Chemosphere 194 (2018) 275-284

Contents lists available at ScienceDirect

Chemosphere

journal homepage: www.elsevier.com/locate/chemosphere

Seasonal variations of C_1 - C_4 alkyl nitrates at a coastal site in Hong Kong: Influence of photochemical formation and oceanic emissions

Junwei Song ^a, Yingyi Zhang ^a, Yu Huang ^{b, c}, Kin Fai Ho ^d, Zibing Yuan ^a, Zhenhao Ling ^e, Xiaojun Niu ^a, Yuan Gao ^b, Long Cui ^b, Peter K.K. Louie ^f, Shun-cheng Lee ^{b, **}, Senchao Lai ^{a, *}

^a Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China

^b Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

^c Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China

^d The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Sha Tin, Hong Kong

e School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China

^f Hong Kong Environmental Protection Department, Wan Chai, Hong Kong

HIGHLIGHTS

• Ambient levels of C₁-C₄ alkyl nitrates (RONO₂) were measured in four selected months at a coastal site.

- C₂-C₄ RONO₂ peaked in winter and were mainly produced via photochemical formation.
- Methyl nitrate (MeONO₂) peaked in summer and was mainly derived from oceanic emissions.
- The notable enrichment of MeONO₂ over C₂-C₄ RONO₂ was influenced by the oceanic air masses from the South China Sea.

ARTICLE INFO

Article history: Received 24 July 2017 Received in revised form 14 November 2017 Accepted 19 November 2017 Available online 21 November 2017

Handling Editor: Keith Maruya

Keywords: Alkyl nitrates Seasonality Photochemical production Marine emissions Ozone

ABSTRACT

Five C₁-C₄ alkyl nitrates (RONO₂) were measured at a coastal site in Hong Kong in four selected months of 2011 and 2012. The total mixing ratios of C₁-C₄ RONO₂ (Σ_5 RONO₂) ranged from 15.4 to 143.7 pptv with an average of 65.9 ± 33.0 pptv. C₃-C₄ RONO₂ (2-butyl nitrate and 2-propyl nitrate) were the most abundant RONO₂ during the entire sampling period. The mixing ratios of C₃-C₄ RONO₂ were higher in winter than those in summer, while the ones of methyl nitrate (MeONO₂) were higher in summer than those in winter. Source analysis suggests that C₂-C₄ RONO₂ were mainly derived from photochemical formation along with biomass burning (58.3–71.6%), while ocean was a major contributor to MeONO₂ (53.8%) during the whole sampling period. The photochemical evolution of C₂-C₄ RONO₂ was investigated, and found to be dominantly produced by the parent hydrocarbon oxidation. The notable enrichment of MeONO₂ over C₃-C₄ RONO₂ was observed in a summer episode when the air masses originating from the South China Sea (SCS) and MeONO₂ was dominantly derived from oceanic emissions. In order to improve the accuracy of ozone (O₃) prediction in coastal environment, the relative contribution of RONO₂ from oceanic emissions versus photochemical formation and their coupling effects on O₃ production should be taken into account in future studies.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Alkyl nitrates (RONO₂) are usually considered as a component of total reactive nitrogen ($NO_y = NO_x + HNO_3 + NO_3 + N_2O_5 + organic$

nitrates) (Day et al., 2003). They can serve as a temporary reservoir of NO_x and transport long distance because of their relatively low reactivity (Atkinson et al., 2006; Ling et al., 2016).

It has long been proposed that RONO₂ are mainly formed by the photochemical oxidation of hydrocarbons (e.g., methane, ethane, propane etc.) in the presence of NO_x (Atkinson et al., 2006). The photochemical formation pathways of C₁-C₄ RONO₂ are demonstrated as follows (Arey et al., 2001; Atkinson et al., 2006):

^{*} Corresponding author.

^{**} Corresponding author.

E-mail addresses: ceslee@polyu.edu.hk (S.-c. Lee), sclai@scut.edu.cn (S. Lai).

 $\mathbf{RH} + \mathbf{\bullet}\mathbf{OH} \rightarrow \mathbf{\bullet}\mathbf{R} + \mathbf{H}_{2}\mathbf{O}, \, \mathbf{k}_{1}, \, \alpha_{1} \tag{R1}$

 $\bullet \mathbf{R} + \mathbf{O}_2 \to \bullet \mathbf{R}\mathbf{O}_2, \mathbf{k}_2 \tag{R2}$

 $\bullet RO_2 + NO \rightarrow \bullet RO + NO_2, k_3, 1-\alpha_2$ (R3)

•RO₂ + NO \rightarrow •RONO₂, k₄, α_2 (R4)

•RO + NO₂ \rightarrow •RONO₂, k₅ (R5)

$$NO_2 + O_2 \rightarrow NO + O_3, k_6 \tag{R6}$$

where k_1, k_2, k_3, k_4 and k_5 are the reaction rate constants; α_1 and α_2 are the branching ratios for the Reactions (R1) and (R4) of parent hydrocarbons (RH) with hydroxyl radicals (•OH) and peroxyl radicals (•RO₂) with NO, respectively. Briefly, alkyl radicals (•R) result from the •OH-initiated oxidation of RH (R1) and can subsequently react with O2 to form •RO2 (R2). A large fraction of RONO₂ is usually formed via reaction of •RO₂ with NO (R4) (Atkinson et al., 1982; Bertman et al., 1995). Another branch of reaction of •RO₂ with NO can produce alkoxy radicals (•RO) and NO₂ (R3), leading to the alternative formation pathway of RONO₂ through the reaction of •RO and NO₂ (R5) (Flocke et al., 1998a, 1998b). In addition to secondary photochemical formation, primary emissions of C_1 - C_3 RONO₂ from the oceans (Atlas et al., 1993; Blake et al., 2003; Ling et al., 2016) and biomass burning (Simpson et al., 2002) have been reported previously. However, other emissions are not considered as important sources of C₁-C₃ RONO₂ (Perring et al., 2013). Ambient observations over the equatorial Pacific showed that the levels of C₁-C₂ RONO₂ were enhanced in this region (Atlas et al., 1993; Blake et al., 2003). Direct measurements of RONO₂ in seawater showed that C₁-C₃ RONO₂ can be supersaturated in surface layer (Chuck et al., 2002; Moore and Blough, 2002; Dahl et al., 2007). These results indicated that oceanic emissions are a source of RONO₂ in the atmosphere. In contrast, the removal of RONO₂ primarily includes photolysis and the reaction with •OH (Clemitshaw et al., 1997; Talukdar et al., 1997a, 1997b).

$$RONO_2 \xrightarrow{h\nu} \cdot RO + NO_2, J_{RONO_2}$$
(R7)

$$RONO_2 + \cdot OH \rightarrow products, k_6$$
 (R8)

where hv is sunlight; J_{RONO2} and k_6 are the rate constants of photolysis and •OH reaction, respectively. Photolysis is the dominant mechanism for the removal of C₁-C₃ RONO₂, while •OH reaction is more important for the removal of RONO₂ with carbon number higher than 4 (Clemitshaw et al., 1997; Talukdar et al., 1997a, 1997b). Besides, Russo et al. (2010) and Wu et al. (2011) suggested that dry deposition is another removal process for RONO₂.

Photochemical RONO₂ are the byproducts of ozone (O₃) formation through the reactions between volatile organic compounds (VOCs) and NO_x (Lyu et al., 2017). Photochemical formation of RONO₂ involves the oxidation of NO to NO₂ (R3), promoting the production of O₃ (R6). Meanwhile, the formation reaction (R5) could reduce the budget of NO₂ by directly competing with the formation of O₃ (R6). In addition, as temporary nitrogen reservoirs, the photolysis of RONO₂ could also release NO₂ (R7), increasing the potential of O₃ formation. Therefore, there is a complex and close association between RONO₂ and O₃ (Lyu et al., 2017). Recently, modeling studies have reported that the formation and degradation of photochemical RONO₂ have significant impacts on O₃ production (Lyu et al., 2015, 2017; Ling et al., 2016). Additionally, Neu et al. (2008) proposed that C_1 - C_2 RONO₂ from oceanic emissions could subsequently produce NO₂ through photolysis, contributing to the budgets of tropospheric NO_x and O₃.

C₁-C₄ RONO₂ have been widely studied at different geographical locations, including remote marine (Atlas et al., 1993; Schneider and Ballschmiter, 1999; Blake et al., 2003), coastal (Simpson et al., 2006; Russo et al., 2010), rural (Atlas, 1988; Shepson et al., 1993) and urban areas (Wang et al., 2013; Aruffo et al., 2014; Ling et al., 2016). In the Pacific troposphere (8°N-13°S), primary oceanic emissions were suggested to be the most important sources of RONO₂, especially for C₁-C₂ RONO₂ (Blake et al., 2003). In contrast, in rural and urban areas, C₁-C₄ RONO₂ are mainly formed from photochemical processes, which are generally dominated in formation of C₃-C₄ RONO₂ (Simpson et al., 2006; Wang et al., 2013; Ling et al., 2016). However, knowledge on the relative contribution of photochemical formation and primary oceanic emissions on RONO2 in coastal environment is limited (Simpson et al., 2006; Russo et al., 2010). A measurement of C₁-C₅ RONO₂ in coastal New England indicated that the levels of RONO₂ were controlled by the photochemical formation of their precursors rather than oceanic emissions (Russo et al., 2010). Another long-term measurement of C1-C5 RONO2 at a coastal site in Hong Kong (Tai O) also showed that oceanic emissions had minor contribution to RONO₂ (Simpson et al., 2006). However, researchers recently investigated the distributions of C₁-C₃ RONO₂ on a global scale by using chemical transport models and found a large discrepancy between the modeled and observed RONO₂ data when oceanic emissions were absent in the models (Williams et al., 2014; Khan et al., 2015).

During last decades, rapid economic development led to severe air pollution with high concentrations of particles and O_3 in the Pearl River Delta (PRD) region, China (Lai et al., 2016; Ou et al., 2016; Ling et al., 2017), which increased atmosphric reactivity and promoted various atmospheric chemical processes in coastal and oceanic areas (Lai et al., 2016; Song et al., 2017).There were limited studies focusing on the characteristics of RONO₂ in this region (Simpson et al., 2006; Lyu et al., 2015; Ling et al., 2016), although they may have significant impacts on O_3 production. Here we conducted an observation of C_1 - C_4 RONO₂ at a coastal site in Hong Kong during four selected months of May, August, November 2011 and February 2012. The aims of this work are (1) to observe the ambient levels and seasonal variations of RONO₂ and (2) to investigate the influence of photochemical formation and oceanic emissions on RONO₂ in coastal environment.

2. Methods

2.1. Sampling site

Whole air samples were collected at a coastal site of 2.3 m above ground level in Hong Kong University of Science and Technology (HKUST, 22.33° N and 114.27° E). The sampling station is located on the west of shorefront and approximately 8–10 km east of the highly developed Kowloon urban area of Hong Kong (Fig. 1). There is no major industrial emissions and little traffic near this site. It is an ideal site to study background air quality and regional transport in Hong Kong (Cheng et al., 2014; Cheung et al., 2015; Man et al., 2015).

2.2. Sampling and chemical analysis

Twenty-four hour (0:00–23:59) integrated air samples were collected using pre-treated and evacuated 2-L electro-polished stainless steel canisters by an automated sampler (Model 2200,

Fig. 1. Location of the sampling site, Hong Kong University of Science and Technology (HKUST).

Malibu, CA) approximately once every three days in May, August, November 2011 and February 2012. The final pressure was 29 ± 1 psi in the canisters. A 47 mm Teflon filter was placed on a holder to remove particulates from the air stream before entering the flow lines. The sampled canisters were transported to a laboratory in the University of California at Irvine (UCI) for analysis of volatile organic compounds (VOCs) within two weeks after sample collection. The stability of the target compounds was demonstrated by preparing a purified air filled canister injected with a known amount of certified gas mixture. The recovery of each target compounds was close to 100%, indicating the stability of the target VOCs during the storage and transport processes (Huang et al., 2015). The detailed descriptions of the analytical system, measurement detection limits, accuracy and precision of VOCs have been provided in the previous publications (Colman et al., 2001; Barletta et al., 2002; Simpson et al., 2006). Briefly, five RONO₂, i.e., methyl nitrate (MeONO₂), ethyl nitrate (EtONO₂), 2-propyl nitrate (2-PrONO₂), 1-propyl nitrate (1-PrONO₂) and 2-butyl nitrate (2-BuONO₂), were quantified by a gas chromatography (GC) with electron capture detector (ECD). The precision and detection limits of RONO2 measurements are 5% and 0.1 pptv, respectively (Huang et al., 2015). The calibration scale for RONO₂ measurements changed in 2008, increasing by factors of 2.13, 1.81, 1.24 and 1.17 for the C₁, C₂, C₃, C₄ RONO₂, respectively (Simpson et al., 2011). Methane and other VOCs (i.e., alkanes, alkenes, ethyne, aromatics and halocarbons) were simultaneously detected by using a combination of GC with flame ionization detector (FID) and mass spectrometric detector (MSD). The accuracy of measurements is 1% for methane, 2-20% for halocarbons and 5% for other VOCs. The measurement precision is 2% for methane, 1-5% for halocarbons and 0.5-5% for other VOCs. The measurement detection limits (MDLs) of VOCs are shown in Table S1.

Auxiliary data of O_3 and NO/NO_2 were obtained from the HKUST's ENVF Atmospheric and Environmental Database. The ambient concentrations of O_3 and NO/NO_2 were determined every 5 min by a UV photometric O_3 analyzer (API, Model 400E) and a chemiluminescence NO-NO₂-NO_x analyzer (API, Model 200E), respectively. The detection limits are 1 ppbv and 0.5 ppbv for O_3 and NO_2/NO_x , respectively.

2.3. Model analysis

Air mass backward trajectories were computed for the air samples using Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Stein et al., 2015). The HYSPLIT model uses the archived meteorological dataset from the National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory as an input file. Three-day backward trajectories were calculated for each sampling month at an altitude of 200 m above sea level. The source profiles and contributions of RONO₂ were investigated by using the principle component analysis (PCA) and positive matrix factorization (PMF) model. A more detailed description of PCA and PMF is shown in supplement (Appendix A).

3. Results and discussion

3.1. Seasonal variations of alkyl nitrates

Table 1 shows the statistics of C₁-C₄ RONO₂ and their parent hydrocarbon mixing ratios measured at HKUST in May, August, November 2011 and February 2012. The total mixing ratios of the five RONO₂ (Σ_5 RONO₂) ranged from 15.4 to 143.7 pptv with an average of 65.9 \pm 33.0 pptv throughout the entire sampling period. The predominant RONO₂ was 2-BuONO₂ with an average level of 25.5 \pm 17.8 pptv, followed by 2-PrONO₂ (18.9 \pm 11.0 pptv), MeONO₂ (10.4 \pm 2.9 pptv) and EtONO₂ (8.5 \pm 3.8 pptv). Among the observations at coastal sites in Hong Kong (Fig. S1), the average levels of C₁-C₄ RONO₂ were comparable to those measured at Hok Tsui in spring (Wang et al., 2003), but lower than those observed at Tai O in 2001-2002 (Simpson et al., 2006). All these mixing ratios of C₁-C₄ RONO₂ in our study were higher than the values reported in coastal New England (Russo et al., 2010), and lower than those obtained in urban environments, such as Tsuen Wan, Hong Kong (Ling et al., 2016) and other Chinese urban sites (Wang et al., 2013). The dominance of C3-C4 RONO2 (2-BuONO2 and 2-PrONO₂) over C₁-C₂ RONO₂ at HKUST was similar with those reported in the previous studies (Simpson et al., 2006; Russo et al., 2010; Wang et al., 2013; Ling et al., 2016). It can be ascribed to the increasing branching ratios of photochemical RONO₂ production

Table 1

Mixing	ratios	of	C_1-C_4	RONO ₂ ,	their	parent	hydrocarbons	and	meteorological
parame	ters me	asu	red at	HKUST ii	n May,	August,	November 201	1 and	February 2012.

Species	Entire samplin	ng period	Summer	Winter					
	mean	range	mean	mean					
RONO ₂ (pptv)									
MeONO ₂	10.4 ± 2.9	5.8-18.2	12.0 ± 2.9	8.8 ± 1.9					
EtONO ₂	8.5 ± 3.8	1.8-17.3	7.2 ± 4.1	9.8 ± 3.1					
2-PrONO ₂	18.9 ± 11.0	2.0-43.7	11.7 ± 8.3	26.1 ± 8.4					
1-PrONO ₂	2.5 ± 1.6	0.5 - 6.9	1.8 ± 1.4	3.3 ± 1.4					
2-BuONO ₂	25.5 ± 17.8	2.1 - 66.9	13.5 ± 11.0	37.6 ± 15.0					
$\Sigma_5 RONO_2$	65.9 ± 33.0	15.4-143.7	46.1 ± 25.4	85.6 ± 27.7					
Parent hydrocarbons (pptv)									
Methane (ppmv)	1.96 ± 0.08	1.80-2.14	1.97 ± 0.11	1.95 ± 0.04					
Ethane	1751 ± 1274	236-4937	831 ± 613	2672 ± 1083					
Propane	1070 ± 690	108-2657	671 ± 499	1470 ± 625					
n-Butane	763 ± 491	178-2502	767 ± 631	759 ± 309					
Meteorological parameters									
Temperature (°C)	23.6 ± 5.6	12.3-30.9	28.1 ± 2.2	19.1 ± 4.2					
Relative humidity (%)	79 ± 8	60-99	78 ± 7	80 ± 9					
Wind speed (m/s)	5.7 ± 2.7	1.7-13.0	4.0 ± 1.6	7.5 ± 2.4					

with the increasing carbon numbers (Atkinson et al., 1982), although the mixing ratios of their parent hydrocarbons should decrease with the increasing carbon numbers. The average mixing ratios of C₃-C₄ parent hydrocarbons (i.e., propane and *n*-butane) were lower than C₁-C₂ parent hydrocarbons (i.e., methane and ethane). It suggests the importance of photochemical production for C₃-C₄ RONO₂ in our observation. The mixing ratios of 1-PrONO₂ were much lower than 2-PrONO₂ due to the lower photochemical branching ratio of 1-PrONO₂ (Atkinson et al., 1982).

In Hong Kong, May and August represent summer months, and November and February represent winter months (Lee et al., 2002; Guo et al., 2004). In this study, the average levels of C_3 - C_4 RONO₂ in winter were higher than those in summer by factors of 2–3. However, MeONO₂ showed an opposite seasonal trend with significantly higher levels in summer than those in winter (p = 0.015, two-tailed t-test). Besides, there was no significant difference in the levels of EtONO₂ between the two seasons (p = 0.102). At Tai O. Hong Kong, Simpson et al. (2006) found a similar seasonality of C₃-C₄ RONO₂ with maximum in winter and minimum in summer. Russo et al. (2010) also observed higher C₃-C₄ RONO₂ levels in winter than those in summer in coastal New England, whereas C₁-C₂ RONO₂ showed a homogenous distribution throughout the year. The seasonality of RONO₂ can be constrained by several factors including their sources and sinks, as well as the seasonal transport patterns (Simpson et al., 2006; Russo et al., 2010). Due to the higher OH radical concentration and faster photolysis reactions, C₃-C₄ RONO₂ can be removed more quickly in summer (Clemitshaw et al., 1997; Talukdar et al., 1997b; Atkinson et al., 2006). On the other hand, C₃-C₄ RONO₂ photochemical yields are temperature dependent, increasing with the decreasing temperature (Atkinson et al., 1983). In our study, the average temperature was lower in winter $(19.1 \pm 4.2 \circ C)$ than in summer $(28.1 \pm 2.2 \circ C)$. These factors in photochemical processes can explain the seasonal variations of C_3 - C_4 RONO₂.

Due to the Asian monsoon system, the prevailing winds in Hong Kong are from northeast in winter and from south in summer, respectively (Simpson et al., 2006). In our study, the backward trajectory analysis shows that the air masses frequently traveled across the Chinese mainland in winter and the South China Sea (SCS) in summer (Fig. 2). Since RONO₂ had relatively long lifetime (Clemitshaw et al., 1997; Talukdar et al., 1997a;

Fig. 2. Three-day backward air mass trajectories were calculated in the month of (a) May 2011, (b) August 2011, (c) November 2011 and (d) February 2012 at HKUST.

Atkinson et al., 2006), high levels of RONO₂ can be transported from the Chinese mainland to this site in winter. In summer, clean oceanic air masses may efficiently dilute the levels of RONO₂. As expected, the seasonal variations for C_3-C_4 RONO₂ were similar to those for CO and anthropogenic VOCs, e.g., benzene, toluene (Table S1). In contrast, MeONO₂ showed a similar seasonal variation with dimethyl sulfide (DMS), a specific tracer for oceanic emissions (Nowak et al., 2001). The enhancement of MeONO₂ in summer was likely related to the oceanic emissions, which has already been suggested by previous studies (Chuck et al., 2002; Moore and Blough, 2002; Blake et al., 2003).

3.2. Source attribution of alkyl nitrates

In both summer and winter, C_2-C_3 RONO₂ showed strong positive correlations with 2-BuONO₂ ($r^2 = 0.58-0.95$, Fig. S2), which was believed to be entirely produced by *n*-butane photochemical oxidation (Bertman et al., 1995). However, no significant correlations were found between MeONO₂ and 2-BuONO₂ in both seasons (p > 0.05), suggesting the different sources or formation processes of MeONO₂. The levels of methane were comparable between the two seasons (1.97 ± 0.11 ppmv in summer and 1.95 ± 0.04 ppmv in winter). Based on the kinetics of methane ($k_{CH4+OH} = 6.2 \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹ at 298 K) (Atkinson, 1997), the yield of MeONO₂ from methane oxidation was estimated below 1 pptv in 1 day for methane of 2 ppmv given at diurnal OH radicals of 2×10^6 molecule cm⁻³. These results suggest that the oxidation of methane was not the major source for MeONO₂.

Previous studies have suggested the possible additional formation pathways of MeONO₂, including (1) the reaction of methoxy radicals (•CH₃O) with NO₂ (Simpson et al., 2006), (2) the reaction of methanol with nitric acid (HNO₃) (Fan et al., 1994), (3) the decomposition of larger compounds, e.g., larger alkoxy radicals and peroxyacetyl nitrate (PAN) (Flocke et al., 1998b; Simpson et al., 2003; Worton et al., 2010). The first two pathways have been proven to be insignificant under most of the atmospheric conditions (Orlando et al., 1992; Simpson et al., 2006; Iraci et al., 2007; Lyu et al., 2015). The decomposition of larger compounds could be a potential source of methyl peroxy radicals (•CH₃O₂), contributing to MeONO₂ via reaction of •CH₃O₂ with NO $(\text{-}CH_3O_2 + \text{NO} \rightarrow CH_3ONO_2)$ (Flocke et al., 1998a). Here we use the maximum value of PAN with 5 ppbv based on an observation in Hong Kong in the same period of our study (summer of 2011) to estimate the concentration of MeONO₂ from PAN decomposition (Xu et al., 2015). Assuming that all the PAN are converted to produce •CH₃O₂ reacting with NO to form MeONO₂, the concentration of MeONO₂ from the decomposition of PAN can be roughly estimated as follows:

$$\frac{d[MeONO_2]}{d[t]} = \alpha k[\cdot CH_3O_2][NO]$$

where k is the reaction rate coefficient of 6.9×10^{-13} cm³ molecule⁻¹ s⁻¹, and α is the branching ratio of 0.0003 (Flocke et al., 1998a). [MeONO₂], [•CH₃O₂] and [NO] represent the concentrations of MeONO₂, •CH₃O₂ and NO, respectively. According to the maximum value of NO (45 ppbv) and PAN (5 ppbv) in August (Xu et al., 2015), the yield of MeONO₂ can be estimated to be 4×10^{-3} pptv in 1 day from PAN decomposition, which was much lower than those observed in August.

In order to explore the sources of RONO₂, we performed a principal component analysis (PCA) on the measured data of C_1 - C_4 RONO₂, CO, CH₃Cl and DMS during the entire sampling period (Fig. S3). Two principal components (PC1 and PC2) can explain

279

totally 84.2% of the variation. PC1 explains 66.4% of the variation with high loadings of C2-C4 RONO2, CO and CH3Cl. CO was considered as a tracer of combustion processes (Lai et al., 2010, 2011) and CH₃Cl was selected as a tracer of biomass burning (Simpson et al., 2011). Therefore, PC1 was characterized with photochemical formation and biomass burning. PC2 explains 17.8% of the variation with high loadings of MeONO₂ and DMS (a specific tracer for oceanic emissions) (Nowak et al., 2001). Given the location of HKUST is adjacent to the SCS, it is highly possible that PC2 was associated with the oceanic emissions. Furthermore, a PMF model was further used to estimate the source profiles and contributions to individual RONO₂. As shown in Fig. 3, the first factor is distinguished by high loadings of C₂-C₄ RONO₂. In addition, this factor includes moderate to high percentages of CO, CH₃Cl, ethyne and ethane, which were mainly derived from biomass burning (Lai et al., 2010, 2011; Simpson et al., 2011). Therefore, this factor is identified as the sources of photochemical formation and biomass burning. The second factor is dominated by the significant presence of DMS, CH₄ and MeONO₂, which were associated with the oceanic emissions. The third factor is distinguished by high percentages of propane, *i*-butane and *n*-butane, which are the typical tracers for liquefied petroleum gas (LPG) usage (Guo et al., 2007). During the whole sampling period, the contribution of photochemical formation together with biomass burning to EtONO₂, 2-PrONO₂, 1-PrONO₂ and 2-BuONO₂ are 58.3%, 71.2%, 67.4% and 71.6%, respectively. Therefore, ocean is the dominant contributor to MeONO₂ (53.8%) and to some extent contributes to EtONO₂ (21.6%). Besides, the contributions of LPG usage to individual RONO₂ range from 20.1% to 27.1%.

3.3. Photochemical evolution of C_2 - C_4 alkyl nitrates

Bertman et al. (1995) developed a simplified reaction model to evaluate the photochemical processing of RONO₂, which has been applied in many studies (Roberts et al., 1998; Simpson et al., 2003; Reeves et al., 2007; Russo et al., 2010; Worton et al., 2010; Wang et al., 2013; Ling et al., 2016). Briefly, it assumes that: (1) the Reaction (R1) of RH with •OH is the rate-limiting step for RONO₂ photochemical formation and (2) the environment is NO_x-rich (>0.1 ppbv), making the Reaction (R4) is the dominant pathway for •RO₂ removal (Roberts et al., 1998). In this study, the

Fig. 3. Factor profiles (percentages of each species) resolved by PMF model at HKUST during the entire sampling period.

average mixing ratio of NO_x (8.0 \pm 5.7 ppbv) was high enough so that •RO₂ was predominantly removed by its reaction with NO. Then the photochemical reaction schemes (R1-R7) could be simplified as follows:

$$RH \xrightarrow{k_{A},\beta} RONO_{2} \xrightarrow{k_{B}} products$$
(R9)

The photochemical evolution (R8) can be expressed as a function with reaction time (t):

$$\frac{[\text{RONO}_2]}{[\text{RH}]} = \frac{\beta k_A}{k_B - k_A (1 - e^{(k_B - k_A)t})} + \frac{[\text{RONO}_2]_0}{[\text{RH}]_0} e^{(k_B - k_A)t}$$

where $\beta = \alpha_1 \alpha_4$, $k_A = k_1$ [•OH] and $k_B = k_4$ [•OH] + J_{RONO2} are the pseudo-first order rate constants for RONO₂ production and removal. The kinetics of α_1 , α_4 , k_1 , k_4 and J_{RONO2} are obtained from the published literature (Table S2) (Bertman et al., 1995; Kwok and Atkinson, 1995; Clemitshaw et al., 1997; Roberts et al., 1998; Arey et al., 2001; Simpson et al., 2003; Atkinson et al., 2006). [•OH] is the average concentration of •OH. Based on the studies in the PRD region (Simpson et al., 2003; Hofzumahaus et al., 2009), the values of 2 × 10⁶ and 1 × 10⁶ molecules cm⁻³ are assumed for [•OH] in summer and winter, respectively. [RONO₂]₀ and [RH]₀ represent the initial levels of RONO₂ and RH before photochemical processing. Typically, [RONO₂]₀/[RH]₀ equal to zero was adopted for modeling the photochemical evolution (Bertman et al., 1995;

Roberts et al., 1998; Simpson et al., 2003; Worton et al., 2010), while more recent studies have proposed to use non-zero $[RONO_2]_0/[RH]_0$ to evaluate the influence of background levels (Russo et al., 2010; Wang et al., 2013; Ling et al., 2016). In this study, we assume that the non-zero $[RONO_2]_0/[RH]_0$ is equal to the lowest seasonal $[RONO_2]/[RH]$ value.

The observed RONO₂/RH ratios were plotted against another RONO₂/RH ratios with comparisons to the photochemical evolution curves calculated from kinetics. As shown in Fig. 4, the ratios of 2-BuONO₂/n-butane were plotted on the abscissa because 2-BuONO₂ was predominantly produced from *n*-butane photochemical oxidation (Bertman et al., 1995). The given time of photochemical evolution ranged from 1 min to 10 days. As a result of the influence of [RONO₂]₀/[RH]₀, the non-zero [RONO₂]₀/[RH]₀ curves varied significantly with the zero [RONO₂]₀/[RH]₀ curves, especially at shorter processing time (<1 day). In winter (Fig. 4b), the observed values of C₂-C₃ RONO₂/RH were mostly close to the modeled curves with non-zero [RONO₂]₀/[RH]₀, indicating that photochemical formation from ethane and propane oxidation contributed significantly to C₂-C₃ RONO₂. However, the observed ratios of C₂-C₃ RONO₂/RH were higher than the zero [RONO₂]₀/ $[RH]_0$ curves by factors of ~2–15. It indicates that the influence of background RONO₂ and RH levels should be taken into account. In summer (Fig. 4a), the observed ratios of C₂-C₃ RONO₂/RH to 2- $BuONO_2/n$ -Butane followed the trends of non-zero $[RONO_2]_0/$ $[RH]_0$ curves, but we found that the observed C_2-C_3 $[RONO_2]/[RH]$

Fig. 4. Photochemical evolutions of C_2 - C_3 RONO₂/RH versus 2-BuONO₂/*n*-Butane. The solid circles represent the observed ratios in: (a) summer and (b) winter. The dash and solid curves represent the photochemical evolution curves, plotting on the basis of [RONO₂]₀/[RH]₀ = 0 and non-zero [RONO₂]₀/[RH]₀ with the lowest seasonal [RONO₂]/[RH], respectively. The given photochemical evolution time ranged from 1 min to 10 days (open circles).

Fig. 5. Temporal variations of (a) RONO₂, (b) hydrocarbons, (c) CO and ethyne, (d) CH₃Cl and DMS, (e) NO_x and (f) O₃ in summer episodes (August 2011).

were higher than these modeled curves. It should be noted that this simplified model may contain some uncertainties. The seasonal wind patterns have a significant impact on RONO₂ and RH levels. This will likely affect the values of [RONO₂]₀/[RH]₀, changing the position of the modeled curves.

3.4. Oceanic emissions versus photochemical formation in a summer month

In the Pacific Ocean (8°N-13°S), Blake et al. (2003) suggested that oceanic emissions of C_1 - C_2 RONO₂ could be estimated by a

MeONO₂/EtONO₂ ratio of approximately 3–4, while air masses influenced by urban emissions lead to much lower MeONO₂/ EtONO₂ ratios. In our study, the ratios of MeONO₂/EtONO₂ ranged from 0.6 to 1.6 in winter, indicating the influence of urban emissions, which is consistent with the backward trajectory analysis (Fig. 2). In summer, MeONO₂/EtONO₂ ratios fluctuated from 0.8 to 4.9, which could be due to the alternative influence of oceanic and continental air masses. In order to better understand the influence of air masses with different sources on RONO₂, we selected the month of August and classified it into two Episodes (Fig. 5) based on the backward trajectories: Episode I with the air masses from the SCS (1–22 August, n = 8) and Episode II with the continental outflow from Chinese mainland (25-31 August, n = 3). In the first Episode, the observed ratios of MeONO₂/EtONO₂ ranged from 2.7 to 4.9 in Episode I, close to that of oceanic emissions (3-4) (Blake et al., 2003). Besides, the mixing ratios of MeONO₂ were higher than those of C₂-C₄ RONO₂ in this Episode, and contributed to $\Sigma_5 RONO_2$ ranging from 38.6 to 57.7%. It suggests that oceanic emissions may play an important role in RONO₂ variations in this Episode. In Episode II, the ratios of MeONO₂/EtONO₂ (1.4–1.8) were significantly lower than those in Episode I. The mixing ratios of C₃-C₄ RONO₂ were higher than those of MeONO₂ in Episode I, suggesting that the influence of photochemical formation became more important to RONO₂. Although the levels of MeONO2 increased slightly from Episode I to II, there was no significant difference of MeONO₂ between the two Episodes (p = 0.087).

Similar variations were observed for CO and ethyne with C_2 - C_4 RONO₂ and their parent hydrocarbons (Fig. 5a-c). It suggests the dilution of oceanic air masses and the contribution of continental outflow to these species in Episode I and II, respectively. The ratio of ethyne/CO can be used to evaluate the age of air masses, increasing from <1 pptv/ppbv for very processed air to 4-5 pptv/ppbv for fresh polluted air (Smyth et al., 1996). Guo et al. (2007) reported the ethyne/CO ratios of 5.6–7.5 pptv/ppbv for fresh sources in Hong Kong. The ethyne/CO ratios ranged from 1.8 to 3.6 pptv/ppbv with an average of 2.7 ± 0.6 pptv/ppbv in Episode I, lower than those in Episode II (4.6-6.2 pptv/ppbv) with an average of $5.2 \pm 0.9 \text{ pptv/ppbv}$. Lower ethyne/CO ratios suggest that the air masses arriving at HKUST were aged in Episode I. It should be noted that MeONO₂ could be more enriched than C₂-C₄ RONO₂ in the aged continental air masses due to its longer lifetime. Ding et al. (2004) reported that the sea-breezes could bring the daytime photochemical pollutants from land and recirculation over the ocean to the coastal region at night. However, we did not find the changes of air mass origins in Episode I (Fig. S4). Therefore, the influence of aged continental plumes via recirculation over the SCS was negligible on RONO₂.

We found a good correlation between MeONO₂ and CH₃Cl $(r^2 = 0.69, p < 0.05)$ in Episode I, suggesting the contribution of biomass burning (Simpson et al., 2002) and/or oceanic emissions (Rasmussen et al., 1980). Although some air masses in August were derived from the Southeast Asia (SEA) and passed over the SCS (Fig. 2 and Fig. S4), there were few fire spots observed in these regions (Fig. S5). Besides, the levels of species (e.g., CO, ethane, ethene and ethyne) associated with biomass burning were also in low levels during Episode I. It suggests that oceanic emissions were the major sources of MeONO₂ rather than biomass burning in this Episode. This is also supported by the variation of DMS, which was approximately 2-fold higher in Episode I than II (Fig. 4e). Although no significant correlation was found between MeONO₂ and DMS in Episode I (p > 0.05), it was possibly because DMS production was not related to the same sources that contribute to MeONO₂ (Blake et al., 2003). Additionally, the different lifetimes of $MeONO_2$ and DMS (only a few hours) (Barnes et al., 2006) may deteriorate the correlation between $MeONO_2$ and DMS.

In addition, relatively high levels of O₃, NO₂ and C₂-C₄ parent hydrocarbons were observed in Episode II showing similar variations with those of C₂-C₄ RONO₂. This similar trends between O₃ and C_2 - C_4 RONO₂ were also observed in other months (Fig. S6-S8). Previous studies have shown that RONO₂ and O₃ are photochemical co-products involving VOCs and NO_x sharing a common formation mechanism. Recent applications of the photochemical box model with Master Chemical Mechanism (PBM-MCM) from intensive measurement during pollution episodes reported that the photochemical formation of RONO₂ exert a negative impact on O₃ production (Lyu et al., 2015, 2017; Ling et al., 2016). However, Neu et al. (2008) used a chemical transport model (CTM) to emphasize that oceanic C_1 - C_2 RONO₂ may act as a natural source of NO_x via photolysis, increasing the levels of O₃ in the tropical oceanic regions. The coupling effects of RONO₂ from photochemical formation and oceanic emissions on O3 have not been explicitly investigated. In this study, we clearly demonstrate the importance of oceanic contribution to RONO₂ especially MeONO₂ in coastal region. When future studies focus on the relationship between O₃ and RONO₂ during both pollution and non-pollution periods in coastal area, the contribution of photochemical formation versus oceanic emissions has to be taken into account. In order to improve the accuracy of O₃ prediction in coastal environment, the relative contribution of RONO₂ from oceanic emissions should be used as an input parameter in photochemical models.

4. Conclusions

Measurements of C1-C4 RONO2 were conducted at HKUST, a coastal site in Hong Kong in four selected months of 2011 and 2012. The seasonal variations of C₃-C₄ RONO₂ were characterized with higher levels in winter than in summer, while the levels of MeONO₂ were significantly higher in summer than those in winter. Receptor models (PCA and PMF) both suggest that photochemical formation and biomass burning were the major sources of C₂-C₄ RONO₂, whereas MeONO₂ was mainly from oceanic emissions during the entire sampling period. The enrichment of MeONO₂ over C₃-C₄ RONO₂ was observed in a summer episode when the air masses are mostly derived from the SCS. More important role of oceanic emissions than photochemical formation is suggested in the relative contribution to RONO₂ especially MeONO₂ in this episode. Due to the limited observation, more intensive field measurements are necessary to assess the sources of RONO₂. Besides, comprehensive photochemical models coupled with the relative contribution of RONO₂ from oceanic emissions may improve the current understanding of the impact of RONO₂ on O₃ production.

Acknowledgements

This study was supported by the National Natural Scientific Foundation of China (Grant No. 41275730 and 41575115, Research Grants Council of Hong Kong Government (PolyU 152083/14E and PolyU 152090/15E) and Hong Kong RGC Collaborative Research Fund (C5022-14G).

We thank the group of Prof. Donald Blake (UCI) for laboratory analysis of the whole air samples. The authors thank HKEPD for provision of the data sets and permission for publication and also thank HKUST's ENVF Atmospheric and Environmental Database for the provision of O_3 and NO_x data sets.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.chemosphere.2017.11.104.

References

- Arey, J., Aschmann, S.M., Kwok, E.S.C., Atkinson, R., 2001. Alkyl nitrate, hydroxyalkyl nitrate, and hydroxycarbonyl formation from the NO_x-air photooxidations of C₅-C₈ *n*-alkanes. J. Phys. Chem. A 105, 1020–1027.
- Aruffo, E., Di Carlo, P., Dari-Salisburgo, C., Biancofiore, F., Giammaria, F., Busilacchio, M., Lee, J., Moller, S., Hopkins, J., Punjabi, S., Bauguitte, S., O'Sullivan, D., Percival, C., Le Breton, M., Muller, J., Jones, R., Forster, G., Reeves, C., Heard, D., Walker, H., Ingham, T., Vaughan, S., Stone, D., 2014. Aircraft observations of the lower troposphere above a megacity: alkyl nitrate and ozone chemistry. Atmos. Environ. 94, 479–488.
- Atkinson, R., 1997. Gas-phase tropospheric chemistry of volatile organic compounds .1. Alkanes and alkenes. J. Phys. Chem. Ref. Data 26, 215–290.
- Atkinson, R., Aschmann, S.M., Carter, W.P.L., Winer, A.M., Pitts, J.N., 1982. Alkyl nitrate formation from the nitrogen oxide NO_x-air photooxidations of C₂-C₈ nalkanes. J. Phys. Chem. 86, 4563–4569.
- Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E., Rossi, M.J., Troe, J., 2006. Evaluated kinetic and photochemical data for atmospheric chemistry: volume II - gas phase reactions of organic species. Atmos. Chem. Phys. 6, 3625–4055.
- Atkinson, R., Carter, W.P.L., Winer, A.M., 1983. Effects of temperature and pressure on alkyl nitrate yields in the nitrogen oxide (NO_x) photooxidations of *n*-pentane and *n*-heptane. J. Phys. Chem. 87, 2012–2018.
- Atlas, E., 1988. Evidence for ≥C₃ alkyl nitrates in rural and remote atmospheres. Nature 331, 426–428.
- Atlas, E., Pollock, W., Greenberg, J., Heidt, L., Thompson, A.M., 1993. Alkyl nitrates, nonmethane hydrocarbons, and halocarbon gases over the equatorial Pacific Ocean during SAGA 3. J. Geophys. Res. Atmos. 98, 16933–16947.
- Barletta, B., Meinardi, S., Simpson, I.J., Khwaja, H.A., Blake, D.R., Rowland, F.S., 2002. Mixing ratios of volatile organic compounds (VOCs) in the atmosphere of Karachi, Pakistan. Atmos. Environ. 36, 3429–3443.
- Barnes, I., Hjorth, J., Mihalopoulos, N., 2006. Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere. Chem. Rev. 106, 940–975.
- Bertman, S.B., Roberts, J.M., Parrish, D.D., Buhr, M.P., Goldan, P.D., Kuster, W.C., Fehsenfeld, F.C., Montzka, S.A., Westberg, H., 1995. Evolution of alkyl nitrates with air mass age. J. Geophys. Res. Atmos. 100, 22805–22813.
- Blake, N.J., Blake, D.R., Swanson, A.L., Atlas, E., Flocke, F., Rowland, F.S., 2003. Latitudinal, vertical, and seasonal variations of C₁-C₄ alkyl nitrates in the troposphere over the Pacific Ocean during PEM-Tropics A and B: oceanic and continental sources. J. Geophys. Res. Atmos. 108, 171–181.
- Cheng, Y., Lee, S.C., Huang, Y., Ho, K.F., Ho, S.S.H., Yau, P.S., Louie, P.K.K., Zhang, R.J., 2014. Diurnal and seasonal trends of carbonyl compounds in roadside, urban, and suburban environment of Hong Kong. Atmos. Environ 89, 43–51.
- Cheung, K., Ling, Z.H., Wang, D.W., Wang, Y., Guo, H., Lee, B., Li, Y.J., Chan, C.K., 2015. Characterization and source identification of sub-micron particles at the HKUST Supersite in Hong Kong. Sci. Total Environ. 527–528, 287–296.
- Chuck, A.L., Turner, S.M., Liss, P.S., 2002. Direct evidence for a marine source of C₁ and C₂ alkyl nitrates. Science 297, 1151–1154.
- Clemitshaw, K.C., Williams, J., Rattigan, O.V., Shallcross, D.E., Law, K.S., Cox, R.A., 1997. Gas-phase ultraviolet absorption cross-sections and atmospheric lifetimes of several C₂-C₅ alkyl nitrates. J. Photochem. Photobiol. A Chem. 102, 117–126.
- Colman, J.J., Swanson, A.L., Meinardi, S., Sive, B.C., Blake, D.R., Rowland, F.S., 2001. Description of the analysis of a wide range of volatile organic compounds in whole air samples collected during PEM-Tropics A and B. Anal. Chem. 73, 3723–3731.
- Dahl, E.E., Yvon-Lewis, S.A., Saltzman, E.S., 2007. Alkyl nitrate (C₁-C₃) depth profiles in the tropical Pacific Ocean. J. Geophys. Res. Oceans 112, 141–143.
- Day, D.A., Dillon, M.B., Wooldridge, P.J., Thornton, J.A., Rosen, R.S., Wood, E.C., Cohen, R.C., 2003. On alkyl nitrates, O₃, and the "missing NO_y". J. Geophys. Res. Atmos. 108, 4501.
- Ding, A., Wang, T., Zhao, M., Wang, T., Li, Z.K., 2004. Simulation of sea-land breezes and a discussion of their implications on the transport of air pollution during a multi-day ozone episode in the Pearl River Delta of China. Atmos. Environ. 38, 6737–6750.
- Fan, S.M., Jacob, D.J., Mauzerall, D.L., Bradshaw, J.D., Sandholm, S.T., Blake, D.R., Singh, H.B., Talbot, R.W., Gregory, G.L., Sachse, G.W., 1994. Origin of tropospheric NO_x over subarctic eastern Canada in summer. J. Geophys. Res. Atmos. 99, 16867–16877.
- Flocke, F., Atlas, E., Madronich, S., Schauffler, S.M., Aikin, K., Margitan, J.J., Bui, T.P., 1998a. Observations of methyl nitrate in the lower stratosphere during STRAT: implications for its gas phase production mechanisms. Geophys. Res. Lett. 25, 1891–1894.
- Flocke, F., Volz-Thomas, A., Buers, H.J., Patz, W., Garthe, H.J., Kley, D., 1998b. Longterm measurements of alkyl nitrates in southern Germany 1. General behavior and seasonal and diurnal variation. J. Geophys. Res. Atmos. 103, 5729–5746.
- Guo, H., Lee, S.C., Louie, P.K.K., Ho, K.F., 2004. Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong. Chemosphere 57, 1363–1372.

- Guo, H., So, K.L., Simpson, I.J., Barletta, B., Meinardi, S., Blake, D.R., 2007. C₁-C₈ volatile organic compounds in the atmosphere of Hong Kong: overview of atmospheric processing and source apportionment. Atmos. Environ. 41, 1456–1472.
- Hofzumahaus, A., Rohrer, F., Lu, K.D., Bohn, B., Brauers, T., Chang, C.C., Fuchs, H., Holland, F., Kita, K., Kondo, Y., Li, X., Lou, S.R., Shao, M., Zeng, L.M., Wahner, A., Zhang, Y.H., 2009. Amplified trace gas removal in the troposphere. Science 324, 1702–1704.
- Huang, Y., Ling, Z.H., Lee, S.C., Ho, S.S.H., Cao, J.J., Blake, D.R., Cheng, Y., Lai, S.C., Ho, K.F., Gao, Y., 2015. Characterization of volatile organic compounds at a roadside environment in Hong Kong: an investigation of influences after air pollution control strategies. Atmos. Environ. 122, 809–818.
- Iraci, L.T., Riffel, B.G., Robinson, C.B., Michelsen, R.R., Stephenson, R.M., 2007. The acid catalyzed nitration of methanol: formation of methyl nitrate via aerosol chemistry. J. Atmos. Chem. 58, 253–266.
- Khan, M.A.H., Cooke, M.C., Utembe, S.R., Morris, W.C., Archibald, A.T., Derwent, R.G., Jenkin, M.E., Orr-Ewing, A.J., Higgins, C.M., Percival, C.J., Leather, K.E., Shallcross, D.E., 2015. Global modeling of the C₁-C₃ alkyl nitrates using STO-CHEM-CRI. Atmos. Environ. 123, 256–267.
- Kwok, E.S.C., Atkinson, R., 1995. Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: an update. Atmos. Environ. 29, 1685–1695.
- Lai, S., Zhao, Y., Ding, A., Zhang, Y., Song, T., Zheng, J., Ho, K.F., Lee, S.C., Zhong, L., 2016. Characterization of PM_{2.5} and the major chemical components during a 1-year campaign in rural Guangzhou, Southern China. Atmos. Res. 167, 208–215.
- Lai, S.C., Baker, A.K., Schuck, T.J., Slemr, F., Brenninkmeijer, C.A.M., Velthoven, P.V., Oram, D.E., Zahn, A., Ziereis, H., 2011. Characterization and source regions of 51 high-co events observed during civil aircraft for the regular investigation of the atmosphere based on an instrument container (CARIBIC) flights between south China and the Philippines, 2005–2008. J. Geophys. Res. Atmos. 116, 1–15.
- Lai, S.C., Baker, A.K., Schuck, T.J., van Velthoven, P., Oram, D.E., Zahn, A., Hermann, M., Weigelt, A., Slemr, F., Brenninkmeijer, C.A.M., Ziereis, H., 2010. Pollution events observed during CARIBIC flights in the upper troposphere between South China and the Philippines. Atmos. Chem. Phys. 10, 1649–1660.
- Lai, S.C., Song, J.W., Song, T.L., Huang, Z.J., Zhang, Y.Y., Zhao, Y., Liu, G.C., Zheng, J.Y., Mi, W.Y., Tang, J.H., Zou, S.C., Ebinghaus, R., Xie, Z.Y., 2016. Neutral polyfluoroalkyl substances in the atmosphere over the northern South China Sea. Environ. Pollut 214, 449–455.
- Lee, S.C., Chiu, M.Y., Ho, K.F., Zou, S.C., Wang, X.M., 2002. Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. Chemosphere 48, 375–382.
- Ling, Z., Guo, H., Simpson, I.J., Saunders, S.M., Lam, S.H.M., Lyu, X., Blake, D.R., 2016. New insight into the spatiotemporal variability and source apportionments of C₁-C₄ alkyl nitrates in Hong Kong. Atmos. Chem. Phys. 16, 8141–8156.
- Ling, Z.H., Zhao, J., Fan, S.J., Wang, X.M., 2017. Sources of formaldehyde and their contributions to photochemical O₃ formation at an urban site in the Pearl River Delta, Southern China. Chemosphere 168, 1293–1301.
- Lyu, X.P., Guo, H., Wang, N., Simpson, I.J., Cheng, H.R., Zeng, L.W., Saunders, S.M., Lam, S.H.M., Meinardi, S., Blake, D.R., 2017. Modeling C_1 - C_4 alkyl nitrate photochemistry and their impacts on O_3 production in urban and suburban environments of Hong Kong. J. Geophys. Res. Atmos. 122, 10539–10556.
- Lyu, X.P., Ling, Z.H., Guo, H., Saunders, S.M., Lam, S.H.M., Wang, N., Wang, Y., Liu, M., Wang, T., 2015. Re-examination of C₁-C₅ alkyl nitrates in Hong Kong using an observation-based model. Atmos. Environ. 120, 28–37.
- Man, H.Y., Zhu, Y.J., Ji, F., Yao, X.H., Lau, N.T., Li, Y.J., Lee, B.P., Chan, C.K., 2015. Comparison of daytime and nighttime new particle growth at the HKUST supersite in Hong Kong. Environ. Sci. Technol. 49, 7170–7178.
- Moore, R.M., Blough, N.V., 2002. A marine source of methyl nitrate. Geophys. Res. Lett. 29, 27–21-27-24.
- Neu, J.L., Lawler, M.J., Prather, M.J., Saltzman, E.S., 2008. Oceanic alkyl nitrates as a natural source of tropospheric ozone. Geophys. Res. Lett. 35, 344–349.
- Nowak, J.B., Davis, D.D., Chen, G., Eisele, F.L., Mauldin, R.L., Tanner, D.J., Cantrell, C., Kosciuch, E., Bandy, A., Thornton, D., Clarke, A., 2001. Airborne observations of DMSO, DMS, and OH at marine Tropical latitudes. Geophys. Res. Lett. 28, 2201–2204.
- Orlando, J.J., Tyndall, G.S., Calvert, J.G., 1992. Thermal decomposition pathways for peroxyacetyl nitrate (PAN): implications for atmospheric methyl nitrate levels. Atmos. Environ. 26, 3111–3118.
- Ou, J.M., Yuan, Z.B., Zheng, J.Y., Huang, Z.J., Shao, M., Li, Z.K., Huang, X.B., Guo, H., Louie, P.K.K., 2016. Ambient ozone control in a photochemically active region: short term despiking or long-term attainment? Environ. Sci. Technol. 50, 5720–5728.
- Perring, A.E., Pusede, S.E., Cohen, R.C., 2013. An observational perspective on the atmospheric impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol. Chem. Rev. 113, 5848–5870.
- Rasmussen, R.A., Rasmussen, L.E., Khalil, M.A.K., Dalluge, R.W., 1980. Concentration distribution of methyl chloride in the atmosphere. J. Geophys. Res. Oceans 85, 7350–7356.
- Reeves, C.E., Slemr, J., Oram, D.E., Worton, D., Penkett, S.A., Stewart, D.J., Purvis, R., Watson, N., Hopkins, J., Lewis, A., Methven, J., Blake, D.R., Atlas, E., 2007. Alkyl nitrates in outflow from North America over the North Atlantic during intercontinental transport of ozone and precursors 2004. J. Geophys. Res. Atmos. 112, 409–427.

- Roberts, J.M., Bertman, S.B., Parrish, D.D., Fehsenfeld, F.C., Jobson, B.T., Niki, H., 1998. Measurement of alkyl nitrates at chebogue point, nova scotia during the 1993 North Atlantic regional experiment (NARE) intensive. J. Geophys. Res. Atmos. 103, 13569–13580.
- Russo, R.S., Zhou, Y., Haase, K.B., Wingenter, O.W., Frinak, E.K., Mao, H., Talbot, R.W., Sive, B.C., 2010. Temporal variability, sources, and sinks of C₁-C₅ alkyl nitrates in coastal New England. Atmos. Chem. Phys. 10, 1865–1883.
- Schneider, M., Ballschmiter, K., 1999. C₃-C₁₄ alkyl nitrates in remote South Atlantic air. Chemosphere 38, 233–244.
- Shepson, P.B., Anlauf, K.G., Bottenheim, J.W., Wiebe, H.A., Gao, N., Muthuramu, K., Mackay, G.I., 1993. Alkyl nitrates and their contribution to reactive nitrogen at a rural site in Ontario. Atmos. Environ. A 27, 749–757.
- Simpson, I.J., Akagi, S.K., Barletta, B., Blake, N.J., Choi, Y., Diskin, G.S., Fried, A., Fuelberg, H.E., Meinardi, S., Rowland, F.S., Vay, S.A., Weinheimer, A.J., Wennberg, P.O., Wiebring, P., Wisthaler, A., Yang, M., Yokelson, R.J., Blake, D.R., 2011. Boreal forest fire emissions in fresh Canadian smoke plumes: C₁-C₁₀ volatile organic compounds (VOCs), CO₂, CO, NO₂, NO, HCN and CH₃CN. Atmos. Chem. Phys. 11, 6445–6463.
- Simpson, I.J., Blake, N.J., Blake, D.R., Atlas, E., Flocke, F., Crawford, J.H., Fuelberg, H.E., Kiley, C.M., Meinardi, S., Rowland, F.S., 2003. Photochemical production and evolution of selected C₂-C₅ alkyl nitrates in tropospheric air influenced by Asian outflow. J. Geophys. Res. Atmos. 108, 8808.
- Simpson, I.J., Meinardi, S., Blake, D.R., Blake, N.J., Rowland, F.S., Atlas, E., Flocke, F., 2002. A biomass burning source of C₁-C₄ alkyl nitrates. Geophys. Res. Lett. 29, 21–21-27-24.
- Simpson, I.J., Wang, T., Guo, H., Kwok, Y.H., Flocke, F., Atlas, E., Meinardi, S., Rowland, F.S., Blake, D.R., 2006. Long-term atmospheric measurements of C₁-C₅ alkyl nitrates in the pearl river delta region of Southeast China. Atmos. Environ. 40, 1619–1632.
- Smyth, S., Bradshaw, J., Sandholm, S., Liu, S., Mckeen, S., Gregory, G., Anderson, B., Talbot, R., Blake, D., Rowland, S., 1996. Comparison of free tropospheric western Pacific air mass classification schemes for the PEM-West A experiment. J. Geophys. Res. Atmos. 101, 1743–1762.
- Song, T.L., Wang, S., Zhang, Y.Y., Song, J.W., Liu, F.B., Fu, P.Q., Shiraiwa, M., Xie, Z.Y., Yue, D.L., Zhong, L.J., Zheng, J.Y., Lai, S.C., 2017. Proteins and amino acids in fine particulate matter in rural Guangzhou, Southern China: seasonal cycles, sources, and atmospheric processes. Environ. Sci. Technol 51, 6773–6781.

- Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015. Noaa's hysplit atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077.
- Talukdar, R.K., Burkholder, J.B., Hunter, M., Gilles, M.K., Roberts, J.M., Ravishankara, A.R., 1997a. Atmospheric fate of several alkyl nitrates. 2. UV absorption cross-sections and photodissociation quantum yields. J. Chem. Soc. Faraday Trans. 93, 2797–2805.
- Talukdar, R.K., Herndon, S.C., Burkholder, J.B., Roberts, J.M., Ravishankara, A.R., 1997b. Atmospheric fate of several alkyl nitrates. 1. Rate coefficients of the reactions alkyl nitrates with isotopically labelled hydroxyl radicals. J. Chem. Soc. Faraday Trans. 93, 2787–2796.
- Wang, M., Shao, M., Chen, W.T., Lu, S.H., Wang, C., Huang, D.K., Yuan, B., Zeng, L.M., Zhao, Y., 2013. Measurements of C₁-C₄ alkyl nitrates and their relationships with carbonyl compounds and O₃ in Chinese cities. Atmos. Environ. 81, 389–398.
- Wang, T., Ding, A.J., Blake, D.R., Zahorowski, W., Poon, C.N., Li, Y.S., 2003. Chemical characterization of the boundary layer outflow of air pollution to Hong Kong during February-April 2001. J. Geophys. Res. Atmos. 108, 251–261.
- Williams, J.E., Le Bras, G., Kukui, A., Ziereis, H., Brenninkmeijer, C.A.M., 2014. The impact of the chemical production of methyl nitrate from the NO + CH₃O₂ reaction on the global distributions of alkyl nitrates, nitrogen oxides and tropospheric ozone: a global modelling study. Atmos. Chem. Phys. 14, 2363–2382.
- Worton, D.R., Reeves, C.E., Penkett, S.A., Sturges, W.T., Slemr, J., Oram, D.E., Bandy, B.J., Bloss, W.J., Carslaw, N., Davey, J., Emmerson, K.M., Gravestock, T.J., Hamilton, J.F., Heard, D.E., Hopkins, J.R., Hulse, A., Ingram, T., Jacob, M.J., Lee, J.D., Leigh, R.J., Lewis, A.C., Monks, P.S., Smith, S.C., 2010. Alkyl nitrate photochemistry during the tropospheric organic chemistry experiment. Atmos. Environ. 44, 773–785.
- Wu, Z.Y., Wang, X.M., Chen, F., Turnipseed, A.A., Guenther, A.B., Niyogi, D., Charusombat, U., Xia, B.C., Munger, J.W., Alapaty, K., 2011. Evaluating the calculated dry deposition velocities of reactive nitrogen oxides and ozone from two community models over a temperate deciduous forest. Atmos. Environ. 45, 2663–2674.
- Xu, Z., Xue, L.K., Wang, T., Xia, T., Gao, Y., Louie, P.K.K., Luk, C.W.Y., 2015. Measurements of peroxyacetyl nitrate at a background site in the Pearl River delta region: production efficiency and regional transport. Aerosol Air Qual. Res. 15, 833–841.