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ABSTRACT. We present radiocarbon (14C) measurements of dissolved inorganic carbon (DIC) from surface waters
of 11 lakes, widely distributed in China. Surface lake water DIC F14C values show distinct differences, and we relate
these to the physical exchange character (“open” or “closed”) of each lake. Open lakes studied here generally have
lower DIC F14C values than closed lakes. We present a simple model of a lake water cycle to calculate an average
residence time for each lake. Comparisons between lake DIC F14C and average residence time shows that the DIC
F14C increases with the average residence time and reflects a steady-state.
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INTRODUCTION

The freshwater reservoir effect (FRE) is the radiocarbon (14C) age difference between the
atmosphere and a contemporaneous freshwater system (Godwin 1951). FRE values range from
hundreds to thousands of years in different lakes and can change with time (Wu et al. 2010, 2011;
Long et al. 2011; Ascough et al. 2012; Keaveney and Reimer 2012; Zhang et al. 2012; Mischke
et al. 2013; Wang et al. 2013a; Yu et al. 2014; Zhou et al. 2014, 2015; Lockot et al. 2015).
Dissolved inorganic carbon (DIC) is an important component of a freshwater system and
influences the 14C level of aquatic plants growing there (Deevey et al. 1954; Yu et al. 2007;
Olsson et al. 2009). In general, three factors control the 14C level of lake water DIC: (1) the rate
and degree of exchange with atmospheric CO2; (2) geological weathering; and (3) microbial
decay of terrigenous organic matter (Hakansson et al. 1979; Bondevik et al. 2006; Cage et al.
2006; Hendy et al. 2006; Kritzberg et al. 2006; Hatté and Jull 2007; Olsson 2009; Kritzberg et al.
2014; Keaveney et al. 2015). DIC 14C levels vary from lake to lake and the content of a
particular lake will depend on its individual geographical setting. The investigation of DIC
levels from a number of modern lakes is useful in identifying trends in the FRE.

A number of past studies have examined DIC in Chinese lakes. For example, at Qinghai Lake,
riverine DIC has been shown to havemuch lower levels than the overall DIC pool in the lake. This is
explained by the rapid carbon exchange that occurs between the lake and atmosphere, driven in part
by its high alkalinity (Yu et al. 2007; Jull et al. 2014; Zhou et al. 2014). This effect is also seen in the
DIC δ13C results of different parts of Qinghai Lake and DIC F14C results of other lakes from the
Tibetan Plateau. In many cases it has been observed that water from the center of a lake exchanges
more completely with atmospheric CO2 than with water near the shore (Li et al. 2012;Mischke et al.
2013). In a different example, DIC F14C time series from Lake Kinneret in Israel show temporal
variations that correspond to flood discharge years, when DIC F14C values are relatively lower than
other years (Stiller et al. 2001). Lakes on the Tibetan Plateau can be distinguished as open or closed
systems according to their δ13CDIC characteristics. Open lakes (net water outflow from the lake) have
δ13CDIC values that are similar to inflowing river water, while closed lakes (without water outflow
from the lake) show a greater degree of exchange between lake water DIC and the atmosphere
(Lei et al. 2011). By extension, the hydrological conditions in a lake can influence DIC F14C values.
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The average residence time of a lake can be expressed as the ratio between lake volume and rate of
inflow or outflow in an equilibrium state (Yu et al. 2007; Jull et al. 2014). This quantity depends on
the hydrological processes operating in a particular lake, and encompasses both open and closed
lakes. Here we examine 11 lakes from different parts of China to examine the relationship between
open and closed lakes and their DIC levels, as expressed by their average residence times.

LOCATION DESCRIPTION AND SAMPLING

For this study we sampled seven lakes from different parts of China and we review four addi-
tional lakes from the published literature. The lakes we sampled include Tianshuihai, Kushui
Lake, Gyaring Co, Nam Co, Chenghai, Xingyun Lake, and Dalinor (Figure 1).

Tianshuihai (79°35′E, 35°27′N) and Kushui Lake (79°21′E, 35°35′N) are located in northwest
China, where the climate is dominated by the westerlies, the bedrock is siltstone (Li et al. 1998).
Gyaring Co (88°13′E, 31°11′N) and Nam Co (90°36′E, 30°43′N) are located in western China, in
the central Tibetan plateau, the bedrock is limestone and volcanic rock, the bedrock of Gyaring
Co is limestone (Zhang et al. 2011). Dalinor (116°37′E, 43°17′N) is located in northern China, near
the northwestern limit of the modern East Asian monsoon domain, the bedrock is volcanic stone
(Figure 1). Chenghai (100°39′E, 26°33′N) and Xingyun Lake (102°46′E, 24°19′N) are in southern
China, where the climate is controlled by the Southwest Monsoon, the bedrock is limestone
(Xu et al. 2015a,b) (Figure 1). Tianshuihai and Gyaring Co are open lakes (Li et al. 1998); whereas
Kushui Lake, Nam Co, Dalinor, Xingyun Lake and Chenghai are closed lakes (Li et al. 1998;
Zhang et al. 2011; Dong et al. 2008; Zhang et al. 2008; Hu et al. 1992).

In November 2014 andMay to August 2015, we collected surface lake water from the seven lakes.
In some cases we were also able to collect submerged aquatic plants. In Dalinor we collected water
from the inflowing rivers, groundwater from a spring, and an air sample. All of the water samples
were collected in 600-mL brown glass bottles. The sample bottles were cleaned prior to sampling

Figure 1 Location of the lakes. The circle represents the lakes we sampled; the rectangle represents
previously studied lakes. EASM, EAWM, WW, and SWM are abbreviations for East Asian Summer
Monsoon, East Asian Winter Monsoon, Westerly Wind, and Southwest Monsoon, respectively.
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and rinsedwith lake water three times before sampling. The air samples were collected in aluminum
foil gas sampling bags using an established methodology (Niu et al. 2016).

SAMPLE PREPARATION AND MEASUREMENT

All of the water samples were filtered with 0.7 μmGF/F glass-fiber filters in the laboratory. The
filtered samples were placed in a Pyrex® flask and acidifed with 85% H3PO4 to liberate CO2

from the DIC fraction. TheGF/F glass-fiber filters and aquatic plants were treated with 1NHCl
and then rinsed in distilled water and dried. The dried, pretreated samples were placed into
9-mm quartz tubes, with an appropriate amount of CuO as oxidant. They were then evacuated
to <10–5 Torr and heated to 850°C. The CO2 produced by the combustion was divided into two
parts; one is used for δ13C measurement and the other was converted catalytically to graphite
using a hydrogen reduction method over iron powder for measurement. Measurements were
made at the 3 MV HVE Tandetron AMS (Zhou et al. 2006). δ13C measurements were made
with an isotope ratio mass spectrometer (MAT-252). All of the analyses were conducted at the
Xi’an Institute of Earth Environment, Chinese Academy of Sciences.

The 14C results are quoted as fraction of modern carbon (F14C) values (Donahue et al. 1990),
and the 13C results are quoted as δ13C values (V-PDB, ‰).

RESULTS

The results from the inflowing rivers, groundwater and air sample from Dalinor are given in
Table 1. In Dalinor, the F14C values of the DIC fraction from four inflowing rivers we sampled
range from 0.7752 to 0.9912 (Table 1). The lowest value is from the HaoLai river and the
highest is from the ShaLi river. The DIC F14C of groundwater collected from the site is 0.6036.
The DIC F14C of surface lake water and atmospheric CO2 are 1.0421 and 1.0096 respectively
(Table 1). Hence, the DIC F14C values of incoming water (river water and groundwater) are
systematically lower than those of the surface lake water.

Results for Tianshuihai, Kushui Lake, Gyaring Co, Nam Co, Chenghai, Xingyun Lake, and
Dalinor are shown together in Table 2. For comparison, we present published results from
several other Chinese lakes in Table 3. We also indicate the open or closed nature of each lake in
Tables 2 and 3. The DIC F14C values of the lakes range from 0.2042 to 1.0971; DIC δ13C values
range from –2.71‰ to 5.34‰. The F14C values of particulate organic carbon (POC) range from
0.8829 to 0.9557, and the F14C values of aquatic plants in these lakes range from 0.2215 to
1.0971 (Table 2, Table 3). Figure 2 shows that F14C values of aquatic plants were positively
correlated with lake water DIC F14C (R2= 0.939). This correlation shows that the level of
aquatic plants is controlled by the level of lake water DIC, as expected. Another interesting
observation is that the DIC samples from open lakes (except Kushui Lake) have lower F14C

Table 1 River water, spring water, DIC and air 14C results for Dalinor.

Alkalinity CO2

Location F14C DIC δ13C(‰) DIC collected mg/L F14C POC δ13C (‰) POC

GongGeEr R. water 0.8015± 0.0031 –9.93 ± 0.03 13.25 0.8132± 0.0024 −30.66± 0.19
LiangZi R. water 0.7988± 0.0036 –10.50± 0.01 13.74 0.9714± 0.0032 −33.58± 0.21
HaoLai R. water 0.7752± 0.0028 –11.80± 0.02 19.14 1.0090± 0.0031 −29.01± 0.25
ShaLi R. water 0.9912± 0.0033 0.45 ± 0.01 30.19 0.9887± 0.0027 −26.03± 0.14
Spring water 0.6036± 0.0022 –10.82± 0.02 33.33 — —

Lake water 1.0421± 0.0043 –1.06 ± 0.02 34.7 0.8829± 0.0024 −27.35± 0.03
Air 1.0096± 0.0034 –11.64± 0.01 — — —
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Table 2 The fraction modern carbon (F14C) values and water residence times of the lakes we studied.

F14C δ13C (‰) Alkalinity F14C F14C

Lake DIC DIC

CO2

collected
(mg/L) POC

submerged
plant pH

Surface
area (km2)

Average
depth
(m)

Annual mean
evaporation rate
(mm)

Annual mean
outflow
(km3)

Lake
type

Residence
time (yr)

Tianshuihai 0.2215± 0.0014 5.34± 0.01 32.57 — 0.2181
± 0.0018

6.2 4 ~3a 2500 0.027 Open 0.32

Kushui Lake 0.2042± 0.0019 4.99± 0.03 99.34 — — 6.7 5.2 ~3a 2500 — Closed 1.2
Gyaring Co 0.8172± 0.0029 −2.71± 0.01 18 0.9341± 0.0026 — — 430.9 — — — Open —

Nam Co 0.9517± 0.0027 1.76± 0.02 79.35 — — 8 2015.8b 45.6b 1184b — Closed 38.54
ChengHai 1.0288± 0.0035 −2.02± 0.01 80.8 0.9557± 0.0030 1.0130

± 0.0016
(Spirulina)

9 77.2c 25.7c 2040.3c — Closed 12.62

XingYun
Lake

0.9704± 0.0037 −0.32± 0.02 18.28 0.9423± 0.0029 0.9715
± 0.0032

9.8 34.7d 7d 1002.2d — Closed 6.98

Dalinor 1.0421± 0.0043 −1.05± 0.02 34.7 0.8829± 0.0024 1.0188
± 0.0027

9.4 224.6e 6.9e 1113.1e — Closed 6.21

The superscripts indicate the data resource of surface area, average depth and annual mean evaporation of the lakes. a. Li et al. 1998; b. Zhang et al. 2011; c. Hu et al. 1992; d. Zhang et al. 2008;
e. Dong 2008; Wang et al. 2015.
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Table 3 The fraction of modern carbon (F14C) values and water residence times of previously studied lakes.

F14C F14C

Lake DIC
submerged
plant pH

Surface
area (km2)

Average
depth
(m)

Annual mean
evaporation rate
(mm)

Annual mean
outflow (km3) Lake type

Residence
time (yr)

Qinghai
Lake a

1.0971 ± 0.0039 1.0098± 0.0042 9.2 4400 21 924 — Closed 22.73

Xihu b 0.8777 ± 0.0042 1.0327± 0.0029 8.5 4.7 2.5 1208.6 — Open 2.07
Erhai c 0.9216 ± 0.0047 0.9022± 0.0047 8.5 249.8 10.5 1208.6 — Open 2.75
Lugu
Lake d

— 1.0180± 0.0042 8.1 50.1 40.3 920 0.052 Semi-closed (seasonal
out flow Jun. to
Oct.)

18.5

The superscripts indicate the data resource of the lakes. a. Jull et al. 2014; Zhou et al. 2014; b. Xu et al. 2015a; Du et al. 1998; c. Xu et al. 2015b; Fu et al. 2013; d. Chen et al. 2012;
Sheng et al. 2015.
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values than DIC samples from closed lakes (Figure 3). This phenomenon implies that hydro-
logical circulation influences surface lake water DIC levels.

DISCUSSION

Residence Time of Lakes

The average residence time of the water in a lake can be expressed as the ratio between lake
volume and the input or output of water at steady state. This parameter reflects the hydrological
processes operating in a particular lake (Yu et al. 2007; Jull et al. 2014).

In our study survey, DIC samples from open lakes (except Kushui Lake) have lower F14C
values than DIC samples from closed lakes (Figure 3). This suggests that hydrological processes
influence DIC F14C values. Some published research comes to the same conclusion. For
example, time series DIC 14C data collected from Lake Kinneret, Israel, showed that F14C

Figure 2 F14C of aquatic plants and DIC. The linear fit result is
y= 0.955x+ 0.04, R²= 0.939.

Figure 3 DIC F14C of different lakes. The dashed line shows the highest FDIC value of open lakes.
Lugu Lake uses the Fwater seed.
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values from lake water DIC were significantly reduced during years with prevalent flooding
(Stiller et al. 2001). In order to further examine this influence, we calculate the average residence
time for each lake. The results are shown in Tables 2 and 3.

The water balance of open and closed lakes is shown schematically in Figure 4. The steady-state
water balance in a lake can be expressed as follows:

for a closed lake : Vi =Vp +Vfi +Vui (1)

Vo =Ve (2)

for an open lake : Vi =Vp +Vfi +Vui (3)

Vo =Ve +Vfo (4)

where Vi is annual water volume input to the lake, Vp is the annual precipitation volume to the
lake, Vfi is the annual river inflow volume to the lake, Vui is the annual underground water
inflow volume to the lake, Vo is annual water output volume from the lake, Ve is the annual
evaporation volume from the lake, and Vfo is the annual river outflow volume from the lake.

We can calculate the average residence time of a lake (τ) for a lake volume V with the following
equation (Schaffner and Oglesby 1978; Jull et al. 2014):

dV
dt

=
1
τ
V (5)

where dV/dt is the rate o f input (positive values) or output (negative values) of a lake at steady-
state. As the input is more complex than the output, here we use the output to calculate the
average residence time. We combine Equations (2) and (4) with Equation (5).

for a closed lake : τ=V =Ve (6)

for an open lake : τ=V = Ve +Vfoð Þ (7)

Figure 4 Model of lake water circulation (modified from Figure 1 of Yu et al. 2007). (a) open
lake; (b) closed lake. Vp is the annual volume of precipitation; Ve is the annual volume of
evaporation; Vfi is the annual water flow into the lake; Vfo is the annual water flow out of the
lake; Vui is the annual underground water flow into the lake.
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The volume of a lake can be expressed as

V= SD (8)

Ve = SE (9)

where S is the surface area of the lake, D is the average depth, and E is the annual evaporation
rate. We combine Equations (8) and (9) with Equations (6) and (7).

for a closed lake : τ=D =E (10)

for an open lake : τ= SDð Þ = SE+Vfoð Þ (11)

In our study we use Equation (10) to calculate average residence times for all of the closed lakes.
For the open lakes we calculated average residence times as follows: Tianshuihai is calculated
by Equation (11), Xihu is calculated by Equation (10) due to the lack of outflow data (the actual
average residence time is less than the calculated one), and Erhai and Lugu Lake average
residence times are from Fu et al. (2013) and Sheng et al. (2015), respectively. As there is no
published depth and outflow data for Gyaring Co, we do not calculate an average residence
time. All of the average residence time results are shown in Tables 2 and 3.

Modern Water in Dalinor

GongGeEr River, LiangZi River, HaoLai River and ShaLi River are the major rivers of
Dalinor; andGongGerEr River is the biggest river with 75% of total riverine inflow. The annual
inflow of river and underground water accounts for almost 70% of the total annual inflow to
Dalinor, and the remaining portion comes from precipitation (Dong 2008).

In Dalinor, the modern atmospheric F14C value is 1.0096. DIC F14C values of GongGeEr
River (largest river at Dalinor) and spring water are 0.8015 and 0.6036 respectively. The POC
F14C value of GongGeEr river is 0.8132 (Table 1).The surface lake water DIC F14C value is
1.0421 (Table 1). The F14C value of surface lake water DIC is similar to the atmospheric CO2

F14C value, but higher than GongGeEr River (and other rivers; Table 1), and the spring DIC
F14C value. We presume that water may exchange with atmospheric CO2 after flowing into
the lake.

The δ13C value of DIC can reflect the exchange between lake water DIC and atmospheric CO2.
Carbon isotope fractionation between dissolved carbonates (HCO3

− and CO3
2− ) and atmo-

spheric CO2, which normally has a δ13C value of about −7‰, varies from 9.2‰ at 0 °C, to
6.8‰ at 30ºC (Deuser and Degens 1967; Mook et al. 1974; Myrttinen et al. 2012). Therefore,
DIC in the surface lake water should have a δ13C value between 0 and 2.0‰. For example, the
δ13C value of Qinghai Lake surface water DIC is in the range of 0.69‰ to 1.03‰ (Li et al. 2012;
Wang et al. 2013b). This suggests that surface lake water there has reached a steady-state
balance with atmospheric CO2.

DIC Content of Lakes

For the lakes we studied and reviewed, surface lake water DIC F14C values of open lakes
(except Kushui Lake) were found to be lower than surface lake water DIC F14C values of closed
lakes (Figure 3), and the average residence times of open lakes are usually shorter than closed
lakes (Figure 5). Furthermore, a comparison between surface water DIC F14C values and
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average residence time shows that DIC F14C increases with average residence time and reflects a
steady-state (Figure 5).

As stated above, there are three factors that control DIC F14C values in our lakes: (1) the rate
and degree of exchange with atmospheric CO2; (2) geological weathering; and (3) microbial
decay of terrigenous organic matter. Ground waters and river waters generally have low DIC
F14C values due to the addition of “dead carbon” from rock weathering (e.g. Dalinor inflow
rivers in Table 1). This effect is enhanced where large runoff occurs. The amount of “dead
carbon” should be proportional to the concentration of carbon ions in the water (Mook et al.
1974). According to Keaveney et al. (2012) the reservoir offset of lakes should follow a linear
relationship with alkalinity. When we plot alkalinity against DIC F14C values from seven lakes
however, we do not observe an obvious linear relationship (Figure 6). We notice that most lakes
described by Keaveney et al. (2012) are open lakes, whereas many of the lakes studied here are

Figure 5 Surface Lake water DIC F14C with lake water residence time.
The dashed line shows the F14C value of modern atmospheric CO2

(Levin et al. 2013). Lugu Lake uses the F14C of water seed. Gyaring Co
is not shown due to a lack of residence time data.

Figure 6 Alkalinity and DIC F14C values of lakes.
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closed lakes. Open lakes generally have lower average residence times than closed lakes, due to
their relatively rapid water circulation. Open lakes have little time to exchange carbon with the
atmosphere and their DIC F14C values are controlled primarily by the F14C content of source
water DIC. This could explain the linear correlation between reservoir offset and alkalinity
described in Keaveney et al. (2012). However, the presence of both open and closed lakes in our
study leads to a much broader range of residence times, and a correlation between surface water
DIC F14C values and average residence time (Figure 5).We are unable to quantify the impact of
microbial decay of terrestrial organic carbon in our Chinese lakes since POC F14C values are
available for only four of the lakes, and we lack DOC F14C data.

We find some exceptions to the general trend observed between DIC F14C and residence time.
For example, at Nam Co, where DIC F14C values are much lower than atmospheric CO2, but
have a long average residence time. This difference may be due to the close proximity of the
sampling site to an inflowing river. At Qinghai Lake, the DIC F14C value is higher than the
atmospheric value, probably because of stored bomb carbon. As mentioned before, Kushui
Lake is also exceptional, as a closed lake with a lowDIC F14C value. The Kushui lake volume is
very small (the average depth is only 3m), and the evaporation in this area is very strong. These
conditions lead to a very short average residence time (about one year) (Table 1). The pH of
Kushui Lake is lower at 6.7 (Table 2) which leads to a lower exchange rate with atmospheric
CO2. The alkalinity of Kushui Lake is also as high as 99.34 (Table 2), which means it contains
abundant carbonates from geological weathering and also may leads to rapid precipitation of
carbonates. This produces a low input DIC F14C value, low exchange, rapid removal of surface
lake water, and the observed low DIC F14C value in the lake.

CONCLUSIONS

We compare the DIC14C characteristics of 11 lakes from different parts of China. Surface lake water
DICF14C values of open lakes (exceptKushui Lake) are lower than the surface lake waterDICF14C
values of closed lakes. The DIC F14C value of surface lake water increases with average residence
time and reaches a steady-state near the modern atmospheric CO2 F14C value. This
phenomenon can be explained by exchange with atmospheric CO2. The driving force (e.g. exchange
with atmospheric and geological weathering) behind the freshwater reservoir effect is site-specific.
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