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A B S T R A C T

This study reports hydrogen isotopic records from the central Chinese Loess Plateau (CLP) over the past 250 ka.
After eliminating the influence of ice and local temperatures, the δDwax records extracted from two loess sites at
Xifeng and Luochuan can be taken to represent arid/humid alternations in the hydrological environment in this
marginal Asian Summer Monsoon (ASM) region; they also contain integrated information on summer pre-
cipitation patterns and the corresponding responses to these changes by predominant vegetation cover types.
These arid/humid alternations show 100 ka, 40 ka and 20 ka cycles. An increase in precipitation in association
with an enhanced summer monsoon has historically been taken to be the major factor driving a humid en-
vironment in the central CLP. However, hydroclimatic changes in δDwax records differ for the central CLP,
central China and southern China. Over a 20 ka cycle, the influence of solar insolation on hydroclimatic changes
can be shown to be consistent throughout the central CLP. However, changes in the relative location of the land
and sea may have caused different hydroclimatic responses between southern China and the central CLP on a
glacial-interglacial scale. The hydroclimatic variability in the central CLP would suggest that an enhanced
summer monsoon due to climatic warming is the key to understanding decreased drought degree in this marginal
monsoonal region.

1. Introduction

Global warming caused by high levels of CO2 emissions during the
Anthropocene has become an established fact (Waters et al., 2016).
Changing thermal land-sea conditions are altering atmospheric circu-
lation patterns, monsoonal strength and any corresponding precipita-
tion, thereby increasing the risk of natural disasters such as droughts
and floods (Pachauri et al., 2014). On the Chinese Loess Plateau (CLP),
a marginal region affected by the Asian Summer Monsoon (ASM),
meteorological records indicate a rapid rise in temperature accom-
panied by a significant reduction in precipitation since the mid-1980s;
further, it is apparent that climate warming has accelerated the like-
lihood that the CLP will experience drought (Sun and Ma, 2015).
Theoretically, however, any climate warming and strengthening of the
monsoon would push the rainbelt northward, and the central CLP
would become gradually moist (Liu et al., 1991; An, 2000). During the
warming mid-Holocene, the monsoonal rainbelt migrated northwest at
least 300 km from its Last Glacial Maximum (LGM) extent (Yang et al.,
2015). Thus, the impact of climate warming on regional hydroclimatic
conditions varies significantly over different timescales. Because

potential drought-induced decreases in vegetation coverage or food
production can be fatal to fragile ecosystems and populations (Pachauri
et al., 2014), understanding the multiscale hydroclimatic background is
helpful for developing effective strategies to respond to global warming
and drought, especially in the ASM-marginal CLP region. More than
200 million people live in this region and would benefit from this im-
proved understanding.

The compound-specific hydrogen isotopic composition of plant wax
(δDwax) can record the isotopic ratio of water acquired during plant
growth (Sessions et al., 1999; Liu and Yang, 2008; Sachse et al., 2012).
Therefore, δDwax values are considered to be a direct indicator of hy-
droclimatic changes (Hou et al., 2007; Wang et al., 2013; Tierney and
deMenocal, 2013; Yao et al., 2015; Thomas et al., 2014, 2016). In a
previous study, a 130-ka δDwax record was used for the first time as a
proxy aridity record for the central CLP (Liu and Huang, 2005). Here,
we report on two combined loess-δDwax series from Xifeng and Luo-
chuan that span the last 250 ka and include two complete glacial-in-
terglacial cycles. Our aims are: (1) to reconstruct δDwax record and the
hydroclimatic history of the central CLP, (2) to discuss the climatic and
environmental effects on δDwax values and the natural hydroclimatic
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variability in this ASM-marginal region.

2. Material and methods

2.1. Loess sequence

Samples were collected from two loess sites at Luochuan (LCJ3;
above S2 layer; 35°44′34.2″N, 109°25′59.8″E) and Xifeng (XFJ3; S2-L2
layer; 35°39′58.4″N, 107°39′1.1″E; Fig. 1). Over the last 50 years,
Luochuan and Xifeng have experienced similar climatic conditions,
with mean annual temperatures (MAT) of 9.6 °C and 8.7 °C; and mean
annual precipitation (MAP) values of 607mm and 547mm, respec-
tively. The meteorological data we used were taken from http://www.
data.cma.cn. The modern vegetation of the central CLP can be char-
acterized as typical temperate steppe and forest steppe. In the north-
western CLP, vegetation gradually transitions to temperate desert ve-
getation along with reduced precipitation (Cheng and Wan, 2002). Our
loess samples were originally sampled at 2-cm intervals. Then, equal
amounts of three consecutive samples taken every 25 cm were mixed,
forming a sample with a total mass of 30 g. The mixed loess core
samples were prepared for n-alkane extraction, gas chromatography
and isotope analysis.

Each loess sample (∼30 g) was extracted with a mixture of di-
chloromethane (DCM) and methanol (MeOH) (9:1, v/v) using
Accelerated Solvent Extraction (ASE 350, Dionex™). Total extracted
lipid compounds were transported via a soft N2 stream. The alkane
fractions in the sediment were separated by silica gel chromatography
using hexane eluents (Liu and Huang, 2005; Wang et al., 2013). Gas
chromatography (GC) was performed using an Agilent 6890 Series in-
strument equipped with a split-injector, HP-1ms GC column (60m
length; 0.32mm i.d.; 0.25 μm film) and a flame ionization detector. For
quantification, peak areas for n-alkanes were compared with those from
an external standard mixture (C21–C33; odd carbon numbers). The
samples were injected in split mode at an inlet temperature of 310 °C
and a column flow rate of 1.2ml/min. The analysis was run under the
following temperature ramps: held for 1min at an initial temperature of
40 °C; heated to 150 °C at 10 °C/min; and then heated to 310 °C at 6 °C/
min and held for 20min.

2.2. Analysis method

The compound-specific hydrogen isotope ratios were measured

using a Delta-V IRMS (Thermo-Finnigan). Approximately 300 ng of n-
alkane was injected into a Thermo Trace GC in splitless mode. The
temperature ramps were the same as those used in the GC analysis. The
n-alkanes were converted to hydrogen gas using a high-temperature
pyrolysis reactor at 1430 °C. During all the experiments, the H3

+ factor
was 1.83 ± 0.03 for each week. The stability of the isotope mass
spectrometer (with nine groups of reference gas tests) was better than
0.04‰. Mixed laboratory standards of n-alkanes (odd carbon number n-
alkanes; C21–C33; Sigma-Aldrich) were measured after every four in-
jections to monitor the external precision of the hydrogen isotope
analysis, and the standard deviation of the working standard was<
2‰. The working standard was calibrated using Indiana University
FAME reference substances. The GC analyses and compound-specific
hydrogen isotope analyses were performed at the Stable Isotope
Laboratory of the Institute of the Earth Environment, Chinese Academy
of Sciences (IEE-CAS).

3. Results and discussion

3.1. Magnetic susceptibility chronologies

The chronologies of the two loess-paleosol sequences were estab-
lished using 2-cm interval magnetic susceptibility data based on the
orbital tuning method (Kukla et al., 1988; Ding et al., 1994). The
magnetic susceptibility records for the period since 130 ka BP for Xifeng
were taken from Liu and Huang (2005). The loess core magnetic sus-
ceptibility curves for this study were then compared with the records
from previous studies for Xifeng (Guo et al., 2009; Hao et al., 2012) and
Luochuan (An et al., 1990; Hao et al., 2012). All the data for the central
CLP were consistent when using the magnetic susceptibility-based age
model (Fig. 2).

3.2. δDwax records from Xifeng and Luochuan

The δDwax records from Xifeng and Luochuan fluctuate consistently
over the last 250 ka. These trends are somewhat similar to the sites’
loess magnetic susceptibility curves (Fig. 3). Depleted δDwax values
correspond to relatively high magnetic susceptibility, and enriched
δDwax values correspond to relatively low magnetic susceptibility. The
mean sampling interval in our loess δDwax records was 2.6 ka. Based on
the Fourier transform (Mudelsee, 2013) and wavelet methods (Torrence
and Compo, 1998), the original δDwax series were interpolated to 3-ka
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Fig. 1. Mean annual precipitation (MAP) values
for the CLP. The locations of the XFJ3 and LCJ3
cores are marked in the figure. MAP data were
taken from the Modern-Era Retrospective
Analysis for Research and Application (MERRA).
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interval series to perform period analysis. Both records exhibited sig-
nificant ∼100-ka, ∼40-ka and ∼20-ka cycles (Fig. 4a and b). These
periodic characteristics are ubiquitous in other loess records, e.g., δ13Cic

(carbon isotopes of inorganic carbonate), grain size and magnetic sus-
ceptibility (Sun et al., 2012, 2015; Hao et al., 2012). Overall, the δDwax

records for the central CLP can be described as an ordered oscillation
with three periods and an amplitude at the glacial-interglacial scale
of± 15‰.

Based on the large-scale water balance between land and sea, a
stronger summer monsoon can transport more moisture from the wes-
tern Pacific and Indian oceans to the ASM region. This process results in
a more humid climate and depleted isotopic values in precipitation (Liu
et al., 2014b). However, because of the complicated isotopic fractio-
nation processes between the isotopic composition of precipitation
(δDprec) and δDwax (Gat, 1996; Sessions et al., 1999), δDwax records can
be interpreted only as a composite signal of climatological and ecolo-
gical change. In principle, rain falls to the ground and enters the soil as
soil moisture, and plants take up this soil water. Thus, the δDwax values
of leaf n-alkanes or n-acids inherit the isotopic composition character-
istics of the soil water (Sachse et al., 2012). Consequently, δDwax values
are considered to be controlled by the combined impact of δDprec va-
lues, fractionation between precipitation and soil water (εsw-p), which is
controlled by evaporation (McInerney et al., 2011), and fractionation
between δDwax values and the isotopic value of the source water (εwax-

sw), which is in turn controlled by the type of plant growth (Liu and
Yang, 2008). δDprec values are considered the primary controlling factor
(Sachse et al., 2012). The isotopic composition of the moisture source,
local condensation temperature and precipitation conspire to affect
δDprec values (Gat, 1996). εwax-sw values vary among vegetation and
ecological types, and this variation greatly affects δDwax values (Liu and
Yang, 2008). The δDwax values of forests differ greatly from those of
grasslands, for example, even if they share the same local δDprec values.
Thus, the combined effect of climatological and ecological factors de-
termines the δDwax record. These influential factors can be further
summarized into four groups: isotopic composition of the source;

temperature; precipitation; and vegetation type. To extract a single
factor from δDwax records, e.g., the amount of precipitation, the other
effects should be eliminated via calibration (Tierney and deMenocal,
2013; Thomas et al., 2014).

3.3. Elimination of the effect of ice volume and temperature on δDwax

Different ice volumes during glacial and interglacial stages can
cause changes in the isotopic composition of seawater. Thus, the ice
volume effect should first be removed from loess δDwax data. Changes in
global ice volumes have been estimated using marine benthic δ18O
records (Lisiecki and Raymo, 2005). Precipitation isotope data from
GNIP stations (http://www-naweb.iaea.org) indicate that the relation
between the δ18O and δD values of precipitation on the CLP can be
expressed as δDprec = 6.9 × δ18Oprec (Fig. 5a). The local meteoric water
line (LMWL) of the CLP is close to that of northwestern China (δD= 7.4
× δ18O + 1.4, Liu et al., 2014a) and the global meteoric water line
(GMWL) (Gat, 1996). In this study, therefore, we used 7.4 to convert
δ18Oprec to δD, and followed the ice volume calibration method of
Tierney and deMenocal (2013). The ice volume calibration did not
change the overall trend of the original loess δDwax record (Fig. 5b),
implying that sea water isotope variations were not the predominant
factor affecting δDwax values in the central CLP.

Local temperature affects isotopic fractionation during precipitation
condensation (Gat, 1996). Global precipitation isotope patterns also
show a significant temperature effect (Bowen, 2010). In previous stu-
dies, the temperature effect was removed from the original δDwax signal
so that the hydrogen isotopic records could be used as hydroclimatic
proxies (Thomas et al., 2014). On the CLP, the loess GDGT index can be
used as a potential air temperature proxy (Gao et al., 2012; Peterse
et al., 2014; Yang et al., 2014; Lu et al., 2016; Tang et al., 2017). Based
on a comparison of GDGTs-derived temperatures with sea surface
temperatures (SSTs) from the South China Sea (Herbert et al., 2010),
CLP temperatures appear similar to low-latitude SSTs (Fig. 6a). Ad-
ditionally, MAT values for Xifeng on the CLP and for Guangzhou in
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Fig. 2. Magnetic susceptibility of the Xifeng and
Luochuan cores. a, orange line, Luochuan profile (An
et al., 1990), green line, Xifeng (Guo et al., 2009); b,
Xifeng and Luochuan profiles (Hao et al., 2012); c, blue
line, Xifeng Profile since 130 ka BP (Liu and Huang,
2005), green and orange line, XFJ3 and LC3J cores from
Xifeng and Luochuan, respectively (this study). (For
interpretation of the references to color in this figure
legend, the reader is referred to the web version of this
article.)
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southern China show the same trend over a decadal scale (Fig. 6b).
Using this information, we can estimate relative changes in temperature
before 110 ka BP on the CLP based on South China Sea SSTs. The re-
lation 0.27–0.37‰ δ18Oprec/°C has been used in northern and western
China (Liu et al., 2014a) to remove the temperature effect. The relation
between δ18Oprec and temperature was converted to δDprec versus tem-
perature using a factor of 7.4 (Liu et al., 2014a). The removal of the
temperature effect followed the approach used by Thomas et al. (2014),
with a calibrated uncertainty of± 1σ standard deviation (Fig. 3). For
our current calibration, only the temperature effect of condensation was
removed. Any potential isotopic fractionation during evaporation in the
moisture source region and in the local soil could not be considered; the
response of the δDwax records to these two processes was therefore also

difficult to estimate accurately. However, because higher temperatures
would cause higher isotopic values in both of these processes and a
wider calibration range would need to be chosen to remove the influ-
ence of temperature, we think it possible that evaporation may retain
some effect. After removing the ice volume and temperature effects
(δDwax-IT), our δDwax-IT curve was not significantly different from the
original δDwax curve. Assuming that the moisture transported to the
central CLP has come from a relatively stable source, the δDwax-IT record
would appear to be principally related to variations in precipitation and
vegetation in the central CLP.
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Fig. 3. Comparison of various isotopic records with SSTs, ice volume, and insolation. a, Marine benthic δ18O (black line; Lisiecki and Raymo, 2005) and SST records from the South China
Sea (red line; Herbert et al., 2010); b, loess δ13Cic values as a record of summer precipitation (Sun et al., 2015); c, magnetic susceptibility records from Xifeng (green line) and Luochuan
(orange line, this study); d, δDwax records from Xifeng and Luochuan (this study); e, δDwax-IT records as a proxy for hydroclimatic humid/arid conditions in the central CLP; f, stalagmite
δ18O records from central China (gray line; Sanbao and Linzhu caves; Wang et al., 2008; Cheng et al., 2009); g, δDwax (gray line) and δDwax-IT (blue line) records employed as
hydroclimatic proxies for southern China (Thomas et al., 2014); h, July 5°N insolation (Laskar et al., 2004), where the dotted lines mark the ages of the insolation maxima.(For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.4. Influence of precipitation amount and vegetation type on the CLP’s
δDwax records

δ18Oprec data for the CLP show a significant negative correlation
with summer precipitation values (nine stations; monthly data from
Jun-Aug from GNIP and CHNIP stations; http://www-naweb.iaea.org
and Liu et al., 2014a; Fig. 7). Because precipitation on the CLP mainly
comes from summer rainfall (Yan, 2015), the CLP δDwax records likely
contain a precipitation amount effect, i.e., large amounts of precipita-
tion result in lower δDwax values. Additionally, changes in precipitation
also lead to changes in vegetation. Current MAP values for the central
CLP range from 300mm to 600mm, and the vegetation zone can be
characterized as temperate steppe. With a decrease in precipitation,
plants in the more arid northwestern CLP gradually transition to desert
vegetation (Cheng and Wan, 2002). Reconstructed results suggest that
fluctuations in MAP values for the CLP would likely have ranged from
200mm to 700mm over an glacial-interglacial scale (Zhou et al., 2010,
2015; Sun et al., 2015), meaning that vegetation type would have
changed from desert shrub, to steppe, or even to forest-steppe. Nu-
merous studies have confirmed the effect of plant type on δDwax values

(Liu and Yang, 2008; Sachse et al., 2012). Both precipitation amount
and vegetation type would therefore have influenced the CLP’s δDwax

records.
Despite the combined effect of precipitation and vegetation type,

these two individual factors have a similar isotopic effect on the central
CLP: increasing precipitation and the corresponding vegetation transi-
tion to grassland cause lower δDwax values; decreasing precipitation and
the corresponding desert-shrub expansion cause higher δDwax values.
We would therefore suggest that the δDwax-IT record can be used as an
environmental moisture proxy in the central CLP to obtain combined
climatic and ecological information (Liu and Huang, 2005).

3.5. Hydroclimatic variability in the central CLP over a 20-ka cycle

Comparing δDwax-IT, magnetic susceptibility and loess δ13Cic values
(Sun et al., 2015), it becomes clear that these records are consistent in
terms of environmental humidity, summer monsoonal strength and
summer precipitation, demonstrating that the hydrological changes
observed in the central CLP were predominantly controlled by the ASM.
Because the δDwax-IT record for the CLP, the stalagmite δ18O record for
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central China (Wang et al., 2008; Cheng et al., 2009), and the δDwax

record for southern China (Thomas et al., 2014) are all related to local
precipitation values, we compared these records to identify regional
hydroclimatic differences. The stalagmite δ18O records from southern
and central China, and the δDwax record from southern China, all
contain precessional signals (Wang et al., 2008; Cheng et al., 2009,

2016; Thomas et al., 2014). Despite our low sample resolution for the
central CLP (with a mean interval of ∼2.6 ka), ∼20-ka precessional
cycles were also present in the δDwax-IT record (Fig. 3). Cross wavelet
analysis (Grinsted et al., 2004) of the CLP δDwax-IT records yielded
significant correlations with insolation (Jul 5°N, Laskar et al., 2004) and
the stalagmite δ18O record (Wang et al., 2008; Cheng et al., 2009) over
∼20 ka cycles (Fig. 8a and b). Thus, solar insolation during the pre-
cessional cycle directly forced summer monsoonal precipitation varia-
bility in southern China, central China, and even the central CLP.

Because the original time series contained multi-cycle signals, we
used the FFT filter method to separate hydroclimatic variability during
precessional cycles. The∼20-ka signal in the central CLP, central China
and southern China showed good synchronization with summer in-
solation, and the isotopic minima approximately matched the insolation
maxima (Fig. 9a). Therefore, solar insolation is related to summer
monsoonal precipitation; increasing insolation would have caused more
rainfall, resulting in a more humid environment. However, the different
amplitudes and phases of the ∼20-ka cyclical signals in the three lo-
cations reflect different responses of ASM precipitation to changes in
insolation. For instance, the stalagmite δ18O record is almost fully
synchronized with insolation fluctuations, with a phase lag between
them of< 10°. In contrast, the δDwax-IT records in the CLP and southern
China feature a slight phase lag or advance. The CLP δDwax-IT minima
were ∼55° (∼3 ka) behind the insolation maxima (Fig. 9b), and the
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southern China δDwax-IT record was slightly advanced relative to solar
insolation. Thomas et al. (2014) suggested that the phase difference in
the ∼20-ka cycle between central China and southern China resulted
from the strong influence of ice volumes or glacial boundary conditions
on the stalagmite δ18O record. This hypothesis may also explain the
larger phase lag in the CLP δDwax-IT record, because the CLP was more
strongly affected by the ice sheet than were regions at lower latitudes.

Nevertheless, the influence of ice volumes or glacial boundary
conditions does not entirely explain the amplitudinal differences be-
tween these regions. As glacial retreat and enhanced insolation would
have caused more intense hydroclimatic fluctuations in this ASM-
marginal region, the amplitudes present in the CLP sections should not
be smaller than those found in other regions. However, the larger am-
plitudes in the stalagmite δ18O record of central China appear to be in
conflict with the previous hypothesis. We therefore inferred that the
different hydroclimatic responses of the stalagmite δ18O and δDwax-IT

records can be explained in part by these amplitudinal differences. In
the central CLP and southern China, the isotopic records derived from
plant δDwax-IT values can be used to compare the amplitudes of fluc-
tuations in hydroclimatic variability over a 20-ka cycle. The hydrocli-
matic changes over the course of a 20-ka cycle appear to have been
primarily controlled by the strength of the ASM; the combined effect of
insolation forcing and ice volume changes influenced humidity in the
central CLP.

3.6. Glacial-interglacial hydroclimatic differences between the central CLP
and southern China

The hydroclimatic changes recorded in the ASM region differ
markedly between glacial and interglacial periods. Generally low
δDwax-IT values in the central CLP indicate that this ASM-marginal re-
gion was dominated by a wet climate during interglacial periods
(Fig. 3), in agreement with the high magnetic susceptibility and nega-
tive δ13Cic values of the region’s interglacial loess records. However, the
overall trend in δDwax-IT values during interglacial periods in southern
China is relatively positive (Thomas et al., 2014). Although the δDwax-IT

records are not long enough to discuss cyclic characteristics over a 100-

ka period, an overall inverse isotopic trend during the warm periods of
MIS 5 and MIS 7 can be observed (Fig. 3). Therefore, hydroclimatic
variability in the central CLP and southern China can be taken as having
been similar over a ∼20-ka cycle, but inverse on a glacial-interglacial
timescale. We believe this discrepancy to be key to revealing the var-
ious regional hydrological changes evident across the ASM region.

Chinese decadal meteorological records have revealed different
precipitation patterns over recent years. Precipitation levels at Xifeng
and Luochuan have continually declined since the 1980s, whereas
precipitation at Guangzhou has increased (Fig. 10). Decadal variability
in monsoonal strength may be the main factor driving recent inverse
precipitation phases in northern and southern China (Ding et al., 2008).
We suspect that, due to obvious cyclical temperature fluctuations
during the 100-ka cycle since the late Pleistocene (Jouzel et al., 2007;
Herbert et al., 2010), a warmer climate during interglacials has caused
a stronger summer monsoon and pushed the rainbelt northward
(Broecker and Putnam, 2013; Yang et al., 2015). A more northerly
rainbelt has therefore resulted in greater precipitation and lower iso-
topic values in the CLP. In contrast, relatively less rainfall with higher
isotopic values has fallen in southern China. We can therefore safely
assume that the relative differences in the changes to precipitation seen
in northern and southern China, as caused by monsoonal variability,
may partly explain the differences in the north-south δDwax-IT values
observed over a glacial-interglacial scale. However, transgressions and
regressions may have also greatly affected hydroclimatic conditions
during glacial and interglacial periods. During interglacials, a coastline
lying farther to the north would have led to higher precipitation iso-
topic values in the coastal regions of southern China. This change in the
geographical location of the land in relation to the sea may also have
led to changes in regional monsoonal circulation patterns; the moisture
sources (i.e., the western Pacific and Indian oceans) would have then
contributed further to the regional hydroclimatic differences recorded
(Cai et al., 2015). On the CLP, which is relatively far inland, the isotopic
values of precipitation would have been less affected by such locational
shifts in the land in relation to the sea, and therefore by any possible
changes in moisture sources; this would mean that CLP δDwax-IT values
would have been more closely related to changes in the ASM.
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3.7. Hydroclimatic changes on the CLP in relation to global warming

Any interpretation of the different precipitation patterns found in
China is bound to be complex. However, our loess δDwax records would
indicate that the changes between dry and wet environments seen in
the central CLP were, and are, strictly controlled by summer monsoonal
precipitation. An enhanced monsoon, whether over a ∼20-ka cycle or
across a glacial-interglacial scale, delivers more rainfall to the margins
of the monsoon zone, resulting in a more humid environment. Current
MAP in the central CLP is only 500mm, corresponding to the low-in-
solation, low-humidity stage of an interglacial period. The constant
trend toward drought in this region over recent years has been, and is,
detrimental to the ecological environment as well as to humankind. In
these circumstances, an enhanced summer monsoon becomes essential
for alleviating drought in this region. Due to the excessive emission of
greenhouse gases, the Earth is entering an artificially warm period. In a
certain sense, changing the heat balance through human activity will be
conducive to strengthening the monsoon and mitigating drought on the
CLP (Yang et al., 2015). The climate report issued by the Pachauri et al.
(2014) also predicts that CLP precipitation may increase as the climate
warms. We would therefore recommend that global responses to cli-
mate change should take full account of the regional imbalance in water
distribution and equilibrium between arid ASM-marginal regions and
typically humid ASM regions.

4. Conclusions

In this study, two loess δDwax series from the central CLP were used
to reconstruct the paleo-hydroclimatic variability of a marginal region
of the ASM over the last 250 ka. Arid/humid alternations followed
changes in the summer monsoon and monsoonal rainfall on the CLP,

indicating that monsoonal intensity exerts the primary control on re-
gional hydroclimatic changes. Over a ∼20-ka period, consistent hy-
droclimatic changes in the central CLP, central China and southern
China were related to similar solar insolation effects on the summer
monsoon in the three regions. However, dramatic changes in the po-
sition of the land and sea may have affected the hydroclimatic varia-
bility in coastal areas more than in areas farther inland. An alleviation
of the drying trend in ASM-marginal regions caused by the strength-
ening of the monsoon and a northward shift in the rainfall belt due to
climate warming should be taken into account when developing stra-
tegies to respond to global warming. This alleviation of drought would
be beneficial to the fragile ecological environment of the CLP as well as
to the 200 million people who live there.
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