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Abstract : The simple theory is developed to derive the thermodynamic properties o f the semiclassical fluid o f hard convex body (HCB) 
molecules interacting via the hard Gaussian overlap potential. Analytic expressions are given and calculations are made for the thermodynamic 
properties and virial coefficients for the HCB fluids, l l i e  agreement with the Montc-Carlo data is good in all cases. The first order quantum corrections 
are also studied. The quantum effects increase with increase o f  packing fraction and depends on the shape parameter K.
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1. In troduction

rhe purpose of the present work is to develop a theory 
for c a lc u la tin g  th e  q u an tu m  c o rre c tio n s  to  the 
thermodynamic properties o f fluid o f hard-body molecules, 
which is of current interest, because many o f the properties 
of real fluids are determined by the repulsive interactions 
between their molecules, which can be modelled by 
means of hard bodies o f sim ilar shapie [1]. Moreover, 
such hard body fluids are most convenient reference 
systems in framing a perturbation theory for real fluids 
of non-spherical molecules. The simplest hard body fluids 
are hard convex body (HCB) fluids, such as hard ellipsoid 
of revolution (HER) and hard spherocyUnder (HSC) and 
hard non-convex body fluid Le. fused hard sphere and 
hard dumbbell (HDB) fluids. Considerable progress has 
been made in recen t years  in u n d erstand ing  the 
thermodynamic properties o f  the classical hard-body fluids 
[2-6], because they can model the shape o f real molecules.
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Although the influence o f non-sphericity in the quantum  
effect is o f considerable interest, it has not been 
in v estig a ted  system atica lly . U sing  the  d e co u p lin g  
approximation, Singh et al [4] have investigated the 
quantum effects for the HER fluid.

In this paper, we investigate the quantum corrections 
to the thermodynamic properties of the hard-body fluids 
at higher temperature. The usual procedure is based on 
the Hemmer-Jancovici (HJ) method [7,8] in which the 
expansion of the physical properties o f interest is made 
about the classical value in term of the Ursell function. 
This approach has been extensively used for the hard 
sphere fluid in the semiclassical limit [9]. It may be 
extended to investigate the thermodynamic properties o f 
the HCB fluid.

In the present paper, we employ the simple m ethod to 
investigate the quantum corrections to the therm odynam ic 
properties o f the HCB fluids.
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In Section  2, wc d iscuss the basic theory  for 
calculating the therinodynam ic properties o f the HCB 
fluids in the scmiclassical limit. The virial coefficient o f 
the scm iclassical HCB lluids are discussed in Section 3. 
Section 4 is confined to the classical HCB fluids. In 
Section 5, we derive expressions for the first order 
quantum  con eel ion to the free energy, equation o f state 
and virial coefficients. The results are discussed there. 
The concluding remarks are given in Section 6.

2. Basic theory
We consider a m olecular fluid o f the hard convex body 
(HCB) molecules, which interact via the hard CJaussian 
overlap (HGO) potential defined as 

u(raJiOh) =  r <  cKcoiOhy’̂

= 0, r  > cKcoiOh); (1)

where r  = |ti -  T2| and represents the orientation o f 
molecule i. Here, a(coiOh) is the distance o f closest 
approach between two m olecules and is expressed in 
terms of the Euler angles flO]

-  CTo\ I ~  +  cos-O z

-  2;i^os6/jCos6^cos^i2)

X (1 -  ; î cos2<9,2)-’T"". (2)
Here = 2^ is the width o f a m olecule and the shape 
param eter is defined as

l ) ( / ^ +  1), (3)
K  being the length-to-breadth ratio o f the m olecule /.c. K  
= 2aI2b, This model is valid for oblate (A* < 1) as well 
as prolate (K  > \)  shape o f arbitrary sym m etry.

The quantity o f  central im portance for constructing 
the theory o f quantum  fluid is the Slater sum  [4,9]. In 
the scm iclassical lim it {i.e. at high tem perature) w here 
the quantum  effects are sm all, the S later sum o f the 
HCB fluid in analogy to the hard sphere (H S) fluid [9] 
m ay be written as [11]

ota- ) = 1 + t /;"  iXiXj  )

where

..... ^A )̂ =  exp| - p ^ u j X j X j )
i < J

(4)

(5)

is the Boltzm ann factor and is a function w hich
m easures the deviation from  the classical behaviour. L ike 
the HS fluid. o f  the HCB fluid can be expressed in 
term s o f the ‘m odified’ Ursell functions . Thus,

•<j

t <  j < k  i < ^ j  k < l

Substituting eq. (6) in eq. (4), we obtain the expression 
for Wfs!

..... jcyv) = exp| ~ 0S'.> *(X jX ,)

1 + ( x , x j  ) U^'  (x^x^x,  ) + ...
•<J t <  j < k

(7)

The can, in principle, be found from  the solution ol 
the quantum  m echanical 1-body problem . Unfortunately, 
the actual calculation is too involved to be feasible. It is 
only for system  o f  hard spheres [9] that (/A” ^7'/'
have been evaluated. The first o rder quantum  correction 
com es only for U 2 ■ analogous way, f/J*
HCB fluid can be written as

U2' (x^X2)^U^\ ra)^C02)

= ”"ex p [-(2 7 r/A “ )(r ))^]+ 0(A ^) ^

w here ci(x) is the D irac r^^function.

In quantum  statistical m echanics, the chem cial potential 
/ /  can be written as

f5fd = “'ln[(2A/+i/0/v]^

w here Q/v is the canonical partition function o f molecular 
fluid o f A/ m olecules, defined as

= [ n !A-’V  f  ^ 2 . ^ / v ) f l A  (10)
f=»l

w here
dxi =  iA7t^^dr,da),. (H)

Substituting eqs. (7) and (10) in eq. (9), one obtains an 
expression for the chem ical potential o f  the HCB fluid. 
The result is

P n  =  - ( l / 2 ) p j d r  <

+ +<KA^)’

w here and respectively, the chemical
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potential and pair distribution function (PDF) o f  the 
classical HCB fluid and p  = N /V  is the number density 

is the total number o f m olecules in volume V). Here

< (•••) = ( 4 n y ^ jd a ) i jd Q i2 ( . . .} . (13)

In deriving eq. ( 12 ), the use has been made o f the
relation

= 0 ld N ^ \p ^ g % ix ^ X 2 ) \

(We drop the subscript N  from now onwards in thf 
paper)

Other thermodynamic properties can be obtained from 
the chmical potential. Thus, the Helmholtz free energy is 
given by

PA/N =  / N ) - ( l / 2 ) p j  dr

{ g ‘̂ ix^X2)Ui”ix,X2))^^^^^ +0(A 2) (15)

and the equation o f  state is

P P / P ^ ( P P ^ / p ) - i U 2 ) p j d r

(x,JC2)+pd|f‘ (jt,JC2)/dp] t^2'(-^l-*2))^^ , (16)

where and are, respectively, the Helmholtz free 
energy and pressure o f  the classical HCB fluid.

3. Virial equation  o f  state

In the low density limit, the equation o f  state is given by

n*2
(17)

where is the n-th viral coefficient. The PDF g^(,xiX2 ) 
may be expanded in powers o f  p  [ 12 ]

S'(jc,jc2) =  cxp[-/3K(j:,2r2)] \  + ' ^ p ”a % {x ,X j^
It t̂

(18)

where the coefincients <ĵ (jc,JC2) is the cluster integral o f  
the classical molecular fluid, involving n  field points and 
two base pcHnts. Thus,

« r(^ i- '2 )  = J ( / ‘'(^l-tf3)/'^(-*2-«3))^^ drj , 

where

/ '  ( X i X j ) = exp [- j8m(X| ) ] -1  

is the Mayer function.

When eq. (18) is substituted in eq. (16), the seci 
and third virial coefficient can be written as

^2 = -(l/2)J(exp[-^M {x,Jf2))72"(->f|^2))^^^ ^

(19)

(20)

(21)
t,

(14  ̂ ^3 = -  f(exp[-i8M(X|X2)]cJ,‘ (jr|jr2)t/“ (Arjjr2 )) d r
C j  ' f 0h€0^

(22)

where and are, respectively, the second and third 
viral coefficient for the classical molecular fluid.

4. Therm odynam ics o f  classical hard convex-body  
fluids

The equation o f state for classical HCB fluid may be 
written as

P P ^  / p - l - i l / 6 ) / i p j d r

( r g ' (r(o,t02 )(3M(ro>|ft>2

= l + ( 22r / 3 ) p( r r ( £ 0 , 0 ) 2 ) . ( 2 3 )

This can be expressed in the form [5]

P P ^  / p  =  \ +  ( l / 6 ) p ( S  +  )cr“''g'*'' (<r*'') ,  (24)

whre si the averaged contact value o f  the classical
PDF and .v"'' = <r.a>, whre the angular bracket denotes 
the average and u is the unit vector normal to the 
surface at the contact point. Here 5  is the surface o f  the 
molecule and R  its mean radius o f  curvature.

Eq. (24) can be solved to give the M aeso-Solana  
(M S) equation o f state o f  the HCB fluid in the form [5]

p p * ^ /p  = l + a { p p ^ s / p - i ) > (25)

where is the pressure o f  the classical HS fluid,
given by f l3 ]

^ f & / p - l  =  477g^(or„c) =  2 n ( 2 - r i ) / a - v f  ■ (26)

Here, a  is the shape factor deflned as [2J

or =  R S /3 V „  (27)
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and rf -  p V ^  is the packing fraction, where V„, is the 
volume o f  a molecule. We assume that the hard sphere 
with volume = ( ; r /6)crHs equal to that o f  the HCB 
molecule.
Using the relation

(28)

the excess free energy for the classical HCB fluid is 
given by

/ i 4 £ x /^  = t7 (4 -3 7 7 ) /( l- r7 )^ ]a . (29)

Using the decoupling approximation [14], Singh-Singh- 
Sinha (SSS) [4] expression for the equation o f  state and 
excess free energy for the classical HCB fluid have been 
derived as

p  Ip  = 1 + 1/3 p^s/p - i k  (•')

and

N  = 1 + 1 ( 4  -  3rj)/(l (jc) .

where

- ( 1 /4 0 ) ;^ '* - ( 1 /1 12);ir®

(31)

(32)

Eqs. (25) and (30) are identical in form. They differ only 
in coefficients cx and Fi(jc).

Expanding eq. (25) in power o f  p  and equating it to 
the virial equation o f  state, w e obtain expression for B 2  

and o f  the HCB as

(33a)

«|=IOofV'i. (33b)

where V„ is the volume o f  a molecule. We assume that 
the hard spheres with volume = (n : /6)o ’Hs equal to 
that o f  the HCB molecule.

The equation o f  state o f  the classical HCB fluid is 
given by Boublik [2,3] using the improved scaled paritcle 
theory as

p p ^ / p ^ d - r p - *  +3cct7(1-T7)“̂  +a^rj^{3-T]Xl~riy^-
(34)

This gives the excess ftee energy of the classical HCB 
fluid

A 4 |x /A r =  { a ^ - l ) l n 0 - ? ? )

+ (3 a -a ^ )( l~ i7 )  *n -a^ (l-?7) ^ ~ 3 a .  (35)

Expanding eq. (34) in power o f  p ,  expressions for 
and B l  in this case, are given by [2 ]

= ( l  +  3a)V ^ (36a)

B l  = ( H - 6 a  + 3 a ^ )V ^ . (36b)

Comparing eqs. (33) and (36), we find that both B^ and 
B3 differ. However, both eqs. (33) and (36) give exact 
results for the hard sphere (car = 1).

For the geometry o f  the HER, cc is obtained from eq.
(27). The theory developed for the HER fluid can be 
employed for the hard dumbbel (H D D B) fluid. For this, 
it is assumed that cThq  ̂ ~  ^ her and Vhdr — Î her* This 
gives

(n  /  6)CThdb t  + 3 1 * /  2 - 1  /  2 ] = (w /  6) if

(30) leading to

AT = l + 3 1 * / 2 - l * - ’ / 2 . (37)

where 1* = 1/cr is the site-site elongation. For homo- 
nuclear diatomic fluid, the parameter c t is explicitly 
given by [2].

a  = ( l + l*)(2 + l* )/(2  +  3 1 * - l * ^ ) . (38)

The values o f  S 3 (or the classical
HER fluid obtained under different methods are compared 
with the ‘exact’ result [2] in Table 1 for different, values 
o f  AT. They increase with increase o f  AT. The agreement 
is good except for large value o f  K . The results obtained 
from eq. (36) are better than those obtained from eq. 
(33).

The values o f  equation o f  state, j p  for the
classical HER fluid obtained under different conditions 
are compared with Monte-Carlo (M C) [2,3] values in 
Table 2 for different K , They are comparable at low 
values o f  rj and are in gocxl agreement with the MC

Ik b lc  1. Virial coefFicients o f  classical prolate HER fluid.

K B i f V i
Present 

[eq. (33a)J

Boublik 

[eq. (36a)]

Exact Present 

(eq. (33b)j]

Boublik 

[eq. (36b)l

Exact

1.25 4.071 4.053 4.053 10.178 10.215 10.18

1.50 4.238 4.178 4.178 10.595 10.724 10.69

2.00 4.718 4.538 4.538 11.795 12.250 12.09

2.75 5.614 5.211 5.211 14.036 15.331 14.81

3.00 5.938 5.454 5.454 14.846 16.519 15.85
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Table 2. Equation of state classical
of'A"

Tbble 3. Equation of state for classical hard dumbbell fluid for different
values o f 1 ♦.

MS

e q .(25)

sss
e q .(30)

Boublik 

eq. (34)

MC

1.25

2.00

2.75

3.00

0.207

0.366

0.430

0.471
0.510

0.197

0.371

0.487

0.550

0.596

0.190
0.335

0.427
0.479

0.545
0.184

0.253

0.357
0.453

0.545

2.515
5.777

8.421

10.903
14.148

2.618
6.729

13.875
21.645

30.936

2.817
6.924

11.022

15-462

24.540
2.826

4.148

7.551
13-713

25.899

2.513
5.772

8.413

10.893
14.134

2.606
6.685

13.776

21.487

30.706

2.797
6.266

10.912

15.303

24.282
2.805

4.113

7.477
13.571

25.619

2.515
5.792

8.454

10.955
14.229

2.619
6.931

14.639

23.148

33.385

2.830
6.697

12.134

17.407

28.421
2.843

4,288

8.194
15.610

30-861

2.53 

5.72

8.53 

11.10 

14.40

2.65

7.05

14.00 

21.90 

31.50

2.76
6.26

11.00 

15.30 

24.70
2.84

4.13

7.34
13-90

24.80

data. At high density, Boublik results arc not so good. 
One may employ the MS or SSS expression to obtain 
P ! p  for the classical HER fluid.

Next, we calculate the equation o f state p  / p  for
the classical HDB fluid using different methods. They 
are compared with the MC data [2] in Table 3 for 
different o f 1’*'. They are in good agreement for low 
values of ij and/or low values o f 1*. However Boublik 
method is relatively good for higher value o f t] and/or 
higher value o f  1 *.

In the following section, we employ the MS theory to 
estimate tha thermodynamics o f  the semiclassical hard- 
body fluids.

Quantum correction to thermodynamics

Substituting eq. (8) in eq. (15), the first order quantum 
correction to the free energy of the HCB fluid is given 
by

n MS

c q .(25)

SSS 

e q .(30)

Boublik 

c q .(34)

MC

0.2 0.1047 1.563 1.566 1.562 1.56

0.2094 2.546 2.552 2.545 2.59

0.3142 4.345 4.359 4.352 4.45

0.4187 7.876 7.903 7.906 8.02

0.4712 10.924 10.964 10.979 11.17

0.4 0,1047 1.593 1.591 1.588 1.59

0.2094 2.626 2.623 2.626 2.64

0.3142 4.519 4.512 4.549 4.59
0.4189 8.233 8.218 8.355 8.42

0.4712 11.439 11.418 11.666 11.67

0.6 0.1047 1.642 1.619 1.631 1.63
0.2094 2.761 2.697 2.765 2.78

0.3142 4.812 4.674 4.892 4.95
0.4189 8.836 8.551 9.150 9.23

0.4712 12.309 11.829 12.874 12.87
0.8 0.1047 1.717 1.639 1.699 1.70

0.2094 2.967 2.754 2.984 3.01

0.3142 5.257 4-797 5.438 5.48
0.4189 9.751 8.804 10.424 10.54

0.4712 13.630 12.263 14.824 14.88
l.O 0.1047 1.830 1.647 1.804 1.79

0.2094 3-276 2.776 3.330 3.36
0.3142 5.927 4.844 6.314 6.40
0.4189 11.126 8.901 12.497 12.64

0.4712 15.615 12.404 18.017 18.06

It can be expressed in the form [5]

P ( A - A ^ ) I n  = (l/2<y2))(S + 4nf?^)g“ ''(cr*'')A. (40)
For the hard sphere (HS) molecules with diameter 
eq. (40) gives [9]

P(^HS ~  ^ /V 2]|p< T ^gH s(^H D )^ '
If we consider the HS with equal molar volum e  
V „ - { n / 6 ) a ^ s  o f the HCB molecule and at the same 
density p ,  then from eqs. (40) and (41), we get

(a  — ) /(Ah5 — A^s )~  ((112)(5 + AitR^) / JtG^  )

x(g“ ''«T"'')/g&s(‘THs)). (42)
This can be expressed as

(a -  A*" -  A&s h  (l/2 )(cr +  ((4 /3)«R " /  )

x(aHs/2«)(g“ ''(a‘’')/gre(o^Hs)). (43)
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If we approximate cr̂ î  » cr*'" [5], then 

( ^ H s ) / ^ hs ^^hs ))

= (a"*'' /2 / f ) ( g “ ''(tT * '')/^{^s«^H s))=  1 ( ^ )
and

(l/2)(a + ((4/3)?z«’'/V „)= a  (45)
which is accurate for the HCB fluid with not too large 
values of a . So the final form of the free energy, correct 
to the first order quantum correction, is given by

A  — }• ( 4 6 )

When eq. (41) is used, we get

p A / N ^ p A ^  I N  +  3 - j2 a r ) g (oths)(A/ cths) . (47)
where Ohs is the effective diameter of the HS molecule 
and is given by cr„s = AT̂'"̂cTo and gHs(<^Hs) 
radial distribution function (RDF) of the classical HS 
fluid, given by [1 2 ]

«Hs(«^Hs) = 0 -^ 7/2)/(l-r7)''> (48)
where

Tj =  (n / 6)pfT^s = i^ f  €i)p K a l .

Finally, eq. (47) can be expressed as

/34 /  W = (/S4^ /  A() + A,* (A /  CTo).
where

A* = 3 V 2 ( a /X * 'b ^ ( I  -> 7 /2 )/(1 -7 J)^ ] .

(49)

(50)

Using eq. (16), the equation of state of the HCB fluid, 
correct to the first order quantum correction, is given by

P P / p  =  i P P ^ ! p ) + P * i A / a ^ ) , (51)
where

P* +  (52)
When eq. (25) is used, eqs. (49) and (51) can be 
rewritten as

and
A4/AT = t  + (l/2V 2)0/8aH s)](A 4‘̂ /W) (53)

I

^ P /p  =  ̂+ (l/2V2)(d/acrHs)](^/’‘̂ /p ). (54)

Thus, the leading quantum correction to the thermo* 
dynamic properties of the HCB fluid like those of the 
HS fluid [9], can be obtained by replacing the actual

diameter cfUs by an effective diameter (Ohs + A),
provided eq. (25) is used.

When eq. (17) is substituted in eq. (51), we obtain 
expressions for the first few virial coefficient of the 
semiclassical HCB fluid as

^2  =  f il  [l +  ^  /  2 V2 )(A /  <r HS ) ] .  

B 3 = f l j [ l  +  (3 /2 )(A /< T H s)] .

(55)

(56)

where B 2 and are given by eqs. (33a) and (33b) 
resfiectively. Eqs. (55) and (56) can also be expressed as

B„ =[l + (  ̂/ 2 7 2 )0 /3cTHs)fc . (57)

We assume that this theory holds also for the hard non- 
convex body fluid.

The reduced virial coefficients and
J?3 for the HER fluid are shown in Figure 1 as
a function of K  for AJoq = 0.0 and 0.1. AJcfi) = 0.0 
corresponds to the classical value. We find that the virial 
coefficients are minimum at /C = 1.0 and increase as K  
deviates from unity.

Figure 1. The reduced virial coeffic ients B 2 and o f  the HER fluid as a 
function o f  K  at =  0 .0  and 0 .1. The thick line represents ^Joq «  0.1 and
the dotted line *  0 .0 .

The values of the first order coefficients A* and P* 
of the HER fluid reported in Table 4 show that they 
decrease first with increase of K  and then begins to 
increase for K  ^ 2.0. Further, they increase with the 
increase of packing fraction tj.

The excess free energy f i A ^ f N  and equation of state 
p P I p  o f  the HER fluid are reported in shown in Hgures 
2 and 3, respectively, as a function of AT at = 0.1 and
0.3 for AJOo ^  0.0 and 0 .1 . These figures show that the
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Table 4.

K\ n-^

1/3 

1/2 
2/3 

i 0 
1 5 

2.0 

3 0

Virial o f  the first order coeffic ients and P|* for the HER fluid.

0.1
1.184

0.822

0.671

0.553

0.512

0.518

0.569

a ;
0,3

6.753

4 .687

3.825

3.154

2 .919

2.953

3.247

0.5

27.252

18.915  

15.436  

12.728  

11.780

11.915 

13.102

0.1

1.516

1.052

0 .859

0 .708

0.655

0.663

0 .729

pr
0.3 0.5

14.245 99.925  

9 .887 69.354

8.068 56.599

6.653 46.669

6.157 43.515

6 .228 43 .690

6.848 48.039

Figure 2. Tlic excess free energy, o f  the HER fluid as a function o f  K
lor 0.1 and 0 .3 at AJOo =  0 .0  and 0.1 . The key.s are sam e as in Figure 1.

figure 3, The equation o f  state o f  the HER fluid as a function o f  K  for
^ = 0.1 and 0 .3 at =  0 .0  and 0 .1 . The keys are sam e as in Figure 1.

thermodynamic properties a t a  given rf are m inim um  at 
^  = 1.0 and increase when K  either increases or decreases.

In Table 5, we report the excess free energy 
and equation o f  state f5P ip  for the HDB at T) = 0.1* 0,3 
and 0.5 for Alois = 0 .0  and 0 .1 for different values o f  1*. 
From  this, we find that they increase with increase o f  7} 
and 1*.

llnbie 5, Excess free energy fiAy-xfN and equation o f  state for the hard 
dumbbell fluid.

pP/p
= 0 0 ^r5b =  0 .l Mois =  0.0 A/Ou = 0.l

0.0 O.l 0.457 0.512 1.521 1.592

0.3 1.898 2.213 3.974 4 .639

0.5 5.000 6.273 13.000 17.667

0.2 0.1 0.465 0 .516 1.549 1.616

0.3 1.933 2.228 4 .047 4 .669

0.5 5.093 6-282 13.241 17.601

0.4 0.1 0.489 0 .540 1.630 1.695

0.03 2.034 2.324 4.258 4.871

0.5 5.357 6.531 13.929 18.288

0.6 0.1 0 .530 0.583 1.766 1.833

0.3 2.203 2.504 4 .612 5 .248

0.5 5.804 7.020 15.089 19.549

0.8 0.1 0.592 0 .650 1.972 2 .0 4 6

0.3 2.460 2.788 5.151 5 .842

0.5 6.481 7.803 16,852 21 .699

The percentage contribution o f  the quantum  correction  
to the free energy and pressure o f  the HDB fluid at AJ 
CJb = 0.1 are given in Table 6. We find that the quan tum  
correction increases with r] and decreases w ith 1*.

I'hble 6 . Percentage o f  quantum correction to the free energy and pressure o f  
hard dumbbell at = 0 . 1.

I-** \iA - A<̂ )/A<] X 100 l(P-P")/P-] X 100

?7 = 0.1 7  =  0.3 7 = 0.1 7  =  0 .3

0.0 12.104 16.619 4.655 16.742

0.2 12.102 15.243 4 .269 15.356

0.4 10.418 14.305 4 .006 14.411

0.6 9.964 13.682 3 .832 13.783

0.8 9.699 13.316 3 .729 13.415

1,0 9 .606 13.190 3.694 13.288

6. Concluding remarks

We have developed a sim ple theory to calculate the first 
order quantum  corrections to the  free energy, p ressure 
and virial coefficients o f  the HCB fluid and applied  it to
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the HER and HDB fluids. The quantum corrections 
depend on K  for the HER and 1* for the HDB. Further, 
the quantum correction for these systems, like those of 
die HS fluid, increase with the increase of rj.

Only the leading term of U "  known for
the HCB fluid. Further, U ^ ‘ is not known in general, 
except for HS fluid, .so the second order quantum 
corrections is not considered here.
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