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Abstract
The Loess Plateau is considered one of the world's regions with severe soil erosion. Grasslands

are widely distributed on the Loess Plateau, accounting for approximately 40% of the total area.

Soil organic carbon (SOC) plays an important role in the terrestrial carbon cycle in this region.

We compiled more than 1,000 measurements of plant biomass and SOC content derived from

223 field studies of grasslands on the Loess Plateau. Combined with meteorological factors

(precipitation and air temperature) and the photosynthetically active radiation factor, the topsoil

SOC contents of grasslands were predicted using the random forest (RF) regression algorithm.

Predicted grassland SOC content (1.70–40.34 g kg−1) decreased from the southeast to the

northwest of the Loess Plateau, with approximately 1/5 of the grassland exhibiting values lower

than 4 g kg−1. Observed SOC content was positively correlated with observed plant biomass, and

for predicted values, this correlation was strong in the desert steppe and the steppe desert of

rocky mountains. Air temperature was the most important factor affecting SOC contents in the

RF model. Moreover, the residual error of observations and predictions increased as the grazing

intensity varied from none to very severe in the temperate desert steppe, and this RF model may

not perform well in plains. The use of the RF model for SOC prediction in Loess Plateau grass-

lands provides a reference for C storage studies in arid and semi‐arid regions, and aboveground

biomass and temperature should receive more attention due to increasing C sequestration.
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1 | INTRODUCTION

Terrestrial soil stores large amounts of carbon (C) and constitutes one

of the primary atmospheric C pools (Eswaran et al., 2000; Q. Li, Yu, Li,

Zhou, & Chen, 2014). Soil organic carbon (SOC) plays non‐negligible

roles in C cycling and mitigating global warming (Davidson & Janssens,

2006; Lal, 2004; Post & Kwon, 2000). Soil erosion is recognized as a

key driver of SOC dynamics (Lal, 2005; Starr et al., 2000), and redistri-

bution of SOC is one cause of decreased soil quality (Dominati,

Mackay, & Patterson, 2010). Furthermore, soil erosion or SOC redistri-

bution is closely related to land degradation and could be used as an

indicator of land degradation (Vågen, Winowiecki, Abegaz, & Hadgu,

2013). Over the last 10 years, reliable measurement of SOC and

related C pools at different spatial scales has remained a challenge
d. w
(Lal, 2009). This challenge is not only due to the limitations of tradi-

tional observation methods but also due to the immaturity and uncer-

tainty of new methods, such as the introduction of data mining

techniques for estimation.

Applying data mining techniques in simulations of SOC content

has become a popular methodology. Ancillary factors are indispensable

in these simulations. Geomorphology affects SOC content, and Kuhn,

Hoffmann, Schwanghart, and Dotterweich (2009) proposed an eco‐

geomorphologic approach to study the movement of organic C

through landscapes. Specifically, elevation can be regarded as an ancil-

lary factor in SOC content simulation (Cécillon et al., 2009). In addition

to elevation, vegetation types and coverage also control SOC content

(Ding, Yang, Song, & Zhang, 2012; Neufeldt, Resck, & Ayarza, 2002; S.

W. Zhang et al., 2013). Other natural factors, such as rainfall (Beguería,
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Angulo‐Martínez, Gaspar, & Navas, 2015; Chamizo, Rodríguez‐Cabal-

lero, Román, & Cantón, 2017) and temperature (Ghosh et al., 2016;

Qi et al., 2016), have varying effects on SOC content. Concerning

human factors, land use has the greatest effect on the SOC pool

(Gelaw, Singh, & Lal, 2014). In cropping systems, the cover cropping

frequency (Brennan & Acosta‐Martinez, 2017), long‐term fertilization

(J. Zhang, Hu, Li, Zheng, & Li, 2017), and winter tillage (G. S. Zhang &

Ni, 2017) are the main drivers of SOC content dynamics. In grasslands,

grazing is the main driver of the SOC pool (W. Li, Cao, et al., 2017;

Stavi, Argaman, & Zaady, 2016). Beginning in 1999, the Chinese gov-

ernment implemented the “Grain for Green” project, aimed at improv-

ing the ecological environment in arid and semi‐arid regions (L. Wang,

Wei, Horton, & Shao, 2011). Under this programme, croplands have

been converted to grasslands and forests as a systematic management

measure, and grazing has been inhibited in closed areas. As of 2013,

these vegetation restoration measures had primarily been successful,

and the vegetation coverage on the Loess Plateau had doubled com-

pared with the 1900s (Chen et al., 2015). As grassland afforestation

is a main aim of the “Grain for Green” programme on the Loess Plateau

(Q. Li et al., 2016; K. Zhang, Dang, Tan, Cheng, & Zhang, 2010; B.

Zhang, He, Burnham, & Zhang, 2016), it is necessary to understand

the present situation regarding soil quality, especially concerning the

SOC contents of grasslands. However, it remains challenging to

effectively estimate the SOC content of grasslands at this large scale.

To solve this problem, attempts have been made to employ remote

sensing (RS) images for such analyses.

RS has greatly contributed to SOC mapping (Grinand et al., 2017;

Maynard & Levi, 2017). To integrate multivariate factors acquired

using RS data, random forest (RF) models can be employed. RF models

are a type of multidecision tree model whose advantages include the

ability to model numerical and categorical factors without considering

the multicollinearity among factors (Breiman, 2001; Crookston &

Finley, 2008). Sreenivas et al. (2014) used an RF model to map SOC

density in the states of Andhra Pradesh and Karnataka (India) at a

spatial resolution of 1 km, and the model performed well. Therefore,

it is feasible to employ this model to predict the SOC contents of

grasslands on the Loess Plateau, combined with the use of RS images

and an RF model.

The soil C sequestration capability varies in different types of

grassland (Fornara & Tilman, 2008; J. H. Li, Yang, et al., 2014). Ma,

He, Yu, Wen, and Peng (2016) estimated that meadows stocked more

SOC than the steppes in China. Steppes and deserts stock less SOC

but are widely distributed, especially on the Loess Plateau. Researchers

have studied SOC storage (W. Li, Cao, et al., 2017; Zhang &

Shangguan, 2016) and distribution (W. Sun, Zhu, & Guo, 2015; J.

Wang, Yang, & Bai, 2015; Xin, Qin, & Yu, 2016; Zhao et al., 2016) on

the Loess Plateau, but the scale of this research was limited to nature

reserves or watersheds.

To integrate auxiliary factors and solve the problem mentioned

above in an efficient manner, we utilized an RF model to predict the

SOC content of grasslands on the Loess Plateau. This method not only

exploits the potential of the RS technique but also expands the scope

of the application of data mining and machine learning. In addition to

SOC contents, plant biomass was also predicted on the Loess Plateau,

as a contrast. We addressed the following questions: (a) How can the
SOC content and plant biomass of grasslands across the Loess Plateau

be predicted; (b) what is the spatial distribution pattern of grassland

SOC contents; (c) which factors are correlated with grassland SOC

content; and (d) what is the relationship between grassland SOC

content and plant biomass.
2 | MATERIALS AND METHODS

2.1 | Study area and sampling sites

The Loess Plateau (100°52′–114°33′E, 33°41′–41°16′N) covers an

area of 646,200 km2 and is located in the middle of China. There are

six types of topography on the Loess Plateau (Figure S1): plains, blown

sandy hills, rocky mountains, rocky hills, plateaus and gullies, and hills

and gullies. Rainfall on the Loess Plateau is affected by the Asian

monsoon and decreases from southeast to northwest (X. P. Sun &

Wang, 2005). Due to the loose texture of loess, extreme rainfall

aggravates soil erosion in sparsely vegetated areas. Grasslands cover

an area of approximately 250,000 km2 on the Loess Plateau and play

an important role in vegetation restoration. These grasslands can be

partitioned into six types (Figure S2): typical temperate steppe,

temperate desert steppe, temperate forest steppe, northern warm

temperate tussock and shrub tussock, southern warm temperate

tussock and shrub tussock, and temperate steppe desert.

We compiled more than 1,000 measurements of SOC content and

plant biomass, acquired from 223 field studies (Figure 1) conducted on

grasslands. Each field study was set in a plot with a width and length of

100 m, and along the diagonal of each plot, several quadrats (1 × 1 m)

with intervals of 10 m were identified as representatives along a

100‐m linear transect. The measured data in this study were the means

for the quadrats in the corresponding plot. As topsoil is generally

applied to establish the soil spectral library in RS techniques (Castaldi

et al., 2016), we studied the SOC content at a soil depth of 10 cm. Both

the aboveground biomass (AGB) and belowground biomass (BGB)

were dried and weighed in the laboratory, and BGB was measured in

the soil profiles to a depth of 1 m, as most grass roots are distributed

no deeper than 1 m on the Loess Plateau.
2.2 | Factor selection and modelling approach

In this study, an RF regression model was applied to predict the SOC

content, AGB, BGB, and total biomass (TB) of grasslands. Grassland

TB was calculated as the sum of AGB, BGB, and litters. The RF model

provides an evaluation of important variables that can be used to

select essential variables among various factors.

Topography, geographical location, vegetation index, photosyn-

thetically active radiation (FPAR), temperature, and rainfall were chosen

as auxiliary factors in this study (Table 1). We downloaded RS images

from the United States Geological Survey (https://www.usgs.gov/),

acquired climate data from the China Meteorological Administration

(http://data.cma.cn/), and interpolated the climate data from various

stations into continuous raster images using the AUSPLINE method

(Hutchinson, 2001). As shown in Table 1, images with three spatial

resolutions (30, 100, and 500 m) were used. Considering the time

https://www.usgs.gov/
http://data.cma.cn


TABLE 1 Factor descriptions and data sources used in this study

Factors definitions Abbreviation(s) Source data set Resolution (m)

Topography

Elevation Elev Advanced Spaceborne Thermal
Emission and Reflection
Radiometer (ASTER)

30
Slope Slope

Geographic location

Longitude x Sample Data
Latitude y

Vegetation indexes

Normalized difference vegetation index
(NDVI) based TM data

TNDVI Landsat 5 Thematic 30

Summer average Leaf Area Index (LAI) of
2011/2012/2013

L2011/L2012/L2013 Moderate Resolution Imaging
Spectroradiometer (MODIS):

500

Average of L2011, L2012 and L2013 LM

FPAR

Summer average FPAR of 2011/2012/2013 F2011/F2012/F2013 MODIS: MOD15A2H 500
Average of F2011, F2012 and F2013 FM

Temperature

Daily maximum temperature of 2011/2012/
2013

HT2011/HT2012/HT2013 ANUSPIN interpolation based on 64
recording stations
(http://www.nmic.gov.cn)

100

Average of HT2011, HT2012 and HT2013 HTM
Daily minimum temperature of 2011/2012/

2013
LT2011/LT2012/LT2013

Average of LT2011, LT2012 and LT2013 LTM
Summer Monthly average temperature of

2011/2012/2013
ST2011/ST2012/ST2013

Average of ST2011, ST2012 and ST2013 ST
Monthly average temperature of 2011/

2012/2013
T2011/T2012/T2013

Average of T2011, T2012 and T2013 TM

Precipitation

Monthly average precipitation of 2011/
2012/2013

R2011/R2012/R2013 ANUSPIN interpolation based on 64
recording stations
(http://www.nmic.gov.cn)

100

Average of R2011, R2012 and R2013 RM
Summer monthly average precipitation of

2011/2012/2013
SR2011/SR2012/SR2013

Average of SR2011, SR2012 and SR2013 SRM

FIGURE 1 Study area and sampling sites.
Digital elevation models (DEMs) represent the
elevation on the Loess Plateau. DEM data
were downloaded from the United States
Geological Survey and are free for use by the
public. Figure 1 was generated with ArcGIS
10.0 (http://www.esri.com/) [Colour figure
can be viewed at wileyonlinelibrary.com]
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required for the computer processing of the RF model, we set the

spatial resolution of the predicted data to 500 m.

The variables utilized to build the RF model can be ordered by

their importance value. The degree of variance explained refers to

the percentage of explained variance for SOC content or plant biomass

in RF model processing. First, the most important variable was added

to the RF model, followed by the second; the next‐most important

variables were then sequentially added until the 20th variable. In the

stepwise addition of variables, the most recently added variable should

be abandoned if the degree of variance explained decreases upon the

variable's addition; otherwise, it should be retained, and the process

should be continued. Using this goal‐directed method, the combination

of factors with the highest degree of explanation for grassland SOC

content and plant biomass prediction was selected (Figure 2).

2.3 | Predicted accuracy assessment

To validate the accuracy of the predicted grassland SOC content and

plant biomass, we calculated the root mean square error (RMSE) and

the normalized mean square error (NMSE) for 10‐fold cross‐validation.

The formulas for RMSE and NMSE are expressed as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑N
i¼1 Oi−Pið Þ2

r
; (1)

NMSE ¼ ∑N−1
n¼0 ∑

i−1
i¼0 Oi−Pij j2

∑N−1
n¼0 ∑

i−1
i¼0 Oij j2

; (2)

where Oi represents the observed value and Pi represents the

predicted value. In addition, Pearson correlation coefficients (R) were

calculated to assess the consistency of the observed and predicted

data. In this calculation, we randomly sampled 50% of observed data

as the validation dataset. To ensure precision, we repeated the
FIGURE 2 Factors applied in the prediction of
grassland soil organic carbon (SOC) and
biomass. For factor definitions, please refer to
Table 1. The numbers on the bars refer to the
sequence in which the variables were added to
the random forest model. Smaller numbers
correspond to higher variable importance
values. The variable explanation refers to the
combined degree of explanation of the added
variables and not that of single variables.
AGB = aboveground biomass;
BGB = belowground biomass; TB = total
biomass [Colour figure can be viewed at
wileyonlinelibrary.com]
sampling process 7 times and calculated the mean. The formula used

to calculate R is expressed as follows:

R ¼ ∑N
i¼1 Oi−O

� �
Pi−P
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N
i¼1 Oi−O

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N
i¼1 Pi−P

� �2q : (3)

In Formula 3, Oi and Pi have the same definitions as above. R was

also calculated to determine the correlation between grassland SOC con-

tent and plant biomass under different geography and vegetation types.
3 | RESULTS

3.1 | Spatial distribution of SOC content and plant
biomass in grasslands

The SOC contents predicted by the RF model in grasslands on the

Loess Plateau are shown in Figure 3. Areas with SOC contents lower

than 4.00 g kg−1 accounted for 19.65% of the total grasslands

(Appendix S1) and were mainly distributed in blown sandy hills

(Figure S1). In general, except in the southwest, grassland SOC content

decreased from the southeast to the northwest and was not evenly

distributed in the east and west of the Loess Plateau.

The plant biomasses predicted by the RF model for grasslands on the

Loess Plateau are shown in Figure 4. The output maps of plant biomass

were expressed as grassland AGB (Figure 4a), BGB (Figure 4b), TB

(Figure 4c), and root/shoot ratio maps (Figure 4d). The root/shoot ratio

is negatively correlatedwithmean annual precipitation (Waring & Powers,

2017). Generally, grasses distributed in arid or semi‐arid areas exhibit

higher root/shoot ratios than those in humid areas. The spatial distribution

of AGB decreased steadily from east to west (Figure 4a), and the root/

shoot ratio increased from south to north (Figure 4d), which differed

from what was observed for SOC content in the grasslands.

http://wileyonlinelibrary.com


FIGURE 3 Spatial distribution of predicted grassland soil organic carbon (SOC) on the Loess Plateau [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 4 Spatial distribution of plant biomass and root/shoot ratios in grasslands on the Loess Plateau. AGB = aboveground biomass;
BGB = belowground biomass; TB = total biomass [Colour figure can be viewed at wileyonlinelibrary.com]
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3.2 | Regional SOC content under different
topographies and grassland types

Predicted SOC contents for the grasslands (24,000 km2) were calcu-

lated for the six topography andvegetation types (Figure 5). As shown in

Figure 5a,c–f, themedian SOC content differed substantially among the

different topographical types. The grasslands on the plains exhibited the

lowest SOC in typical temperate steppe (Figure 5d), temperate desert

steppe (Figure 5e), and temperate steppe desert areas (Figure 5c). For

the temperate forest steppe ecosystem, the lowest SOC contents were

observed on blown sandy hills (Figure 5f). In tussock and shrub tussock

ecosystems (Figure 5a,b), the highest SOC content was found on rocky

mountains, and the closer to the south, the lower the sensitivity of the

SOC content to the topography (Figure 5b).
3.3 | SOC contents under different grazing
intensities of sampling sites

Figure 6 showed the effect of grazing intensities (none, light,

moderate, severe, and very severe) on grassland SOC contents. We

divided the measured SOC contents of sampling sites into two equal

parts, one for training and the other for validation in RF model. In

general, the residual error of observations and predictions increased

with the increasing of grazing intensities in the training set, but this

trend was not obviously in the validation set (Figure 6c).
4 | DISCUSSION

4.1 | Natural factors affecting the prediction of SOC
contents

As shown in Figure 3, the daily maximum temperature in 2011

(HT2011) was the most important factor influencing the SOC content.

According to Figure 7a, temperature (including the daily maximum and

minimum temperature) was negatively correlated with the observed
FIGURE 5 Variations in the predicted grassland soil organic carbon (SOC
[Colour figure can be viewed at wileyonlinelibrary.com]
SOC content, with the daily minimum temperature having a weaker

effect than the maximum temperature. Increased temperatures

promote soil warming, and warming significantly decreases SOC

contents (Fang, Smith, Moncrieff, & Smith, 2005; Qi et al., 2016).

Increased levels of soil respiration and mineralized C associated with

increasing temperature may be responsible for SOC consumption

(Allison, Wallenstein, & Bradford, 2010; Hou, Ouyang, Maxim, Wilson,

& Kuzyakov, 2016; Lefèvre et al., 2014; Wu, Dijkstra, Koch, Peñuelas,

& Hungate, 2011).

Rainfall was another factor that affected grassland SOC contents.

In humid tropical climate zones, rainfall facilitates SOC sequestration

(Velayutham, Pal, & Bhattacharyya, 2000). Qiu, Hao, and Wu (2017)

reported that in a rain‐fed agro‐ecosystem, SOC accumulation is

enhanced by precipitation but impaired by increased temperature.

However, C. Wang et al. (2017) argued that on the Loess Plateau,

the trade‐off of SOC and soil moisture is determined by the

precipitation gradient. Moreover, the effect of rainfall may differ

among different topography units (Fissore et al., 2017).

Latitude (y) was the second important factor affecting SOC

content, and longitude (x) was the least important (Figure 3). These

findings indicate that the SOC content varied to a greater extent

across latitude than across longitude. This difference may be due to

differences in topography. Furthermore, the effect of topography on

SOCmay be attributed to the vegetation and soil conditions associated

with land use (W. Sun et al., 2015). As shown in Figure 7a, FPAR was

positively correlated with the observed SOC content, because high

FPAR values reflect the high photosynthetic transformation efficiency

of grass.
4.2 | Relationship between predicted SOC content
and plant biomass

Vegetation biomass plays a non‐negligible role in determining SOC

stocks (L. F. Chen et al., 2016). Vegetation recovery on the Loess

Plateau favours SOC sequestration (Deng, Liu, & Shangguan, 2014;
) for different topography and grassland types on the Loess Plateau

http://wileyonlinelibrary.com


FIGURE 6 Grassland soil organic carbon (SOC) contents and residual errors of predictions and observations under five grazing intensities on the
Loess Plateau. Data of 50% of the sampling sites were randomly sampled as training set; accordingly, validation set was the other half. The residual
error was the absolute value of the result of subtracting the prediction from the observation [Colour figure can be viewed at wileyonlinelibrary.
com]

FIGURE 7 Correlations between the observed grassland soil organic
carbon (SOC) and factors/biomass on the Loess Plateau. For factor
definitions, please refer to Table 1. AGB = aboveground biomass;
BGB = belowground biomass; TB = total biomass [Colour figure can be
viewed at wileyonlinelibrary.com]
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Deng & Shangguan, 2017; Deng, Shangguan, Wu, & Chang, 2017; Liu,

Dang, Tian, Wang, & Wu, 2016). Pearson correlation coefficients and

associated significance levels were utilized to identify the relationship

between grassland SOC and biomass. These coefficients were

calculated at two levels: the point level (observations) and the regional

level (predictions). The correlation between the observed grassland

SOC content and plant biomass was first calculated for the sampling

points (Figure 7b) and then for different combinations of topography

and grassland types (Figure 8).

The transfer of organic matter from plants to soil can increase SOC

stocks (Cardinael et al., 2017). As shown in Figure 7b, the observed

grassland SOC content was positively correlated with plant biomass

(R < .500). J. Sun and Wang (2016) showed that the trade‐off between

AGB and BGB increased with an increasing SOC gradient across an

alpine grassland; however, in this study, the observed grassland SOC
was not significantly correlated with the root/shoot ratio (R = −.038)

on the Loess Plateau. As we studied SOC contents across six grassland

ecosystems, this trade‐off may manifest in a single ecosystem but may

be blurred among multi‐ecosystems.

When considering the correlation between the predicted SOC

content and plant biomass in grasslands (24,000 km2), the situation

differed among the different topography and grassland types

(Figure 8). These changes were attributable to the significant

differences between the sites and regions. The observed data reflected

the true values at the sampling sites. In contrast, the predicted data

were approximately fitted to the observed data and reflected the

regional averages of SOC content and plant biomass.

In rocky mountains, grassland AGB exhibited a strong positive

correlation with SOC content in both temperate desert steppe

(.912**) and temperate steppe desert (.839**) ecosystems (Figure 8a).

Xin et al. (2016) investigated 180 topsoil sites (0–20 cm) in the

Luoyugou watershed of the Loess Plateau and found that the SOC

content of the mountain ridge area (a high‐elevation area) was higher

than on the sides of the valley. This observation suggests that the high

grassland SOC in rocky mountains is mainly transformed from AGB.

Zhang and Shangguan (2016) studied the soil water content (SWC) in

the Ziwuling forest region and found that grasslands exhibited a higher

SWC than shrublands and forestlands. In addition, Liu et al. (2016)

studied the Qiaozigou watershed and found that the SOC content in

sediments was positively correlated with SWC (p < .05). A high grass-

land SWC might favour SOC accumulation in mountain areas. In the

steppe of rocky mountains, grassland BGB (Figure 8c) and root/shoot

ratios (Figure 8d) were negatively correlated with the SOC content.

Lai et al. (2017) studied the contribution of fine root dynamics to

SOC on a degraded steppe in China. They found that herbaceous fine

roots in shrublands exhibited the fastest turnover and decomposition

rates, followed by herbaceous plants in steppe areas. However, fine

roots were scarce in the surface layer (Imada, Matsuo, Acharya, &

Yamanaka, 2015), which may be the reason that we did not identify

a contribution of fine roots to SOC accumulation, although this has

been observed in other studies.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 8 Correlation of predicted grassland soil organic carbon and biomass on the Loess Plateau (**significance is defined at .01).
AGB = aboveground biomass; BGB = belowground biomass; TB = total biomass [Colour figure can be viewed at wileyonlinelibrary.com]
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On blown sandy hills, the effect of biomass on SOC was significant

(AGB: .690**; BGB: .826**) in temperate steppe desert. This result

suggests that revegetation could stop the process of desertification

(Y. L. Chen et al., 2017). In Chen's study (2017), herbaceous cover

mainly influenced fine root length in the 0‐ to 40‐cm soil layer, whereas

shrub cover affected fine root length at depths of 0–300 cm. These

differences might explain why BGB was positively correlated with the

SOC content in this area but negatively correlated with the SOC con-

tent in shrub tussocks on rocky mountains (Figure 8c). In other types

of steppe, plant biomass had little effect on SOC content (Figure 8);

because the soil was more sensitive to desertification than to plant

biomass (Tang, An, & Shangguan, 2015), the variation of SOC was not

in accordance with plant succession.

On rocky hills, litter was significantly negatively correlated with

the grassland SOC content in temperate forest steppe areas (−.746**;

Figure 8e). In the southern warm temperate tussock and shrub tussock

ecosystems, litter was positively correlated (.680**; Figure 8e) with the
grassland SOC content, reflecting the effect of ecosystem deviation on

grassland SOC contents. An increase in litter promoted SOC

accumulation in the shrub tussock ecosystem but had the opposite

effect in the steppe ecosystem. This finding might have occurred

because the rate of C transfer is largely controlled by the quality of

litter in different ecosystems (Walela et al., 2014).
4.3 | Assessment of accuracy

RMSE, NMSE, and R were utilized to assess the accuracy of the

predicted grassland SOC and biomass (Table 2). The RMSE and NMSE

values shown in Table 2 are the mean values obtained from 10‐fold

cross‐validation. We randomly sampled 50% of the observed data 7

times to calculate the R values of the observed and predicted data.

The R value for the predicted and observed grassland SOC content

was highest (.72**), and the RMSE of the predicted and observed

SOC content was 3.99 g kg−1. The predicted TB exhibited a relatively

http://wileyonlinelibrary.com


TABLE 2 Predicted accuracy of grassland SOC and biomass on the Loess Plateau

R (training set = 50%, prediction set = 50%, 7‐fold
cross‐validation)

RMSE (mean RMSE of 10‐fold
cross‐validation)

NMSE (mean NMSE of 10‐fold
cross‐validation)

AGB (g/m2) 0.62** 89.37 0.64

BGB (g/m2) 0.53** 279.72 0.23

TB (g/m2) 0.54** 271.31 0.17

SOC (g kg−1) 0.72** 3.99 0.21

Note. RMSE referred to as root mean square error of observed and predicted SOC/biomass. NMSE referred to as normalized mean square error of observed
and predicted SOC/biomass. AGB = aboveground biomass; BGB = belowground biomass; TB = total biomass; SOC = soil organic carbon.

**Significance is defined at .01.
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weak correlation with the observed TB (.54**) but presented the lowest

NMSE value. Gomez, Viscarra Rossel, and McBratney (2008) predicted

pasture SOC contents using RS data in Australia and obtained R2

values of .42–.43. Castaldi et al. (2016) estimated SOC contents based

on multispectral and hyperspectral images, and the obtained R2 values

for the predicted and observed SOC content ranged from .49 to .67.

Vaudour, Gilliot, Bel, Lefevre, and Chehdi (2016) predicted cropland

SOC contents using visible near‐infrared airborne hyperspectral

images of the Versailles Plain and Alluets Plateau areas of France.

These authors obtained R2 values of 0.29–0.44 and RMSE values of

4.04–4.05 g kg−1. Relative to other studies, the scale of the present

study, and taking into account the complex geographies of the Loess

Plateau, the accuracy of our predicted results was acceptable.
4.4 | Grazing intensities affecting prediction
accuracy of grassland SOC contents

The residual error of the observed and predicted SOC contents varied

under different grazing intensities (Figure 9). Residual error was high in

the temperate forest steppe if there was no grazing, but when the
grazing intensity was light, the residual error was higher in the south

warm temperate tussock and shrub tussock. Moreover, the highest

residual error was located in the temperate desert steppe with

moderate grazing, and typically, the residual error increased with the

increasing of grazing intensity (Figure 9a). In Figure 9b, the residual

error was high in plains with severe and very severe grazing, followed

by the error located in blown sandy hills with severe grazing. It implies

that this model may not perform well in plains or in desert steppe, and

the bigger the grazing intensity, the higher the uncertainty of the pre-

diction of grassland SOC contents. It also proved that grazing is the

main driver of the SOC pool (Z. Li, Liu, et al., 2017), and the prediction

accuracy may be improved if this factor is put into the RF model.
4.5 | Challenges in assessing land degradation at a
large scale

At present, there is a lack of large‐scale predictions (Maillard,

McConkey, & Angers, 2017) Although the application of RS and

multivariate methods for large‐scale predictions has improved data

utilization efficiency, large‐scale predictions display a lower predictive
FIGURE 9 The distribution of residual errors
in different geomorphic and grassland types
under five grazing intensities. The residual
error was the absolute value of the result of
subtracting the prediction from the
observation (referred to Figure 6) [Colour
figure can be viewed at wileyonlinelibrary.
com]
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accuracy than small‐scale predictions (Croft, Kuhn, & Anderson, 2012;

de Araujo Barbosa, Atkinson, & Dearing, 2015; Grinand et al., 2017). It

is not easy to map SOC contents at a very high resolution (<1 m) at a

large scale for either data acquisition or model robustness. As SOC

content can be regarded as an indicator of land degradation (Vågen

et al., 2013), in combination with plant biomass and other soil physical

or chemical properties, it could be feasible to assess the risk of land

degradation at a large scale. Nevertheless, a great deal of work needs

to be done to improve the prediction accuracy, especially in regions

with severe land degradation.
5 | CONCLUSIONS

In this study, using the RF model and considering topography, geo-

graphic location, vegetation indexes (normalized difference vegetation

index and leaf area index), precipitation, temperature, and FPAR, we

predicted grassland SOC content and plant biomass on the Loess

Plateau, providing a preliminary exploration of SOC content prediction

at a large scale.

The trends in the spatial variation of grassland SOC content and

plant biomass were not consistent across the Loess Plateau. The

root/shoot ratio generally decreased from the south to the north.

Overall, the SOC content was highest on rocky mountains. In most

cases, increased grassland AGB promoted SOC sequestration. BGB

slightly or negatively affected topsoil SOC content in shrub tussock

ecosystems but positively affected SOC content in steppe desert areas

on blown sandy hills. Litter increased the SOC content in shrub

tussocks but reduced the SOC content in the steppe due to different

C transfer rates. On rocky mountains, the relationship between

grassland SOC content and plant biomass was stronger than it was in

other topography types. Grazing increased the uncertainty of the

prediction of SOC contents in grasslands.

In the future, we intend to decrease the error propagation in such

predictions. In addition, we may explore C density and C stocks in

grassland ecosystems. Based on the predicted SOC content and plant

biomass maps, by standardizing the level of soil quality, it would be

possible to identify the potential area and extent of SOC loss on the

Loess Plateau and optimize grassland management strategies.

Combined with multiple factors related to land degradation, the results

of this study could be further used to assess land degradation risk at

large scales.
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