 % of 
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net primary production) than for algae (0.4-6 % of gross primary production, Duarte and 

Cebrian 1996, Cebrian 2002). 

Also the large amounts of below-ground (BG) biomass of many macrophytes 

favours the direct accumulation of organic material in sediments. The majority of 

halophytes have a greater contribution (> 50 %) of below-ground material to the total 

biomass production (Sousa et al., 2010). Several authors have pointed out stressed 

conditions affect biomass production (Ibañez et al., 1999, 2000) by reducing above-

ground (AG) biomass and inducing plants to invest in below-ground material (Edwards 

et al., 2005), although the opposite is often observed for seagrasses. Salt marsh age also 

affects AG/BG biomass ratios and total production (Valiela et al., 2000, Sousa et al., 

2008).  

Furthermore, in many cases the origin of a significant part of the organic 

matter in the sediments of vegetated habitats comes from plankton (Garcia et al., 2002) 

and detritus i.e., it is imported as suspended particulate matter. Indeed, a great number 

of macrophyte habitats are considered to act as a “nutrient buffer” between terrestrial 

and coastal systems (Sousa et al., 2008; Lillebo et al., 2004; Sousa et al., 2010).This can 

be attributed to the effect of macrophytes on hydrodynamics; tending to reduce current 

velocities at the sediment surface and favour particle trapping (Hendriks et al., 2008). 

However, protection of the bed from high current velocities and wave energy (Peralta et 

al. 2008) and thus prevention of resuspension maybe a more important mechanism by 

which vegetated habitats increase long-term sediment accretion rates. This is because 

long-term accretion rates are the balance of surface deposition and erosion and thus 

represent the net accumulation of sediment at sufficient depth below the surface 

(Nielsen et al., 2004). 

Burial of organic matter is defined as the permanent transfer of material 

from the active layer (influenced by hydrodynamic and biological processes) to deeper 

layers. Thus, OM burial rates can be calculating using the sediment porosity (Φ), 

accumulation rate (ω, cm y-1), dry density of particles (ρ) and the OM content below the 

active layer (Ci) (Nielsen et al., 2004): 

 

ωρ ⋅⋅⋅Φ−= iCBurial )1(    
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By using the OM content and accumulation rate below the active layer, material 

that is lost via mineralisation and export is not included in estimates of burial. However, 

this does mean that sediment cores must be deep enough to define the active layer and 

that accumulation rates are required, which are generally measured using 

radionucliotides (Ligero et al. 2002, Nielsen et al., 2004). Fortunately, sediment 

accumulation rates have been measured in Cadiz Bay and are between 0.16 and 0.27 cm 

y-1 (Ligero et al. 2002). 

 

Much of the controversy about global estimates of C burial by vegetated coastal 

habitats centres around the use of surface deposition rates and OM contents for burial 

estimates and essentially neglecting export and mineralisation. For example, globally, 

vegetated coastal habitats are estimated to have a burial rate of 120–329 Tg C y–1, which 

accounts for at least half of the lower estimate of global carbon burial in marine 

sediments. However, other studies have estimated that estuaries, salt mashes and 

mangroves emit to the atmosphere up to 500 TgC·y-1,(Cheng-Tung et al., 2009). Thus, 

there still remains some uncertainty about OM sediment fluxes, export and 

mineralisation in shallow coastal habitats.  

1.3 Organic matter sources 

Indications about the sources of OM can be derived by using tissue 

biomarkers that can help separate between different primary producers. The elemental 

analysis of C:N ratios has been used to distinguish algal and land-plant organic matter 

origins. Whereas algae have C:N ratios between  6.6 and 10, land plants ratio is around 

20 (Meyers, 1994). This distinction is created by the lack of cellulose in algae and the 

great amount in terrestrial plants and the high amount of organic matter in algae. The 

protein compounds in algae and plants can decrease when degraded and raise C:N ratios 

(Craft et al., 1988).  

 

Carbon and nitrogen stable isotopic composition can also be used to 

determine the precedence of the organic matter found in the sediment. Although, δ15N 

values tend to be similar for all primary producers growing on the same N source they 

can give useful information about terrestrial sources (Morris et al. 2009). However, for 

δ
13C, depending on the photosynthetic pathway 13C fractionation is different. The 

majority of plants use C3 photosynthesis to assimilate organic matter, and the 
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fractionation of δ13C is around -20 ‰, plants which use C4 Hatch-Slack photosynthesis 

create a diffusional isotope shift of -7 ‰ (Raven et al., 1995). When atmospheric CO2 

(δ13C ≈ -7 ‰) is used by C3 plants their tissues have an average δ13C value of more or 

less -27 ‰ and for C4 plants it is around -14 ‰. Algae and the C3 plants inside the 

water may use dissolved CO2, which usually is in isotopic equilibrium with the 

atmosphere or dissolved bicarbonate, which has δ
13C value of around 0 ‰ (Meyers, 

1994, Raven et al., 1995). 

1.4 Aims 

The Cadiz Bay contains a variety of vegetate and unvegetated habitats and 

organic matter sources. These habitats, dominated by characteristics plant species, are 

distributed according to a zonation pattern with characteristics tidal height, in a sea to 

land gradient depending of their relative resistance to the immersion and emersion 

stress. 

 

The present study aims to examine the burial of organic matter within 

sediments of different intertidal habitats. We hypothesise that because of the benthic 

macrophyte communities, different rates and pathways of organic matter burial will be 

found in intertidal sediments of Cadiz Bay. These differences should be apparent as 

modifications of sediment organic matter profiles and stable isotopes of carbon and 

nitrogen (δ13C and δ15N). Thus, the aims of this study are: 

• Examine differences in sediment properties between intertidal habitats of Z. 

noltii, bare sediment and S. maritima.  

• Attempt to infer the most important organic matter sources in each habitat via 

stable isotope analyses. 

• Try to up-scale this information in combination with previous studies to estimate 

organic matter burial of intertidal habitats within Cadiz Inner Bay. 
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MATERIAL AND METHODS 

 

2.1 STUDY SITE 

 

This study has been carried out in Cadiz Bay. The samples have been taken at 

Trocadero Island (SW Spain; 36°23′–36°37′N and 6°09′–6°21′W, Natural Park). This 

area was declared natural park on July 1989 and it is a special place for the bird 

migration between Europe and Africa. The bay situation is between Doñana’s national 

park and Gibraltar Strait (Figure 1) (Paneque P. et al, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cadiz, Chiclana, Puerto de Santa Maria, Puerto Real and San Fernando surround 

the natural park and discharge wastewaters in different degree to the inner Cadiz Bay 

(figure 2). At the south west is placed the Atlantic Ocean and at the north east the bay. 

Around 400.000 people live surrounding this natural park.  

 

 

 

 

Fig  1  : Study area and different sampled points. Here is 
showed the area inside Spain, inside the bay and Trocadero 
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The Bay climate is Oceanic-Mediterranean. The temperatures are around 17ºC during 

all the year and the dominant wind is usually from the East. The rainfall average is 

about 600 mm/year and the Cadiz bay receive 3000 of sun hours per year. The 

evaporation is greater than the rainfall. The direction of the wind affects to the humidity 

of this area. The wind coming from the east (Called Levante) is dry and the one coming 

from the west (called Poniente) is wet (PORN, Cádiz). 

 

The Cadiz Bay can be divided in two different areas, the outer and the inner bay. The 

outer bay is linked to the open ocean and has more oceanic characteristics, being well 

exposed to the waves, winds and tides. The inner bay is characterized by shallow waters 

and the most important pressure is the tides action. One of the most characteristic 

features of the inner bay is the large extension of tidal flats. The areas affected by tides 

can support several seagrasses species like Zoostera Noltii, Zostera marina and 

Cymodocea nodosa. Those ones have an important role at these coastal sites. The high 

part of the marsh is most unstable and Spartina maritima was the first plant which could 

colonize this habitat. The Salicornia sp. followed this colonization creating a new 

ecosystem very typical at the research site. The different vegetated an unvegetated 

Fig 2: Cities surrounding the nacional park. 
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habitats are organised in a characteristic zonation pattern depending on their resistance 

to emersion and immersion stresses by the semidiurnal tides.  

 

Few decades ago large extensions of the area were covered by salt marshes, 

however nowadays only three large and well preserved areas can be found: Toruños salt 

marsh (El Puerto de Santa María), Trocadero and inner bay salt marshes (Puerto Real) 

and the Sancti Petri salt marsh (Chiclana de la Frontera).  

 

2.2 SAMPLING DESING 

 

The samples were taken in Cadiz Bay (SW Spain; 36°23′–36°37′N and 6°09′–

6°21′W, Natural Park). Sampling method was carried out by a linear transect along the 

salt marshes and intertidal zone (Trocadero Island). This wetland is dominated by herbs, 

grasses and low shrubs (Adam P., 1990). The most important characteristic is the 

distinct vegetation zones along a gradient of frequency and duration of tidal inundation.   

Three sampling areas were chosen: Sediment dominated by Zostera Noltii (S1), bare 

sediment (S2), bare sediment affected by Spartina maritima (S3) and Spartina maritima 

meadow (S4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig  3:        Sampling site (Trocadero Island, Inner bay) and 
linear transect. Source: Landsat  
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The sample site was reached by boat (figure 4). Then, the samples were taken by 

cores of 1 meter large but the sediment just reach around 60 cm depending on the 

compactness of every site (figure 5), Once the cores were taken, biomass from plants 

was collected from Z. Nolti and S. maritima using a box core. The samples set was 

composed by 3 replicates from 4 different areas, a total of 12 cores of 1 meter high and 

4 plastic cubes (2 for above ground and 2 below ground) with the material collected 

with the box cores (those samples were collected from S. maritima and Z. Nolti). All 

samples were taken to the laboratory where plant material was rinsed several time to 

cleaned from mud, stored plastic bags, labelled and kept at -20ºC. The cores were also 

cleaned around with water and were kept inside the freezer at -20ºC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: Material carried by boat to the sampling site.  

 

    Fig 5: Cores used on sampling 1 m large 
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2.3 SAMPLE PREPARATION 

 

Sediment samples 

 

The cores were cut in 2 centimetre slices, kept, weighted, dried and grinded 

(figure 6 and 7). The water content is calculated by the difference between fresh and dry 

weight.. Then the organic matter and the carbonates were analyzed.  

 

 

 

 

 

 

 

 

 

 

 

Biomass from box cores. 

 

 

 

 

 

 

 

Plant material 

 

Macrophytes were cleaned of mud and epiphytic material. Algae were removed 

from seagrasses and were kept for identification (figure 8). After cleaning, biomass was 

stored at -20 ºC The plants were weighted after defrost them, afterwards were dried to 

      Fig 6: Set of samples 288 sediment samples.  

        Fig  7: Cutting the cores 
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loss the water content and weighted again (figure 9). A small part of the biomass was 

grinded and sent to analyse the isotopic content.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Biomass from sediment cores 

 

The roots biomass from the first centimetres in Zoostera Noltii and Spartina 

maritima areas were removed from the sediment and were treated like the plants 

biomass mentioned before (figure 10). The fresh sediment was weighted before remove 

the roots from there, then treated like the rest of samples and finally, the roots were 

frozen. The roots, in other hand, were first weighted after defrost, second grinded and 

third were ready to send. Only two profiles were selected and sent to analyze the 

isotopes. The roots were separated by rinsing the sediment with distilled water. This 

sediment was kept in the oven at 60 ºC until the water content disappeared.  

 

 

 

 

 

 

 

 

 

Fig 8:  Spartina maritima cleaned from mud and algae. Two 
box cores from above and underground were taken.  

Fig 9:     Weighting biomass.  

Fig 10: Separation of roots biomass from each                           

core slice.  
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2.4 SAMPLES ANALYSIS 

 

Water content, porosity, dry weight and fresh weight 

 

The water content was analysed at different depths. The used parameters were 

the fresh and dried weight. The fresh was measured immediately after cut the core and 

the second parameter was measured after dried the sample using an oven at 60ºC aprox. 

during 4 or 5 days.  

 

The determination of the water content was calculated as: 

 

100·105

WW

DWWW
Wa

−
=  

 

Where: 

 

Wa (%) = Absolute water content (%) 

WW (g) = Fresh weight (grams) 

DW (g) = Dry weight (grams) 

 

The procedure for the porosity was the same as used for the water content above 

but the determination was different. 

 

π⋅⋅

−
=

2
105

rh

DWWW
P  

 

Where: 

 

DW105 (g)= Dry weight (grams) 

WW= Fresh weight (grams) 

h= height (centimetres) 

r= radius (centimetres ) 
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Using the same parameters (fresh and dried weight) dry and wet density could be 

calculated. 

 

 

Dry density followed the next equation: 

 

π
δ

⋅⋅
=

2
105

rh

DW
dry  

 

Where: 

 

DW105 (g) = Dry weight (grams) 

h= height (centimetres) 

r= radius (centimetres) 

 

 

And the wet density is calculated by: 

 

π
δ

⋅⋅
=

2rh

WW
wet  

 

Where:  

 

WW= Fresh weight (grams) 

h= height (centimetres) 

r= radius (centimetres) 

 

Organic matter 

 

The organic matter content was calculated as loss weight on ignition (LOI) 

according to Nelson et al 1996 (modified). The burnt weight is obtained after 

calcination in a muffle furnace during 5 hours at 550ºC (Sutherland 1988).  
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The samples were removed from the muffle and were stored inside the oven for 

a while. Then, to avoid the dampness the sample is kept at the desiccator. When the 

sample colds down is weighted and kept again in the oven with 1 mL of distilled water. 

This water was added because the bay sediment has high clay content and the clays 

have to rehydrate to give the correct loss weight on ignition (modif. Nelson et al, 1996). 

Once the water disappears, was weighted again and this weight was used for the organic 

matter determination.   

 

The determination of the organic matter content was calculated as:  

 

100
105

550105 ⋅
−

=
DW

BWDW
OM  

 

Where: 

 

OM= Organic matter content (%) 

DW= Dry weight (grams) 

BW= Burnt weight (after the addition of distilled water) (grams) 

 

Carbonates 

 

A gram of sediment was measured and put inside a plastic bottle. After this 

measure a tube which contents Hydrochloric acid was added and the bottle was 

hermetically closed. After that, a needle was put at the top to equilibrate the bottle with 

the environmental atmosphere pressure. Ten minutes later, the needle was removed and 

the Hydrochloric acid was mixed with the sample. Half an hour later the pressure inside 

the sample is measured with the differences in the Hg column before and after prick the 

sample with a needle connected to the column (Balázs et al., 2004)  

 

Knowing the elevation of the column using a blank and a sample of carbonates 

with one known weight the calibration could be done and the samples could be 

analyzed.  

 

This method is used by several researches and is know wide world.  



14 
 

  

Stable Isotopes 

 

The stable isotopes were separated in two different sets. One set was prepared 

for isotopic analyses and the second did not have any treatment before being sent. The 

treatment used was the acidification or not acidification of the sample. The acid was 

added to remove all the inorganic carbon from the sample.  

 

The one prepared to analyse the isotopes was stored in crucibles inside the oven 

and regularly 1 ml of hydrochloric acid was added until the effervescence stops. Once 

the complete process was done the samples were kept in eppendorf and sent to Iso-

Analytical Limited Company in Cheshire (UK).  

 

The heavy and light isotopes are compared using the δ expression. With this 

system a negative number shows a depletion and a positive number shows an 

enrichment, standards are C from Pee Dee Belemnite and N from the air (Machas et al.; 

2003). The relation was done by the next equation:  

 

3

tan
1213

1212
13 10)

/

/
( ⋅=

dards

sample

CC

CC
Cδ  

 

2.5 STATISTICS 

 

Calculations having into account the porosity 

 

All values in percentage were changed into g·m3. This change was mainly 

realized because we were checking the amount of the wished variable on sediment, but 

we did not analyse the aqueous phase. Then, having into account the porosity the 

change of units was done.  

 

( ) ( )
π··2

·%3/
2r

DW
VariablemgVariable =  

 

Where: 
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Variable (g/m3) was the units we want. 

Variable (%) was the variable units we had.  

DW was the dry weight 

r was the ratio 

 

 

ANOVA  

 

We observed not important variation at the firsts 22 cm. Then an ANOVA was 

realized to check differences between profiles. The profiles were evaluated just taking 

this 22 cm, that acted as a surface and then the depth was taken as a factor. The software 

used was R.  

 

Box plots 

 

Box plots were done at this 22 cm. Those plots showed graphically the 

differences found with the Nested ANOVA test. The box showed the media, the box 

was 25 and 75% quartiles, the whisker was the factor range and the points were the 

outliers. The software used was R. 

 

Trend with depth  

 

All profiles were analysed to show to trend with depth they had. To make this 

possible, each area was fit with an exponential equation.  

 

zk
z eCC ·

0
−=  

Where: 

C0 was the concentration at the inicial depth. 

The coefficient k, is the specific rate of change with depth, having positive or 

negative values depending whether the variable increases or decreases with depth.  

z was depth  

Cz was the concentration or value of the variable at depth z.  
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After applied this equation, one line was fitted at each profile to show it 

graphically.  Non-linear least squares were used to fit the equation, the p-value was 

shown at all profiles and significant differences were one p-value lower than 0.05, and 

the 95 % CI coefficient was also given. The software used was R.  

 

δ
13C and δ15N plots 

 

To plot δ13C against δ15N for our data the error standard was used to have more 

confidence with results.  

 

( )
N

Std
stdError =  

Where: 

Std was the standard deviation. 

N was the number of samples. 

The software used in that case was Microsoft excel.  

 

The bag plots are graph which showed the media at the central point, the 75 % of 

data with dark colour and the rest of data with light colour. Those graphs have been 

used to show the different sources around the bay. The software is was R.  

 

Burial rate 

 

To calculate the burial rate the deepest values for organic matter, carbon and 

nitrogen where selected. Then with these values the media was calculated.  

 

N

NnNNN
X ∑
=

...3,2,1
 

 

 

X was the media 

N1, N2, N3 were the values of each sample 

N was the total number of samples.  

The next step was the application of an equation for burial (Soren et al., 2004). 
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ωρ ⋅⋅⋅Φ−= iCBurial )1(  

 

Where: 

Φ = porosity 

Ci = deep concentration  

ρ = dry density 

ω = accumulation rate. 

The software used was Microsoft excel.  
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RESULTS 

 

3.1 Plant biomass 

 

Spartina maritima and Zostera noltii presented similar aboveground biomass. 

However there were important differences in their belowground biomass, the amount of 

S. maritima (3.84 kg·m-3) almost triplicates the amount of Z. noltii (1.32 kg·m-3 g). The 

Above-Below ground ratio for Z. noltii wet was 0.87 and for S. maritima 0.26. 

 

However the results are different when analysed in terms of dry weight (Fig. 11). 

The underground biomass of both plants was similar but S. maritime (0.54 kg·m-3) 

reached a higher biomass than Z. noltii (0.4 kg·m-3). The above-under ground ratio for 

dried Z. noltii was 1.2 and the same for S. maritima was 0.31. 
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The underground biomass decreased in both communities with depth (Fig. 12) 

Roots were absent below a depth of about 17 cm in both cases.  
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3.2 Organic matter and porosity 

The organic matter content of the sediment is presented in two ways, 1) as percentage of 

sediment dry weight (Fig. 13B), and 2) as weight per volume (13C), therefore taking 

into account the differences in porosity (Fig. 13A). Porosity ranged from 0.4 to 0.8. 

Organic matter ranged from 6 to 16 % or 10 to 36 for kg.m-3. Porosity and OM did not 

change significantly with depth in any area. The existence of possible differences 

between areas in surface (0 - 22 cm) sediment porosity or OM was tested using nested 

Nested ANOVA. Porosity was significantly different between areas (ANOVA, F3.44 = 

6.5; p < 0.001), however the grouping of means was not very clear (Fig.14A, Tukey 

HSD test, p < 0.05). Bare areas (S2 and S3) had a higher water content (higher porosity) 

than their respective adjacent habitats (S1 and S4), although the vegetated habitats were 

not significantly different. In contrast, sediment organic matter did not change 

significantly between areas, either expressed as percentage or as kg.m-3 (Fig. 14 B and 

C). 

Figure 13. Depth profiles (mean ± SE, n = 2-3) of porosity (A), OM content (B) and 

OM concentration (C) in each area (1-4 represents Z. noltii, bare sediment, bare 

sediment-SM and S. maritima, respectively). 
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Figure 14. Boxplots of surface (0 -22 cm) sediment porosity (A), OM content (B) and 

OM concentration (C) in each area. Details as in Fig. 13.  
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3.3 Carbonate content 

The carbonates ranged from 10 to 120 Kg·m-3 (Fig. 15). The statistics showed 

significant differences between different areas (ANOVA, F3.18 = 25.7; p < 0.001). 

Carbonate content in area 1 and 2, closer to the sea, were significantly higher than in 

areas 3 and 4 (Tukey HSD, p < 0.05). The carbonate content increased significantly 

with depth in the areas 1 (k = -0.02, p < 0.001) and 2 (k = -0.01, p < 0.001), but changes 

with depth were not significant for area 3 (k = -0.02, p = 0.15) and 4 (k = 0.005, p < 

0.6). 

Figure 15. Depth profiles and mean surface sediment carbonate concentration. Details 

as in Fig. 13. 
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Organic Carbon and N content 

The organic carbon ranged from 1.8 to 5.1 Kg·m-3 (Fig. 16A) and was significantly 

different between areas (Nested ANOVA, F 3.27 = 23.61; p < 0.01). The carbon content 

in the areas 3 and 4 was significantly higher than in area 1 (Fig. 17A, Tukey HSD, p < 

0.05). No significant trend was observed in the changes of C with depth. Nitrogen 

ranged from 0.28 to 0.79 kg·m-3 (Fig. 16B) and was also significantly different between 

areas (ANOVA, F3.27 = 6.1; p < 0.01). As for C, N content in the areas 3 and 4 was 

significantly higher from those in the area 1 (Fig. 17B, Tukey HSD, p < 0.05). In 

general, N tended to decrease with depth, but this decrease was only significant in the 

case of area 3 (k = 0.009, p < 0.01). C:N ratio ranged between 6 and 8 (Fig. 16C) and 

were significantly different between areas (ANOVA, F3.27 = 6.37; p < 0.001) (Fig. 17C). 

Higher values were observed in S1 compared to S2, whereas no difference was found 

between S3 and S4, which had intermediate values compared to S1 and S2 (Tukey 

HSD, p < 0.05). In general, we observed an increase in C:N ratio with depth, however 

this trend was only statistically significant in the area 2 (k = -0.004, p < 0.01) and 3 (k= 

-0.006, p < 0.05). 

Figure 16. Depth profiles of sediment Carbon (A), Nitrogen (B) and CN ratio (C) in 

each area. Details as in Fig. 13.
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Figure 17. Boxplots of surface (0 -22 cm) sediment Carbon (A), Nitrogen (B) and CN 

ratio (C) in each area. Details as in Fig. 13.  
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3.5  δ13C and δ15N 

Carbon stable isotope values ranged between -16 to -26 (Fig. 18A) and were 

significantly different between areas (ANOVA, F3.27 = 23.61; p < 0.01). S1 and S3 

formed one group whereas S2 and S4 formed a lower second group (Fig. 19A, Tukey 

HSD p < 0.05). δ13C did not change significantly with depth in any of the areas except 

in area 2  were δ13C decreased with depth (k = -0.001, p < 0.05). δ
15N values ranged 

between 4 and 8 (Fig. 18B) and were significantly different between vegetated areas (S1 

and S4) and bare areas (S2 and S3) (Fig 19B, ANOVA, F 3.27 = 32.41; p < 0.001, Tukey 

HSD p < 0.05). Profiles showed a decrease with depth, however the changes with depth 

were only statistically significant for area 3 (k = 0.009, p < 0.01). 

Figure 18. Depth profiles of sediment δ
13C (A) and δ15N (B) in each area. Details as in 

Fig. 13.
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Figure 19. Boxplots of surface (0 -22 cm) sediment δ
13C (A) and δ15N (B) in each area. 

Details as in Fig. 13.  
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DISCUSSION 

 

4.1 Differences between areas and depth profiles 

 

The experimental design involved analysing key biogeochemical properties, like 

plant biomass aboveground and belowground, contents of organic matter, C and N, and 

isotopic fractionation of C and N contents of the sediment along a four points transect in the 

Trocadero Island saltmarshes, from a Zoostera noltii dominated bed (S1) in the low 

saltmarsh to a Spartina maritima dominated sediment in the high saltmarsh (S4). This 

transect represent a sea to land gradient in marine influence. The intermediate sampling 

stations in this transect from sea to land were bare sediment (S2) and an area of bare 

sediment with disperse Spartina maritima plants (S3). These four habitats are characteristic 

of the Cadiz Bay Natural Park and of many other temperate saltmarshes (Davis jr. et al., 

2004; PORN, Bahía de Cadiz). 

 

The biomass of Zoostera nolti and Spartina maritima in the area 1 and 4 was similar 

both above ground and below ground (Fig. 11). The underground biomass of both 

communities was concentrated in the upper 18 cm, showing a decreasing trend with depth in 

both communities (Fig. 12). Despite this coincidences in biomass and distribution of the 

below ground biomass, the impact of both types of plant communities in the biogeochemical 

characteristics of the sediment might be very different for a number of reasons. There might 

exist differences in production between both communities, both below ground and above 

ground (Ibañez et al., 1999, 2000, Valiela et al., 2000, Sousa et al., 2010) and also they are 

likely to affect in different ways the hydrodynamics and therefore the capacity of the bed to 

capture and retain particles (Peralta et al. 2008). In addition, as a source of detritus the 

biomass of Z. nolti and S. maritima differs in their C and N stoichiometric composition. Z 

nolti presented a lower C:N ratio than S. maritima, being from 6 to 28 and from 14 to 33, 

respectively. Therefore, the detritus from S. maritima is more refractory to microbial 

degradation than that of Z nolti, since it is well known that the biodegradability of plant 

detritus is directly related to its N content (Rice et al., 1981, Enriquez et al 1993). The 

difference in biodegradability affects the persistence of the detritus within a given system 

and increases its probability of being exported to adjacent habitats as well. 
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The bare sediment area (S2) was deprived of macrophytes, being a so-called 

unvegetated sediment at the time of sampling. This zone is typically inhabited by a 

microphytobenthic community usually dominated by benthic diatoms (Corzo et al. 2009, 

Garcia-Robledo et al. 2010). However this area is seasonally colonized by blooms of the 

green macroalgae Ulva sp, that in the Bay of Cádiz occupy this area in winter (Corzo et al. 

2010). The area S3 is similar to area S2 but with scattered S. maritima plants. It is 

positioned at a higher height in the tidal range which means that the emersion period is 

larger than in area S2.    

     

The height in the tidal range of the four sampling areas and therefore their relative 

position in the sea to land gradient seems to be the most important factor responsible for the 

differences in the biogeochemical properties of the sediment. In this study, we have found 

very clear differences in the carbonates contents of the sediment between the areas S1 and 

S2, the Z. noltii bed and the bare sediment, and areas S3 and S4, both inhabited by S. 

maritima with different degree of cover (Fig. 15). This is likely due to the biogenic 

precipitation of carbonates in the shell of marine animals that are buried after sedimentation 

(Schulz et al., 2006). The organic matter content in the upper 22 cm of the sediment was 

highly different between replicates collected from the same area, suggesting a high 

heterogeneity in the sediment. Likely due to this high heterogeneity the differences among 

areas were not significant (Fig. 14). However, the content in C and N in the upper 22 cm of 

the sediment in the areas 3 and 4 were significantly higher than C and N contents in the 

areas 1(Fig. 17). The C:N ratios in the upper 22 cm layer of the sediment was the lowest in 

the area 2 (Fig. 17). This is consisting with this area being inhabited by microalgae and 

therefore with a relatively low C:N ratio (Meyers, 1994). The highest C:N ratios were found 

in the area 1 inhabited by Z. noltii. It is surprising the little differences in the C:N ratios 

among areas despite the larger differences in the C:N ratio of the plant community 

colonising each area that might act as potential source of detritus. The mean C:N ratio of the 

sediment at the Trocadero Island saltmarshes in all areas was between 6 and 8. This low C:N 

ratio in the sediment suggest that either most of organic matter present in the sediment was 

derived from a source with a low C:N ratio like phytoplankton or microphyobenthos (Garcia 

et al., 2002) or that the microalgae and bacterial biomass was high enough as to increase 

considerably the N content of the sediment (Craft et al., 1988). 
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The pattern of differences in δ13C values appeared to be relatively similar to the CN 

ratios; values in S2 were lower than S1, suggesting a foreign influence for one of those sites. 

The bare area is broadly colonized by algae, like Ulva spp. with low δ13C values (Corzo et 

al. 2010), microphytobenthos and diatomes (Corzo et al. 2009, Garcia-Robledo et al. 2010).  

 

However, values in S3 and S4 were also similar to S1. Those similitudes are related 

to the vegetation cover. 

 

S2 was also the only area where a trend of decreasing δ13C values with depth was 

found. It was also similar in S1 and it is caused by the carbonates approaching from sea 

(Schulz et al., 2006) that increase the carbon content on sediment.  

 

Whilst δ13C values are strong indicator of the photosynthetic mechanism of potential 

organic matter sources, δ15N values generally do not change much between primary 

producers if the N source is the same. On the other hand microbial processes (such as N 

fixation and denitrification) can strongly affect sediment δ15N values (Rice et al., 1981; 

Enriquez et al., 1993). Within Cadiz Bay δ
15N values of suspended particulate matter (SPM) 

from N point sources (7 - 9) and macrophytes (3-8) tend to be relatively high, suggesting the 

influence of N from urban and aquaculture effluent (Morris et al. 2009). Thus, significantly 

higher δ15N values in both of the vegetated habitats may represent an important urban 

effluent (Morris et al. 2009) or the microbiology of the sediment (Craft et al., 1988). 

 

 A significant trend of higher δ15N values in the surface sediments (also coinciding 

with an increase in N content) was found at S3. 

 

The study of how the different biogeochemical properties analysed in this work 

changes with depth is complicated by the fact that the length of the cores was not similar for 

all the sampling areas. It was not possible to collect long cores (> 50 cm) in the area 3 and 4 

due to the unexpected abundance of animal borrows (Uca tangerii) below 20 cm. However, 

cores from area 1 and 2 were longer than 50 cm. 

 

The organic matter content of the sediment, when expressed per unit of volume of 

sediment, tended to increase with depth in all areas (Fig. 13), however this increase with 

depth was statistically significant only in the areas 1 and 2, but not in areas 3 and 4. This is 
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likely due to high horizontal heterogeneity observed in all the areas and to fact that cores 3 

and 4 were shorter that cores from the areas 1 and 2. This might have contributed to obscure 

the changes of organic matter with depth in the area 3 and 4. The values measured in this 

study are slightly higher than those measured at other sites of Cadiz Bay (Establier et al 

1984). The increasing trend in organic matter with depth could be explained by a general 

decrease in the input of organic matter to the sediment due to a decrease in primary 

production in the recent years or by changes in the preservation rate of this detritus within 

the sediment. Similarly the organic carbon content showed no significant trend with depth at 

all sites (Fig.16). However, N profiles, visually, showed a decreasing trend with depth but 

changes were only significant for site S3 (Fig.16). The C:N ratio tended to increase with 

depth but changes were only significant for sites S2 and S3. The absence of clear trends with 

depth for OM, C, N and C:N ratio might be due to several factors. The high horizontal 

heterogeneity existing in all sites difficult the appreciation of a clear pattern with depth. All 

vertical profiles presented a number of “peaks and valleys” that could be due to seasonal or 

interannual variability. In addition, resuspension events, bioturbation and reworking of the 

sediment surface due to very intense “marisqueo” could mixed the sediment avoiding the 

formation of clear trends with depth. Flat vertical profiles of OM, C, N and C:N have been 

observed in previous studies in the Cadiz Bay and in other saltmarshes (Establier et al. 1984, 

Gebrehiwet et al. 2008). Carbonate content increased significantly with depth for sites S1 

and S2 but not site S3 and S4, probably because the cores were shorter for these two sites 

(Fig.15). Carbonate content in the Cadiz bay is of biogenic origin (Muñoz & Sanchez 

Lamadrid 1994). The increase with depth could be due to a lower sedimentation of this 

biogenic material in recent years which might be connected with a general decrease of 

productivity in Cadiz Bay as suggested above to explain the increase of OM with depth. The 

balance between dissolution and precipitation of carbonate mediated by the biological 

activity might play a role in the observed trend (Corzo et al. 2005). 

 

 

 

4.2 Possible sources of organic matter  

To help with the identification of potential organic matter sources to intertidal 

sediments within the study area, biplots of δ
13C against CN ratios and δ15N values of the 

sediments and plant tissues collected nearby to the cores are presented (Fig. 20 and 21). S1, 
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S2, S3 and S4 have more or less the same values of δ
13C and δ15N. It means that our samples 

have more or less the same sources. The δ
13C and δ15N content of Spartina maritima and 

Algae are closer to the content of the areas than Zostera noltii. It means that our samples are 

more affected by those materials. However, Zostera noltii is not far away from the rest (fig. 

20). 

 

The graph that show C:Nratio against δ
13C shows that Z. noltii may affect more than 

S. maritima the sampling site but algae values are closer to the rest (fig 21).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 20: Plot of δ15N against δ13C for our sampling values.  
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To help identify sources at the level of the whole bay, we combined the data collected in 

this study with a database of C and N contents and isotope values maintained in EDEA (data 

provided by numerous projects, see acknowledgements). Most of the possible sources 

(invertebrates, epiphytes, seagrasses, macroalgae, SPM, S. maritima, Salicornia sp., and 

sediment from south of the bay) have been plotted in a bag plot. Firstly, δ13C has been plotted 

against δ15N and the other graph shows the relationship between δ13C and C:N ratio. Those 

graph showed that all the possible sources appear more or less at the same part of the plot but 

Salicornia sp (The most terrestrial plant) was separated from the rest (fig: 22).  

 

The δ15N content does not vary a lot because the organic matter of those sites has the 

same sources (fig 22). The SPM is formed by all the bay compounds as it is shown above.  S. 

maritima is different from the rest sea plants because it has C4 photosynthetic pathway and 

the way to capture the C is slightly different. Salicornia sp. is a terrestrial plant with C3 

photosynthetic pathway and has more depletion of δ13C. The macroalgae affects the 

composition of the suspended particulate matter (SPM). The sediments from our sampling site 

are mainly affected by macroalgae and SPM.  

 

The C:N ratio has been plotted against δ
13C (fig 22 B). The macroalgae affect the 

SPM. The S. maritima has been separated from the rest vegetation because of its 

Fig 21: Plot of C/N ratio against δ13C values for our samples.  
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photosynthetic pathway. The sediments from North (our study site) and south have different 

depletion of δ13C. It could be because in the south there are more epiphytes than in our study 

area and at this the terrestrial affection is greater. However, the sampled sediment is mainly 

affected by SPM and macroalgae as we deduced above.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Estimation of long-term OM burial rates 

 

Using equation 1, long-term OM burial rates (g m-2 y-1) can be estimated from 

measurements of sediment OM concentration, Ci (kg m-3) multiplied by a suitable estimation 

of sediment accretion rates, ω (m y-1) (Middelburg et al. 2004). In this study (an intertidal 

transect on Trocadero island, N. Cadiz Inner Bay), no significant differences in OM 

concentration were found between areas or with depth, thus to calculate burial rates the 

mean value for all areas was used (68 kg m-3). For organic C and N, the mean value of S1 

and S2 (Z. noltii, 6.9 kg C m-3, 1.0 kg N m-3) and the mean of S3 and S4 (S. maritima, 10.0 

kg C m-3, 1.5 kg N m-3) were used in calculations. These values were comparable to 

previous extensive studies of sediment OM content for the whole of Cadiz Inner Bay 

(Establier et al., 1984). Thus, to upscale burial estimates to the whole bay we used the mean 

Fig 22: Values of δ15N against δ13C (right side) and C:N ratio  against 
δ13C (left side) for values from EDEA database.  
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of this study combined with the previously published values (assuming a dry bulk density of 

0.75 g-sed cm-3; OM = 23.4 kg m-3, 12.4 kg C m-3, 1.4 kg N m-3) 

The long-term sediment accretion rates for 3 points in the inner bay were previously 

published by Ligero et al., (2002); ranging from 0.16 to 0.27 cm y-1 in the south and north of 

the bay, respectively. These estimates were made by dating cores collected in sub-tidal areas 

(and the type of surface vegetation was not mentioned), thus they probably underestimate 

saltmarsh accretion rates. Still, the highest value was derived relatively close to the study 

transect, thus we used this value of 0.27 cm y-1 to upscale estimates from this study. At the 

scale of the bay, we use the range in accretion rates to provide the first, tentative estimate of 

OM burial for the bay. 

The burial rate for organic matter in our study site is estimated as 184 g OM m-2 y-1. 

For the Z. noltii habitat organic nutrient burial is estimated as 18.6 g C m-2 y-1 and 2.7 g N 

m-2 y-1, and in the saltmarsh as 27 g C m-2 y-1 and 4.1 g N m-2 y-1. At the scale of the bay 

areal burial rates are estimated to be between 73 – 123 g OM m-2 y-1, which represents 

organic C and N burial rates of between 15.6 – 26.4 g C m-2 y-1, and 2.1 – 3.5 g N m-2y-1, 

respectively. Thus, total annual C and N burial rates for the inner bay, which has an area of 

30 km2 (of which the intertidal area is about 13 km2), are estimated to be about 630 t-C y-1 

and 84 t-N y-1. 
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Fig 23: Points used to calculate the burial rate. The red inside the bay were used for sedimentation rate (Ligero et al., 
2002) and the rest to calculate organic matter, nitrogen and carbon content of sediment (Establier et al., 1984). 
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CONCLUSION 

 

The biogeochemical properties of sediments from the different habitats were affected 

by their position in the sea to land gradient and therefore their characteristic tidal height. 

Carbonate concentrations increased toward the sea (the Z. noltii habitat), and organic C and 

N tended to increase toward the land (the saltmarsh). Horizontal heterogeneity was high 

within each area, which probably hindered the observation of clear differences between 

habitats and changes of the biogeochemical properties with depth. The vertical profiles 

presented a number of “peaks and valleys” that may be due to inter-annual variability in 

benthic OM fluxes. On the other hand, the absence of clear trends with depth for most 

biogeochemical properties might be a consequence of a very intense mixing due to 

resuspension, bioturbation and reworking of surface sediments shell fishing activities. 

 

Organic matter sources were similar between the areas, suggesting mixing of the 

multiple inputs. Sediments did not have similar CN ratios and δ13C values to the 

macrophytes suggesting that a substantial fraction of accreted OM is derived from 

micoalgae (phytoplankton and microphytobenthos) and possibly macroalgae. Substantial 

transformation and recycling of macrophyte tissues may also help explain this result. More 

studies with different biomarkers may help to further confirm the magnitude of these 

different sources. 

 

C burial rates in the vegetated habitats were relatively close to the mean estimate for 

coastal shelf sediments (20 g C m-2 y-1), lower than the average for estuaries (50 g C m-2 y-1) 

and much below the average for vegetated habitats (120 g C m-2 y-1) (Nellemann et al., 

2010). Suggesting, vegetated habitats in Cadiz Bay may not function as such strong C sinks 

as would have been predicted. On the other hand, estimations of long-term accretion rates in 

each habitat may possibly increase this estimate (or at least give a more definite answer). 

Although, large changes in organic C were not observed with depth, if the below-ground 

biomass of the vegetated areas is considered, there appears to be a substantial “loss” of C 

and N from the sediments, which may represent high mineralisation rates. 

 

Overall, C and N burial within the Inner bay is estimated to be substantial, 630 t C y-

1 and 84 t N y-1, which for example, is more than the amount of C and N contained within 
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the dominant macrophyte beds, C. prolifera during spring-summer (524 t C and 45 t N, 

Morris et al. 2009) and much more than contained in the maximum bloom of green algae in 

winter (31 t C and 3.7 t N, Camarena-Gomez, M. T., pers. com.). 
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