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A B S T R A C T

The distribution characteristics of Cadmium (Cd) fractions in soils around a coal mining area of Huaibei coalfield
were investigated, with the aim to assess its ecological risk. The total Cd concentrations in soils ranged from 0.05
to 0.87mg/kg. The high percentage of phyto-available Cd (58%) when redox or base-acid equilibria changed.
Soil pH was found to be a crucial factor affecting soil Cd fraction, and carbonate-bound Cd can be significantly
affected by both organic matter and pH of soils. The static ecological evaluation models, including potential
ecological risk index (PERI), geo-accumulation index (Igeo) and risk assessment code (RAC), revealed a moderate
soil Cd contamination and prensented high Cd exposure risk in studied soils. However, the dynamic evaluation of
Cd risk, determined using a delayed geochemical hazard (DGH), suggested that our studied soils can be classified
as median-risk with a mean probability of 24.79% for Cd DGH. These results provide a better assessment for the
risk development of Cd contamination in coal mining areas.

1. Introduction

Cadmium (Cd) contamination in the soils has attracted increasing
concerns as it has potential adverse effects on crop production and
human health (Durand et al., 2015; Fan et al., 2018; Nordberg, 2009;
Swaddiwudhipong et al., 2007). Exposure to low levels of Cd over long
periods by inhalation may result in kidney disease, whereas acute ex-
posure to Cd can severely damage the lungs and even cause death
(Hensawang and Chanpiwat, 2017). One of the principal anthropogenic
sources of Cd to soil arises from coal mining. In a review of heavy metal
soil contamination, Li et al. (2014a, 2014b) reported that the mean soil
Cd concentration around ten coal mines from eight provinces in China
was about 1.6 times higher than the national Grade II values for soil Cd
(0.3 mg/kg) (GB15618-1995). Several similar studies have also been
conducted in Huainan coalfield, China, where the mean concentrations
of soil Cd were 2–3 times greater than the Huainan soil background
value (Liu et al., 2016; You et al., 2016). Even after restoration, the soil
samples from a Chinese coal-mining land were reported to have mod-
erate to heavy Cd contamination (Niu et al., 2015). The sources for soil
Cd surrounding coal mines are complex. Tang et al. (2013) found that
coal combustion was the primary factor for Cd enrichment in soils
(0.64 mg/kg) surrounding coal mines with coal-fired power plants. Ge

et al. (2016) found that Cd migration from coal waste pile had polluted
the surrounding soils. Although the total Cd concentrations in soils
could provide us with valuable information about the overall degree of
contamination, chemical speciation, i.e. the relative metal fraction in
various chemical forms, is thought to be more informative in evaluating
the environmental impact of a metal in contaminated soils (Shahid
et al., 2012).

Sequence extraction (e.g. Tessier sequential extraction procedure)
with a process of gradually increasing the leaching strength of the ex-
tractant has been frequently used in Cd speciation analysis in soils
(Izquierdo et al., 2017; Zong et al., 2016). The extraction scheme re-
solves various metal forms from most mobile to most stable species
including exchangeable, carbonate-bound, Fe/Mn oxide-bound, bound
to organic matter, sulfide-bound, and residual forms (Tessier et al.,
1979). Previous studies demonstrated that the availability of Cd was
influenced by competitive adsorption-desorption processes which in
turn are determined by soil properties including pH, redox potential,
OM content, electric conductivity (EC), quantity and type of clay mi-
nerals, hydrous metal oxides of Fe, Al and Mn (He et al., 2017;
Pietrzykowski et al., 2014; Romkens et al., 2011; Yu et al., 2016). In
order to assess the combined static ecological risks of elements in soils,
various geochemical indicators, including geo-accumulation index
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(Igeo) (Müller, 1969), potential ecological risk index (PERI) (Hakanson,
1980) and risk assessment code (RAC) (Perin et al., 1985) have been
developed on the basis of total concentration and speciation of Cd. For
example, Ur Rehman et al. (2018) reported a moderate environmental
risk of Cd contamination in the soils collected in the vicinity of Sewakht
mines (North Pakistan) by applying contamination indices Igeo and
PERI. Using PERI, Wieczorek et al. (2018) demonstrated a moderately
ecological risk for soil Cd contamination on living components in
Malopolska (South Poland). In addition, RAC was also frequently used
in assessing the risk of soil Cd contamination (Isimekhai et al., 2017;
Matong et al., 2016).

The transformation of Cd speciation in soils is a dynamic evolution
process (Marrugo-Negrete et al., 2017; Ming et al., 2005; Xu and Yuan,
2009; Yang et al., 2005; Zhang et al., 2001), and certain amounts of
mobile Cd can be stabilized by the components in the soils (Plekhanova,
2009). However, the tolerant capacity of Cd in soils is limited and
varies with different environmental parameters. When the input of Cd
in soil surpasses the tolerant capacity, the previously stabilized Cd
could be re-activated and may result in delayed environmental hazards
(Li et al., 2014a, 2014b; Sharma et al., 2007). Thus, the “delayed
geochemical hazard (DGH)” model has been proposed to assess the
dynamic processes and risk burst possibilities of heavy metal con-
taminants of soils (Dong et al., 2017; Ming et al., 2005; Zheng et al.,
2015). Using the DGH model, Ming et al. (2005) demonstrated that soil
chromium (Cr) near a steel company exhibited a risk of DGH burst in a
large area. Subsequent studies conducted by Dong et al. (2017) and
Zheng et al. (2015), showed a tendency to dynamic risk evolution of
soil mercury (Hg) using the DGH model. However, as one of the pol-
lutants with a high priority to be monitored, no previous studies on
dynamic risk assessment of Cd in soils were carried out to our knowl-
edge.

Huaibei coalfield is a nationally coal base in China, and is also one
of the most important grain and fruit production district. Coal mining
plays an important role in promoting the local economy, but also leads
to serious deterioration of the local environments (Chen et al., 2014).
The high intensity and long duration of coal mining in this area would
likely lead to high Cd retention in soil, and would eventually cause
potential environmental and health risks. However, very few studies
have investigated the contamination characteristics of Cd associated
with mining activities in Huaibei coalfield up to now (Lu et al., 2017;
Shang et al., 2016; Shi et al., 2013). A comprehensive investigation of
soil Cd contamination levels in the whole coal area is urgently needed
to better assess the associated ecological risks.

The objectives of this study are: (1) to assess the contamination
levels of Cd in soils around the coal mining area; (2) to investigate the
chemical fractionation of Cd and identify its controlling factors (3) to
assess both the static and dynamic ecological risk of Cd risk in soils. Our
results are expected to provide a scientific basis for the soil Cd con-
tamination control and establishment of risk management plans.

2. Methods and materials

2.1. Study area and sampling

Huaibei coalfield (33°20′ N-34°28′ N, 115°58′E-117°12′ E) is located
in the northeast of Anhui province, eastern China (Fig. 1). The land-
scape of this coalfield is largely flat, and the terrain tilts gently from
northwest to southeast. Characterized by cold and dry winters and rainy
summers, this area is in the warm, semi-humid monsoon climate zone.
Prevailing winds are in a southeast direction in summer, and a north-
east direction in winter. The yearly average temperature and rainfall is
14.6 °C and 830mm, respectively. The main soil types of the study area
are alluvial soil, lime concretion black soil, yellow cinnamon soil and
limestone soil.

The land surrounding the coal mines is mainly used as farming land
for crops (wheat, soybeans, corns) and fruit trees in most of the

sampling sites. A total of 186 surface soil samples (0–20 cm) were
collected every 0.5–1 km at Zhangzhuang (79 samples), Linhuan (47
samples), and Yangliu (60 samples) coal mining areas in December
(Fig. 1). Soils from Yongqiao district were selected as the background
samples. The mining ages of these coal mines decrease in the following
order: Zhangzhuang Mine> Linhuan Mine>Yangliu Mine. The loca-
tions of the sampling sites were recorded using a hand-held global
positioning system (GPS). For each sampling site, three subsamples
were randomly collected and stored in sealed plastic bags.

2.2. Physical and chemical analysis

After an air-drying process, all the soil samples were disaggregated
before passing through a 2-mm nylon sieve for pH analysis, and through
a 0.149-mm nylon mesh for the analysis of Cd and other physico-che-
micals properties. Soil pH was measured in a 2:5 (w/v) soil/water
mixture using a pH meter. The soil organic matter (OM) content was
determined by the chromic acid titration method (Walkley and Black,
1934). Total nitrogen (TN), available phosphorus (AP), and available
potassium (AK) levels were determined by Kjeldahl method, molybdate
method, and alkali fusion method, respectively (Lu, 2000).

Approximately 0.1 g subsample from each soil was digested in a
concentrated HNO3-HF-HClO4 mixture on a hot plate kept at a tem-
perature of 210 °C for 3 h. The Cd concentrations in the digestion so-
lutions were determined by graphite furnace atomic absorption spec-
troscopy (ZEEnit 650, Analytik Jena, Germany). The duplicates,
method blanks, and standard reference materials (GSS-3 from China
Geological Survey) were used to assess quality assurance and quality
control. The Cd recoveries of samples spiked with standard ranged from
92% to 102%. Analysis methods were evaluated with each batch of
samples (1 blank and 1 standard for each 10 samples). The relative
deviation of the duplicated samples was< 6% for all batch treatments.

Tessier sequential extraction procedure was used to determine the
chemical forms of Cd in representative soil samples. A summary of the
procedure is given in Table S1 (Supplementary materials). Five che-
mical phases of Cd were classified: CdE, exchangeable; CdC, metals
bound to carbonate; CdF, metals associated with Fe-Mn oxides; CdO,
metals bound to OM, and CdS, residual. For each extraction solution and
the digestion of the last residue fraction, concentrations of Cd were
determined by GFAAS as well. For this extraction procedure, quality
control was performed by comparing the total metal content with the
sum of the Cd percentages extracted in the five fractions. The average
recovery percentages of the sequential extraction ranged from 91% to
115% for Cd in soils.

2.3. Quantification of soil contamination

2.3.1. Geo-accumulation index (Igeo)
The geo-accumulation index (Igeo) provides an effective method to

assess the degree of Cd enrichment in soils. Its value is calculated using
(Müller, 1969):

=
×

I log C
1.5 Bgeo 2

where C (mg/kg) refers to the Cd concentration in studied soils, and B
(mg/kg) represents the Cd concentration in background soils. In the
present study, the Huaibei soil Cd background value of Cd is adopted as
the B value. Seven grades of Igeo were defined for the classification of
soil contamination: practically uncontaminated (Igeo < 0); un-
contaminated to moderately contaminated ( ≤0 Igeo < 1); moderately
contaminated ( ≤1 Igeo < 2); moderately to heavily contaminated (2≤ Igeo
< 3); heavily contaminated (3 ≤Igeo < 4); heavily to extremely con-
taminated (4 ≤ Igeo < 5); extremely contaminated (Igeo ≥ 5).

2.3.2. Potential ecological risk index (PERI)
The potential ecological risk factor (Er) for Cd was calculated using
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the equation:

= ×T
C

E C
rr

0

where Tr is the heavy metal toxic-response factor. This value was set at
30 for Cd (unitless) according to Hakanson (1980). C and C0 (mg/kg)
represent the content of Cd in soil samples and the Huaibei soil Cd
background value, respectively. The degree of Er is classified into five
groups: low risk (Er<40); moderate risk (40 ≤ Er<80); consider-
able risk (80 ≤ Er<160); very high risk (160 ≤ Er<320);
Dangerous (Er ≥ 320).

2.3.3. Risk assessment code (RAC)
The risk assessment code (RAC) is used to assess the environmental

risk taking sequential extraction as a characterization method. Its value
is calculated using (Perin et al., 1985):

= +RAC F FCd CdE F

where FCdE is the fraction of exchangeable Cd, and FCdF is the fraction of
carbonate-bound Cd. Five classes of RAC were defined for the classifi-
cation of environment risk: no risk (RAC<1%); low risk ( ≤1% RAC
<10%); medium risk ( ≤11% RAC <30%); high risk (31 ≤% RAC < 50%);
very high risk (RAC ≥ 75%).

2.3.4. Delayed geochemical hazard (DGH)
The prediction of DGH for Cd is based on a previous model devel-

oped by Feng and his coworkers (Dong et al., 2017; Ming et al., 2005;
Zheng et al., 2015). As shown in Fig. S1, the X axis stands for “Total
releasable content of the pollutant” (TRCP) in the soil system.

Considering the natural environment and soil physical and chemical
properties of Huaibei coalfield, the TRCPCd in our study area refers to
the fraction extracted from the first four steps of the Tessier sequential
extraction procedure. The Y axis stands for “total concentration of ac-
tive species” (TCAS), which refer to the concentration of some species
in TPCRcd that will become much more active under given environ-
mental conditions (Chen et al., 2006). The fitting curve L0 reflects the
trend in TCASCd with the increase in TRCPCd, can be expressed by a
non-linear polynomial as:

= + + + + …Q a a C a C a C0 1 2
2

3
3

The points of the equation where the second order derivative is zero
represent special critical points corresponding to the burst of DGH.

2.4. Statistical analysis

The descriptive statistical parameters were calculated with
Microsoft EXCEL®. All multivariate statistical analyses, including One-
way analysis of variance analysis (ANOVA) and correlation matrix (CM)
were conducted using SPSS® (version 20.0). ANOVA analysis was car-
ried out to compare differences of average soil Cd concentration among
different coal mines, with a value of P < 0.05 indicating significant
differences. CM was applied to identify the relationship between ob-
tained soil Cd fractions and soil properties. The normality of the data set
distribution each was checked using Kolmogorov-Smirnov test.
Spearman's correlation coefficient was used when the data set were not
normally distributed. All simulation analyses of nonlinear polynomials
of the DGH model were carried out in Origin 9.0.

Fig. 1. Sampling locations of the Linhuan, Zhangzhuang, Yangliu and control area in the Huaibei coalfield, Anhui, China.
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3. Results and discussion

3.1. Descriptive statistics

The main soil properties (pH, OM, AP, TN and AK) around the
studied coal mining area in Huaibei coalfield are presented in Table 1.
The soil pH values (6.84) of Huaibei coalfield are weakly acidic. Among
these soil samples, 62.9% of them presented acidic characteristics. The
acidic soils can promote the bioavailability of Cd, whereas the basic
soils can enhance the Cd adsorption (Zeng et al., 2011). In addition to
soil pH, OM was another primary contributor to retain Cd in ex-
changeable form (Haghiri, 1974). OM contents in all soil samples
around coal mining area ranged from 5.50 to 67.98 g/kg, with an
average value of 25.04 g/kg. Among the three locations, the average
OM contents are highest in the Yangliu area (24.31 mg/kg) and lowest
in the Linhuan area (23.18 mg/kg). Some nutrient elements such as P
could affect the Cd bioavailability in soils (Chen et al., 2013). The value
of AP content in the studied soils varied between 1.03 and 7.49mg/kg
and had an average of 4.12mg/kg. The TN and TK contents in soils
ranged from 1.56 to 10.93 g/kg and from 18.40 to 281.60 g/kg, re-
spectively. The large variations in some parameters (TN, AP, AK) are
likely caused by differences in farming practices between soils (Liu
et al., 2005). Soils from coal mining areas all have higher OM, AP, TN,
and AK than those from the control area.

Fig. S2 shows the descriptive statistics of Cd contents in soils from
186 sampling sites. The Cd concentrations varied from 0.05 to 0.87mg/
kg, with a standard deviation (SD) of 0.16. The average Cd content in
studied soils around coal mining area is 0.3mg/kg, which is markedly
higher than those in Yongqiao soils (0.06mg/kg), the Huaibei soil Cd
background value (0.08 mg/kg) and China soil Cd background value
(0.1 mg/kg) (Table 1; AHEMC, 1992; Chen et al., 1991). According to
the Soil Environmental Quality Standard of China (GB 15618–1995), ~
71% of the soil samples were found to contain Cd concentrations
greater than the upper threshold value of 0.20mg/kg defined by Grade
I soil, and ~ 49% of the soil Cd concentrations exceeded the upper
threshold value of 0.30mg/kg defined by Grade II soil (ensuring good
agricultural production and maintaining human health). None of the Cd
data exceeded the limit value of 1mg/kg value defined by Grade III
(ensuring the production of agroforestry and normal growth of plants).
The coefficient of variation (CV = 62.0%) of soil Cd concentration is
higher than 35%, suggesting that the human activities could have af-
fected the concentrations of Cd in soils (Manta et al., 2002).

Elevated Cd concentrations in soils are largely attributed to human
activities through atmospheric deposition, P-fertilizers application and
sewage sludge discharge (Chen et al., 2005; Liang et al., 2017; Lu et al.,
2012; Wang et al., 2015; Zhai et al., 2008). The average Cd

concentrations in the soil samples are 0.39mg/kg, 0.29mg/kg,
0.18mg/kg and 0.06mg/kg for Zhangzhuang, Linhuan, Yangliu and
Yongqiao, respectively. According to the ANOVA, the differences of
mean Cd concentration among the three coal mines were significant
(P < 0.05), suggesting that intensive mining activities such as coal
exploitation and processing show a strong impact on Cd in soils around
coal mining areas. The Cd concentrations in studied soils surrounding
the coal mines lied in the middle range when comparing to the average
concentrations of Cd in soils from different coal mines at national scale
(0.02–1.97mg/kg, Table S2; Fan et al., 2011; Yu et al., 2002; Ma et al.,
2012; Wang et al., 2009; Ge et al., 2008; Wang and Dong, 2009; Niu
et al., 2015; Jing et al., 2011; Wang et al., 2013; Jiang et al., 2014; You
et al., 2015). Globally, the total Cd concentrations in studied soil are
compared to soils of coal mining areas from Ptolemais-Amynteon in
Greece and Pokrok in Czech Republic (Gholizadeh et al., 2015; Pentari
et al., 2006), but higher than those detected in soils of coal mining areas
from Sonepur Bazari in India, Oltu in Turkey and Douro in Portugal
(Masto et al., 2015; Ribeiro et al., 2010; Tozsin, 2014). Overall, the Cd
concentrations in our studied soils were low compared to other regions
of the world (see Table S2 in supplementary materials; Ameh, 2013;
Equeenduddin, 2010; Galunin et al., 2014; Kim and Chon, 2001;
Ladwani et al., 2012; Pietrzykowski et al., 2014; Reza et al., 2015;
Sahoo, 2011; Sadhu et al., 2012).

3.2. Spatial distribution

Fig. 2 showed the spatial distribution of soil Cd concentrations of
each coal mining area with an aim of identifying the hot spots of con-
tamination and assessing the potential sources of Cd. In Zhangzhuang
coal mine, there were two obvious hotspots for Cd. One was located in
the southwest, where coal mine and industrial area were located, an-
other was located in the north of the area, where large amounts of
farmlands were located. Factors, such as phosphatic fertilizers and
pesticides have been shown to be important contributors of some heavy
metals including Cd (Lambert et al., 2007; Maes et al., 2008), which
may partially explain the presence of the Cd hotspot in the north. The
soil Cd concentrations generally increased from the north to the south
within this area, which may relate to the land use practices. The spatial
distribution pattern of Cd in Linhuan was characterized by a high Cd
concentration in northeast soils, where most of the coal mining activ-
ities existed. The lateral distribution pattern at Linhuan also showed a
higher Cd concentrations in the eastern downwind soils than in the
western upwind soils, suggesting that wind directions may play an
important role in determining Cd distribution patterns. Yangliu coal
mine also showed a similar Cd distribution pattern with the highest Cd
concentrations in the vicinity of coal mine and ash yard. These

Table 1
Descriptive statistic of selected physico-chemical properties, total Cd contents and the percent of Cd chemical forms in soils.

Location N PH OM(g/kg) AP(mg/kg) TN(g/kg) AK(g/kg) TCd (mg/kg) CdE% CdC% CdF% CdO% CdR%

Zhangzhuang 79 Ranges 5.23–8.43 5.50–37.68 1.03–7.49 1.73–10.82 27.02–281.60 0.19–0.87 15.4–48.3 5.6–30.5 2.2–31.2 1.8–13.0 20.5–59.8
A.M. 7.10 26.70 4.29 5.45 135.05 0.39 24.8 15.6 14.4 5.7 39.5
SD 0.75 5.96 1.45 1.74 48.66 0.13 6.6 6.4 8.0 2.6 8.5

Linhuan 47 Ranges 5.33–8.25 9.35–37.78 1.46–6.85 1.56–9.25 21.60–220.23 0.12–0.74 14.7–34.8 5.7–24.3 1.2–30.6 2.6–12.6 24.9–65.0
A.M. 6.69 23.18 4.02 5.54 134.49 0.29 23.3 11.0 16.9 5.6 43.2
SD 0.68 5.51 1.32 1.89 50.15 0.13 5.9 4.7 9.2 2.6 8.8

Yangliu 60 Ranges 5.23–8.62 8.40–67.98 1.17–7.44 2.01–10.93 18.40–256.62 0.05–0.60 14.6–51.1 4.7–21.0 2.1–31.3 3.3–19.4 18.6–61.7
A.M. 6.61 24.31 3.97 5.52 133.21 0.18 23.0 9.2 17.4 7.4 43.0
SD 1.01 10.22 1.95 1.92 54.19 0.06 0.02 3.6 8.9 3.4 9.0

Mining area 186 Ranges 5.23–8.62 5.50–67.98 1.03–7.49 1.56–10.93 18.40–281.60 0.05–0.87 14.6–51.1 4.7–30.5 1.8–31.3 1.8–19.4 18.6–65.0
A.M. 6.84 25.04 4.12 5.50 134.32 0.30 23.9 12.4 16.0 6.2 41.6
SD 0.85 7.62 1.60 1.83 50.61 0.16 6.8 5.9 8.7 3.0 8.9

Yongqiao 8 Ranges 5.67–7.45 1.30–4.50 1.34–5.32 3.23–7.43 74.50–164.34 0.04–0.10 14.6–29.5 5.4–12.4 3.4–20.4 2.4–13.4 33.6–68.9
A.M. 6.86 2.34 2.35 4.23 100.14 0.06 21.1 7.9 10.3 6.6 54.1
SD 0.56 1.10 1.27 1.35 28.53 0.02 4.9 2.5 5.2 3.8 12.6

N. number of samples, A.M. arithmetic mean, SD. standard deviation, OM organic matter, AP available phosphorus, TN total nitrogen, AK available potassium.
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observations indicate that the levels and the distribution of Cd in soils
are tightly correlated to coal mining activities in the study area.

3.3. Geochemical fractionation of Cd in the studied soils

Although total concentration can reflect the overall contamination
of soil with Cd, the geochemical fractionation can be more informative
on the mobility, bioavailability, and toxicity of Cd in soils. Using the
method of Tessier sequential extraction, we examined the fractionation
of Cd in the studied soils (Table 1). On average, the fractions of Cd in
these soils followed the order of CdR (41.6%)>CdE (23.9%)>CdF
(16.0%)>CdC (12.4%)>CdO (6.2%). Most of Cd was found in the CdR
fraction, with values ranging from 19% to 65%. Previous studies have
also found high fractions of CdR (Ma and Rao, 1997; Spence et al., 2014;
Wu et al., 2013; Yu et al., 2016; Zhou et al., 2007). Both CdE and CdC
fractions increased from Yangliu to Linhuan and to Zhangzhuang (an
increase of coal mining history), further confirming that the elevated
concentrations of Cd were resulted from mining activities.

Different forms of Cd in the soils are not equally bioavailable to
plants (Chojnacka et al., 2005; Pichtel et al., 2000; Xiao et al., 2017).
The order of the biological effectiveness of metal fractions was
CdE>CdF>CdO>CdC>CdR. The sequential selective chemical ex-
traction fractions of Cd can be divided into three classes based on their
biological effectiveness: easily phytoavailable Cd, moderately phytoa-
vailable Cd, and non-phytoavailable Cd. Easily phytoavailable Cd in-
cludes the CdE fraction. Moderately phytoavailable Cd includes CdF,
CdO, and CdC, which can be released in a strong acid medium or under
reducing conditions, and then becomes bioavailable. Not phytoavail-
able Cd is mainly in the residual fraction of metal, and usually cannot
be utilized by organisms. The biological effectiveness of Cd in selected
soils was thus evaluated according to the classification criteria above.
Easily phytoavailable Cd accounts for 15–51% of Cd within the

samples, moderately phytoavailable Cd accounts for 14–53%, and non-
phytoavailable fraction accounts for 19–65%. Although the inert frac-
tion was dominant in many samples, the percentage of labile Cd (24%)
was also significant, indicating that Cd could be easily assimilated by
crops. Notably, the percentage of moderately phytoavailable Cd ranged
from 14% to 53%, suggesting that a high proportion of Cd can be as-
similated by crops in a changed redox conditions and/or in acid-base
equilibria.

Spearman's correlation analysis was carried out to identify corre-
lations between the Cd fraction in selected soils and the selected phy-
sicochemical properties of soil samples (pH, OM, TN, AP, AK).
Generally, the individual fraction and total Cd concentration in the soil
samples varied considerably with the geochemical properties (e.g. pH
and organic matter; Table 2). The results showed that pH strongly af-
fected the adsorption/desorption and precipitation/solubilisation re-
actions, and has been considered as the most influential factor. Soil pH
was positively correlated to the total Cd concentration or Cdc (Table 2).
The decrease in pH may potentially increase solubility and bioavail-
ability of Cd (Antoniadis et al., 2008; Basta, 2005; Silveira et al., 2003).

Fig. 2. Spatial distribution pattern of Cd concentrations (mg/kg) in soils around Zhangzhuang, Linhuan and Yangliu coal mines.

Table 2
Correlations between Cd concentrations and physiochemical properties of soils.

pH Organic
matter

Total N Available
phosphorus

Available
potassium

TCd 0.46** 0.36** − 0.04 0.19* 0.05
CdE − 0.21** − 0.11 − 0.02 − 0.22** 0.04
CdC 0.34** 0.21** 0.10 0.09 0.02
CdF − 0.04* − 0.13 0.00 0.05 0.03
CdO − 0.08 0.23** 0.06 0.06 0.14
CdR 0.05 0.02 0.03 0.04 − 0.09

**Correlation is significant at the 0.01 level (two-tailed); *correlation is sig-
nificant at the 0.05 level (two-tailed).
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OM also showed high correlation with total Cd concentration and CdC
fraction, indicating that OM may act as an important sink of Cd due to
its high complexing capacity for metallic contaminants (Huang et al.,
2005; Kalbitz and Wennrich, 1998). Additionally, both OM and pH
significantly correlated with the CdF fraction, in consistent with the
study by Simmons et al. (2009).

3.4. Risk assessment of Cd

3.4.1. Static risk assessment of Cd
The static ecological risk assessment of Cd in soils are based on Igeo,

RAC, and PERI. The values of these three indexes all decrease in the
following order: Zhangzhuang> Linhuan>Yangliu (Table 3). Igeo
ranged from − 1.26 to 2.85, with a mean value of 1.08, indicating the
studied soils were moderately contaminated. However, RAC analysis
showed a high Cd risk in the studied soils, with a mean value of 36.2%.
In consistent with the result of Igeo, PERI suggests a relatively moderate
contamination of studied soil.

3.4.2. Dynamic risk assessment of Cd
The DGH is an efficient method for dynamic risk evolution and

assessment. Under stable environmental conditions, pollutants in soil
can accumulate. However, when the concentration of accumulated
pollutants reaches a breakpoint, an intensive reactivation and sub-
sequent discharge of these chronically accumulated contaminants may
occur. This may cause even more hazardous ecological and environ-
mental consequences than the initial contamination. Being quantita-
tively represented by a nonlinear polynomial, the DGH model thus can
be applied to assess and predict the potential environmental risks of soil
Cd exposure. Based on this model, the fits of data to equations were
mainly determined by results of Tessier SEP. All components in the
Tessier method should be involved in TRCPCd except for the residual
fraction (Zheng et al., 2015). In line with the DGH principle, our results
showed that the Cd in soils from our study areas was well fitted to the

equations of polynomials (Table 4). We defined the ‘critical point of
burst’ in the DGH as the second derivative of each polynomial (Table 4).
That is, DGH bursts may happen as long as the TRCPCd is greater than
the critical point, regardless of the reaction phase in the Tessier method.
The possible pathways of form transformation (according to Tessier
method) were proxied by the polynomials in the DGH model.

The low critical point of Cd in the DGH for the studied soils indicate
a tendency of burst risk, although the concentrations of active Cd forms
were relatively low. Given the fraction availability in Tessier method,
the CdE+C+F+O→CdE+F path was taken as the example in our study.
The regression equation was expressed as:

= − − − + = =Y E X E X X n R2.00 06 1.80 3 1.02 ( 186, 0.9458)3 2 2 (1)

We applied this path of DGH to characterize our study, as chain
reactions from CdE+C+F+O → CdE+F in this path might produce some
mobile Cd fractions when DGH happened. For the equation, we set the
second derivative of Eq. (1) as 0. Therefore, the calculated value of
TRCPCd equaled to 0.27mg/kg.

The calculated TPCRCd obtained in our study ranged from 0.18 to
0.3 mg/kg (Table 4). We then fitted every potential DGH path to the
each of the TRCPCd values to give reference for assessment. According
to the TCd data, an average of 24.8% (ranging from 10.2% to 44.1%) of
the TCd was higher than TRCPCd in the study area, suggesting a
medium-risk for both DGH according to the adopt DGH model, the
occurrence of fraction transformation may be frequent.

4. Conclusions

In this study, the characteristics of Cd contamination in soils sur-
rounding coal mining areas of Huaibei coalfield were investigated. Both
concentrations and chemical fraction of Cd, were used to evaluate the
sources and the potential ecological risks of Cd. The mean Cd con-
centration in studied soil samples was 0.30mg/kg, which is nearly one
order of magnitude higher than the local, regional or global soil back-
ground value. The spatial distribution pattern suggests that coal mining
activities were the primary source of Cd in our study areas. The main Cd
fraction in the soil samples was in the residual form, whereas a rela-
tively high mobile fractions of Cd was also presented. The correlation
analysis between Cd and the physicochemical properties of soils de-
monstrated that pH may strongly affect the total Cd, exchangeable Cd
and Cd bound to carbonate. OM also plays a crucial role in determining
the availability of Cd and its fraction distribution in soils. The static
methods of ecological risk assessment (Igeo, PERI, RAC) showed a
moderate soil Cd contamination and presented high Cd exposure risk in
our study areas. Using the DGH model, low Cd critical points of burst
were obtained indicating a potential risk caused by Cd and a tendency
of burst of dynamical risk. Although only 24.8% of TCd was higher than
TRCPCd (indicating a median-risk of DGH for one path of the chain
reactions), the large variation (10.2–44.1%) suggests that high con-
centrations of Cd may be accumulated in some areas, and high amounts
of accessible Cd may be potentially released. This could lead to much

Table 3
Igeo, RAC and PERI assessment data of Cd in soils.

Location Igeo RAC PERI

Zhangzhuang Ranges 0.69–2.85 22.2–66.1% 72.68–324.86
A.M. 1.64 40.4% 147.74
SD 0.45 10.4% 50.33

Linhuan Ranges − 0.05 to 2.62 22.4–51.4% 43.37–277.53
A.M. 1.13 34.3% 107.98
SD 0.61 8.3% 48.40

Yangliu Ranges − 1.26 to 2.32 21.4–68.5% 18.84–225.08
A.M. 0.29 32.2% 66.10
SD 0.88 9.1% 42.67

Mining area Ranges − 1.26 to 2.85 21.4–68.5% 18.84–324.86
A.M. 1.08 36.2% 111.36
SD 0.88 10.2% 58.85

A.M. arithmetic mean, SD. standard deviation.

Table 4
Fitting equations and characteristic values of Cd in the studied soils.

Potential DGH path DGH models Statistical characteristics The critical points of DGH burst

Y is TCASCd; X is TRCPCd (mg/Kg) R2 F TRCPCd TCASCd

CdECFO CdEFO Y = 2.00E−06X3−1.80E−03X2 + 1.02X 0.9583 6816.53 0.30 0.20
CdECFO CdEF Y = 2.00E−06X3−1.60E−03X2 + 0.89X 0.9458 4840.95 0.27 0.16
CdECO CdECF Y = 2.00E−06X3−1.80E−03X2 + 1.43X 0.9176 2723.43 0.30 0.32
CdECO CdEO Y = 4.00E−06X3−2.60E−03X2 + 0.97X 0.9679 7014.46 0.22 0.13
CdECO CdE Y = 4.00E−06X3−2.20E−03X2 + 0.78X 0.9581 4626.68 0.18 0.09
CdECF CdEFO Y = 3.00E−06X3−2.30E−03X2 +1.16X 0.9481 5463.62 0.26 0.20
CdECF CdEF Y = 3.00E−06X3−2.30E−03X2 + 1.00X 0.9528 5567.44 0.22 0.16
CdEC CdEO Y = 6.00E−06X3−3.6E−03X2 +1.15X 0.9514 4611.08 0.20 0.14
CdEC CdE Y = 5.00E−06X3−2.7E−03X2 +0.90X 0.9657 5666.18 0.18 0.10
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more serious environmental consequences. Our study indicates that
environmental risks of heavy metal contamination may be under-
estimated using static assessment methods, and highlights the necessity
of the application of dynamic methods, such as DGH model, in en-
vironmental risk assessments.
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