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A B S T R A C T

The huge demand for high-quality coal in China has resulted in increased generation of preparation plant wastes
of various properties. A series of beneficiation products collected from a preparation plant were characterized to
understand their petrographic and mineralogical characteristics, as well as thermochemical and trace element
behavior during combustion. The minerals in the Luling preparation plant wastes from Huaibei coalfield mainly
included kaolinite and quartz, with minor calcite, ankerite, pyrite, illite, chalcopyrite, albite, K-feldspar, ana-
tase/rutile, and iron-oxide minerals. Massive clay lumps of terrigenous origin, cleat-infilling carbonate, and
pyrite of epigenetic origin were prone to be enriched in the middlings and coal gangue. Minor or trace heavy
minerals also reported to the preparation plant wastes. The contents of low-density density vitrinite and liptinite
were enhanced in the clean coal, while inertinite-maceral group were enriched in the middlings. The modes of
occurrences of toxic elements differed between raw coal and the waste products; and their transformation be-
havior during heavy medium separation is largely controlled by clay minerals (V, Cr, Co, Sb, and Pb), carbonate
minerals (Co and Pb), sulfide minerals (As, Cu, Ni, Cd, and Zn) and organic matters (V, Cr, Se, and Cu). Three
groups were classified based on the volatile ratio (Vr) of toxic elements. Group 1 includes the highly volatile
element Se with Vr > 85%; Group 2 contained elements As, Pb, Zn, Cd and Sb, with the Vr in the range of
20–85% and V, Cr, Co, Ni and Cu with Vr less than 20% were placed into Group 3. Thermal reactivity of coal
inferred from the combustion profiles could be significantly improved after coal beneficiation, whereas the
increased inorganic components probably inhibited the thermal chemical reaction of wastes.

1. Introduction

To upgrade the quality of coal for industrial utilization, the ratio of
cleaned coal to raw coal in China has rapidly increased in the past
decades. According to statistics up to 2011, the total amount of pre-
paration plant rejects is more than 3 Gt in China. It has been well-
documented that toxic trace elements in coal were prone to be asso-
ciated with mineral matter, especially for high-ash coal with large
amounts of heavy-metal-bearing minerals such as pyrite, barite, rutile/
anatase, among others [1–5]. Minerals such as clay and pyrite in coal
are targeted for removal in coal preparation to reduce the sulfur, mi-
neral matter, and associated toxic trace elements [6–9]. Different types
of coal preparation plant rejects show wide variations in physiochem-
ical properties, such as ash yield, moisture content, maceral

distribution, mineral compositions, etc. [9–11]. Recently, much atten-
tion has been paid to the research and application of three-product
dense medium cyclones (DMCs) in China [12,13]. The waste product
types produced from the DMCs (Fig. 1) include high-ash coal gangue,
fine middling coal, and coal slime of ultrafine coal with high water
contents. However, there are only a few works focusing on the petro-
logic, mineralogical and geochemical characteristics of different coal
beneficiation products generated from DMCs units in coal preparation
plants [11,14]. In addition, while correlations between element parti-
tioning and physical separations are usually used as the basis to infer
the elemental associations [9,10], data on the chemical speciation of
trace elements in individual beneficiation products are still lacking.

On the other hand, the cleaning wastes contain combustible mate-
rials which could be used in electricity generation and are regarded as a
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potentially valuable energy resource [15–18]. Some countries such as
Australia [17,18], India [19], and China [20] have developed fluidized-
bed combustion (FBC) technology as a means for recovering energy
from preparation plant wastes. Thermogravimetric analysis (TGA) has
been extensively used in studying the reactivities of carbonaceous
materials to assess the thermochemical properties of coal, biomass, and
so on [21,22]. The combustion profile of TGA depends upon various
parameters such as coal rank, maceral distribution, and mineral con-
tents. In addition, due to the enrichment of some toxic elements in the
high-ash waste products, the volatile characteristics of the elements
during preparation plant wastes combustion could be of concern. The
volatility of toxic trace elements is mainly a function of modes of ele-
mental occurrences and combustion conditions [23,24,26,28–30]. Dif-
ferences in maceral composition, coal rank, and mineral matter of
preparation plant wastes may result in different combustion reactivities
and volatile tendencies of toxic elements [25,26].

The objectives of this study were to use multidisciplinary means to
investigate (a) the petrology, mineralogy, and geochemistry of various
preparation plant wastes produced from DMC, (b) thermal character-
istics of cleaning wastes via thermal gravimetric analysis, and (c) vo-
latile characteristics of toxic elements during coal cleaning waste
combustion. The results of this study are expected to provide a useful
basis for treating the cleaning waste products in an environmentally
friendly and economical manner.

2. Materials and methods

2.1. Background and sample collection

In this study, a series of samples including raw coal, middlings,
clean coal, slime, and coal gangue were sequentially collected from the
DMCs of Luling coal preparation plant in the Huaibei coalfield (Fig. 1).
The feed coal in the plant all came from the coal seams 8, 9 and 10 of
Luling mine of Huaibei coalfield. The heavy dense medium used in the
DMC unit was mainly composed of magnetite powder. As shown in
Fig. 1, during the cleaning process, the feed consisted of blended coal
and dense medium that enters tangentially near the top of the cylind-
rical section of the cyclone can form a strong swirling flow .Due to the
centrifugal forces, heavy fractions of parent coal with high specific
gravity should move towards the wall and discharge in the underflow
through the spigot, while light fractions could be caught in an upward
stream and generated clean coal from the overflow outlet [27]. The
suspended liquid that contained 0.25–2.0-mm coal particles generated
from the overflow will enter into the slime dense medium cyclones,
which can recover the clean coal and produce tailings. Coal slurry
produced from the whole process of DMC will enter into the flotation
cell to recover the clean coal, and the tailing slurry will be concentrated
and then dewatered by centrifuges and filter press. The resulting three
cleaning products (clean coal, middlings, and gangue) were screened to

recover the medium and yielded the final products. DMCs in the Luling
preparation plant can process raw coal at 3Mt/a. The gangue, mid-
dlings, and slime were generally used for generating electricity in the
local power plants [28], occasionally the coal gangue was used as a raw
material in a brick-making plant [29].

All the samples were homogenized and reduced to obtain a re-
presentative 2–3 kg sample, and then were immediately sealed into
plastic bags to avoid possible oxidation and contamination. Each
sample was dried at 40 °C for 24 h, and then crushed in an agate mortar
to pass through the 60-mesh sieve for different experiments.

2.2. Analytical methods

The contents of C, H, and N in the sample were determined using an
elemental analyzer (Vario EL cube). Proximate analysis (ash yield,
moisture, and volatile matter) was analyzed based on ASTM Standards
D3174-04, D3173-04 and D3175-04 (ASTM, 2007), respectively. Total
sulfur and forms of sulfur were determined following ASTM Standards
D3177-02 and D2492-02 (ASTM, 2007), respectively. Petrographic
analysis of all samples was performed at the University of Kentucky
Center for Applied Energy Research. Each sample was ground to less
than 1mm and prepared as epoxy-bound pellet and examined with
50× oil-immersion reflected-light optics using Leitz Orthoplan micro-
scopes. The mineralogical phases in the waste products were de-
termined by X-ray powder diffraction, supplemented by examination
using a field emission scanning electron microscope (TESCAN MIRA3
LMH Schottky FE-SEM), equipped with an energy dispersive analysis
system of X-ray (EDAX, Genesis APEX Apollo System). The XRD analysis
of each sample was carried out on a Phlips X’Pert PRO X-ray powder
diffraction with Cu K-alpha radiation, and the patterns are recorded
over a 2θ interval of 3–70°, with a step increment of 0.02°. The working
distance of the SEM was about 10mm with beam voltage 15 or 20.0 kV.
Samples were carbon coated and then were mounted on aluminum SEM
stubs using sticky conductive tapes.

2.3. Chemical analysis

The major element oxides were determined by XRF (XRF-1800).
Before XRF analysis, all the samples were ashed at a temperature of
815 °C, an alkaline fusion method for the high temperature ash were
employed prior to the XRF analysis. The loss-on-ignition (LOI) was also
determined at 815 °C [31]. Trace elements in the samples were de-
termined by ICP-MS (Thermo Fisher, X Series II), and As and Se were
determined using AFS (AFS-230Q). Approximately 0.05 g of each
powder sample (200-mesh) was transferred into a PTFE digestion vessel
with 2-ml purified HNO3 overnight, and then added to an acid mixture
(HNO3: HF=2:5) in a programmed microwave oven (from room
temperature to 120 °C in 10min and kept for 10min; then increased to
160 °C in 5min and kept for 10min; finally increase to 210 °C and kept
for 60min). Finally, each solution was filtered through a 0.45-μm
membrane and made up to 25-ml with Milli-Q water with 3% HNO3.
Two percent HNO3 solution was injected into the ICP-MS system to
eliminate the memory effect of the previous sample. The Re internal
standard solution was used for tuning and checking of the ICP-MS ca-
libration, obtaining a RSD lower than 8%. Blanks, certified reference
materials SARM-20 (coal) and GBW07406 (soil) were digested and
determined following the same procedure used for checking the accu-
racy of the trace elements. Analytical errors were less than 5% for most
elements and around 10% for V (108.3%), and Pb (106.2%).

A six-step sequential chemical extraction (SCE) was used to de-
termine the modes of occurrences of trace elements in the coal waste
samples. The SCE procedural separates the trace elements into six
fractions: water-leachable, ion-exchangeable, carbonate-bound, or-
ganic-bound, silicate-bound, and sulfide-bound. The detailed SCE pro-
cedure for toxic elements (V, Cr, Co, Ni, Cu, Zn, As, Cd, Se, Pb, and Sb)
of environmental concern in the samples was based on Dai et al. [32].

Fig. 1. Sketch map of three-product DMCs (3GDMC1200/850A) in Luling
preparation plant, based on the data provided by the local technicians.
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Briefly, the water-soluble associated elements were leached from the 4-
g samples with 30-ml Milli-Q water; then the residues were mixed with
1M NH4Ac to extract the elements bound with ion-exchangeable frac-
tions. After drying the residues at 40 °C for 8 h, the organic matter and
minerals in the residues were separated by CHCl (1.47 g/cm )3

3 . The
floating organic matter was digested using HNO3+HClO4 and the
carbonate minerals in the residues were dissolved by HCl. Finally, the
silicate- and sulfide-bound associations were separated by the
CHBr (2.89 g/cm )3

3 , and then the HF and HNO3 were added for ex-
tracting the silicate-associated trace elements and HNO3 was used for
dissolving the sinking sulfide-associated residues.

2.4. Combustion procedural and thermal analysis

Thermal-chemical characteristics of coal cleaning wastes and
cleaning coal were determined by a Thermal Analyzers (SDT Q600).
The sensitivity of the microbalance was 0.1 μg and the precision of
temperature measurement was 0.1 °C, with the heating rate ranging
from 0.1 to 100 °C/min. To avoid the mass and heat transfer inter-
ference, around 15mg sample was loaded into the Al2O3 crucible and
heating under a 100ml/min air flow from room temperature to 1000 °C
at heating rate of 15 °C/min. The TG-DTG curves were obtained in order
to investigate the combustion characteristics of the samples.

Simulated combustion of the coal and corresponding products was
conducted in a vacuum tube furnace to determine the volatile char-
acteristics of toxic trace elements [30]. Generally, each powder sample
(5 g) was fed into the furnace slowly when the temperature reached
950 °C under constant air flow with residence time of half an hour. After
cooling down, the combustion residues were sent for the trace elements
analysis. The solid residue samples were ground to less than 75 μm,
digested, and analyzed following the same experiment procedure for
trace element determination as indicated in Part 2.3.

3. Results and discussion

3.1. Proximate and ultimate analysis

The results of proximate and ultimate analysis of cleaning products
coal are given in Table 1. Raw coal fed into the preparation plant is a
medium volatile bituminous coal (Ro,ran= 1.1%), characterized by low
moisture (1.4%) and moderate ash yield (23.6%). The coal quality
parameters of the raw coal are consistent with the Huaibei coals
[33,34]. The ash yield of the preparation products followed the de-
creasing order: gangue (84.6 wt%) > middlings (41.3% wt%) > slime
(34.6 wt%) > clean coal (7.9 wt%), indicating a high efficiency of the
cleaning process. The content of carbon (C), hydrogen (H), and nitrogen

(N) exhibits a contrasting difference between cleaning coal and waste
products. However, variations of sulfur contents do not show any sig-
nificant trends between raw coal and its beneficiation products, which
can be ascribed to the dominant organic sulfur in the raw coal. Forms of
sulfur analysis indicate that the sulfides can be efficiently reduced by
the DMCs separation process and consequently enriched in the pre-
paration plant wastes (middlings and coal gangue).

3.2. Petrographic and mineralogical characterization

The maceral assemblages are mainly composed of vitrinite and in-
ertinite. On the mineral- free basis, vitrinite-maceral groups are domi-
nated by collotelinite and collodetrinite (Table 2). The inertinite in the
raw coal consists mainly of fusinite and semifusinite, along with minor
micrinite. The liptinite is mainly represented by sporinite (Fig. 2E).
Clay, carbonate, and pyrite are the visible minerals observed by optical
microscopy (Fig. 2).

A comparison of petrographic components between raw coal and
washing products can be seen in Table 2. The content of vitrinite is
much lower in the middlings (43.4 vol.%) than that in raw coal
(61.0 vol.%) while inertinite increased from 32.5 vol.% of raw coal to
51.1 vol.% of middlings. In comparsion to raw coal, clean coal exhibits
opposite trends for maceral distribution, having relatively higher vi-
trinite and liptinite contents but lower inertinite contents. The petro-
graphic characteristics of slime are similar to that of the raw coal. The
different physiochemical properties of coal macerals may determine
their partitioning behavior during DMCs process. For example, brittle
vitrinite having lower density will report to fine particle and light
fractions whereas high-density mineral matter and inertinite compo-
nents tend to report to coarse sizes and heavier fraction [35,36]. It was
difficult to do the point counting work on the gangue for petrographic
analysis, owing to its low contents of the maceral components. It was
observed that the primary petrographic components in coal gangue
were clays and other accessory minerals. Maceral constituents, such as
inertinite, in gangue are usually fragmented into small, dispersed debris
mixed with clays (Fig. 2D).

The results of minerals determined by XRD, reflected light

Table 1
Proximate and ultimate analysis (%), and forms of sulfur (%) of the samples of
the raw coal and cleaning products from Luling preparation plant.

Sample Parameters Raw coal Middlings Clean coal Slime Gangue

Proximate
analysis

Mad 1.40 1.12 1.44 0.93 nd
Vdaf 36.08 29.78 35.6 30.33 nd
Ad 23.61 41.30 7.91 34.58 84.63

Ultimate
analysis

Cad 61.84 44.57 70.26 53.26 10.72
Had 4.10 3.13 5.17 3.49 1.58
Nad 1.12 0.76 1.26 0.94 0.18

Forms of
Sulfur

St,d 0.57 0.68 0.64 0.60 0.64
Sp,d 0.10 0.26 0.06 0.14 0.22
Ss,d 0.04 0.03 0.02 0.02 0.08
So,d 0.43 0.39 0.56 0.44 0.34

“nd”: not determined; M: Moisture; V: volatile matter; A: ash yield; C: carbon;
H: hydrogen; N: nitrogen; St: total sulfur; Sp: pyritic sulfur; Ss: sulfate sulfur; So:
organic sulfur; ad: air-dried basis; d: dry basis; daf: dry and ash-free basis

Table 2
Petrographic analysis results determined under the optical microscopy for raw
coal and beneficiation products (vol.%; on a mineral-free basis).

Raw coal Middlings Clean coal Coal slime

Telinite 0.6 0 0.4 0.7
Collotelinite 28.5 15.1 32.6 22.8
Total telovitrinite 29.1 15.1 33 23.5
Vitrodetrinite 1.8 3.3 2 6.2
Collodetrinite 29.7 25 30.5 27.1
Total detrovitrinite 31.5 28.3 32.4 33.3
Corpogelinite 0.4 0 0.2 0
Gelinite 0 0 0 0
Total gelovitrinite 0.4 0 0.2 0
Total vitrinite 61.0 43.4 65.6 56.8
Fusinite 14.4 27.9 11.4 14
Semifusinite 12.8 15.4 4.5 10.6
Micrinite 3.3 1.1 2.9 2.4
Macrinite 0.6 0.4 2.6 3.1
Secretinite 0.2 0 0.2 0.4
Funginite 0 0 0 0
Inertodetrinite 1.2 6.3 3.1 5.5
Total inertinite 32.5 51.1 24.8 36.1
Sporinite 5.1 4 5.7 2.7
Cutinite 0.6 0.7 1.2 2
Resinite 0 0.7 1 0.4
Alginite 0 0 0 0
Liptodetrinite 0.6 0 1.4 0.9
Suberinite 0.2 0 0.4 1.1
Exsudatinite 0 0 0 0
Total liptinite 6.5 5.5 9.6 7.1
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microscopy, and SEM-EDX in raw coal and cleaning products are pre-
sented in Table 2, Table S1, and Fig. 3. Estimations of mineral contents
by optical microscopy indicate that raw coal is enriched in clay mi-
nerals with less quartz and other minor mineralogical components
(carbonates and pyrite). The DMCs separation procedures employed at
the preparation plant have different effects on the mineral matter. Clay
minerals are efficiently removed and significantly enriched in the
middlings and coal gangue, leaving only 1.7 vol.% total minerals in the

cleaning coal sample. Note that the SiO2/Al2O3 ratio of coal gangue
(2.0) is higher than that of other samples and kaolinite (1.18), probably
indicating quartz is easily partitioned into heavy fractions.

In detail, the distribution behavior of minerals during coal bene-
ficiation is heavily dependent on the modes of occurrence of minerals.
Based on the XRD data and SEM observation, the major minerals in
waste products (in the decreasing order of significance) are kaolinite
and quartz. Other minerals such as calcite, ankerite, pyrite, illite,

Fig. 2. Petrographic characteristics of raw coal and beneficiation products. (A) Massive lumps of clay distributed along the bedding plane of collodetrinite (CD) in
middlings. (B) Clay bands distributed in the collodetrinite (CD) in clean coal. (C) cleat-infillings of calcite in middlings. (D) framboidal pyrite embedded into the clay
and vitrinite in coal gangue. (E) Secritinite (Sec), sporinite (Sp), and collodetrinite (CD) in raw coal. (F) fracture-filling pyrite, vitrinite, and semifusitie in middlings.
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chalcopyrite, albite, K-feldspar, anatase/rutile, and magnetite are also
identified as minor and accessory species. Clean coal is enriched in clay
minerals such as kaolinite.

Clay minerals are widely distributed and dominated by kaolinite
and with lesser amounts of illite. Clay mineral mainly occurs as massive
lumps (Fig. 2A), bands (Fig. 2B), or irregular aggregates of fine-grained
particles. In places, clay is the groundmass for the organic macerals and
other minor minerals in the waste products (Fig. 2D). The modes of
occurrence of clay are very different in the clean coal and mainly dis-
seminated in the collodetrinite or collotellinite (Fig. 2B). There are also
a few authigenic clays (kaolinite) found in the cell cavities of the coal

macerals, and they sometimes occur as coatings on framboidal pyrite or
contain inclusions of cleat-infillings calcite. The modes of occurrence of
clay indicate that they may derive from multiple origins including
detrital terrigenous origin (primary origin), authigenic/syn-deposi-
tional precipitation origin, and epigenetic origin. The cleaning circuits
play an important role in shifting the clays of terrigenous origin from
raw coal into the wastes products. Quartz occurs as angular grains and
sometimes as particles with good abrasion occurring as rounded or
subangular quartz grains (Fig. 3A), with particle sizes larger than
10 μm. The modes of occurrence of quartz suggest that it was mainly
derived from terrigenous inputs, and the sediment-source region

Fig. 3. Mineralogical characteristics of coal cleaning wastes detected by SEM-EDX techniques. (A) detrital quartz dispersed and mixed with clay minerals (kaolinite)
in the middlings (BSE). (B) Massive siderite and quartz in the middlings (BSE). (C) Illite, K-feldspar, quartz, and spherical pyrite grain in coal gangue (BSE). (D)
Chalcopyrite and iron-bearing oxides minerals in coal gangue (BSE). (E) Anatase/rutile and illite in coal slime (BSE). (F) Massive pyrite in coal slime (SE). K:
kaolinite; I: illite; Q: quartz; Py: pyrite.
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(perhaps Yinshan uplift) for the Huaibei coal basin is far away and thus
quartz may have been subjected to intensive transport to the peat
[33,37]. Quartz is often mixed with clays in the preparation products
and cannot be found in the clean coal; this is also consistent with the
chemical ratio of SiO2/Al2O3 (0.94) for clean coal. Carbonate minerals,
including epigenetic calcite and dolomite/ankerite, are present as cleat
infillings (Fig. 2C) in the waste products, whereas siderite occurring as
nodules (Fig. 3B) is indicative of authigenic precipitation within the
peat-forming environment [2,38]. Although the quantitative analysis
for the carbonate mineral was not carried out, the chemical analysis
results of major oxides suggest that the middlings are relatively en-
riched in carbonate minerals because of the higher content of CaO
(1.18%) in middlings. Pyrite is an important carrier for many toxic
elements in coal [1–10,39]. In spite of the low contents of inorganic
sulfur, syngenetic framboidal pyrite can be observed in all the washed
products (including clean coal), and sometimes epigenetic pyrite-in-
fillings are found in middlings and coal gangue (Fig. 2D and F). It might
be inferred from the results of sulfide-S and iron oxide content that
pyrite is relatively enriched in coal gangue. Minor anatase/rutile and
chalcopyrite, iron-bearing minerals can also be identified by the means
of SEM-EDS techniques (Fig. 3D and 3E). Minerals that are relatively
enriched in the waste products can be very important hosts for trace
metals. Toxic elements such as As (Fig. S1e), Pb (Fig. S2), V (Fig. S1e),
Cu (Fig. S1d and 1f), Co (Fig. S1b), and Mn (Fig. S1b) can be directly
detected by energy dispersive X-ray spectroscopy. The information to-
gether with SCE results are critical to elucidating the modes of occur-
rences of toxic elements, and will help to explain their transformation
behaviors during coal washing and/or combustion, as discussed in the
following sections.

3.3. Distribution of major element oxides and trace elements

The content of major element oxides and trace elements is given in
Table 3. Few reports have been made to evaluate the mass balance of
trace elements for the samples from coal washing plants. Some re-
searchers calculated the removal or enrichment ratio of trace element
based on the laboratory float-sink experiment data [7]; and others
calculated the elemental differences between each product and raw coal
which then divided by the element concentrations in the raw coal to
determine the removal/enrichment ratio for the preparation plant
products [6,8–10]. We have tried to get the plant historical data of
yields of various product streams to calculate the mass balance of the
trace elements (Table 3). The mass balance ratio (R) is calculated as:

=
∗ + ∗ + ∗ + ∗

∗
×R

c y c y c y c y
c y

(%) 100%
m m c c s s g g

r r

cr , cm, cc, and cg represent the element contents for raw coal, middlings,
clean coal, slime and coal gangue, respectively; yr , ym, yc, ys and yg re-
present the yield of raw coal, middlings, clean coal, coal slime, and
gangue, respectively. Based on the data provided from Luling pre-
paration plant, the yield of middlings, clean coal, slime, and coal
gangue are 5.22%, 58.3%, 6% and 31.02%, respectively. As shown in
the table, the mass balance ratio ranges from 51% to 179% for trace
elements and 72% to 339% for the major element oxides, respectively.
Of these elements, major element oxides including Na O2 (339%), P O2 5

(302%), Fe O2 3 (183%), and SiO2 (141%), and trace elements including
Cr (51%) and Pb (179%) are not in the acceptable range considering
that the value of the balances reported in some publications with regard
to power plant is within the range of 70–130% [28,62]. However, the
process in preparation plant is different from power plant. Many var-
iations and factors during the industrial coal preparation process in this
study as mentioned in Part 2.1 can cause errors for evaluating the mass
balance for the trace elements. The content of elements in the compo-
site raw coal is dynamic but within the range of the run-of-mine coal
from Luling coal seams 8, 9 and 10 (unpublished data). In addition, the

contents of major element oxides such as Fe O2 3 are higher in the output
products, possibly because of the medium such as magnetite contained
in the beneficiation products that cannot be completely separated by
the magnetic separator (Fig. S3).

3.4. Transformation behavior of toxic elements during coal washing

The concentration and SCE results of toxic trace elements in the raw
coal and preparation plant wastes are presented in Table 3, Table 4, and
Fig. 4, respectively. The total leaching ratio of SCE ranges from 71.1%
to 115.7%, except for cobalt in raw coal (65.8%). The recovery of se-
quential extraction experiments can be acceptable within 70% to 130%
[28,30,32,48,51]. Sequential extraction procedure has been widely
used but has some limitations. A complete extraction of a component is
not readily achieved in any stage of sequential leaching experiments.
During the SCE process, the mass loss or contamination seems in-
evitable because many regents and several steps are involved. There-
fore, the direct method (SEM-EDS) was adopted in this study to over-
come the problem.

The partitioning behavior of V and Cr between different separations
will be discussed together because of their similar geochemical prop-
erties and transformation behavior during the coal washing process
[1,30]. Approximately 40% of V and 83% of Cr are efficiently removed
from the raw coal, and the remainder is concentrated in the coal wastes
products. As shown in Fig. 4, silicates and organic matters are the
primary associations for V and Cr in the raw coal and waste products,
which is also confirmed by the SEM-EDS analysis (Figs. 3E and S1e).
Compared to coal gangue, the proportions of organic-bound V and Cr
are relatively higher in the middlings (25.3% for V; 49.7% for Cr) and
coal slime (30.4% for V; 37.0% for Cr) samples. Similarly, Huggins et al.
[1,40,42] investigated inorganic-rich sink fractions and tailings, sug-
gesting that illite could be the hosts for V and Cr in coal. Zhao et al. [41]
found that V and Cr were enriched in nano Ti-oxides mineral grains that
were formed by authigenic precipitation and contained within coal
macerals or pores.

Although the sequential extraction results show that Cu, Cd, As, and
Zn have multiple chemical forms, they are mainly associated with
sulfides in the waste products. It has been established that sulfides
minerals, such as pyrite, sphalerite, galena, and chalcopyrite in the coal
are the primary carriers for these elements [39]. The observation under
SEM-EDS also shows that Cu occurs in chalcopyrite in coal gangue or in
pyrite in the coal slime (Fig. 3D and F). The slight enrichment of Cu in
the wastes might be a reflection of sulfides reporting to the waste
streams rather than the washed coal (Table 3). The modes of occurrence
of As, Cd, and Zn are primarily associated with sulfide minerals in raw
coal (Fig. 4). Arsenic and Cd are efficiently partitioned from the raw
coal to coal gangue, leaving the latter with the highest concentrations
(Table 3). The fractions of sulfide-bound elements Cd, As, and Zn in coal
gangue are higher than in coal slime and middlings, which may be
ascribed to higher contents of sulfides in the gangue sample.

The distribution of Se between raw coal and beneficiation products
suggests that Se might have a strong affinity with organic matter in the
raw coal (Table 3). Further, Se is consistently associated with organic
matters (57.1%) and silicates (24.5%) in the raw coal (Fig. 4). After coal
beneficiation, the fractionation profile of Se speciation for the mid-
dlings and coal slime is similar to that of the raw coal where the or-
ganic-bound Se is dominant; whereas the coal gangue contains the
lowest organic associations of Se (15.6%). Se is considered to be asso-
ciated with sulfide minerals or some accessory minerals in coal
[4,44–46]. It is also well-documented that Se could be found in greater
abundance as organically-associated form [44–48]. The modes of oc-
currence of Pb are equally comprised of organic-bound and silicate-
bound (each around 30%) associations, followed by carbonate-bound
(20.4%) and sulfide-bound (19.3%) associations in the raw coal (Fig. 4).
Sequential extraction experiments suggested that the carbonate-asso-
ciated fraction (48.2%) and organically-bound fraction (28.3%) are the
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dominated forms in the middlings. The mineralogical components
shown in Tables 3 and S2 as well as observation by SEM-EDS show that
carbonate minerals are relatively enriched in middlings, and subse-
quently caused the enrichment of some carbonate-bearing elements
such as Mn, Pb, and Co in the middlings. In addition, silicate-bound Pb
is the predominant form in the coal slime and gangue samples.

The Sb content in the samples is in the range of 0.47–0.82 μg/g,
which is lower than the average content of Sb in Chinese coals [37] and
world coals [49]. The solid wastes have a relatively higher Sb content
while the clean coal is low in Sb, suggesting an inorganic affinity of Sb
in the coal. Based on the SCE results, silicate-bound Sb is most abundant
in raw coal and waste product (Fig. 4). Generally, an increase in the
silicate-bound form and a decrease in the organic- bound Sb have been
observed (Fig. 4). It is generally accepted that Sb in coal is associated
with sulfides [43,50]. In this study, the result of SEM-EDS analysis on
the samples suggests that clay minerals, such as illite, could be the
major hosts for Sb (Figs. 3C and S1c). Sb occurrence in clay minerals in
coal have been reported by some researchers [51–54]

The content of Co is similar in the raw coal and in the middlings,
and it is concentrated in coal gangue while depleted in the clean coal.

Multiple modes of occurrence of Co may be present in the raw coal and
it is probably associated with sulfide minerals, silicates, and organic
matters [46,55]. Based on the SCE results, Co mainly occurs as silicates
(40.5%) and carbonates (38.6%) in the raw coal (Fig. 4). Ward et al.
[55] found that Co exhibited a significant correlation with Fe (espe-
cially strong for siderite), indicating Co in the coal might be associated
with siderite. This is also similarly supported by our SEM-EDS tech-
nique that siderite (FeCO3) contains minor Co as impurities in siderite
crystals (Figs. 3B and S1c). After coal washing, the fractions of carbo-
nate-bound Co are increased in the middlings (44.2%) and show small
differences between raw coal and the other waste products.

As indicated in Fig. 4, the modes of occurrence of Ni in the raw coal
are dominated by sulfide minerals (35.3% for Ni) and followed by the
silicates-bound (28.3%) and organic-bound (21.8%) associations.
Nickel is geochemically similar to Fe and could substitute for Fe in the
pyrite [39,45]. Some researchers have reported that Ni in coals might
be organically bound [45] or associated with sulfide minerals
[39,45–46]. It was also found that Ni could be associated with clays,
oxides, and hydroxides minerals [56]. The total fractions of sulfide-
bound Ni and silicate-bound Ni in raw coal is up to 63.6% and are

Table 3
The contents of major element oxides and trace elements as well as element mass balance for the Luling preparation plant samples.

Raw coal Midlings Clean coal Coal slime Gangue Output R (%)

SiO2 15.14 24.14 5.09 21.06 51.13
Mass (%) 3.575 0.298 0.701 0.298 3.745 5.04 141.03%
TiO2 0.41 0.57 0.22 0.05 0.88
Mass (%) 0.097 0.007 0.030 0.001 0.064 0.10 105.85%
Al O2 3 9.53 13.7 5.42 13.61 25.51
Mass (%) 2.250 0.169 0.746 0.193 1.868 2.98 132.26%
Fe O2 3 0.67 2.03 0.14 1.3 3.1
Mass (%) 0.158 0.025 0.019 0.018 0.227 0.29 183.17%
MgO 0.82 0.94 0.63 0.79 1.16
Mass (%) 0.056 0.003 0.032 0.003 0.017 0.06 100.54%
CaO 0.61 1.18 0.35 0.66 0.44
Mass (%) 0.144 0.015 0.048 0.009 0.032 0.10 72.42%
MgO 0.82 0.94 0.63 0.79 1.16
Mass (%) 0.194 0.010 0.113 0.012 0.060 0.19 100.54%
MnO 0.052 0.05 0.05 0.05 0.06
Mass (%) 0.012 0.001 0.007 0.001 0.004 0.01 102.64%
Na O2 0.23 0.1 0.2 0.18 0.3
Mass (%) 0.054 0.024 0.047 0.042 0.071 0.18 339.13%
K O2 0.52 0.45 0.28 0.56 1.1
Mass (%) 0.123 0.005546 0.038541 0.007933 0.080562 0.13 107.99%
P O2 5 0.04 0.02 0.03 0.05 0.32
Mass (%) 0.009 0.000 0.004 0.001 0.023 0.03 302.00%
V (mg/kg) 70 38 43 40.5 115
Mass (mg) 70 1.98 25.07 2.43 35.67 65.16 93.08%
Cr (mg/kg) 30 24.5 5.04 18.4 31.85
Mass (mg) 30 1.28 2.94 1.1 9.88 15.2 50.67%
Co (mg/kg) 5.12 5.44 3.79 3.21 7.6
Mass (mg) 5.12 0.28 2.21 0.19 2.36 5.04 98.51%
Ni (mg/kg) 11.66 11.42 8.51 8.14 15.13
Mass (mg) 11.66 0.6 4.96 0.49 4.69 10.74 92.1%
Cu (mg/kg) 30.08 46.64 32.82 42.04 42.46
Mass (mg) 30.08 2.43 19.13 2.52 13.17 37.26 123.88%
Zn (mg/kg) 49.47 59.61 44.58 71.3 94.16
Mass (mg) 49.47 3.11 25.99 4.28 29.21 62.59 126.52%
Pb (mg/kg) 11.02 37.44 14.04 22.77 26.43
Mass (mg) 11.02 1.95 8.19 1.37 8.2 19.7 178.81%
As (mg/kg) 3.61 4.98 0.77 3.32 8.35
Mass (mg) 3.61 0.26 0.45 0.2 2.59 3.5 96.9%
Se (mg/kg) 4.27 5.04 4.3 4.58 3.03
Mass (mg) 4.27 0.26 2.51 0.27 0.94 3.98 93.32%
Sn (mg/kg) 4.17 3.79 3.35 2.71 4.26
Mass (mg) 4.17 0.2 1.95 0.16 1.32 3.63 87.17%
Sb (mg/kg) 0.61 0.5 0.47 0.64 0.82
Mass (mg) 0.61 0.03 0.27 0.04 0.25 0.59 97.19%
Cd (mg/kg) 0.33 0.33 0.25 0.36 0.59
Mass (mg) 0.33 0.02 0.15 0.02 0.18 0.37 111.39%

R: mass balance ratio; The unit for major element oxides is % and for other elements is mg/kg.
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similar with coal slime (62.2%), but lower than in the middlings
(73.9%) and coal gangue (77.2%), and these two forms might cause the
lower contents of Ni in the cleaning coal and slime.

3.5. Thermochemical and toxic elements behavior during combustion

3.5.1. Thermal reactivity during combustion
The thermogravimetric analysis could provide important informa-

tion regarding the reactivity and transformation behaviors of fuels
during combustion. The TG-DTG curves of raw coal and corresponding
beneficiation products at the heating rate of 15 °C/min were plotted in
Fig. 5. Meanwhile, the characteristic of TGA parameters determined
from the combustion profiles were summarized in Table 5.

Overall, as shown in Fig. 5, the raw coal and beneficiation products
(except for coal gangue) exhibit a similar trend when the combustion
temperature increased. At the initial stage, the weight loss between
40 °C and 140 °Cis mainly because of dehydration of moisture in the
samples. There is a net weight gain from 195 to 357 °C corresponding to
the oxygen chemisorption before the onset of combustion. A similar
phenomenon was also found in our previous investigations on bitumi-
nous coal and coal gangue combustion [22,57]. The devolatilization
process is inconspicuous for all the samples and no single peak was

found in the combustion profiles due to the relatively higher coal rank.
There is one typical sharp peak in the temperature range of 310–620 °C
for all samples (except for coal gangue) resulted from thermal decom-
position of the samples including devolatilization, charring, and com-
bustion of volatiles and char.

For each beneficiation products, the maximum weight loss rate
(Rmax) exhibits the following decreasing order: clean coal (0.87%/
°C) > coal slime (0.62%/°C) > middlings (0.49%/°C) > coal gangue
(0.11%/°C), while the corresponding temperature Tmax exhibits insig-
nificant differences and displays as following order: clean coal
(472.4 °C) < middlings (480.8 °C) < coal slime (484.4 °C) < coal
gangue (486.3 °C). Compared to raw coal, it is evident that the DMCs
process greatly improves the reactivity of raw coal, producing clean
coal with an increase of 22.5% in the reactivity parameters Rmax. This is
consistent with the higher proportions of vitrinite, liptinite, and volatile
matters in the cleaning coal. The solid waste products, middlings, and
coal slime are also not difficult to burn in the boilers because the onset
temperature and reactivity parameters during combustion are similar to
the raw coal as suggested from Fig. 5 and Table 5. In contrast to mid-
dlings and coal slime, the gangue sample with high ash yield is difficult
to burn as indicated by the TG-DTG combustion profiles (Fig. 5). The
Rmax for coal gangue decreases by 0.11%/°C (equal to 84.51%), while

Table 4
Results of sequential chemical extraction for 11 toxic elements in raw coal and solid wastes.

Elements V (μg/g) Cr (μg/g) Co (μg/g) Ni (μg/g) Cu (μg/g) Cd (μg/g) As (μg/g) Se (μg/g) Sb (μg/g) Pb (μg/g) Zn (μg/g)

Raw coal
Water-leachable bdl bdl bdl bdl bdl 0.00 bdl 0.02 0.05 bdl bdl
Ion-exchangeble bdl 0.02 0.12 0.45 0.55 0.01 0.05 0.26 0.03 bdl bdl
Carbonate-bound 1.51 1.49 1.29 1.52 0.98 0.03 0.09 2.31 0.02 1.99 6.73
Organic-bound 16.40 10.39 0.36 2.94 15.74 0.06 0.47 0.44 0.15 2.94 10.91
Slicate-bound 28.82 16.72 1.36 3.81 6.25 0.05 0.74 0.99 0.29 2.94 7.27
Sulfide-bound 3.06 2.31 0.22 4.76 9.20 0.11 1.63 0.02 0.09 1.88 22.28
Sum 49.79 30.92 3.35 13.48 32.71 0.27 2.97 4.04 0.64 9.75 47.20
Bulk analysis 70.00 30.00 5.12 11.66 30.08 0.33 3.61 4.27 0.61 11.02 49.47
Mass balance (%) 71.12% 103.08% 65.38% 115.70% 108.74% 82.23% 82.38% 94.07% 104.20% 88.48% 95.40%

Middlings
Water-leachable 0.00 0.02 0.01 0.01 bdl bdl 0.03 bdl 0.08 0.01 bdl
Ion-exchangeable 0.07 0.39 0.28 0.64 0.87 0.01 0.00 0.05 0.00 0.03 0.57
Carbonate-bound 2.24 1.27 2.56 0.64 0.13 0.03 0.12 0.04 0.03 16.31 20.81
Organic-bound 8.51 13.05 0.50 1.51 9.47 0.09 1.27 2.20 0.11 9.56 6.08
Slicate-bound 19.86 10.78 1.46 3.78 15.72 0.06 1.05 1.23 0.27 7.12 16.66
Sulfide-bound 2.92 0.75 0.98 4.16 22.72 0.11 1.73 0.69 0.03 0.77 22.93
Sum 33.61 26.26 5.79 10.74 48.91 0.29 4.20 4.20 0.51 33.79 67.04
Bulk analysis 38.00 24.50 5.44 11.42 46.64 0.33 4.98 5.04 0.50 37.44 59.61
Mass balance (%) 88.43% 107.19% 106.45% 94.08% 104.86% 87.35% 84.31% 83.43% 102.23% 90.21% 112.47%

Coal slime
Water-leachable 0.15 0.02 0.20 bdl 0.01 bdl 0.00 0.00 0.11 0.02 0.00
Ion-exchangeble 0.12 0.39 0.17 0.59 0.66 0.01 0.00 bdl 0.01 0.02 0.34
Carbonate-bound 2.82 bdl 0.41 bdl 0.01 0.02 0.15 0.21 0.01 5.11 10.59
Organic-bound 10.25 5.74 0.62 2.76 13.34 0.11 0.93 2.51 0.18 4.17 7.77
Slicate-bound 18.42 9.35 0.88 3.40 14.08 0.07 0.52 0.78 0.25 10.05 18.90
Sulfide-bound 1.93 bdl 0.16 2.12 13.08 0.15 1.36 0.64 0.05 1.70 35.45
Sum of six forms 33.68 15.49 2.44 8.88 41.18 0.35 2.96 4.14 0.60 21.07 73.05
Bulk analysis 40.50 18.59 3.34 8.14 42.04 0.36 3.32 4.58 0.64 22.77 71.30
Mass balance (%) 83.15% 84.21% 72.93% 109.06% 97.95% 97.91% 89.28% 90.48% 93.75% 92.53% 102.45%

Coal gangue
Water-leachable 0.01 0.02 bdl bdl 0.00 0.00 bdl 0.04 0.10 0.00 0.02
Ion-exchangeble 0.09 0.40 0.62 0.98 0.87 0.01 0.00 0.20 0.00 0.03 0.42
Carbonate-bound 2.84 3.14 3.06 bdl 4.62 0.06 0.77 0.14 0.03 6.87 12.18
Organic-bound 14.77 3.77 0.64 2.20 10.20 0.04 0.91 0.41 0.09 2.46 21.40
Slicate-bound 64.05 20.44 2.52 4.27 4.24 0.10 2.01 1.20 0.52 11.57 18.89
Sulfide-bound 6.82 2.69 1.10 6.47 20.52 0.42 4.37 0.66 0.01 0.30 36.11
Sum of six forms 88.57 30.46 7.93 13.92 40.46 0.63 8.06 2.65 0.77 21.23 89.01
Bulk analysis 115.00 31.85 7.60 15.13 42.46 0.59 8.35 3.03 0.82 26.43 94.16
Mass balance (%) 77.02% 95.64% 104.34% 92.02% 95.28% 106.78% 96.54% 87.57% 93.44% 80.34% 94.53%

bdl: below detection limit.
Sum: sum of six form element concentrations.
Bulk analysis: elements determined in bulk samples.
Mass balance (%): data of the sum of six forms divided by bulk analysis result.
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an 11.5 °C increase of the corresponding Tmax is observed. There is a
broader main peak presented in the DTG profile of coal gangue (Fig. 5).
The high ash content of gangue inhibits the thermal decomposition of
the organic matter during combustion. In addition, clay minerals
(kaolinite) as the major components may also contribute to the weight
loss of the sample since kaolinite will lose structural OH at around
500 °C[57].

3.5.2. Volatility of toxic elements in coal preparation plant waste products
It has been experimentally found that many toxic elements will

volatilize during combustion, and the fates of trace elements are de-
termined by the modes of occurrences, physiochemical reactions, op-
erating conditions, etc. [23–26,57–68]. Trace elements associated with
organic matter or sulfide minerals are easily vaporized during the early
stage of coal combustion. Elements occurring as excluded minerals or
discrete minerals are more likely to be concentrated in ash whereas

Fig. 4. Comparisons of chemical forms of 11 toxic elements in raw coal and its waste products.

Fig. 5. TG-DTG curves of raw coal and beneficiation products during combustion under air flow.
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elements associated with inherent minerals or chemically bound to the
organic compounds preferentially form submicron particles [61,62]. To
assess the volatile characteristics of toxic elements during combustion,
the volatile ratio (Vr) was calculated using the formula as following
[57]

= ⎡
⎣⎢

−
× ⎤

⎦⎥
×Vr% 1

Concentration of element in ash Ash yield in the corresponding sample
Concentration of element in the corresponding sample

100%

As indicated from Fig. 6, the toxic elements can be classified into
three distinct groups based on their volatile characteristics. Group 1
includes the highly volatile elements Se with Vr > 85%. Selenium in
the studied samples mainly occur in organic matter, as mentioned
above. During the devolatilization stage and char combustion, the
structure of organic matter will be destroyed and the organic-bound
inorganics could be released and vaporized. Many studies have also
reported that Se is easily vaporized and released with flue gas phase
into the atmosphere or condensed onto the fine particles and absorbed
by it physically and chemically [26,61,64].

Group 2 contains elements As, Pb, Zn, Cd, and Sb, with the Vr in the
range of 20–85%. The volatile ratio of As varies among the samples
(44–77%). Previous studies reported that pyritic-As vaporized with the
decomposition of pyrite to pyrrhotite or with oxidation of arsenopyrite
to ferric arsenate [23]; meanwhile, the organically bonded arsenic
possibly transformed to arsenic oxide [23]. In the present study, sulfide-
and organic-bound arsenic are the dominant forms for all of the frac-
tions which result in about 70% of arsenic volatized during combustion.
For the gangue sample, the volatile ratio is relatively lower (44.5%).
Arsenic in the coal gangue is primarily associated with sulfide minerals
and then with silicates. High contents of iron oxides, silicon oxides, and
aluminum oxides in the high temperature ash of coal gangue might play

an important role in capturing As to form stable phases, such as Fe
oxides, hydroxides, sulfates, arsenate [23,64–66], or as an As-bearing
aluminosilicate glass phase in the ash [65]. Other elements, such as Sb,
Cd, Zn, and Pb in the second group have volatile ratio in the range of
11.1–36.1%, 51.9–84.1%,25.2–80.8%, and 26.9–50.3%, respectively;
of these elements, the volatile ratio of Sb, Cd, and Zn increased to the
maximum in the clean coal sample, while Pb exhibit the maximum mass
loss in the coal gangue. The maximum vaporization of Sb, Cd and Zn in
the cleaning coal during combustion might be associated with their
organically associations after heavy medium separation.

The least volatile elements V, Cr, Co, Ni, and Cu with Vr less than
20% are placed into Group 3. The volatile degrees of V, Cr, Co, and Ni
are lower, having volatile ratio in the range of 1.4–7.2% (V), 4.3–12.8%
(Cr), 0.7–6.7% (Co), and 1.0–5.4% (Ni). Although these elements partly
occur as organic or sulfide associations in the samples, few of them are
driven off with the escape of organic matter. In a laboratory coal
combustion experiments, Wang et al. [23] found that V, Cr, Co, and Ni
exhibited no or very low volatility in spite of the combustion conditions
and heating rates. Other combustion experiments under air condition or
oxy-combustion condition confirmed that V, Cr, Co and Ni were of low
volatility [30,59,67]. Further, it also has been demonstrated by ther-
modynamic equilibrium calculation or investigation on the combustion
ash from power plant that the V, Cr, and Co were hardly vaporized
[26,68]. The low volatility of V, Cr, Co and Ni in this study may be
associated with their chemical speciation. Elements bound with silicate
minerals, such as illite, are more likely to remain in the ash [24]. The
volatile ratio of V, Cr, and Co in the raw coal are significantly raised in
the clean coal while decreased in the coal gangue sample (Fig. 6). In
contrast, the volatile behavior of Cu is slightly different from V, Cr, Co,
and Ni. The volatile ratio of Cu is lower in the waste products
(7.7–14.2%) than that in raw coal (18.6%) and clean coal (17.9%).
Querol et al. [59] found that Fe-bearing phases segregated into slag
during coal combustion, leading to the enrichment of Cu, Fe, and Mn
with iron oxide affinity. As indicated in Section 4, Cu occurs mainly as
chalcopyrite, pyrite, and silicates in the wastes sample, and bound with
organic matters and sulfides in the raw coal. Affinities with iron sulfides
and discrete minerals result in lower volatility of Cu in the waste pro-
ducts; whereas dominant organic associations of Cu might be one of the
most important factors to explain the relatively higher volatile ratio for
the raw coal and clean coal.

4. Conclusions

A comprehensive study of the petrology, mineralogy and geo-
chemistry of beneficiation products from DMCs process in a coal
cleaning plant was carried out. The preparation plant wastes derived
from the three-product DMCs exhibits enrichment of mineral matter to
different degrees. Mineral forms such as massive lumps of clays of
terrigenous origin, cleat-infilling carbonate, and pyrite of epigenetic
origin are prone to be enriched in the middlings and coal gangue.
Detected minor or trace heavy minerals, quartz, rutile/anatase, and
chalcopyrite also likely reported to the preparation plant wastes. The
contents of low-density density vitrinite and liptinite were enhanced in
the clean coal, while inertinite-maceral group were enriched in the
middlings. The modes of occurrences of the elements varied among
different coal waste products, and the transformation behavior of toxic
elements between the raw coal and the washery products were mainly
controlled by clay minerals (V, Cr, Co, Sb, and Pb), carbonate minerals
(Co and Pb), sulfide minerals (As, Cu, Ni, Cd, and Zn) and organic
matters (V, Cr, Se, and Cu). The thermal reactivity of coal is sig-
nificantly improved after coal beneficiation, whereas the increased in-
organic components inhibit the thermal chemical reaction of wastes
(especially for coal gangue). Three groups are divided based on the
volatile ratio of elements. The organic-mineral associations of toxic
elements make significant contributions to the transformation behavior
during combustion.

Table 5
DTG data of raw coal and cleaning products at the heating rate of °C/min.

Sample Tmax(°C) °R (%/ C)max R changemax
a (%) T changemax

a (%)

Raw coal 474.8 0.71
Middlings 480.8 0.49 −30.98 1.27
Coal slime 484.4 0.62 −12.67 2.02
Clean coal 472.4 0.87 22.54 −0.52
Coal gangue 486.3 0.11 −84.51 2.42

Rmax : the maximum rate of weight loss.
Tmax: the peak temperature when weight loss rate is maximum.

a Change: positive sign indicates an increase, while a negative sign means a
decrease toward raw coal.

Fig. 6. The volatile ratio of toxic trace elements in raw coal and associated
cleaning products.
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