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Potentially toxic elements (PTEs) discharge to the soil environment through increased anthropogenic
activities is a global threat. These PTEs can have harmful and chronic-persistent health effects on exposed
populations through food consumption grown on contaminated soils. Efforts to investigate the trans-
formation mechanism and accumulation behavior of PTEs in soil-plant system and their adverse health-
effects have focused extensively in previous studies. However, limited studies address biochar nano-
sheets (BCNs) as a potential soil amendment to reduced humans health risks through dietary intake of
food-crop grown on PTE-contaminated soil. Here, we showed how BCNs cutback health hazards of PTEs
through impacts on bioavailability and phytoaccumulation of PTEs, and their daily intake via con-
sumption of wheat. When BCNs amendment was compared with both conventional organic amend-
ments (COAs) and control, it significantly (P < 0.05) reduced bioavailability and uptake of PTEs by wheat
plants. Based on risk assessment results, the hazard indices (HIs) for PTEs in all treatments were <1,
however, BCNs addition significantly (P < 0.05) reduced risk level, when compared to control.
Furthermore, the cancer risks for Cd, Cr and Ni over a lifetime of exposure were higher in all treatments
than the tolerable limit (1.00E-4 to 1.00E-6), however BCNs addition significantly suppressed cancer risk
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compared to control. Conclusively, our results suggest that BCNs can be used as soil amendment to
reduce potential risks of PTEs through consumption of food grown in PTE-contaminated soils.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Soil is one of the world's most important natural resource and
fundamental component of the life-support system in terrestrial
environment (Wyke et al., 2014; Yousaf et al., 2016b). Its health can
be deteriorated by natural and anthropogenic activities, which
include loss of organic matter and nutrients through water and
wind erosion, salinization-desertification processes, soil aggregate
destruction, mining and processing metal ore, and presence of
extensive environmental contaminants due to rapid urbanization
and industrialization (Khan et al., 2014; Pena-Fernandez et al,,
2014; Tiwari et al., 2011; Weldegebriel et al., 2012; Yousaf et al.,
2016c¢). Typically, environmental pollutants of concern in soil sys-
tem are inorganic elements (PTEs and artificial radionuclides),
pesticides (herbicide, insecticide, fungicide etc.) and organic com-
pounds (PAHs, PCBs, dioxins etc) (Amin et al., 2013; Hu et al., 2013;
Yousaf et al., 2016b). According to the Environmental Protection
Ministry of China, almost a fifth of China's soil (16.1% of total soil in
China and 19.4% of its arable land) is contaminated about which
82.8% is polluted with inorganic chemicals e.g., PTEs (BBC News,
2014; Ministry of Environmental Protection of the People's
Republic of China, 2014).

Soil contamination by PTEs is of great concern in the debates
about food safety-security (FSS) in all over the world, due to their
abundance, rapid bioaccumulation and long biological half-life,
which may result remarkable human exposure and development
of life-threatening health effects (Mohamed et al., 2015; Rinklebe
et al,, 2016; Weldegebriel et al., 2012; Yousaf et al., 2016b; Zhang
et al., 2016a). The degree of immediate or chronic toxicity to
these exposures can be influenced by various factors e.g., exposure
pathway, absorption, distribution, metabolism, and excretion
(ADME), and biotransformation in body (Augustsson et al., 2015;
Liu et al., 2013). Recent investigations have suggested that diet in-
corporates the main exposure pathway to PTEs in humans, which
alone can overshoot permissible safe-levels of these PTEs. Thus,
peoples are more likely to be exposed to PTEs through dietary
intake of wheat due to its higher phytoextraction potential (Liu
et al,, 2013; Yousaf et al., 2016b). Long-term and continual intake
of PTEs through dietary route has adverse physiological and clinical
health impacts (Augustsson et al., 2015; Liu et al., 2013; Zheng et al.,
2007). Several studies have indicated that immoderate dose of PTEs
(Cr, Cu, Zn etc.) have propensity to aggravate non-carcinogenic
health hazards including acute and chronic toxicities (Choudhury
et al., 2000; Farmer et al., 2011; Liu et al., 2013; Ni et al., 2011).
Furthermore, it has been shown that low amount of some PTEs (As,
Cd, Ni, Pb etc.) could cause severe human health risks by devel-
oping carcinogenicity from lifetime of exposure in humans (Itoh
et al,, 2014; Lin et al.,, 2013).

In order to protect the environment and human health, it is
obligatory to rehabilitate, reintegrate and reclaim soils degraded by
PTE-contamination. Various modern remediation strategies have
progressively focused recently to mitigate/eliminate the increasing
level of PTEs. One of the cost-effective and environmental friendly
remediation approach is in-situ application of organic amendments
such as biochar (BC), compost and manures, to reduce the
bioavailability and uptake of these PTEs (Mohamed et al., 2015;
Rinklebe et al., 2016; Yousaf et al., 2017; Zhang et al., 2016a,b).

However, among these organic materials used for remediation,
biochar (BC) has obtained noteworthy attention due to its tendency
and impressive capability to in-situ stabilize PTEs (Khan et al., 2014;
Zhang et al., 2016b). Recently, the potential influence of BC on soil-
agronomic characteristics (pH, EC, CEC, organic carbon, soil fertility
by facilitate nutrient retention, and crop productivity), mobility and
phytoavailability, and transformation of PTEs in soil-plant system
has been increasingly studied for sustainable agriculture (Eyles
et al,, 2015; Paneque et al., 2016; Yousaf et al., 2016d). Further-
more, most investigations presented that the application of BC to
soil markedly decrease the uptake and accumulation of PTEs in food
crops. BCNs are well appropriate to absorb/bind PTEs by capturing
in soil matrix-solution due to high surface area and presence of
extensive function groups on its surface (Gul et al., 2015; Upamali
et al., 2015). To our knowledge, no previous study has contextual-
ized to illustrate the ability of BCNs to eliminate phytoaccumulation
of PTEs by food crops with respect to diminished health hazards.

In view of the importance of health risk mitigation, present
study was conducted with following objectives: (1) to investigate
the impact of BCNs addition on soil properties and wheat crop
yield; (2) to assess the efficacy of BCNs as soil ameliorant on
bioavailability and phyto-translocation of PTEs in soil-plant system
and (3) to estimate the dietary exposure via consumption of wheat,
and potential health risks (noncarcinogenic and carcinogenic risks)
of PTEs influenced by BCNs.

2. Methods and materials
2.1. Preparation of BCN

The biochar nanosheets (BCNs) were synthesized from pine-
wood saw-dust (45.1% C, 6.6% H, 46.3% O, 0.17% N, 1.83% trace ele-
ments) as a feed-stock via thermochemical decomposition
(pyrolysis) using an Isotemp muffle furnace (550 series, Fisher
Scientific, Pittsburgh, PA). The complete process and pyrolysis
conditions used for the production of BNCs are described elsewhere
(Genovese et al., 2015; Yousaf et al., 2016a). In brief, the wood saw-
dust was ground, passed through 200 mesh size sieve and soaked in
2 M HNOs (1:10 ratio of pinewood saw-dust: HNOs3 solution) at
80 °C for 4 h. After the dilute acid pre-treatment step, the pre-
treated pinewood saw-dust was recovered by filtration using
0.22 um pore size nitrocellulose MF-millipore membrane, dried
overnight (at 65 °C) and pyrolyzed at 500 °C under continuous flow
of argon (50 sccm) with temperature rising rate of 10 °C/min for
60 min retention time (Genovese et al.,, 2015; Yousaf et al., 2016a).
The SEM and TEM image, FTIR spectra, N, adsorption-desorption
isotherm and pore-size distribution for BCN sample are shown in
Fig. S1 & S2. Furthermore, detailed physico-chemical properties of
BCN are presented in Table 1.

2.2. Collection and preparation of soil and conventional organic
amendments (COAs)

Rhizospheric soil sample (0—20 cm) was collected from a multi-
industrial area of the city (Hefei, Anhui, China) that has been
cultivated with various crops over the past few decades. The
collected soil sample was dried in air-shade condition, ground,
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Table 1
Physico-chemical characteristics of soil, BCNs, CP, FM and PM used in this study.

Characteristic Unit Soil Organic amendments
BCNs CcpP FM PM

Texture — Loam® — - - —
Sand % 45.01 + 2.98 - - - -
Silt % 37.76 + 2.18 — — - —
Clay % 17.23 + 094 — - - -
SP¢ % 28.67 + 3.62 — — - -
CEC? cmol. kg ™! 7.82 + 1.62 - - - -
oce % 0.41 + 0.08 63.03 + 1.35 61.34 +2.85 54.02 + 2.29 50.25 + 3.86
N % 0.016 + 0.007 1.52 + 0.22 232 +0.39 224 +033 4.46 + 0.81
C/N — 26.43 41.56 2645 2411 11.27
pH" — 691 + 0.25 10.83 £ 0.15 7.94 £ 0.24 7.69 = 0.23 7.1 £0.18
EC.f dSm™! 3.64 + 048 0.84 + 0.21 6.82 + 042 7.85 + 1.25 7.56 + 0.29
PTE concentrations ! Total Available Total metal

(mgkg™1) (mg kg™1)
Ccd 1.47 + 0.36 0.53 +0.17 0.88 + 0.08 3.21 £+ 0.32 457 + 0.92 478 + 0.41
Cr 102.35 + 11.78 14.48 + 2.17 295 + 0.57 6.74 + 0.85 8.55 + 0.98 9.84 + 1.16
Ni 67.75 + 8.39 824 + 1.14 2.16 £ 0.35 4.15 + 1.16 4.24 + 0.54 6.54 + 1.24
Pb 56.32 + 6.73 9.61 + 1.46 0.94 +0.13 1.33 + 0.95 213 +0.22 3.54 +0.23

2 USDA soil classification system.
b

c
d

e

Saturation percentage.
Cation exchange capacity.
Soil organic carbon contents.

PH of soil saturated paste; BCN: biochar nanosheet; CP: compost; FM: farm manure; PM: poultry manure.

f Electrical conductivity of soil saturated paste extract; ! maximum permissible limits of Cd, Cr, Ni and Pb are as 0.3, 50, 50 and 100 mgkg !, respectively; (n = 3).

passed through 10 mesh size sieve (2 mm) and stored at below 4 °C
to restrict the further bio-chemical changes prior to analysis.
Comprehensive information about the soil characteristics (texture,
saturation percentage, cation exchange capacity, pH, moisture
content, organic carbon and electrical conductivity) are summa-
rized in Table 1. However, various conventional organic materials
(compost, farm manure and poultry manure) were obtained from a
local nursery, air-dried at 65 °C overnight and passed through
2 mm sieve. The physico-chemical characteristics of conventional
organic amendments are given in Table 1.

2.3. Experimental design

A pot experiment was conducted under greenhouse conditions
to evaluate the comparative effects of biochar nanosheets (BCNs)
and conventional organic amendments (COAs) (e.g., compost (CP),
farm manure (FM) and poultry manure (PM)) on the bioavailability
of PTEs, soil-plant physico-chemical characteristics, daily intake
exposure and human health risks (non-carcinogenic & cancer risks)
via consumption of wheat grown in PTE-contaminated soil. A total
of 36 rigid polyvinyl chloride (RPVC) pots were filled with the 5 kg
soil (25 cm height and 15 cm diameter) and the pots were perfo-
rated to drain excess water. The experiment was conducted in
greenhouse under controlled condition and soil amendments were
prepared with 1% (BCN, CP, FM and PM), 2% (BCN, CP, FM and PM),
and 1% BCN combined with 1% CP, FM and PM doses of BCN, CP, FM
and PM on organic-carbon (OC) basis. The treatments were applied
as: (1) control (without any amendment); (2) BCN@1% (BCN:
79.35 g pot™"); (3) BCN@2% (BCN: 158.69 g pot~1); (4) CP@1% (CP:
8152 g pot 1), (5) CP@2% (CP: 163.03 g pot™!); (6)
BCN@1% + CP@1% (BCN: 79.35 g pot~! + CP: 81.52 g pot™); (7)
FM@1% (FM: 92.56 g pot~1): (8) FM@2% (FM: 185.11 g pot~1); (9)
BCN@1% + FM@1% (BCN: 79.35 g pot™! + FM: 92.56 g pot~1); (10)
PM@1% (PM: 99.50 g pot~1); (11) PM@2% (PM: 199.01 g pot~1); and
(12) BCN@1% + FM@1% (BCN: 79.35 g pot~! + PM: 92.56 g pot™ 1),
with three replications of each using a completely randomized
design. The recommended dose of chemical fertilizers (% of N with
full dosage of P and K as the basal dose: 0.22 g N pot™!, 0.36 g P

pot~! and 0.17 g K pot~!, respectively) was applied to soil and
mixed-well. Remaining ' of nitrogen (N) was applied in two splits
(V4 of nitrogen at first irrigation (0.11 g N pot~!) and % of nitrogen at
milking stage (0.11 g N potfl)) (Yousaf et al., 2016a, 2016d). Wheat
seeds were imbibed with H,0, solution (30%) for 15 min to sterilize
and enhance germination followed by rinsed with deionized water
(Khan et al., 2014). These seeds were then incubated at 28 °C in
glass-distilled water overnight under the supply of air (using an
ultra-silent high out energy efficient aquarium air pump: RS elec-
trical, Northants, NN17 9RS, UK). After the pretreatment, 10—15
seeds were placed in each pot and irrigated with deionized water.
Subsequently, sprouts were diminished to the four uniform plants
per pot as the final stand when seedlings have 3—4 true leaves. The
pots were randomized on alternate weeks to make sure the uni-
form distribution of light and to reduce positional errors. At the
starting of reproductive period, photosynthesis rate, transpiration
rate, stomatal conductance and flag leaf area were measured as
physiological characteristics.

2.4. Post-experiment preparation of plant and soil samples

At the termination of experiment, plants were harvested at 3 cm
above from the soil surface and agronomic parameters (plant
height, number of tillers, grain and shoot weight) were also
measured. The collected samples (soil and plant samples) were
packed in polyethylene bags, sealed with tape and carried to the
laboratory. The soil samples were air-dried in shed (under shade)
for 2—3 days, hand-grounded with agate mortar and pestle, and
sieved to < 2 mm. One-fourth soil sample of each was oven-dried at
105 °C for 24 h, ground in wiley mill (Thomas Scientific, Swedes-
boro, NJ, USA) and sieved through a 200 mesh (75 pm). Further-
more, the shoot and grain samples of wheat were washed with tap
water to remove dust particles and then carefully rinsed with
deionized water. The clean samples were allowed to air-dry at room
temperature before the oven drying in a hot air cabinet dryer at
65 °C till the constant weight. After being powdered by a clean
wiley mill (Thomas Scientific, Swedesboro, NJ, USA), all the samples
were stored at room temperature prior to chemical analysis.
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2.5. Plant and soil analysis

To determine the soil texture (sand, silt and clay), hydrometer
method developed by Agricultural Chemistry Committee of China
(ACCC,1983) was used (Agricultural Chemistry Committee of China,
1983). However, gravimetric method was used to determine soil
moisture content (SMC) and saturation percentage (SP) using a hot-
air cabinet dryer at 105 °C (“Soil Mechanics Level 1, Module 3, USDA
Textural Soil Classification,” 1987). The ammonium acetate
(NH40Ac) method (Chapman, 1965) was used for the determination
of soil CEC as the amount of exchangeable cations (per dry weight)
that a soil is capable to hold. Total soil organic carbon content (OC)
was measured using modified Walkly-Black method (Matus et al.,
2009), involved wet oxidation of organic matter by potassium di-
chromate (K>Cr07). To measure soil pH, an electrometric proced-
ure (Method 9045D) was used described by Environment
protection Agency (US EPA, 2015). Electrical conductivity (EC) of the
soil saturated paste extract was measured using Fisher Scientific™
accumet™ AP65 Portable Conductivity Meter (Thermo Fisher Sci-
entific. Waltham, MA, USA).

To analyze the total concentration of Cd, Cr, Ni and Pb, 0.5 g
dried-powdered plant samples including shoot and grain, were
digested in closed-vessels (pressurized) microwave heating system
(QLABPro Close Vessel Microwave Digestion System, Questron
Technologies Corporation. Mississauga, Ontario, Canada) using a
mixture of 30% H,0, and concentrated HNOs. While, 0.5 g of pre-
pared soil samples were digested with aqua-regia on a hot-plate (at
220 °C) and allowed to evaporate nearly to dry state (Khan et al.,
2014; Yousaf et al, 2016b). Each sample was then diluted to
50 ml with deionized water followed by filtration through 0.22 pm
pore size nitrocellulose MF-millipore membrane. Furthermore, the
air-dried soil samples were extracted with 0.05 M Ethylene-
diamine-tetraacetic acid (EDTA) extraction solution (solution:
soil = 20:1) to determine the bioavailable concentration of PTEs
(Khan et al., 2014). The PTEs concentrations in plant and soil sam-
ples were measured by inductively coupled plasma mass spec-
trometry (ICP-MS).

2.6. Dietary exposure and health risk assessment

Health risk appraisal and/or health risk assessment is a key
process to evaluate the probability and kind of deleterious impact
in humans, who may be exposed to contaminants in the present-
day or future. There are several PTE-exposure pathways to
humans e.g., ingestion and dermal contact through soil, oral and
dermal intake of water, inhalation through air, and diet through the
food chain. However, dietary intake via food consumption is one of
the most significant and extensive exposure route of PTEs in
humans which alone can exceed the toxicological safe limits (Liu
et al, 2013; Pena-Ferndndez et al., 2014; Yousaf et al.,, 2016b,
2016¢). The risk assessment models developed by US-EPA are
well known to calculate the chronic non-carcinogenic hazards and
incremental lifetime cancer risks for humans (US EPA, 1989). Here,
we used these models to predict/estimate daily intake exposure,
chronic non-carcinogenic and lifetime carcinogenic risks of PTEs for
human associated with food chain via wheat consumption and
detailed descriptions of models (Egs. S1-S5) are given in supple-
mentary information.

2.7. Quality control and data analysis

In order to assure the precision of data, certified standard ma-
terial (GBW07406 (soil), GBW07604 GSV-3 (plant), from the Na-
tional Center of Standard Materials of China) was included in every
batch of samples analyzed. The recovery rates (94.5—103.7%) for all

the selected PTEs in the standard reference materials including soil
and plants were within the range of the certified limitations. The
recovery was ranged between 91.3 and 103.5% when digested so-
lutions with known concentrations of PTEs were used. The
acceptable precision was within +5 wt% for all the selected PTEs.
Each sample was analyzed thrice and accuracy of ICP-MS was
verified by testing two standards, after every fifteen (15) samples.
The calibration curves for all PTEs were linear and within the range
(R? > 0.99) showing that the analytical method for PTE determina-
tion was accurate and consistent. Additionally, the descriptive data
was statistically analyzed by using PASW Statistics 18 software
(SPSS Inc., Chicago, IL, USA) and Sigmaplot 11.0 (Systat Software
Inc., San Jose, California, USA) was employed for all the graph
plotting.

3. Results and discussions
3.1. Influence of BCNs on soil OC, CEC, pH and EC

Addition of BCNs and COAs to soil markedly influenced post-
experiment soil characteristics including OC, CEC, pH and EC and
their comparisons with the control are presented in Fig. 1. The
highest value of soil OC (2.28 times) was observed with the appli-
cation of BCN when applied at a 2% OC basis (BCN2%), followed by
mixed treatments of BCN with COAs (BCN1%+CP1%, BCN1%+FM1%
and BCN1%+PM1%), individual treatments of COAs at 2% (CP2%,
FM2% and FM2%), BCN1%, and individual treatments of COAs at 1%
(CP1%, FM1% and FM1%), respectively. The efficiency of the treat-
ments in enhancing soil OC contents was following the decreasing
order: BCNs < CP < FM < PM < control. Moreover, soil OC contents
significantly (P < 0.05) enlarged from 0.76 + 0.24% to 1.21 + 0.37%,
0.68 + 0.22% to 0.89 + 0.28%, 0.71 + 0.19% to 0.85 + 0.25% and
0.68 + 0.19% to 0.81 + 0.09% with increase in application rates from
1 to 2% (OC basis) of BCNs, CP, FM and PM compared with the
control (0.53 + 0.18%), respectively. Furthermore, combined appli-
cations of BCNs together with COAs (in a ratio of 1:1) enhanced soil
OC contents compared with the control as well as with individual
application of COAs (CP, FM and PM) at a 1% OC basis.

Likewise, remarkable increase (P < 0.05) in the CEC was noticed
in the soils amended with BCNs and COAs compared with the
control, exception with CP, FM and PM at a 1% OC basis by
10.05 + 1.72, 9.15 + 0.67 and 8.86 + 1.04 cmol. kg™, respectively.

®
L ,
BCN1%+PM1%
BCN1%+PM1% m g | 9
0 PM2°/0 ’ ol
" | BCN1%+FM1%
) h i ' FM2%
PM1% - . | BONt%+CP 1% | .
BON1%+FM1% i i |CF2, ———
FM2% : H Egm —
| 9 —
: m \ ' Control
FM1% -m = : 0002040608 101214 16 18|
BCN1%+CP1% m | i Organic carbon (%)
| oc (¥
CP2% A | M OC (%)
* h . 1 [ CEC (cmol, kg™)
CP1% e = i 1 pH
@ EC (dS m-1
BCN2% [ 1 pedmE1)
.
BCN1% h L {
|
Control H ]
t T T T T
0 5 10 15 20 25

Values

Fig. 1. Organic carbon content, cation exchange capacity, pH and electrical conduc-
tivity of post experiment soil influenced by BCNs and COAs (CP, FM & PM). Various
color lines indicate the values of control. Error bars represent the standard deviation
(n = 3). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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The highest value of CEC (13.13 = 1.35 cmolc kg~ 1) was noted when
BCNs was applied at a 2% OC basis compared with the control
(7.92 + 0.82 cmol. kg™ "). Similarly, the application of BCNs indi-
vidually (BCN1% and BCN2% as 845 + 0.18 and 8.72 + 0.17,
respectively) and combined with COAs (BCN1%+CP1% and BCN1%+
FM1% as 8.56 + 0.21 and 8.53 + 0.12, respectively) markedly
(P < 0.05) increased pH values except of BCN%1 + PM1% and in-
dividual application of COAs (1% and 2% OC basis). The maximum
value of pH (8.72 + 0.17) was noted after addition of 2% BCN
compared with the control (7.87 + 0.13). Unlike other soil chemical
properties, no remarkable difference was observed in EC of soils
amended with BCNs (BCN1% and BCNs2%: 3.73 + 0.28 and
3.76 + 015 dS m~, respectively) compared with the control
(3.51 + 0.41 dS m~"). However, both PM and FM markedly increase
EC having a maximum value of 8.51 + 1.15 dS m~! with addition of
PM2% followed by FM2% (5.93 + 0.62).

Present results are in the harmony with the investigations of
Zhang et al. (2016a), which described that the addition of biomass-
derived biochars significantly enhanced the soil chemical proper-
ties (OC, pH and EC by 1.67—2.34,1.01 to 1.07 and 0 to 1.62 times). In
addition, Mohamed et al. (2015) showed that the soils amended
with 0.5 and 1.5% BC remarkably increased OC, CEC, pH and EC by
9.25 and 18.84 mg kg, 10.36 and 15.58 cmol. kg, 0.66 and 1.82
times, and 1.32 and 2.36 dS m~, respectively, in soil planted with
cabbage. Higher OC contents in BCN amended soil may be attrib-
uted to the more stability of BCNs due to its complex aromatic
structure having strong C—C double bonds (Naisse et al., 2013;
Singh et al., 2012). Moreover, the additional contribution to the
higher OC contents with BCN addition may be associated with the
remarkably lower decomposition rate of BCNs compared with the
COAs having the same OC contents marking the beginning (Yousaf
et al., 2016a). Additionally, previous studies explained that ther-
mochemical decomposition of organic material in the absence of
oxygen (pyrolysis) had a prominent role in improving stability and
enhancing number of surface functional groups, which could be
responsible to greater pH value, and higher surface area and CEC in
soil (Uchimiya et al., 2011; Yousaf et al., 2016d). During pyrolysis,
the basic cations (calcium (Ca*?), magnesium (Mg*?), potassium
(K*1) and sodium (Na*!)) perhaps converted into certain ionic salt
of an alkali metal (oxides, hydroxides and carbonates) (Houben
et al,, 2013; Tang et al., 2013). The dissolution of these ionic salts
of an alkali metal (alkaline substances) in soil solution made the
BCNs as a liming material to raise soil pH. Furthermore, Fellet et al.
(2014) described that the relative concentration of positively-
charged ions and negatively-charged ions in BCNs may influence
the total EC and pH of the soil.

3.2. Influence of BCNs on agro-physiological characteristics

Plant growth, yield and physiological traits were markedly
improved by addition of BCNs and COAs (Fig. 2). All applied treat-
ments (BCNs, COAs and their mixtures) significantly (P < 0.05)
increased number of tillers, whenever maximum rise (5.75 + 0.56
tillers plant~!) was observed in BCN1%+CP1% amended treatment
followed by BCN2%, CP2% and BCN1%+FM1% with average values of
5.28 + 0.34, 5.14 + 0.85 and 5.13 + 0.57 tillers plant~!, respectively,
compared with the control (2.90 + 0.55 tillers plant™'). Likewise,
grain yield increased remarkably (P < 0.05) with all treatments
having highest value of 14.57 + 115 g pot™! in BCN1%+CP1%
amended treatment which was 1.48 times higher than that of
control. Where the BCNs were applied alone at the rate of BCN1%
and BCN2%, the average grain yields were increased by 1.40 and
143 times compared with the control (9.84 + 1.07 g pot™!),
respectively. Moreover, when BCNs was applied as mixed treatment
together with COAs, the grain yield remarkably increased compared

with the individual application of COAs. In the same way, all the
treatments remarkably (P < 0.05) enhanced shoot weight of wheat
plants, the maximum increases in shoot weight was observed in
treatment amended with BCN1%+CP1% (44.85 + 3.29 g pot™!)
followed by BCN2%, CP2%, BCN1%+FM1% and BCN1% (44.27 + 2.52,
4324 + 2.87, 41.82 + 2.36 and 41.69 + 3.43 g pot~ !, respectively).
Similarly, plant height markedly (P < 0.05) increased in all treat-
ments with highest values of 110.75 + 2.85 and 109.52 + 4.91 cm for
CP2% and BCN1%+CP1% compared with the control
(9745 + 5.15 cm), respectively. Furthermore, plant height was
enlarged from 107.34 + 4.21 to 110.75 + 2.85 cm, and 103.64 + 5.81
to 107.25 + 5.34 cm with increase in application rates from 1 to 2%
(OC basis) of CP and PM, respectively. However, the plants height
was reduced from 107.86 + 2.54 to 106.55 + 3.16 cm, and
106.35 + 3.46 to 105.98 + 4.85 cm with increase in application rates
from 1 to 2% (OC basis) of BCNs and FM, respectively.

In the case of leaf area, remarkable increase (P < 0.05) was noted
after addition of BCNs and COAs in soil compared with the control.
The highest leaf area (51.47 + 1.75 cm?) was noted in BCN1%+CP1%
amended treatment followed by BCN2% and CP2%. Furthermore,
leaf area was increased from 44.15 + 2.14 to 50.95 + 2.65 cm? with
rise in application rates from 1 to 2% (OC basis) of BCNs, respec-
tively. Likewise, the stomatal conductance, photosynthetic rate and
transpiration rate of the flag leaves of wheat plant all increased
markedly in the amended treatments (BCNs and COAs) compared
with the control. The maximum increment of 0.21 + 0.02, 9.6 + 0.03
and 0.49 + 0.06 uM m 2 S~! was noted in stomatal conductance,
photosynthetic rate and transpiration rate, when BCNs was applied
as mixed treatment with CP as BCN1%+CP1%. Furthermore, sto-
matal conductance, photosynthetic rate and transpiration rate were
enlarged from 0.17 + 0.03 to 0.21 + 0.03, 0.16 + 0.02 to 0.19 + 0.04,
0.13 + 0.02 t0 0.15 + 0.03 and 0.13 + 0.02 t0 0.16 + 0.03 M m~2 S,
from 8.4 + 0.08 to 9.2 + 0.09, 8.3 + 0.05 to 9.4 + 0.06, 7.4 + 0.04 to
76 + 0.02 and 7.2 + 0.05 to 7.8 + 0.06 yM m~2 S~ and from
0.47 + 0.04 to 0.47 + 0.05, 0.41 + 0.02 to 0.48 + 0.07, 0.37 + 0.04 to
0.41 + 0.06 and 0.34 + 0.04 t0 0.39 + 0.02 uM m 2 S~ with increase
in application rates from 1 to 2% (OC basis) of BCNs, CP, FM and PM,
respectively. Additionally, when BCNs was applied as mixed treat-
ment along with COAs (CP, FM and PM), all the physiological traits
including leaf area, stomatal conductance, photosynthetic rate and
transpiration rate markedly improved compared with the individ-
ual addition of COAs (CP, FM and PM).

Jointly, these findings described that addition of BCNs to soil was
effectual to improve agro-physiological characteristics in an effi-
cient manner. These results were consistent with previous studies,
which showed significant increment in growth and yield related
traits of maize, wheat, rice, sunflower, ryegrass, apple and tomato
with the application of various biochars (Eyles et al., 2015; Khan
et al., 2014; Paneque et al., 2016; Yu et al,, 2016). In this study,
the improved plant growth and grain yield following the applica-
tion of BCN was comparable to finding of Akhtar et al. (2015), who
showed remarkable increase in wheat growth and physiology after
the addition of BC. Improved agro-physiological permanents with
the addition of BCN to soil may be attributed to various soil physico-
chemical characteristics (soil pH, CEC, OC etc.). Wang and co-
workers reported similar trend in rice and wheat cropping sys-
tem, where the application of BC markedly improved grain yield
and biomass (Wang et al., 2012).

3.3. Influence of BCNs on bioavailability of PTEs

The total and available contents of PTEs (Cd, Cr, Ni and Pb) in soil
used for this experiment and their maximum permissible limits set
by State Environmental Protection Administration, China are given
in Table 1. The efficacy of applied treatments on the bioavailability
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grain weight) and plant height (cm); c) photosynthetic rate and flag leaf area; d) stomatal conductance and transpiration rate. Error bars represent the standard deviation (n = 3).

of PTEs in the soils at the termination of the experiment and their represent reactive pool (bioavailable form) of PTEs in soils (Zhang
relative differences (increase or decrease) over control are pre- et al.,, 2016b). Integration of BCN with soil was effectual in miti-
sented in Fig. 3. The extraction solution of EDTA can be used to gating the mobility and bioavailability of PTEs, furthermore higher
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Fig. 3. Bioavailability of potentially toxic elements: (a) available PTE contents (Cd, Cr, Ni and Pb) influenced by BCNs and COAs (CP, FM & PM). Various color lines represent the
available (Cd, Cr, Ni and Pb) contents of control soil; (b) relative percent difference (increase or decrease) of available PTE contents over control. Error bars represent the standard
deviation (n = 3). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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application rate was more effective (Fig. 3a). Bioavailable concen-
trations of Cd, Cr, Ni and Pb were declined from 0.31 + 0.08 to
0.16 + 0.04 mg kg1, 9.51 + 0.85 to 4.38 + 0.45 mg kg, 4.79 + 0.38
t0 3.65 + 0.41 mg kg, and 4.66 + 0.45 to 1.59 + 0.19 mg kg~ !, with
increase in application rates from 1 to 2% of BCN, respectively,
compared with the control (0.51 + 0.14,15.42 + 2.15,7.34 + 1.12 and
6.28 + 0.88 for Cd, Cr, Ni and Pb, respectively). Mixed treatments of
BCN along with COA (BCN1%+CP1%, BCN1%+FM1% and BCN1%+
PM1%) markedly reduced Cd (0.34 + 0.05, 049 + 0.08 and
054 + 0.09 mg kg~!), Cr (825 + 0.56, 13.35 + 0.82 and
1489 + 104 mg kg™ '), Ni (521 = 088, 6.73 + 0.46 and
715 + 095 mg kg~ '), and Pb (418 + 0.71, 5.85 + 0.98 and
6.07 + 1.16 mg kg~ 1) compared with the individual COAs (CP, FM
and PM) amended treatments, respectively.

Overall, our results indicated that BCN amended treatments
markedly decreased bioavailability of PTEs with the exception
BCN1%+PM1%, where available Cd concentration was slightly
higher (5.88%) than that of control (Fig. 3b). The remarkable
effectiveness of BCN in mitigating the mobility and bioavailability
of PTEs in amended treatments may be attributed to higher values
of soil OC, pH and CEC (Fig. 1). These results are in the agreement
with previous findings of Khan et al. (2014), Mohamed et al. (2015)
and Zhang et al. (2016a), which described that EDTA extractable
(bioavailable) PTE concentrations were remarkably reduced in
biochar amended soils compared with the control. In addition, the
mitigation of PTE extractability increased because of the increase in
application rate of BCN. Nevertheless, our findings represented that
the impact of BCNs on the bioavailable concentration of PTEs var-
ied, depending on the types and total contents of PTE, and physio-
chemical characteristics of BCN (Zhang et al., 2016a,b).

Decreased PTE mobility and phytoavailability are strongly
associated with changes in CEC and OC in BCN amended soil (Zheng
etal.,, 2012). Greater OC contents having very high CEC makes BCN a
perfect and an effective material for PTE absorption in soil system
(Yousaf et al., 2016a). Previously, it has been described that the
higher the CEC of BC amended soil, the higher the PTE adsorption
due to dense and large number of exchange sites on the surface of
biochar (Harvey et al., 2011). In addition, rise in soil pH has been
reported as a most prompted parameter for PTE sorption process
(Zheng et al., 2012). Kotodynska et al. (2012) explained that the
bioavailability of PTEs in soil strongly depends on ionization and
speciation processes, which are linked to pH-induced variations in
the adsorbent surface charge. Furthermore, the surface functional
groups produced during pyrolysis also played a significant role in
PTE adsorption by making organometallic complexes (Uchimiya
et al,, 2011).

3.4. Influence of BCNs on accumulation of PTEs in soil-plant system

Uptake and phytoaccumulation of PTEs (Cd, Cr, Ni and Pb) by
wheat plant markedly (P < 0.01) reduced with BCN addition
compared with the control (Fig. 4). The accumulation of PTEs in
above ground plant tissues depends mainly on the available con-
centration of PTEs, the lower the availability, the lower the phy-
toaccumulation, and vice versa. The efficiency of BCNs in mitigating
PTE adsorption in soil system improved with the higher application
rate. The accumulation of PTEs decreased from 3.51 + 0.16 to
1.64 + 0.48 (Cd: mg kg™ 1), 23.35 + 145 to 11.24 + 0.95 (Cr: mg
kg 1),13.71 + 0.85 t0 6.85 + 0.77 (Ni: mg kg ') and 5.35 + 0.76 to
219 + 0.38 (Pb: mg kg 1), and 0.49 + 0.15 to 0.25 + 0.16 (Cd: mg
kg™ 1), 1.53 + 0.46 to 0.95 + 0.25 (Cr: mg kg 1), 1.24 + 0.22 to
0.77 + 0.18 (Ni: mg kg~ ') and 0.45 + 0.15 to 0.20 + 0.08 (Pb: mg
kg~ 1) in wheat shoot and grain with increase in application rate of
BCN from 1 to 2%, respectively.

The mixed treatment of BCN with CP (BCN1%+CP1%) markedly

diminished accumulation of Cd (by 32.63 and 62.61% in shoot and
grain, respectively), Cr (by 37.57 and 47.70% in shoot and grain,
respectively), Ni (39.83 and 52.28% in shoot and grain, respectively)
and Pb (38.88 and 47.82% in shoot and grain, respectively)
compared with the control (Cd, Cr, Ni and Pb as 6.16 + 0.92 and
115 + 015 mg kg™, 38.64 + 4.14 and 3.48 + 0.85 mg kg |,
2149 + 218 and 241 + 048 mg kg !, and 8.59 + 145 and
0.92 + 0.11 mg kg~ ! for shoot and grain, respectively). Although, the
phytoaccumulation of PTEs in the mixed treatments of BCN with
FM and PM (BCN1%+FM1% and BCN1%+PM1%) were non-
significant, however these slightly reduced accumulation of PTEs
in both shoot and grain except for Ni in grain with BCN1%+PM1%
amended treatment. The soil-to-shoot transfer and shoot-to-grain
translocation of PTEs were also markedly influenced by BCN addi-
tion (Fig. S3).

Our results are consistent with previous findings, which
explained that the BC addition decreased transfer of PTEs in soil-to-
plant system and diminished their accumulation in plant tissues
(Mohamed et al., 2015; Yousaf et al., 2016d). Similarly, Khan et al.
(2014) reported remarkable decrease in the accumulation of PTEs
in rice tissues with the addition of sewage sludge biochar (SSBC).
The reduction in phytoaccumulation of PTEs in plant tissues could
be attributed to the lower mobility and availability of PTEs in BCN
amended soils due to higher adsorption of PTEs onto BCN particles.
In addition, uptake and acquisition of PTEs by plant tissues in BCN
amended soils perhaps strongly influenced by various physico-
chemical mechanisms, which control the solubility/mobility, phy-
toavailability and transfer of PTEs in soil-plant system (Zhang et al.,
2016a,b). The most influential variables for the immobilization of
PTEs in BNC amended soils are the surface area and CEC, which can
affect absorption and accumulation of PTEs in different tissues of
wheat plant.

According to present results, the diminished concentrations of
PTEs in plant tissues influenced by BCNs could be associated with
large number of exchange sites and higher surface area (Houben
et al,, 2013; Mohamed et al., 2015). It has been mentioned previ-
ously that the availability of PTEs in BCN amended soil decreases at
high pH value. Uchimiya et al. (2011) described that increasing pH
contributed to oxygen containing surface functional groups.
Furthermore, BCN contain large number of negatively charged
surface functional groups, which can play central role in adsorption
of PTEs in soil and as a consequent decreased phytoavaialabity and
uptake of PTEs by plants (Mohamed et al., 2015). Zhang et al.
(2016a) discussed that the “dilution effect” because of increased
biomass also contribute to reduce phytoaccumulation of PTEs in
plant tissues in BC amended soils. Several other factors including
dissolved organic carbon (DOC) and changes in microbial
community-level physiological parameters could also affect avail-
ability and phytoaccumulation of PTEs by wheat plant in BCN
amended soils (Steinbeiss et al., 2009; Xu and Chen, 2013).

3.5. Daily intake of PTEs and their health risks influenced by BCNs

In order to estimate the mitigating impact of BCNs on PTE
exposure through wheat consumption and their associated health
risks to humans, EDlyheat, HQwheat and CRyheat Were calculated
using the methodology described by US-EPA (US EPA, 1989). Esti-
mated daily intake, hazard quotient indices and cancer risks are
given in Table S1, Table 2, respectively. The estimation of daily
intake exposure of PTEs was done by using the average amount of
wheat that consumed on a daily basis (Liu et al., 2013; Yousaf et al.,
2016Db). Both individual application of BCN and its mixed treatment
with CP (BCN1%+CP1%), significantly (P < 0.01) diminished average
daily intake of PTEs compared with the control. The results clearly
show that the EDIypeat Values for Cd, Cr, Ni and Pb were markedly
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Table 2
Predicted hazard quotient (HQwheat) and cancer risks (CRwheat) Of PTEs associated
with wheat consumption influenced by BCNs and COAs (CP, FM & PM).

Treatments cd Cr Ni Pb HI?

Hazard quotient (HQwneat) for non-carcinogenic

risks
Control 9.24E-03 3.99E-02 4.84E-03 7.39E-03 6.14E-02
BCN1% 3.94E-03 1.76E-02 2.49E-03 3.62E-03 2.76E-02
BCN2% 2.01E-03 1.09E-02 1.55E-03 1.61E-03 1.61E-02
CP1% 8.28E-03 3.62E-02 4.52E-03 6.99E-03 5.59E-02
CP2% 6.99E-03 3.18E-02 4.18E-03 6.51E-03 4.95E-02
BCN1%+CP1% 3.45E-03 2.09E-02 2.31E-03 3.86E-03 3.05E-02
FM1% 1.07E-02 4.57E-02 7.49E-03 1.49E-02 7.87E-02
FM2% 1.17E-02 5.29E-02 1.17E-02 2.35E-02 9.98E-02
BCN1%+FM1% 6.51E-03 3.65E-02 4.52E-03 6.03E-03 5.36E-02
PM1% 1.57E-02 5.65E-02 1.30E-02 2.03E-02 1.06E-01
PM2% 1.82E-02 6.26E-02 1.66E-02 2.50E-02 1.22E-01
BCN1%+PM1% 7.63E-03 3.93E-02 7.13E-03 7.15E-03 6.12E-02

Cancer risks (CRwheat) TCRwheat”
Control 297E-03  3.00E-04 3.78E-04 1.35E-06  3.65E-03
BCN1% 1.27E-03 1.32E-04 1.94E-04 6.59E-07 1.59E-03
BCN2% 6.46E-04 8.18E-05 1.21E-04 2.93E-07 8.48E-04
CP1% 2.66E-03  2.71E-04 3.53E-04 1.27E-06  3.28E-03
CP2% 2.25E-03 2.38E-04 3.26E-04 1.19E-06 2.81E-03
BCN1%+CP1% 1.11E-03 1.57E-04 1.80E-04 7.02E-07 1.45E-03
FM1% 3.43E-03 3.43E-04 5.84E-04 2.71E-06 4.36E-03
FM2% 3.77E-03 3.97E-04 9.10E-04 4.27E-06 5.08E-03
BCN1%+FM1% 2.09E-03 2.74E-04 3.53E-04 1.10E-06 2.72E-03
PM1% 5.06E-03 4.24E-04 1.02E-03 3.70E-06 6.50E-03
PM2% 5.86E-03 4.69E-04 1.29E-03 4.55E-06 7.63E-03
BCN1%+PM1% 2.45E-03 2.94E-04 5.56E-04 1.30E-06 3.31E-03

4 Combined non-carcinogenic risk/hazards index.
b Total cancer risk.

(P < 0.01) decreased with BCN addition to soil from 2.05E-04 to
1.05E-04, 6.41E-04 to 3.98E-04, 5.19E-04 to 3.23E-04 and 1.89E-04
to 8.38E-05 mg kg~ ! day~! with increase in application rate from 1
to 2%, respectively. Moreover, all mixed treatments of BCN together
with COAs including BCN1%+CP1%, BCN1%+FM1% and PM BCN1%+
CP1% significantly reduced EDIypeat Values of PTEs compared with
the individual treatment of COAs (CP, FM and PM) (Table S1).
Based on the estimated daily intake of PTEs through dietary
intake of wheat grown in PTE-contaminated soil, the BCN addition
significantly minimized non-carcinogenic risk (HQwheat) of PTEs

compared with the control (Table 2). In the present study, the non-
carcinogenic risks of Cd, Cr, Ni and Pb were 9.24E-03, 3.99E-02,
4.84E-03 and 7.39E-03 for wheat grown on PTE-contaminated soil
(control), respectively, and which were markedly (P < 0.01) mini-
mized from 3.94E-03 to 2.01E-03, 1.76E-02 to 1.09E-02, 2.49E-03 to
1.55E-03 and 3.62E-03 to 1.62E-02 in BCN amended treatments
with increasing rate from 1 to 2%, respectively. Furthermore, the
combine risk (Hlynheat) Oof PTEs with the addition of BCN was also
significantly (P < 0.01) reduced compared with the control as well
as with the COAs. Overall, the results indicated that the non-
carcinogenic risks to humans were maximum for Cr followed by
Pb, Cd and Ni.

Similarly, the values of CRyheat and TCRyheat associated with PTE
exposure were markedly (P < 0.01) diminished with the addition of
BCNs compared with the control (Table 2). The potential risk of
developing carcinogenicity over a lifetime of exposure was
maximum for Cd followed by Ni, Cr and Pb (Fig. 5). Although life-
time carcinogenic risks of PTEs were higher in all treatments except
for Pb, than toxicological safe limits (1.00E-04 to 1.00E-06) set by
US-EPA. However, addition of BCN was potentially effective in
mitigating lifetime carcinogenic risks of PTEs compared with the
control (Fig. S4). Furthermore, all mixed treatments of BCN together
with COAs including BCN1%+CP1%, BCN1%-+FM1% and BCN1%+
PM1% significantly reduced CRypeat and TCRyheat Values of PTEs
compared with the individual treatments of COAs (CP, FM and PM).
However, individual application of COAs including FM and PM to
soil, remarkably intensified human exposure to PTEs. This increased
health risks through dietary exposure could be attributed to the
high bioavailability and uptake if PTEs in plants in COAs amended
soil (Yousaf et al.,, 2017). In other hand, our results are in the
agreement with finding of Khan et al. (2014 ), who reported that the
addition of SS-biochar to soil remarkably reduced PTE exposure and
mitigate their associated health risks.

The present findings support the use of BCNs as a soil ameliorant
to alleviate expected health risks of PTEs. The results demonstrated
herein specify that the BCNs addition to PTE-contaminated soil has
valuable after-effect concerning food-safety-security (FSS) and
mitigate health hazards of PTEs associated with dietary intake via
consumption of wheat grown in contaminated soils. However,
highly efficient, environment-friendly and cost-effective way to
produce BCNs is necessary to realize the application benefits.
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Fig. 5. Health risks: a) relative non-carcinogenic risks (%) of PTEs (Cd, Cr, Ni and Pb) influenced by BCNs compared with the control; b) relative cancer risks (%) of PTEs (Cd, Cr, Ni and

Pb) influenced by BCNs compared with the control.

4. Conclusion

Taking into account the chronic health risks of PTEs, the highly
efficient BCNs were used as soil amendment to suppress increasing
level of environmental and human health risks through impacts on
bioavailability of PTEs and their accumulation in wheat crop. Cur-
rent study clearly demonstrated that BCNs addition to soil
remarkably enhanced adsorption of PTEs and reduced uptake by
wheat plant due to their low solubility and mobility in soil matrix/
soil solution system. Hence, this low phytoextraction of PTEs from
BCNs amended soil led down in daily intake exposure and ultimate
decrease in health risks (non-carcinogenic and carcinogenic risks).
However, field studies are needed to heighten our understanding
about potential of BCNs and certain other biomass-derived mate-
rials (biochars) to mitigate PTEs exposure and health risks in
contaminate soils. Conclusively, dietary diversification/modifica-
tion as alternative mitigation strategies should be adopted if health
hazards of PTEs to be minimized.
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