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Abstract

: The simple theory is developed to derive the thermodynamic properties of the semiclassical fluid of hard convex body (HCB)

molecules interacting via the hard Gaussian overlap potential. Analytic expressions are given and calculations are made for the thermodynamic
properties and virial coefficients for the HCB fluids. The agreement with the Monte-Carlo data is good in all cases. The first order quantum corrections
are also studied. The quantum effects increase with increase of packing fraction and depends on the shape parameter K.
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1. Introduction

The purpose of the present work is to develop a theory
for calculating the quantum corrections the
thermodynamic properties of fluid of hard-body molecules,
which is of current interest, because many of the properties
of real fluids are determined by the repulsive interactions
between their molecules, which can be modelled by
means of hard bodies of similar shape [l]. Moreover,
such hard body fluids are most convenient reference
systems in framing a perturbation theory for real fluids
of non-spherical molecules. The simplest hard body fluids
are hard convex body (HCB) fluids, such as hard ellipsoid
of revolution (HER) and hard spherocylinder (HSC) and
hard non-convex body fluid i.e. fused hard sphere and
hard dumbbell (HDB) fluids. Considerable progress has
been made in recent years in understanding the
thermodynamic properties of the classical hard-body fluids
[2-6), because they can model the shape of real molecules.
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Although the influence of non-sphericity in the quantum
effect is of considerable interest, it has not been
investigated systematically. Using the decoupling
approximation, Singh et al [4] have investigated the
quantum effects for the HER fluid.

In this paper, we investigate the quantum corrections
to the thermodynamic properties of the hard-body fluids
at higher temperature. The usual procedure is based on
the Hemmer-Jancovici (HJ) method [7,8] in which the
expansion of the physical properties of interest is made
about the classical value in term of the Ursell function.
This approach has been extensively used for the hard
sphere fluid in the semiclassical limit [9]. It may be
extended to investigate the thermodynamic properties of
the HCB fluid.

In the present paper, we employ the simple method to
investigate the guantum corrections to the thermodynamic
properties of the HCB fluids.
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In Section 2, wc discuss the basic theory for
calculating the thermodynamic properties of the HCB
fluids in the semiclassical limit. The virial coefficient of
the semiclassical HCB fluids are discussed in Scction 3.
Section 4 is confined to the classical HCB fluids. In
Section 5, we derive expressions for the first order
quantum correction to the free energy, equation of state
and virial coefficients. ‘The results are discussed there.

The concluding remarks are given in Secction 6.

2. Basic theory

We consider a molecular fluid of the hard convex body
(HCB) molecules, which interact via the hard Gaussian
overlap (HGO) potential defined as

u(rayws) = oo, r < o(w w»):

=0, r > olww»), (1)
where r = |r; — r3] and @, represents the orientation of
molecule i. Here, o(wyaw») is thce distance of closest

approach between two molecules and is cxpressed in
terms of the Euler angles [10]
Hanawn) = ol — (cos*6 + cos*th
- 2c0s6,cos he0s G,2)
x (1 = 2Xcos?0) '\, (2)
Here oy = 2b is the width of a molccule and the shape
parameter y is defined as

x = (K= 1)K+ 1), (3)
K being the length-to-breadth ratio of the molecule i.e. K
= 2a/2b. This model is valid for oblate (K < 1) as well
as prolate (K > 1) shape of arbitrary symmetry.

The quantity of central importance for constructing
the theory of quantum fluid is the Slater sum [4,9]. In
the semiclassical limit (i.e. at high temperature) where
the quantum effects are small, the Slater sum of the
HCB fluid in analogy to the hard sphere (HS) fluid [9]
may be written as [11]

Wy = WxW, 4)
where
Wﬁ(xl,xz,....x,v)=exp| —BZu(x,-xj) (5)
i<j

is the Boltzmann factor and W' is a function which
measures the deviation from the classical behaviour. Like
the HS fluid, W of the HCB fluid can be expressed in
terms of the ‘modified’ Ursell functions U;" . Thus,

W (X, Xa,.c,xy) =1+ ZUQ"(x,-xj)

i<j
+ E U_i"(x,x,.r,,)E + E U3 (x,x, W3 (xe X))+
1< j<k < k<l

(6)
Substituting eq. (6) in eq. (4), we obtain the expression
for Wy

Wy (X, X2, X ) = €XP| — BEu(x,.xl)

i

l+2Ué"(x,xj)ZUg'(xixjx‘)+... 7

<y 1< <k
The U/" can, in principle, be found from the solution of
the guantum mechanical 1-body problem. Unfortunately,
the actual calculation is too involved to be feasible. It is
only for system of hard spheres [9] that U} and U7
have been evaluated. The first order quantum correction
comes only for UJ'. In the analogous way, UJ' for the

HCB fluid can be written as

m

2 (x5 x) =UL (raoyw,)

= —exp[— QQr //12)(r - o(w,w, ))2]+ 0(A%). (8)
where &x) is the Dirac Jfunction.
In quantum statistical mechanics, the chemcial potential
M can be written as
Bu = —In[Qn.1/ON], (9

where Qpn is the canonical partition function of molecular
fluid of N molecules, defined as

N
on =[NV g N}IJ....J-W" G [ [ o

i=1
where
dx; = (47 '\drdw,. (1)

Substituting egs. (7) and (10) in eq. (9), one obtains an
expression for the chemical potential of the HCB fluid.
The result is

Bu = pu” -—(1/2)pfdr < [ZgX,(x,xz)

+ Pagﬁl(x,xz)/ap]l];'(rw,wz) > mw, +0(A%) » 12

where 4¢ and g% (x,x;) are, respectively, the chemical
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potential and pair distribution function (PDF) of the
classical HCB fluid and p = N/V is the number density
(N is the total number of molecules in volume V). Here

<) 0w = (4n)'2jdwlfdw2(...) . (13)

In deriving eq. (12), the use has been made of the
relation

pz[gfv+|(xlxz)— gn (xlxz)]
= @/aM)[p2gs (x,xy)]

¥

(We drop the subscript N from now onwards in the
paper)

Other thermodynamic properties can be obtained from
the chmical potential. Thus, the Helmholtz free energy is
given by

/iA/N:([iAC/N)—(I/Z)pIdr

<gr(x,x2)U§"(x1x2)>ww +0(A?) (15)
and the equation of state is
BPIp=(BPIp)-/2)pdr
<[8L (xx3)+ PIg “ (X%, )/ap] Ui"(xlxz)> . (16)

W,W,
where AC¢ and PC are, respectively, the Helmholtz free

encrgy and pressure of the classical HCB fluid.

3. Virial equation of state

In the low density limit, the equation of state is given by

ﬂP/p=1+§u:B,,p"" .

n=2

an

where B, is the n-th viral coefficient. The PDF g(x;x2)
may be expanded in powers of p [12]

8°(xx;) = expl[- ﬁu(x,xz))L*-zp"a:(x,-x,)] , (18)

n21

Where the coefficients af(x,x,)is the cluster integral of
the classical molecular fluid, involving n field points and
'Wo base points. Thus,

af (qxz) = [( £ Oixa) £ (%)) dir (19)
where
S (xix,) = expl- Bu(x x;3)]-1 (20)

is the Mayer function.

When eq. (18) is substituted in eq. (16), the sec:
and third virial coefficient can be written as

21

B, = BS —(1/2)f<exp[— Bu(xx) U3 (xyx,))  dr

Ww,

By = B3 ‘J-<C‘XP[" ﬂ"(xxxz)kl"(xlxz)Uﬁ”(xlxz)>w dr

(]
(22)
where BS and Bj are, respectively, the second and third
viral coefficient for the classical molecular fluid.

4. Thermodynamics of classical hard convex-body
fluids
The equation of state for classical HCB fluid may be

written as

BPC/p= l-(l/6)[3pIdr
(rg “(royw, )(au(ra),a)2 )/ar))w "

=1+2x /3)p<a3(m,w2 )2¢ (o(w,w, ))>w.w2'(23)

This can be expressed in the form [5]

BPC/p=1+1/6)p(S +4nR*)o™ g™ (6™),  (24)

whre g°*v(s*) si the averaged contact value of the classical
PDF and s*¥ = <r.u>, whrec the angular bracket denotes
the average and u is the unit vector normal to the
surface at the contact point. Here S is the surface of the
molecule and R its mean radius of curvature.

Eq. (24) can be solved to give the Maeso-Solana
(MS) equation of state of the HCB fluid in the form (5]

BP<[p=1+alBRG/p-1),

where P,f's is the pressure of the classical HS fluid,
given by [13]

(25)

BP%/p=1=4ngSc(Ouc) =2n2-m/a-n)*. (26)
Here, a is the shape factor defined as [2]
a = RS/3V, (e4))
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and 7 = pV,, is the packing fraction, where V,, is the
volume of a molecule. We assume that the hard sphere
with volume V,, = (m/6)os is equal to that of the HCB
molecule.

Using the relation

n
BAéx/N = [l P /o=1)an' /',

the excess free energy for the classical HCB fluid is
given by

Bagx /N =h@-3m/a-mk.

Using the decoupling approximation [14], Singh-Singh-
Sinha (SSS) [4] expression for the equation of state and
excess free energy for the classical HCB fluid have been
derived as

(28)

29)

BPC/p=1+[B RS /o -1]F(0) (30)
and
N =l+b(4—3n)/(l—n)2]ﬂ(x), 31
where
R =a-0™"2h-ar6)x
~(/40)x* —1/112) 25 -..). (32)

Egs. (25) and (30) are identical in form. They differ only
in coefficients a and F,(x).

Expanding eq. (25) in power of p and equating it to
the virial equation of state, we obtain expression for BS
and Bj of the HCB as

BS =4av,,, (33a)

B5 =10aV?2, (33b)
where V,, is the volume of a molecule. We assume that
the hard spheres with volume V,, = (n/6)0}s is equal to
that of the HCB molecule.

The equation of state of the classical HCB fluid is
given by Boublik [2,3] using the improved scaled paritcle
theory as

BPC[p=a-m" +3am1-n) +a®n>G-ma-m>

349

This gives the excess free energy of the classical HCB
fluid

BALx /N = (@® -DIn(l-1n)

+@a-a>)a-m ' +a?-n-3x. (@35

Expanding eq. (34) in power of p, expressions for B;
and Bj in this case, are given by [2]

BS =(1+3a)V,, . (36a)

B =(1+6a+3a?)V;z2. (36b)

Comparing egs. (33) and (36), we find that both BS and
Bj differ. However, both eqs. (33) and (36) give exact
results for the hard sphere (a = 1).

For the geometry of the HER, « is obtained from eq.
(27). The theory developed for the HER fluid can be
employed for the hard dumbbel (HDDB) fluid. For this,
it is assumed that Ooups = Ouer and Vypr = Vuer. This
gives

(7:/6)::;}[,,,[”31*/2—1*3 /2]= (% /6)KO e

leading to

K=1+431*/2-1%/2, 37

where 1* = 1/o is the site-site elongation. For homo-
nuclear diatomic fluid, the parameter a is explicitly

given by [2].
o =1+1%)2+1%)/(2+31*—1*%).
The values of BS/V, and B{/V? for the classical

HER fluid obtained un’;er different methods are compared
with the ‘exact’ result {2] in Table 1 for different, values
of K. They increase with increase of K. The agreement
is good except for large value of K. The results obtained
from eq. (36) are better than those obtained from eq.
(33).

The values of equation of state, B P° /p for the
classical HER fluid obtained under different conditions
are compared with Monte-Carlo (MC) {[2,3] values in
Table 2 for different K. They are comparable at low
values of 7 and are in good agreement with the MC

(38)

Table 1.Virial coefficients of classical prolate HER fluid.

K B3IV, B5IV2
Present Boublik Exact Present Boublik Exact
feq. (33a)] [eq. (36a)) (eq. (33b)j] [eq. (36b)]

1.25 4.071 4.053 4.053 10.178 10.215 10.18
1.50 4.238 4.178 4.178  10.595 10.724 10.69
2.00 4.718 4.538 4.538 11.795 12250 12.09
2.75 5.614 5.211 5.211 14.036 15.331 1481
3.00 5.938 5.454 5.454 14.846 16.519 15.85
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‘Table 2. Equation of state AP</p for classical HER fluid for different values Table 3. Equation of state APC/pfor classical hard dumbbell fluid for different

values of 1*.

of K.
MS SSss Boublik MC 1e n Ms SSS Boublik MC
eq.(25) eq.(30) eq. (34) eq.(25) eq.(30) eq. (34)
1.25 0.207 2.515 2.513 2518 2.53 0.2 0.1047 1.563 1.566 1.562 1.56
0.366 5.7177 5.772 5.792 5.72 0.2094 2.546 2.552 2.545 2.59
0.430 8.421 8.413 8.454 8.53 0.3142 4.345 4.359 4.352 445
0.471 10.903 10.893 10.955 11.10 0.4187 7.876 7.903 7.906 8.02
0.510 14.148 14.134 14.229 14.40 j 0.4712 10.924 10.964 10.979 11.17
2.00 0.197 2.618 2.606 2.619 2.65 s 04 0.1047 1.593 1.591 1.588 1.59
0.371 6.729 6.685 6.931 7.05 8 0.2094 2.626 2.623 2.626 2.64
0.487 13.875 13.776 14.639 14.00 i 0.3142 4.519 4.512 4.549 4.59
0.550 21.645  21.487 23.148 21.90 ; 0.4189 8.233 8.218 8.355 8.42
0.596 30936  30.706 33.385 31.50 i 0.4712 11.439 11.418 11.666 11.67
275 0.190 2.817 2.797 2.830 2.76 i 0.6 0.1047 1.642 1.619 1.631 1.63
0.335 6.924 6.266 6.697 6.26 0.2094 2.761 2.697 2.765 2.78
0.427 11.022 10912 12.134 11.00 0.3142 4.812 4.674 4.892 4.95
0.479 15.462 15.303 17.407 15.30 0.4189 8.836 8.551 9.150 9.23
0.545 24.540  24.282 28.421 24.70 0.4712 12.309 11.829 12.874 12.87
3.00 0.184 2.826 2.805 2.843 2.84 0.8 0.1047 1.7117 1.639 1.699 1.70
0.253 4.148 4.113 4.288 4.13 0.2094 2.967 2.754 2.984 3.01
0.357 7.551 7.477 8.194 7.34 0.3142 5.257 4.797 5.438 5.48
0.453 13.713 13.571 15.610 13.90 0.4189 9.751 8.804 10.424 10.54
0.545 25.899 25619 30.861 24.80 0.4712 13.630 12.263 14.824 14.88
1.0 0.1047 1.830 1.647 1.804 1.79
data. At high density, Boublik results are not so good. 0.2094 3.276 2.776 3.330 3.36
One may employ the MS or SSS expression to obtain 0.3142 5.927 4.844 6.314 6.40
B r /p for the classical HER fluid. 0.4189 11.126 8.901 12.497 12.64
0.4712 15.615 12.404 18.017 18.06

Next, we calculate the equation of state B P /p for
the classical HDB fluid using different methods. They
are compared with the MC data [2] in Table 3 for
different of 1*, They are in good agreement for low
values of 7 and/or low values of 1*. However Boublik
method is relatively good for higher value of 7 and/or
higher value of 1*.

In the following section, we employ the MS theory to
estimate tha thermodynamics of the semiclassical hard-
body fluids.

5. Quantum correction to thermodynamics

Substituting eq. (8) in eq. (15), the first order quantum
correction to the free energy of the HCB fluid is given
by

B(A-ASH/N = e/ V2 )

x (az (0,w,)g € (o(@,0,) >m.w, A

39)

It can be expressed in the form [S]

B(A-A°)/N = (1/2\/§)p(s +47R*)g™ (0")A. (40)

For the hard sphere (HS) molecules with diameter oys,
eq. (40) gives [9]

BlAus - Afs)/N = o/ V2 Jpokssis o)A (4D)
If we consider the HS with equal molar volume
V,, =(w/6)chs of the HCB molecule and at the same
density p, then from egs. (40) and (41), we get

(4~ A€ V(Aus - Afis )= (17 2)(S +47R?)/no ks )

x(g™ (0™)/ gs(Ous)). @2)
This can be expressed as
(a- AC Y (Ans - Ass )= @/ Da +(41392R° 1v,,)
x (Ous /2R){g™ (0™)/ Bixs (Ous)). “3)
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If we approximate oy =o® [5], then

©us /2RNE™ (0™)/ gkis (dus))

= (0™ 12R)(g"™ (0™)/ gy (O Es) )= 1 (44)

and

a/2)a+(@137R* 1V, )= (45)

which is accurate for the HCB fluid with not too large
values of a. So the final form of the free energy, correct
to the first order quantum correction, is given by

A-AC =aau - A5 )- (46)
When eq. (41) is used, we get
BA/N = BAC I N +3V20mgfis (Ops YA loys) . (47)

where oys is the effective diameter of the HS molecule
and is given by GHS=K”3aoand 81is(Ous) is the
radial distribution function (RDF) of the classical HS
fluid, given by [12]

ghs(Ous) =U~-n/2)/a-n)?,

where

(48)

n=/6)pays =(/6)pKo] .
Finally, eq. (47) can be expressed as

BA/N =(BAC IN)+ A (Aloy), 49)

where
Al =3J5(a/x”3)[n(1~n/2)/(1—n)3].

Using eq. (16), the equation of state of the HCB fluid,
correct to the first order quantum correction, is given by

(50)

BPIp=(BP Ip)+PB (Aloy). (51
where
R =3J2@/ K”J)[n(l+n-n2 /2)/(1~n)“] . (52)

When eq. (25) is used, eqs. (49) and (51) can be
rewritten as

BAIN = [+ (112v2 )a/30,5)kBA 1 M) (53)

and .
ﬁP/p:[1+(A/2J5)(alaam)](ﬂPC/p). (54)

Thus, the leading quantum correction to the thermo-
dynamic properties of the HCB fluid like those of the
HS fluid [9], can be obtained by replacing the actual

diameter ous by an effective diameter (ous + 2-324)
provided eq. (25) is used.

When eq. (17) is substituted in eq. (51), we obtain
expressions for the first few virial coefficient of the
semiclassical HCB fluid as

B, =B;[1+(3/2\/5)(/1/a,,5)], (55)

B; = B5[1+(3/2)(A/oys)] , (56)

where B and B are given by egs. (33a) and (33b)
respectively. Egs. (55) and (56) can also be expressed as

B, = [1+()./245)(a/aaus)]a,‘,‘ )

We assume that this theory holds also for the hard non-
convex body fluid.

(57

The reduced virial coefficients B;’—"BZ/VM and

B; = B;/V? for the HER fluid are shown in Figure 1 as
a function of K for A/gp = 0.0 and 0.1. AV = 0.0
corresponds to the classical value. We find that the virial
coefficients are minimum at KX = 1.0 and increase as K
deviates from unity.

20

16 .-_

12

o v - +~ v -

025 075 1.25 175 2.25 275

K
Figure 1. The reduced virial coefficients 83 and 83 of the HER fluid as a
function of K at A/ = 0.0 and 0.1. The thick line represents /oy = 0.1 and
the dotted line /oy = 0.0.

The values of the first order coefficients A;' and P’
of the HER fluid reported in Table 4 show that they
decrease first with increase of K and then begins to
increase for K > 2.0. Further, they increase with the
increase of packing fraction 7.

The excess free energy BApx/N and equation of state
BPlp of the HER fluid are reported in shown in Figures
2 and 3, respectively, as a function of X at 7 = 0.1 and
0.3 for A/op = 0.0 and 0.1. These figures show that the



Table 4. Virial of the first order coefficients A} and P for the HER fluid.

Ky n— A7 Py
0.1 0.3 0.5 0.1 0.3 0.5
1/3 1.184 6.753 27.252 1.516 14.245 99.925
172 0.822 4.687 18.915 1.052 9.887 69.354
2/3 0.671 3.825 15.436 0.859 8.068 56.599
10 0.553 3.154 12.728 0.708 6.653 46.669
15 0.512 2919 11.780 0.655 6.157 43515
2.0 0.518 2.953 11.915 0.663 6.228 43.690
30 0.569 3.247 13.102 0.729 6.848 48.039
5

BAex/N

1 4 n=0.1
b S L
0 T T v T v
0.25 0.75 1.25 1.75 2.25 275
K

Figure 2. The excess free energy, fAx/N of the HER fluid as a function of K
for n=0.1 and 0.3 at A/cp = 0.0 and 0.1. The keys are same as in Figure 1.

BP.

2"M n=0.1

0 v v v T T

0.25 0.75 1.25 1.75 2.25 275
K

Figure 3. The equation of state BP/p, of the HER fluid as a function of K for
7=0.1 and 0.3 at A/ = 0.0 and 0.1. The keys are same as in Figure 1.

thermodynamic properties at a given # are minimum at
K = 1,0 and increase when K either increases or decreases.
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In Table 5, we report the excess free energy AAex/N
and equation of state SP/p for the HDB at n = 0.1, 0.3
and 0.5 for A/op = 0.0 and 0.1 for different values of 1*.
From this, we find that they increase with increase of 7
and 1*.

Table 5. Excess {ree energy fA,.x/N and equation of state BP/p for the hard
dumbbell fluid.

LA xIN BPlp
Ax=00 Ax=0.1 Ax=00 Ax=0.1
0.0 0.1 0.457 0.512 1.521 1.592
0.3 1.898 2.213 3.974 4.639
0.5 5.000 0.273 13.000 17.667
0.2 0.1 0.465 0.516 1.549 1.616
0.3 1.933 2.228 4.047 4.669
0.5 5.093 6.282 13.241 17.601
0.4 0.1 0.489 0.540 1.630 1.695
0.03 2.034 2.324 4.258 4.871
0.5 5.357 6.531 13.929 18.288
0.6 0.1 0.530 0.583 1.766 1.833
0.3 2.203 2.504 4.612 5.248
0.5 5.804 7.020 15.089 19.549
08 0.1 0.592 0.650 1.972 2.046
0.3 2.460 2.788 5.151 5.842
0.5 6.481 7.803 16.852 21.699

The percentage contribution of the quantum correction
to the free energy and pressure of the HDB fluid at A/
op = 0.1 are given in Table 6. We find that the quantum
correction increases with 7 and decreases with 1*.

Table 6. Percentage of quantum correction to the free energy and pressure of
hard dumbbell at A/ = 0.1.

1* [(A--AYA] x 100 [(P=P<)/P<] x 100

n=0.1 n=03 n=0.1 n=03
0.0 12.104 16.619 4.655 16.742
0.2 12.102 15.243 4.269 15.356
0.4 10418 14.305 4.006 14.411
0.6 9.964 13.682 3.832 13.783
0.8 9.699 13.316 3.729 13.415
1.0 9.606 13.190 3.694 13.288
6. Concluding remarks

We have developed a simple theory to calculate the first
order quantum corrections to the free energy, pressure
and virial coefficients of the HCB fluid and applied it to
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the HER and HDB fluids. The quantum corrections
depend on K for the HER and 1* for the HDB. Further,
the quantum correction for these systems, like those of
the HS fluid, increase with the increase of 7.

Only the leading term of U} (reya) is known for
the HCB fluid. Further, U_;" is not known in general,
except for HS fluid, so the sccond order quantum
corrections is not considered here.
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