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Abstract
Ten coal seams in Upper Shihezi Formation, Lower Shihezi Formation, and Shanxi Formation from the Zhuji mine, Huainan
coalfield, China, were analyzed for n-alkanes and isoprenoids (pristine and phytane) using gas chromatography-mass spectrom-
etry (GC-MS), with an aim of reconstructing the coal-forming plants and depositional environments along with organic carbon
isotope analyses. The total n-alkane concentrations ranged from 34.1 to 481 mg/kg. Values of organic carbon isotope (δ13Corg)
ranged from − 24.6 to − 23.7‰. The calorific value (Qb,d), maximum vitrinite reflectance (Romax), proximate, and ultimate
analysis were also determined but showed no correlation with n-alkane concentrations. Carbon Preference Index (CPI) values
ranged from 0.945 to 1.30, suggesting no obvious odd/even predominance of n-alkane. The predominance of C11 and C17 n-
alkanes implied that the coal may be deposited in the fresh and mildly brackish environment. According to the contrary changing
trend of pristine/phytane (Pr/Ph) ratio and boron concentrations, Pr/Ph can be used as an indicator to reconstruct the marine
transgression-regression in sedimentary environment of coal formation. The influence of marine transgression may lead to the
enrichment of pyrite sulfur in the coal seam 4-2. C3 plants (− 32 to − 21‰) and marine algae (− 23 to − 16‰) were probably the
main coal-forming plants in the studied coal seams. No correlation of the n-alkane concentration and redox condition of the
depositional environment with organic carbon isotope composition were found.
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Introduction

n-Alkane, widespread in coal, is a class of organic compounds
composed of straight-chain saturated hydrocarbons (Wang
et al. 47; Sojinu et al. 41). Exploring the geochemical charac-
teristic of n-alkane has significant implication in recognizing
their forming paths and mechanisms in coal, and

consequently, tracing their geochemical behaviors in super-
gene environment.

n-Alkane has the ability to record the special information of
original matrix due to its high resistance to microbial degra-
dation (Fernandes and Sicre 14; Meyers 31). It has been
regarded as a tracer to determine the potential sources and
maturity of organic matter (Sojinu et al. 41; Choi et al. 9)
and reconstruct paleoclimatic and paleodepositional condi-
tions (Fu and Sheng 16; Bai et al. 3; Li et al. 25). Previous
researches (Fu and Sheng 16; Fu et al. 17) have shown that n-
alkane can be successfully applied to distinguish the deposi-
tional paleoenvironment (including fresh, mildly brackish,
and marine environments).

Pristane and phytane are derived from the phytol side chain
of chlorophyll (Naeher and Grice 32). Phytol is converted to
pristane under oxidation condition, while phytane is formed
from phytol via reductive pathway (Rontani et al. 38;
Rahman* et al. 36). Hence, the ratio of pristane to phytane
(Pr/Ph) can be applied successfully to reconstruct the paleo-
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redox depositional conditions in coal (Escobar et al. 13; Wang
et al. 48).

However, most previous researches reconstructed the
coal-forming plants and environment using traditional
indicators, such as the Sr/Ba ratio and boron and organ-
ic carbon isotope. The Sr/Ba ratio and boron are good
paleosalinity indicators of coal-forming environment (Li
et al. 24; Sun et al. 42). Organic carbon isotope in coal
provides reliable evidences for the reconstruction of
paleoenvironmental changes and paleovegetation
(Bechtel et al. 4; Schwarzbauer et al. 39). It is consid-
ered to be related to climatic evolution (e.g., tempera-
ture, dry-humidity) and atmospheric CO2 levels (Hayes
et al. 20; Lücke et al. 28; Bechtel et al. 4). Organic
carbon isotope in coal can be used to distinguish C3

and C4 plants, which have the different carbon isotope
composition due to their different photosynthetic path-
ways (De ines 11 ; Eh le r inge r and Pearcy 12 ;
Schwarzbauer et al. 39).

Zhuji coal mine is located in northwestern of Huainan
Coalfield, Anhui province (Sun et al. 43; Sun et al. 44). It is
an active and important coal-producing base in China.
Boron element contents have been detected in coal-
bearing strata of Upper Shihezi, Lower Shihezi, and
Shanxi Formation in Zhuji mine in our previous study
(Sun et al. 42). Hence, the Permian coal deposit in Zhuji
coal mine is chosen to reconstruct the coal-forming plants
and depositional environment from the perspective of or-
ganic tracers (n-alkane, phytane, and pristine) combined
with organic carbon isotope analyses. Moreover, statistical
correlations between these indicators (including boron)
were conducted to further explore the relevance and reli-
ability of organic tracers.

Material and methods

Study area and sample collection

The Zhuji mine, situated in the northwestern of Huainan
Coalfield, covers an area of 45.13 km2. The whole coalfield
is covered by Tertiary and Quaternary unconsolidated strata.
More details of local geology and coal-bearing strata have
been described in our previous study (Sun et al. 42). Ten coal
seams from Permian strata were selected for use in this study,
including Upper Shihezi Formation (i.e., 11-2 and 11-1),
Lower Shihezi Formation (i.e., 8, 7-2, 6, 5-2, 4-2, and 4-1),
and Shanxi Formation (i.e., 3 and 1). The stratigraphic and
lithologic characteristics of the coal-bearing strata are
illustrated in Fig. 1.

Sample extraction and separation

Coal samples were dried and ground to pass through a 100-
mesh sieve. Powdered coal aliquot samples (5 g dry wt.) were
extracted with dichloromethane (250 ml) for 48 h by follow-
ing Soxhlet extraction method. Activated copper pieces were
added to the extracts for desulfurization. Each extract was
concentrated with a vacuum rotary evaporator and then
redissolved in hexane. They were purified by a glass column
filled with alumina (6 cm), silica gel (12 cm), and anhydrous
Na2SO4 (2 cm) from bottom to top. The n-alkane fraction
(including isoprenoids) was eluted with 15 ml of hexane.

Fig. 1 Lithologic characteristics of the sedimentary strata and selected
coal seams from stratigraphic column in Zhuji exploration area
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Eluted solutions were concentrated to 1 ml using a vacuum
rotary evaporator. All the reagents were chromatographically
grade.

Gas chromatography-mass spectrometry

Identification and quantification of n-alkanes and
isoprenoids were carried out using an Agilent 6890 gas
chromatograph (GC) in conjunction with an Agilent 5972
mass selective detector (MSD). The GC was equipped with
a DB-5 column (30 m × 0.25 mm × 0.25 μm). High-purity
helium was used as carrier gas at a flow rate of 1.5 ml/min.
The oven program was kept at 60 °C for 3 min and heated
to 200 °C at 8 °C/min, then heated to 300 °C at 3 °C/min
(held 10 min). The quantification of n-alkanes and
isoprenoids was conducted by external standard method.
The concentrations were calculated by comparing the peak
areas between samples and standards.

Proximate and ultimate analysis

The proximate analysis, including moisture (Mad), volatile
matter (Vdaf), and ash yield (Ad), were determined accord-
ing to Chinese Standard GB/T-212-2008, and calorific
value (Qb,d) was determined according to Chinese
Standard GB/T-213-2008 (Chen et al. 6; Tang et al. 45).
The ultimate analysis was conducted by elementar vario
EL.

Stable organic carbon isotopes (δ13Corg)

Coal samples were treated with 2 M HCl for 24 h to
exclude the inorganic carbon. Then, they were washed
with (double-distilled) DDI water until neutral and dried
at 40 °C. Thirty milligrams of coal sample was loaded
into the evacuated sealed quartz tube in the presence of
Ag foil, cupric oxide, and Cu foil, then combusted at
850 °C for 4 h. The purified carbon oxide was then ana-
lyzed for carbon isotopes using a MAT-251 gas mass
spectrometer with dual inlet system. Isotopic ratios in
samples are expressed as per mil deviations relative to
V-PDB (Vienna Peedee Belemnite standard), with an un-
certainty below 0.4: δ13C (‰) = (Rsa/Rst-1) × 1000. Rsa
and Rst is the 13C/12C ratio for sample and standard, re-
spectively. The analyses of all the samples were finished
by Institute of Earth Environment, State Key Laboratory
of Loess and Quaternary Geology, The Chinese Academy
of Sciences, Xi’an.

Results and discussion

n-Alkane distribution in coal seams

n-Alkane in the range C9 to C31 was detected in this study. The
distributions of n-alkane in all the studied coal seams (Upper
Shihezi Formation, Lower Shihezi Formation, and Shanxi
Formation) are depicted in Fig. 2. Several n-alkanes (C9,
C10, and C25-C31) were only detected in a few coal seams.
Furthermore, as shown in Fig. 2, C17 was the main species
in coal seams 11-2 and 8, while C11 was apparent in other coal
seams (11-1, 7-2, 6, 5-1, 4-2, 3, and 1). The total n-alkane
concentrations of all the coal seams are listed in Table 1.
The lowest concentration (34.1 mg/kg, dry wt.) was identified
in coal seam 7-2, and the highest concentration (481 mg/kg,
dry wt.) was detected in coal seam 4-2.

Although n-alkane has strong structural stability, they may
undergo physical degradation or biodegradation during the
long-term coal formation process. The degree of n-alkane deg-
radation can be expressed by the ratio of pristine/C17 (Pr/C17)
and phytane/C18 (Ph/C18) (Peters and Moldowan 34; Wang
et al. 46). The Pr/C17 and Ph/C18 values were relatively low
in the present study (Table 1), with averages of 0.55 and 0.27,
respectively, indicating a minor degradation of n-alkane.

In this study, Carbon Preference Index (CPI) values ranged
from 0.945 to 1.30, with an average of 1.07, indicating no
obvious odd/even predominance of n-alkane. In general, the
abundance of even n-alkanes gradually closes to that of the
odd n-alkanes in the process of coal formation. The longer the
time of coal formation, the closer the CPI value is to 1. Similar
CPI values to this study have also been reported in other
studies (Norgate et al. 33; Adedosu et al. 1). The CPI value
in the early Cretaceous coal (middle Benue trough, Nigerian)
was close to 1, without any odd over even predominance
(Adedosu et al. 1). In contrast, n-alkanes in the middle
Eocene bituminous coals, which were deposited relative-
ly late, showed an odd over even predominance
(Norgate et al. 33).

CPI is widely used as a proxy to identify the potential
sources of n-alkane (Marzi et al. 30; Lyu et al. 29). CPI for
n-alkane stemmed from terrestrial higher plants is greater than
5 (Wang et al. 49). Moreover, n-alkanes originated from
higher plant leaf wax usually present significant odd over even
predominance (Ficken et al. 15; Liu and Huang 26).
Therefore, the low CPI values in the studied coal cannot prove
the terrestrial higher plant input during the process of coal
formation.

As shown in Fig. 2, low-molecular-weight (LMW; ≤C17)
n-alkanes were dominated in the three formations, which were
probably derived from algae and/or bacteria (Ficken et al. 15).
The LMW n-alkanes were most abundant in Shanxi
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Formation, accounting for 88.7 and 85.2% of total n-alkanes
in the coal seam 1 and 3, respectively. Moreover, Shanxi
Formation strata were deposited on a lower-deltaic plain

(Shao et al. 40). Hence, it can be inferred that coals in the
Shanxi Formation may suffer from seawater intrusion.

Proximate and ultimate analysis

The results of proximate and ultimate analysis are listed in
Table 2. The moisture (Mad), volatile matter (Vdaf), ash yield
(Ad), and calorific value (Qb,d) are basic parameters to evalu-
ate the economic value of coal (Table 2). The Mad values
varied from 1.14 (coal seam 4-2) to 1.65% (coal seam 11-1)
on an air-dried basis. The Vdaf values ranged from 13.9 (coal
seam 4-2) to 37.6% (coal seam 11-1) on a dried-ash-free basis.
The Ad values ranged from 21.4 (coal seam 4-2) to 38.6%
(coal seam 1) on a dry basis. The Qb,d values ranged from
20.5 (coal seam 1) to 27.9 MJ/kg (coal seam 4-2) on a dry
basis. The minimum values of Mad, Vdaf, and Ad and maxi-
mum value of Qb,d were observed in coal seam 4-2. As men-
tioned before, coal seam 4-2 also had the highest n-alkane
concentration. The spearman correlation analyses between n-
alkane concentrations and these coal quality parameters were
performed, indicating no statistical correlation.

Table 1 n-Alkane concentration (mg/kg dry wt.) and related proxies in
coal seams from Zhuji coal mine, Huainan coalfield, China

Coal seams T-ALK MH CPI Pr/Ph Pr/C17 Ph/C18

11-2 164 C17 0.945 4.32 0.689 0.262

11-1 153 C11 1.15 5.58 1.19 0.339

8 78.7 C17 0.947 2.67 0.568 0.315

7-2 34.1 C11 1.06 3.48 0.614 0.230

6 66.6 C11 1.09 2.93 0.816 0.230

5-1 188 C11 1.12 3.84 0.550 0.277

4-2 481 C11 0.987 3.20 0.283 0.160

4-1 46.2 C11 1.09 1.25 0.201 0.281

3 63.6 C11 1.01 2.48 0.365 0.301

1 83.8 C11 1.30 1.43 0.224 0.304

T-ALK total n-alkane concentration, MH major hydrocarbons, CPI
Carbon Preference Index, Pr/Ph pristane/phytane, Pr/C17 pristane/n-
heptadecane, Ph/C18 phytane/n-octadecane

Fig. 2 Distributions of n-alkane in different coal seams. a Upper Shihezi formation. b Lower Shihezi formation. c Shanxi formation from Zhuji mine,
Huainan coalfield, China
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The H/C and O/C ratios are important indicators of
coal rank (Bae et al. 2). Their values decrease with the
increase of coal rank (Yu et al. 51; Liu et al. 27). H/C
values fluctuated within a narrow range in this study, from
0.0489 to 0.0740, indicating the small differences of coal
rank between these coal seams. O/C ratio values varied
from 0.103 to 0.233, with a mean value of 0.155, suggest-
ing the predominance of aromatic hydrocarbon in coal
(Zhao et al. 52; Bae et al. 2). The maximum vitrinite
reflectance (Romax) can also reflect the coal rank and ma-
turity (Robbins et al. 37), ranging from 0.796 to 0.955%
in this study. According to Petersen (Petersen 35), the
start of the effective oil window had vitrinite reflectance
values that ranged from 0.85 to 1.05%, indicating good
oil generation potential of the studied coal.

The total sulfur content varied from 0.0790 (coal
seam 11-1) to 0.937% (coal seam 4-2), with an average
value of 0.540%. Pyritic sulfur (Sp,d) is one of the main
forms of sulfur in coals. The relative high proportion of
Sp,d occurred in coal seams 4-2 and 5-1, accounting for
48.2 and 46.5% of the total sulfur content, respectively.
The Sp,d percentage of the coal was most abundant in
the coal seams 4-2, which can be calculated as 0.453%.
Previous studies have shown that sulfate-reducing bac-
teria were involved in the formation of pyrite (Berner
and Raiswell 5). The growth of algae could cause the
rising of pH in the environment, and the alkalescent
condition is conducive to the growth and reproduction
of bacteria (Kostova et al. 23; Chou 10). Therefore, it
was inferred that coal seam 4-2 may be influenced by
marine transgression and the large influx of algae pro-
moted the formation and enrichment of pyrite.

Coal-forming depositional environment

Previous researches (Fu and Sheng 16; Fu et al. 17) have
pointed out that geochemical characteristics of n-alkane can
be successfully applied to reconstruct the depositional
paleoenvironment. Firstly, fresh water environment: it is char-
acterized by a dominance of long-chain n-alkanes (such as C27

and C29) with significant odd/even predominance,
representing the input of terrestrial higher plants. Secondly,
fresh and mildly brackish environment: it is dominated by
short chain n-alkanes (such as C17), representing the abundant
input of algae. Thirdly, brackish or marine environment: it is
dominated by n-alkanes in the range of C18 to C28 (peaking at
C22, C24, and C28) with obvious even over odd predominance.
As discussed in the Bn-Alkane distribution in coal seams^
section, the most abundant n-alkane in the studied coal seams
were C11 and C17, corresponding to the second depositional
environment. It can be inferred that coals from the Upper
Shihezi Formation, Lower Shihezi Formation, and Shanxi
Formation were deposited in the fresh and mildly brackish
environment.

The ratio of pristane to phytane (Pr/Ph) is a sensitive indicator
of redox conditions in the depositional environment (Naeher and
Grice 32). The variation of Pr/Ph ratio in the studied coal seams is
illustrated in Fig. 3a. All values of Pr/Ph ratio were greater than
one, indicating suboxic conditions, even oxidizing conditions
(Groune et al. 18; Hakimi et al. 19). Furthermore, the observed
trend of Pr/Ph ratio is contrary to that of the boron contents in the
same coal seams (Fig. 3b) reported in our previous study (Sun
et al. 42). The spearman correlation analysis between Pr/Ph ratio
and boron content was performed. A statistically significant neg-
ative correlation was observed (Spearman correlation coefficient,

Table 2 The proximate and ultimate analysis of all selected coal seams from Zhuji coal mine

11-2 11-1 8 7-2 6 5-1 4-2 4-1 3 1

Ultimate analysis (wt.%)

C 53.3 45.3 69.5 53.7 68.3 60.2 70.1 72.1 77.3 77.3

H 3.55 3.35 4.67 3.76 4.59 4.12 3.43 4.40 4.82 4.62

O 12.4 9.95 9.99 9.89 8.24 10.6 7.64 9.86 9.28 7.96

N 0.928 0.848 1.32 3.22 1.16 0.893 1.38 1.27 1.50 1.39

S 0.415 0.0790 0.649 0.343 0.530 0.874 0.937 0.635 0.313 0.624

H/C 0.0666 0.0740 0.0672 0.0700 0.0672 0.0684 0.0489 0.0610 0.0624 0.0598

O/C 0.233 0.220 0.144 0.184 0.121 0.176 0.109 0.137 0.120 0.103

Proximate analysis (wt.%)

Mad 1.38 1.65 1.46 1.47 1.30 1.39 1.14 1.44 1.64 1.58

Ad 26.4 28.5 25.8 28.5 26.4 24.7 21.4 25.9 29.4 38.6

Vdaf 27.4 37.6 30.5 35.4 29.6 33.8 13.9 34.8 36.2 20.3

Romax (wt.%) 0.796 0.944 0.900 0.904 0.902 0.899 0.955 0.862 0.800 0.868

Qb,d (MJ/kg) 26.4 25.5 26.8 25.5 26.3 26.9 27.9 26.6 25.9 20.5

Mad moisture, on an air-dried basis, Ad ash yield, on a dry basis, Vdaf volatile matter, on a dried-ash-free basis, Qb,d calorific value, on a dry basis
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− 0.967; P < 0.01). Boron is an important indicator to reconstruct
the paleosalinity in sedimentary environment of coal formation
(Sun et al. 42;Wang et al. 50). Thus, it was inferred that the Pr/Ph
ratio can be utilized to indentify marine transgression-regression
in coal-forming environment. The low Pr/Ph ratio representing
reduction condition may be subject to marine transgression,
whereas the high Pr/Ph ratio indicating oxidation condition
may be related to marine regression.

Organic carbon isotope composition of coal seam

Organic carbon isotope (δ13Corg) has been applied for
source identification of organic matter and reconstruc-
tion of coal-forming environments (Cheung et al. 7).
Plant photosynthesis is an important factor affecting
organic carbon isotope fractionation. According to the
photosynthetic pathway, terrestrial plants are divided
into C3 and C4 plants (Khan et al. 22). δ13C values
for C3 plants vary from − 32 to −21‰, while the
values for C4 plants range from − 17 to − 9‰
(Deines 11; Chmura and Aharon 8; Khan et al. 22).

Figure 4 illustrated the fluctuation variation of δ13Corg

values in the selected coal seams, ranging from − 24.6 to
− 23.7‰, with a mean value of − 24.0‰. These values
were well within the range of − 32 to − 21‰, indicating
that C3 plants were probably the main coal-forming plants
in the studied coal seams. Moreover, marine algae have
δ13C values ranging from − 23 to − 16‰ and freshwater
algae range in δ13C from − 30 to − 26‰ (Hemminga and
Mateo 21; Khan et al. 22), which probably indicate the
contribution of marine algae.

Organic carbon isotope composition in coals is also
related to regional climatic conditions (such as tempera-
ture) and atmospheric pCO2 fluctuations (Lücke et al. 28;
Bechtel et al. 4). The increasing trend of δ13Corg values from
coal seam 3 to coal seam 5-1may correspond to the increase of
temperature and atmospheric pCO2. In contrast, the decrease
of δ13Corg values from coal seam 7-2 to coal seam 11-2 may

Fig. 3 a The variation of Pr/Ph
ratio in the studied coal seams. b
Vertical variation of B contents in
9 coal seams (Sun et al., 2010);
the dot line is at 110 mg/kg

Fig. 4 Organic carbon isotope composition of coal seams from Zhuji
mine, Huainan coalfield, China
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correspond to the decrease of temperature and atmospheric
pCO2.

Furthermore, there was no statistical correlation between
δ13Corg values and n-alkane concentrations, Pr/Ph ratio values,
indicating that redox condition of the depositional environ-
ment and n-alkane concentrations may be not correlated with
carbon isotope composition in the studied coals.

Conclusion

The geochemical characteristics of n-alkanes and isoprenoids
(pristine and phytane) in the ten coal seams have been inves-
tigated. n-Alkanes in the range C9 to C31 were detected with-
out odd/even predominance. The low values of Pr/C17 and Ph/
C18 ratios indicated a minor degradation of n-alkane in coals.
The most abundant n-alkanes (C11 and C17) in the studied coal
seams reflected the coal may be deposited in fresh and mildly
brackish environment. Moreover, the influence of marine
transgression may lead to the enrichment of pyrite sulfur in
the coal seam 4-2. It was inferred that the Pr/Ph ratio can be
used as an indicator to reconstruct the marine transgression-
regression in sedimentary environment of coal formation. C3

plants and marine algae were probably the main coal-forming
plants. Furthermore, redox condition of the depositional envi-
ronment and n-alkane concentrations were probably not cor-
related with carbon isotope composition in coal.
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