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A bstract : A layer o f  compressible, rotating, couple-strc.ss fluifl heated and .soluted from below is considered. For the case o f stationary 
convection, the compressibility, stable solute gradient and rotation postpone the onset o f convection whereas the couple-stress viscosity postpones 
as well as hastens the onset o f  convection depending on rotation parameter. The case o f overstabilily is also studied wherein a sufficient condition 
for the non-existence o f overstability is found.
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1. Introduction
The theoretical and experimental results on thermal 
convection in a fluid layer, in the absence and pre.sence 
of rotation, have been given by Chandrasekhar [IJ. Veronis
[2] has in vestigated  the problem  o f  therm ohaline  
convection in a layer o f  fluid heated from below and 
subjected to a stable salinity gradient. Double-diffusive 
{e,g, thermosolutal) convection problems arise in oceano­
graphy, lim nology and engineering. Brakke [3] explained 
a double-diffusive instability that occurs when a solution 
of a slowly diffusing protein is layered over a denser 
solution o f  more rapidly diffusing sucrose. Nason e t  a l
[4] found that this instability, which is deleterious to 
certain biochemical separations, can be suppressed by 
rotation in the ultracentrifuge.

The theory o f  couple-stress fluid has been formulated 
by Stokes [5]. Walicki and Walicka [6] have modelled 
synovial fluid as a couple-stress fluid in human joints. 
One of the applications o f  couple-stress fluid is its use to 
the study o f the mechanisms o f lubrications o f  synovial 
joints, which has becom e the object o f  scientific research. 
A human joint is a dynamically loaded bearing which has 
articular cartilage as the bearing and synovial fluid as the 
lubricant. When a fluid is generated, squeeze-film  action 
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is capable o f  providing considerable protection to the 
cartilage surface. The shoulder, ankle, knee and hip joints 
are the loaded-bearing synovial joints o f  the human body  
and these joints have a low friction coefficient and 
negligible wear. Normal synovial fluid is a viscous, non- 
Newtonian fluid and is generally clear or yellow ish. Lin
[1] has studied the couple-stress effect on the squeeze  
film characteristics o f hemispherical bearings with reference 
to synovial joints. Walicki and Walicka [6] have studied 
the effects o f  couple-stresses and inertia effects on the 
characteristics o f  sq u eeze-film  behaviour in thrust 
curvilinear bearings with references to synovial joints. On 
the basis o f Stokes’ couple-stress fluid model, W alicki 
and Walicka [8] have made mathematical m odelling o f  
some biological bearings. Sharma e t  a l  [9] have studied 
a layer o f  couple-stress fluid permeated with suspended 
particles, heated from below. For thermal and thermosolutal 
convection problems, the Boussinesq approximation has 
been used, which is w ell justified  in the case o f  
incompressible fluids.

When the fluids are com pressible, the equations 
governing the system  becom e quite complicated. Spiegel 
and Veronis [10] have sim plified the set o f  equations 
governing t h t  flow  o f  com pressible fluids under the
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assumption that the depth o f  the fluid layer is much 
smaller than the scale height as defined by them, if only 
motions o f  infinitesimal amplitude are considered. Sharma 
f l l ]  has studied the thermal instability in compressible 
fluids in presence o f  rotation and magnetic field.

Keeping in mind the importance o f  non-Newtonian 
fluids, theimosolutal convection and compressibility, the 
present paper considers a layer o f  compressible, rotating, 
couple-stress fluid heated and soluted from below.

2. Perturbation equations
Here, we consider an infinite, horizontal, compressible, 
couple-stress fluid layer o f  thickness d  bounded by the 
planes z = 0 and z  — d . This layer is heated and soluted 
from b elow  so  that uniform  tem perature gradient 
/3(=|efT/</z|) and u n iform  so lu te  grad ien t  

|dC /dz|)are maintained and the layer is acted on by 
uniform rotation i2 (0 ,0 ,i2 )  and gravity field .

Spiegel and Veronis [10] defined /  as any one o f  the 
state variables (pressure (p), density {p )  or temperature 
( T ) )  and expressed these in the form

J {x ,y ,z .t) = /«, + /o(z) + f \ x  z. /), (1)

where is the constant space average o f  /  ^  is the 
variation in the absence o f  motion and / '  is the fluctuation 
resulting from motion.

The initial state is therefore a state in which the 
density, pressure, temperature, solute concentration and 
velocity at any point in the fluid are given by

P  = A z). P  = P(z), T  =  n z \  C  ^  C  (z), V = 0

respectively, where 

T iz)  = To -  A .

C =  Co -  fi^Z,

d

P iz )  -  Pm -  g  J ( P *  +  PoVfe.
0

r„) +a’ i C  -  Cm) +

(2)

P(.z) =  Pm U -  O m iT  

K J p  -  Pm)). ( 3 )

Then the linearized perturbation equations, relevant to 
the problem (Stokes [7], Veronis [2], Sharma [11]), are

^  = — — V ^ - g { f x e - c x Y )
O t

+  1 V -

V.v =  0,

P

9̂ + 2(vxi2)

d e
d t

A . m' + kV^0 ,

d r
d t

=  f i w  +  K 'V ^ Y .

(4)

(5)

(6) 

(7 )

where 0, y, v {u , v, w), Sp  and S p  denote respectively the 
perturbations in temperature T, solute concentration C, 
fluid velocity (0,0,0), pressure p and density />. u  p*, Cp, 
K  and K ' stand for kinematic viscosity, couple-stress 
viscosity, specific heat at constant pressure, thermal 
diffusivity and solute diffusivity respectively. The equation 
o f state

p  =  PmU  -  a { T  -  T „) +  a '(C  -  C„)], (8)
contains the thermal coefficient o f  expansion a  and an 
analogous solute coefficient a \  as the density primarily 
depends on temperature and solute concentration. The 
change in density Sp^ caused by the j>erturbations B and 
% is given by

S p  :=̂ -  i a B  -  a ’y), (9)
and has been used in writing eq. (4).

W riting the scalar com ponents o f  eq. (4) and 
eliminating u ,v, ^  between them, by using eq. (5), we 
obtain

jel
d t  1̂ dx^ dy^

|(a e -a V )

-f V -  + 2jC2 ^  = 0
d z

eqs. (4)—(7) also yield

ac d w
d z

(= a \  say), K„
■ m

( 10)

(11)

(12)
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|y = ^'
d t

w (13)

Here, we consider the case in which both the boundaries 
arc free and the temperatures, solute concentrations at the 
hoiindaries are kept constant. Then the boundary conditions 
appropriate to the problem are

w = " 2” ~ = 0 , = 0 a t z  = 0 and
dz  o z

z  ^  d . (14|

3. The dispersion relation i
Analyzing the disturbances into normal modes, w c assum  ̂
that the perturbation quantities are of the form I

iw, a  r. a  i m z x  s i z x  n z \  z(z)i J
expO' ĵcJc +  i k y y  +  n t \  ( I S y

where kx̂  k-y are wave numbers along x - and y-directions 
respectively, is the resultant wave number
and n is, in general, a complex constant.

Putting X =  x*d, y  =  y*d, z  =  Z*d, D  = , a  =  kd^
d z

nd^

Eliminating O, Z  between cqs. (16>-(I9), we obtain 

or(D ^ - a ^ X D ^  _ p ,ct) (D ^ - a ^ - q a )

x [{ l -F (£ > ^  - a ^ ) - e r ) ] W  -

x ( D ^ -a^  -9<T)[{1 -  F ( D -  - a ^ ) l ( D ^ - a ^ ) - a ) \  

■x̂ W +  S a ^ (D ^  -  -  p ^ a )

= \ \ - F ( D ' ^  - a ^ ) - a ) ]

- T ^ { D ^ - a ^  -  p ^ a X D ^ - a ~ - q n ) D ^ W  

=  (D ^  - a }  -  p^crX D ^  -a^  - q a )

x {l-F (D ^  - a ^ i ^ W , (20)

where is the Rayleigh number and
VK

ga'P'd"^
S  —------7  - - is the solute Rayleigh number.VK J O

a  = and using expression (15), eqs. (10>-(13) in expression (15), the boundary conditions (14) in
non-dimensional form become

+ a ^ ( a G - a T )  +  T \ '^ d  D Z  

= [1 -  f (d  ̂-  )](d  ̂-  ) ÎV,

-  PiCr)0 w

(D ^  _ «2 _ q c r ) r  = — & ~ w .

non-dimensional form, transform to
W  = D ^W  = 0 ,  = 0, T’ = 0, OZ = 0 at z = O

and z = 1 . (2 1 )
Using the boundary conditions (21), it can be shown

(16) the help of eqs. (16)-(19) that all the even order 
derivatives of W  must vanish at z = 0 and 1. Hence, the 
proper solution of W  characterizing the lowest mode is

(17) ^  sin ^  ̂ (22)
where Wo is a constant. Substituting the proper solution 
(2 2 ) in eq. (20), we obtain the dispersion relation

^ - F ( D ^ - a ^ ) ) t D ^ - a ^ ) - a \ z  =  - ^ ^ D W ,
d

(19)

, V V
where pj =  — is the Prandtl number, ^ = —  is the

^  2 4 ^
Schmidt number, is the Taylor number,

G = is the dim ensionless com pressibility parameter
S m

and F  =  —H - —  is  the d im en sion less couple-stress

Viscosity. We shall suppress the stars ( • )  in distances for 
convenience hereafter.

F, = 0 + -*)0 + -̂  + iP\0^i )0 + -̂  + *90̂ 1)

X [{1 + F, (1 + JC)}(1 + a:) + itr, ]

+ S ix ( l + X + IP|<T| )

X [{1 + F| (1 + a:)Xi + itTj ]

+ T| (1 + x: + ipi<T\ )(l + JC + i q ^ i )

+ (l + x + ip,<T,)(l + x + i^ori)

X [{1 + ̂ 1 (1 + *<7l 1
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where ---- r
a  ^

X (l + F, (1 + x)](l + x)^ /jc(I +  X +  iVftT,)

X [{l +  F , (1 +  x)](l + X ) + /<T, ] (23)
T

F\ = Ti =  and5 >-

4. The stationary convection
For the stationary convection, <r = 0 and eq, (23) reduces
to

j(l + x>ni + F, (1 + x } f

+ S, x{l + F, (1 + x)}+ 7’, /x[{l + F, (1 + X ) } ] . (24)
Eq. (24) expresses the modified Rayleigh number R i as a 
function of the dimensionless wave number x  and the 
parameters G, F|, Si and T \, For fixed F i, S] and T \, let 
G  (accounting for the compressibility effects) also be 
kept fixed. Then we find that

(25)

where R̂ . and R^ denote respectively the critical Rayleigh 
numbers in the presence and absence of compressibility. 
G >1 is relevant here. The cases G <1 and G = 1 
correspond to negative and infinite values of the critical 
Rayleigh numbers in the presence of compressibility, which 
are not relevant in the present study. The effect of 
compressibility is, therefore, to postpone the onset of 
thermosolutal convection and so has a stabilizing effect.
Eq. (24) yields

d S  i ^  gT- 1

dR i
d 7 \ G -1 x[{1 + F,(1 + x)B .

(26)

(27)

which imply that stable solute gradient and rotation have 
stabilizing effects on the thermosolutal convection. Eq. 
(24) also yields

dR^
dFt

Jc{l+F|(l + Ji:)f. (28)
It is evident from eq. (28) that the couple-stress viscosity 
has a stabilizing effect if .

Ti < (l+.x)5 {1 + F, (1 + x ) } \  (29)
and has a destabilizing effect also if

r, XI+JC)’ (1 + F, (1+JC)}2. (30^
The couple-stress viscosity thus, has a dual role on the 
thermosolutal convection in compressible, rotating, couple- 
stress fluid. It has a stabilizing effect if 7'i<(l + x y  (j 
+ F|(l + jc)}̂ , and also in the absence of rotation (T,
0) whereas the couple-stress viscosity has a destabilizing 
effect if r, > (1 + x:) {̂l -f F,(l+jr)}2.

5. The case of overstability
Here, we discuss the possibility of whether instability 
may occur as an overstability. We have put icTi = ct/tt* 
in eq. (23), it being remembered that cr may be complex. 
Since for overstability, we wish to determine the critical 
Rayleigh number for the onset of instability, a state of 
pure oscillations, it suffices to find conditions for which 
eq. (23) will admit of solutions with cT\ real. Equating 
real and imaginary parts of eq. (23) and eliminating 
between them, we obtain

Ac? + B c\ + G = 0, iM )

where we have put C| ==cT|̂  cr = 1 + x and
A = q ^ o r-(\ + /?! + PiFiCtX

B  = cr^(l + Pi piF \O t) + q ^ a \ \  + F\Ot){p\ + 1) 
+ q ^ a ^ F iG  + F,a){2 p,(l + Fa)}
+ 5|Or(cr~ l)(pi q) + T iq^oc\{p i -  1 ) + piFitrj,

(32)
C = ar̂ (l 4- FiO)2(i + p, + piF,c^ 4- 5,a^\cr- 1) 

X (1 + F i a y i p i  -  g) + T,cr^{(p, -  1 ) + p,F,a}.

As CTx is real for overstability, the two values of Cj = (a?) 
are positive. Eq. (31) is quadratic in c \ and does not 
involve any of its roots to be positive if

Pi > 1 and Pi > q,

if K  <  V and k  < (33)
for then the coefficients of cĵ , Ci and the constant term 
are all positive and there is no change of sign in eq. 
(31). K <  min {v, fc'] is, therefore, a sufficient condition 
for the non-existence of overstability, the violation of 
which does not necessarily imply occurrence of 
overstability.

6. Condiision
Stommel and Fedorov fl2] and Linden (13] have remarketl 
that the length scales characteristic of double diffusive 
convecting layers in the ocean may be sufficiently large 
that the ocean may be sufficiently laige that the E arth ’s
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romtion might be important in their formation. Moreover, 
the rotation of the Earth distorts the boundaries of a 
hexagonal convection cell in a fluid through a porous 
medium and distortion plays an important role in the 
extraction of energy in the geothermal regions.

Couple-stress fluid is an important and useful non̂  
Newtonian fluid. Due to importance of non-Newtoniaflt 
fluids, compressibility and thermosolutal convection, a 
layer of compressible, couple-stress fluid heated andi 
soluted from belo\v is studied. During the study it i |  
found that presence of compressibility postpones the onse| 
of convection. The presence of rotation and the stabl<| 
solute gradient also postpones the onset of convection, lii 
the absence of rotation as well as stable solute gradient 
the Rayleigh number increases with the increase in coupl^ 
stress parameters thus postpones the onset of convcctioni

The couple stress viscosity postpones as well as hastens 
the onset of convection depending on rotation parameter. 
If Ti < (1 + ^P{1 + ^i(l it has a stabilizing
effect, whereas it has a destabilizing effect if T| > (1 -f 
r)̂ {l + Fi(l -f In the absence of rotation, couple
stress viscosity always postpone the onset of thermosolutal 
convection in the presence of compressibility. Overstable

comes into play and sufficient condition for the non­
existence of overstability is found. For /r < and fc <  

K \ overstability cannot occur and the principle of exchange 
of stabilities is valid. In the absence of couple stress 
viscosity = 0 ) the sufficient condition for non-existence 
of overstability are same as in its presence.
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