

Available online at www.sciencedirect.com

Geochimica et Cosmochimica Acta

Geochimica et Cosmochimica Acta 231 (2018) 64-72

www.elsevier.com/locate/gca

Pre-nuclear level of ¹²⁹I in Chinese loess-paleosol sections: A search for the natural ¹²⁹I level for dating in terrestrial environments

Yukun Fan^{a,b}, Weijian Zhou^{a,b,c,*}, Xiaolin Hou^{a,b}

^a State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China ^b Shaanxi Key Laboratory of AMS Technology and Application, Xi'an AMS Center, Xi'an, China ^c Joint Center for Global Change Studies, Beijing Normal University, Beijing, China

Received 5 December 2017; accepted in revised form 11 April 2018; available online 18 April 2018

Abstract

Due to its long half-life (15.7 Myr), radioactive ¹²⁹I has great potential for dating geologic materials as old as 100 Myr. Thus, knowing the natural level of ¹²⁹I is crucial to dating applications. The initial ratio of ¹²⁹I/¹²⁷I in the ocean has been quantified by a number of researchers who have reached a consensus value. However, the applicability of ^{129}I dating in the terrestrial environment remains problematic because the lack of an initial $^{129}I/^{127}I$ value. In this work, samples of loess-paleosol sections from the Chinese Loess Plateau (CLP) were analyzed for ¹²⁹I/¹²⁷I, aiming to provide an initial 129 I/ 127 I ratio that can be adopted for dating purposes in terrestrial environments. A value of $(2.0 \pm 1.0) \times 10^{-11}$ for the ¹²⁹I/¹²⁷I ratio was found in two investigated loess-paleosol sections from Xifeng and Luochuan, China. This ratio is one order of magnitude higher than the initial value reported for the marine environment. Alteration of the natural initial ¹²⁹I in the investigated samples due to the downward migration of anthropogenic ¹²⁹I and by excess fissiogenic ¹²⁹I from uranium was not supported. Consequently, the ¹²⁹I/¹²⁷I ratio measured is considered to be a pristine value, and the difference from that in the marine systems is attributed to an isotopic dilution effect. © 2018 Elsevier Ltd. All rights reserved.

Keywords: ¹²⁹I; Dating; Initial ¹²⁹I/¹²⁷I ratio; Loess; AMS

1. INTRODUCTION

Dating of geological materials using radioactive isotopes plays an important role in the understanding of the Earth's temporal evolution. However, dating methods available for sedimentary rocks has always been challenging, due to the lack of either a suitable radioactive isotope or materials for dating. Exploring and establishing a new geochronometer, especially for absolute dating, will without doubt expand and advance research in the Earth Sciences. An

* Corresponding author. E-mail address: weijian@loess.llgg.ac.cn (W. Zhou). excellent candidate is the radioactive isotope ¹²⁹I, that has a half-life of 15.7 Myr and is continuously provided to the geological environment through natural input. ¹²⁹I is naturally produced via cosmic rays interaction with xenon (Xe) in the upper atmosphere, spontaneous fission of ²³⁸U, thermal neutron-induced fission of ²³⁵U and to a lesser extent neutron activation reactions of tellurium, e.g. 128 Te(n, γ) 129 Te(β^{-}) 129 I and 130 Te(n, 2n) 129 Te(β^{-}) 129 I, in the Earth's crust.

Despite the early inference of Edwards (1962), who suggested that radioactive ¹²⁹I was a potentially useful dating tool, the determination of the initial natural concentration of the isotope in geological archives has remained elusive, and a topic of ¹²⁹I research for several decades. Due to

https://doi.org/10.1016/j.gca.2018.04.014 0016-7037/© 2018 Elsevier Ltd. All rights reserved.

the long residence time of 129 I in ocean reservoirs (~40 kyr), much longer than the turnover time of sea water (~ 1 kyr), ¹²⁹I was thought to be in equilibrium with stable iodine (¹²⁷I). The ocean serves as an effective buffer against fluctuations in natural processes in the pre-nuclear era, i.e. before 1940 (Fabryka-Martin et al., 1985), so early research focused on the initial value in the marine environment. Because of the limitation in the measurement techniques, samples with an $^{129}I/^{127}I$ ratio $<10^{-10}$ could not be measured until the early 1980s. Some estimates of an $^{129}I/^{127}I$ ratio of $(3-4) \times 10^{-12}$ and $(5.5-6.5) \times 10^{-13}$ were reported using theoretical approaches (Fabryka-Martin et al., 1985). With the development of the accelerator mass spectrometry (AMS) technique for the measurement of ¹²⁹I (Elmore et al., 1980), an average ${}^{129}I/{}^{127}I$ ratio of $1.2 \times$ 10^{-12} was obtained from marine sediments from Cape Hatteras in the Atlantic Ocea (Fehn et al., 1986). These data, together with other measurements of sediments collected along the east Pacific coast, provided an initial ¹²⁹I/¹²⁷I value of 1.5×10^{-12} (Moran et al., 1998). A number of studies that dated geological samples formed in the marine environment have used this initial value. Examples include dating of pore waters associated with gas hydrates (Fehn et al., 2000; Lu et al., 2008; Tomaru et al., 2007) and the recycling of iodine in subduction zones (Snyder and Fehn, 2002). However, corresponding research using $^{129}I/^{127}I$ in terrestrial environments was less successful because of the large scatter of initial values from terrestrial reservoirs. Pre-nuclear era samples were analyzed for ¹²⁹I/¹²⁷I in Russian soil and in animal thyroid collected in the USA, and gave ${}^{129}\text{I}/{}^{127}\text{I}$ values of 10^{-12} - 10^{-11} (Szidat et al., 2000). Higher values of 2×10^{-11} and $(4-7) \times 10^{-10}$ were reported as pre-nuclear levels in river sediments from Spain and lake sediments from Sweden, respectively (Englund et al., 2008; Santos et al., 2007). These high ratios were attributed to anthropogenic ¹²⁹I input. Jabbar et al. (2013) analyzed petrified wood samples collected in Austria and reported 129 I/ 127 I ratios of 1.15×10^{-12} and 0.63×10^{-12} . Checking with the sedimentation age of corresponding strata, the initial value applied for the marine system 1.5×10^{-12} fit well for these samples. However, just one attempt is insufficient to confirm the applicability of this approach. As described above, there are few data and no agreement between results with respect to the initial natural $^{129}I/^{127}I$ in the terrestrial environment.

Since the 1940s, human nuclear activities (e.g. nuclear weapon tests, discharge by nuclear fuels reprocessing plants and nuclear accidents) have released large amounts of ¹²⁹I to the environment which has overwhelmed the natural environmental level (Fan et al., 2013; Hou et al., 2009). Thus, finding suitable samples that are as much as possible hidden from anthropogenic contamination is a challenging endeavor. We have selected sediment samples from the eolian deposits of the Chinese Loess Plateau (CLP) for the evaluation of the initial natural ¹²⁹I concentration. These terrestrial sediments are composed of loess and paleosols, >100 m thick, first deposited about 2.6 Myr ago, and presenting a natural and continuous accumulation processes (An et al., 1991; Ding et al., 2005; Guo et al., 2002). Therefore, these materials are a suitable candidate

for studying the natural isotopic composition of iodine in the terrestrial environment. Earlier analysis of samples collected from depths of 23.5 and 63.5 m indicated ¹²⁹I/¹²⁷I ratios of $(1.6-1.8) \times 10^{-11}$ (Hou et al., 2010). Analysis of ¹²⁹I speciation in some loess samples provided an ¹²⁹I/¹²⁷I ratios of $(1-2) \times 10^{-11}$ at depths of 90 cm and 60 cm in two loess sections from Sanyimiao and Luochuan, respectively (Luo et al., 2013). These results suggest a difference in the ¹²⁹I/¹²⁷I values between the loess and marine sediments. In the work presented here, we have used two long loess-paleosol sections in order to provide a deeper insight into the pre-nuclear ¹²⁹I level in the Chinese loess and to better constrain the initial value for ¹²⁹I/¹²⁷I ratio and the possibility for dating.

2. MATERIALS AND METHODS

Samples used for the depth distribution of ¹²⁹I were collected in loess-paleosol sections from two localities: Xifeng (35.79°N, 107.59°E) and Luochuan (35.78°N, 109.44°E) (Fig. 1a). The localities occur in the middle part of the CLP and the sections have been studied as paleoclimate archives (An et al., 1991; Heller and Liu, 1982; Kukla and An, 1989; Liu, 1985; Sun et al., 2006; Sun et al., 2015: Zhu et al., 2007). The Xifeng section, 73.7 m deep, was sampled in 2007. The bottom reached loess unit L_9 , corresponding to an age of around 900 kyr (Sun et al., 2006). The Luochuan section was sampled in 2004 with a maximum depth of 12.45 m, reaching the bottom of paleosol unit S_1 , which corresponds to 130 kyr (Zhou et al., 2010). A trough was excavated to remove the overlying soil in order to avoid possible contamination from modern ¹²⁹I before sampling in both sites (Fig. 1b). Samples were taken in small intervals (10-20 cm) in the upper parts of the Xifeng section while larger intervals (0.5-5 m) were obtained for the lower parts. For each sample, a thickness of 1-2 cm was taken, and the top of each segment was recorded as the depth of the corresponding sample.

All the loess-paleosol samples were air-dried, ground and sieved through a 200-mesh sieve. 20.0 g of each sample was taken for the analysis of ¹²⁹I and ¹²⁷I. According to our previous study, the loess and paleosols were found to be low in both ¹²⁷I ($\sim 2 \mu g/g$) and ¹²⁹I ($\sim 10^5$ atoms/g) (Hou et al., 2010). Therefore, the carrier free iodine separation method was adopted for the extraction of iodine from all samples in order to avoid any possible contamination induced by carrier iodine. ¹²⁹I/¹²⁷I atomic ratios in the prepared targets were measured by accelerator mass spectrometry using the 3 MV Tandem AMS system at the Xi'an AMS center. The details of the extraction procedure and AMS measurements followed the description by Hou et al. (2010).

Seven blank samples in total, undergoing the same procedure as the loess samples but without soils, were added, to monitor the chemical background during processing of the loess samples. Because of the significant difference of iodine content in the targets between samples and blanks due to the utility of carrier free iodine method, the ¹²⁹I count rate and the ¹²⁷I beam intensity were taken instead of ¹²⁹I/¹²⁷I ratio for description of the measurement of the blanks. The ¹²⁹I count rate in the loess samples (>25

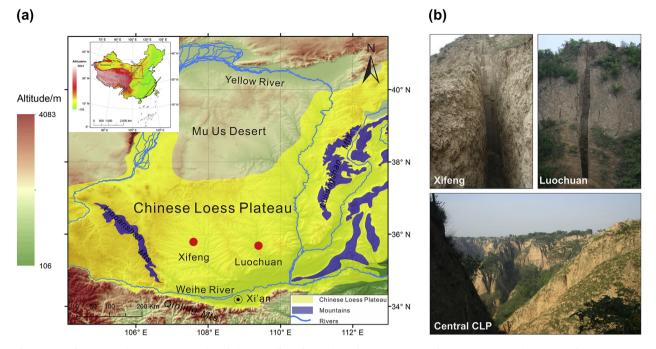


Fig. 1. Location (a) and outcrop scene (b) of the sampling sites. The bright yellow area in (a) represents the extent of the CLP. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

counts/min) was >5 times that in the blank samples (<5 counts/min), while ^{127}I beam intensity in 5 min in the loess samples (>5 \times 10⁻⁷ coulomb) was >6 times that in the blank samples (<8 \times 10⁻⁸ coulomb). Therefore, the significant contamination of ^{129}I and ^{127}I during the chemical analysis can be excluded.

Iodine (¹²⁷I) was measured by ICP-MS using an X SeriesII ICP-MS (Thermal Electron Corporation), under hot plasma conditions, with an Xt interface. Iodine extracted from soil samples by combustion at 800 °C was trapped in a NaOH-NaHSO₃ solution, which was diluted 10 times using deionized water (18.2 MΩ), and a Cs⁺ solution was added to the samples, blanks and standards to a final concentration of 2.0 ppb as an internal standard. The detection limit of this method for iodine is estimated as 3 times blank to be 0.02 ppb. An 0.15 mol/L NH₃·H₂O solution was used to rinse the samples during the ICP-MS measurements. The ¹²⁹I concentration was calculated using the measured ¹²⁹I/¹²⁷I atomic ratio by AMS and the ¹²⁷I concentration by ICP-MS.

For each sample, a 0.2000 g subsample was taken for uranium analysis. The samples were first ashed in an oven at 550 °C for 3 h, and then digested with HNO₃ and HF in a Teflon crucible, and then evaporated on a hot plate. The residues were dissolved in 3% HNO₃ for the ICP-MS measurement, in which the In³⁺ solution was added and used as an internal standard.

3. RESULTS

Table 1 lists the analytical results of iodine and uranium isotopes in the two loess-paleosol sections. The $^{129}I/^{127}I$ atomic ratios for the Xifeng and Luochuan loess sections

are (0.65–16.30) \times 10⁻¹¹ and (0.39–484.72) \times 10⁻¹¹, respectively. The highest values of the $^{129}\text{I}/^{127}\text{I}$ ratio as well as the ¹²⁹I concentration occur in the surface layer in both sections. These are comparable with the level in surface soil from the Guanzhong area, $(1.08-28.61) \times 10^{-10}$ (Zhang et al., 2011), about 200 km south of Luochuan, indicating that the ¹²⁹I in the surface environment in the CLP has the same anthropogenic ¹²⁹I sources as that for the Guanzhong area, which was dominated by atmospheric nuclear weapon tests and discharge from nuclear fuel reprocessing plants. It is worth mentioning that the ¹²⁹I signals in the top parts of the Xifeng section (1.6×10^{-10}) were much lower than those from the Luochuan section (4.8×10^{-9}) . This might be attributed to missing top soils from Xifeng before sampling. There is evidence for this, as it was reported that the black marker layer S_0 that formed during a warm-humid climate after the last glacial period, was found to be missing in field studies at the Xifeng site (Porter and An, 1995). Soils from the loess plateau were widely used for construction by the local inhabitants. This could explain the missing surface layers. In addition, loess profile sampling by excavation was usually carried out at the edge of a loess tableland. Collapse near the tableland edge could also cause the uppermost sediments to be lost. However, the top strata in the Luochuan site were better preserved, with an intact S_0 horizon. The $^{129}I/^{127}I$ for the two sections decrease with increasing depth, and then maintain relatively constant values around 2.0×10^{-11} from 1.6 m and 0.6 m, in the Xifeng and Luochuan sections, respectively (Fig. 2). The depth distributions of ¹²⁹I concentrations in both sections show variation comparable to the ¹²⁹I/¹²⁷I trend, while the ¹²⁷I concentration does not show any apparent trend with depth.

Table 1

Analytical results of iodine and uranium isotopes in the Xifeng and Luochuan loess-paleosol sections. ^aAn age correction was made on the ¹²⁹I/¹²⁷I ratios and ¹²⁹I concentrations of samples deeper than 1.5 m and 0.4 m from the Xifeng and Luochuan sections, respectively, based on the ages of bottom layers in both loess sections and the assumption of a roughly constant sedimentation rate; ^bThe ¹²⁹I/¹²⁷I ratios of samples at depths of 23.5 m and 63.5 m from the Xifeng section were cited from previous work by Hou et al. (2010) and were also age-corrected; NM: not measured.

Loess section	Sample No.	Depth	¹²⁹ I/ ¹²⁷ I atom ratio ^a	¹²⁹ I concentration ^a	¹²⁷ I concentration	U concentration	²³⁵ U/ ²³⁸ U ratio	
		m	$\times 10^{-11}$	$\times 10^5$ atoms/g	μg/g	μg/g	$\times 10^{-3}$	
Kifeng								
	XF07-20	0.2	16.12 ± 0.64	13.70 ± 0.58	1.83 ± 0.03	1.929 ± 0.039	7.310 ± 0.222	
	XF07-30	0.3	6.06 ± 0.22	4.54 ± 0.23	1.61 ± 0.06	1.693 ± 0.032	7.738 ± 0.209	
	XF07-40	0.4	16.30 ± 1.12	14.01 ± 1.20	1.85 ± 0.10	1.644 ± 0.031	7.352 ± 0.208	
	XF07-50	0.5	4.75 ± 0.53	4.04 ± 0.49	1.82 ± 0.09	1.852 ± 0.034	7.616 ± 0.202	
	XF07-60	0.6	5.22 ± 0.38	4.50 ± 0.45	1.77 ± 0.12	1.645 ± 0.031	7.348 ± 0.203	
	XF07-80	0.8	3.19 ± 0.24	2.64 ± 0.21	1.78 ± 0.05	1.566 ± 0.031	7.722 ± 0.217	
	XF07-100	1.0	2.76 ± 0.29	2.34 ± 0.25	1.82 ± 0.04	1.241 ± 0.023	7.305 ± 0.202	
	XF07-140	1.4	5.47 ± 0.15	4.79 ± 0.33	1.88 ± 0.12	1.639 ± 0.032	7.375 ± 0.207	
	XF07-150	1.5	5.45 ± 0.71	5.85 ± 0.77	2.39 ± 0.06	1.460 ± 0.027	7.591 ± 0.219	
	XF07-160	1.6	0.65 ± 0.04	0.81 ± 0.06	2.64 ± 0.12	1.705 ± 0.033	7.683 ± 0.216	
	XF07-200	2.0	2.25 ± 0.27	2.61 ± 0.31	2.45 ± 0.05	1.713 ± 0.033	7.647 ± 0.211	
	XF07-250	2.5	1.80 ± 0.25	2.11 ± 0.29	2.48 ± 0.06	1.704 ± 0.031	7.687 ± 0.209	
	XF07-300	3.0	2.10 ± 0.19	1.94 ± 0.20	1.95 ± 0.10	1.835 ± 0.035	7.688 ± 0.215	
	XF07-350	3.5	2.09 ± 0.24	2.26 ± 0.26	2.28 ± 0.06	2.029 ± 0.037	7.447 ± 0.211	
	XF07-400	4.0	2.28 ± 0.22	2.40 ± 0.27	2.22 ± 0.14	2.046 ± 0.036	7.385 ± 0.206	
	XF07-450	4.5	1.96 ± 0.20	1.96 ± 0.24	2.11 ± 0.16	2.161 ± 0.040	7.459 ± 0.206	
	XF07-500	5.0	1.19 ± 0.08	1.11 ± 0.08	1.98 ± 0.06	2.053 ± 0.037	7.360 ± 0.199	
	XF07-600	6.0	0.70 ± 0.05	2.38 ± 0.20	7.17 ± 0.35	NM	NM	
	XF07-700	7.0	0.67 ± 0.06	1.63 ± 0.14	5.13 ± 0.08	NM	NM	
	XF07-850	8.5	2.58 ± 0.26	2.31 ± 0.26	1.89 ± 0.10	2.083 ± 0.038	7.253 ± 0.193	
	XF07-1000	10.0	0.81 ± 0.06	2.85 ± 0.19	7.39 ± 0.20	NM	NM	
	XF07-1340	13.4	7.90 ± 0.73	3.59 ± 0.36	0.89 ± 0.03	1.948 ± 0.036	7.759 ± 0.204	
	XF07-1850	18.5	2.71 ± 0.28	2.35 ± 0.25	1.83 ± 0.05	1.855 ± 0.035	7.604 ± 0.212	
	XF07-2350	23.5	$1.69\pm0.53^{\rm b}$	1.99 ± 0.62	2.49 ± 0.02	1.783 ± 0.033	7.344 ± 0.203	
	XF07-2850	28.5	3.33 ± 0.32	2.24 ± 0.23	1.42 ± 0.07	1.627 ± 0.031	7.430 ± 0.211	
	XF07-3350	33.5	2.23 ± 0.30	1.10 ± 0.15	1.05 ± 0.05	1.741 ± 0.031	7.523 ± 0.195	
	XF07-3850	38.5	3.70 ± 0.32	1.84 ± 0.18	1.05 ± 0.06	1.747 ± 0.032	7.497 ± 0.209	
	XF07-4350	43.5	2.25 ± 0.22	1.70 ± 0.16	1.60 ± 0.01	1.521 ± 0.028	7.284 ± 0.200	
	XF07-2-500	48.5	2.90 ± 0.32	1.55 ± 0.17	1.13 ± 0.04	1.710 ± 0.031	7.660 ± 0.211	
	XF07-2-1000	53.5	3.95 ± 0.38	2.30 ± 0.25	1.23 ± 0.06	1.845 ± 0.033	7.646 ± 0.210	
	XF07-2-1500	58.5	2.31 ± 0.21	2.36 ± 0.23	2.16 ± 0.06	1.689 ± 0.030	7.756 ± 0.202	
	XF07-2-2000	63.5	$1.89\pm0.42^{\rm b}$	2.26 ± 0.55	2.52 ± 0.24	1.473 ± 0.028	7.523 ± 0.207	
	XF07-2-2500	68.5	3.87 ± 0.42	2.31 ± 0.26	1.26 ± 0.05	1.550 ± 0.029	7.802 ± 0.205	
	XF07-2-3000	73.5	3.27 ± 0.35	2.08 ± 0.27	1.34 ± 0.10	1.674 ± 0.031	7.220 ± 0.206	
uochuan								
	LC04-00	0.00	484.72 ± 10.98	429.66 ± 9.73	1.87 ± 0.03	0.692 ± 0.202	7.278 ± 0.202	
	LC04-10	0.10	412.85 ± 14.79	420.75 ± 15.08	2.15 ± 0.07	0.962 ± 0.215	7.329 ± 0.215	
	LC04-20	0.20	290.18 ± 22.43	290.23 ± 22.43	2.11 ± 0.16	0.859 ± 0.213	8.215 ± 0.213	

8.244 ± 0.213	7.821 ± 0.216	7.881 ± 0.211	7.968 ± 0.212	7.751 ± 0.210	NM	NM	7.874 ± 0.203	NM	NM	7.551 ± 0.202	7.518 ± 0.141	7.838 ± 0.143	NM	7.321 ± 0.138	NM	7.544 ± 0.144	NM
0.856 ± 0.213	0.902 ± 0.216	1.023 ± 0.211	1.012 ± 0.212	1.040 ± 0.210	NM	NM	1.408 ± 0.203	NM	NM	1.601 ± 0.202	1.340 ± 0.141	1.543 ± 0.143	NM	1.651 ± 0.138	NM	1.469 ± 0.144	NM
2.18 ± 0.03	2.17 ± 0.09	1.78 ± 0.07	2.13 ± 0.03	3.67 ± 0.30	10.12 ± 0.42	7.23 ± 0.69	2.14 ± 0.13	5.82 ± 0.60	3.28 ± 0.40	1.36 ± 0.15	2.13 ± 0.06	1.57 ± 0.07	4.87 ± 0.19	4.30 ± 0.07	5.49 ± 0.06	1.36 ± 0.08	2.38 ± 0.13
125.70 ± 2.84	5.44 ± 0.33	1.28 ± 0.09	1.50 ± 0.05	1.07 ± 0.10	1.86 ± 0.17	5.14 ± 0.55	0.50 ± 0.03	7.78 ± 0.86	2.47 ± 0.33	1.41 ± 0.16	6.22 ± 0.23	2.68 ± 0.15	3.70 ± 0.28	4.19 ± 0.11	2.69 ± 0.22	1.69 ± 0.12	2.36 ± 0.17
121.64 ± 2.75	5.29 ± 0.25	1.52 ± 0.09	1.49 ± 0.04	0.62 ± 0.02	0.39 ± 0.04	1.50 ± 0.08	0.50 ± 0.03	2.82 ± 0.12	1.59 ± 0.10	2.19 ± 0.06	6.16 ± 0.16	3.61 ± 0.13	1.60 ± 0.11	2.05 ± 0.05	1.03 ± 0.07	2.62 ± 0.12	2.09 ± 0.11
0.30	0.40	0.60	0.80	1.00	1.25	1.75	2.05	2.15	2.35	2.55	4.95	7.55	9.15	10.05	11.00	12.05	12.45
LC04-30	LC04-40	LC04-60	LC04-80	LC04-100	LC04-125	LC04-175	LC04-205	LC04-215	LC04-235	LC04-255	LC04-495	LC04-755	LC04-915	LC04-1005	LC04-1100	LC04-1205	LC04-1245

Y. Fan et al./Geochimica et Cosmochimica Acta 231 (2018) 64-72

varied from 0.89 to 7.39 μ g/g with an average of 2.25 μ g/g, and that in the Luochuan section from 1.36 to 10.12 μ g/g with an average of 3.34 μ g/g. These values are comparable with the reported iodine content in soil (1–3 μ g/g), with a few exceptions, but much lower than those in marine sediments (generally 20–200 μ g/g) (Hu and Moran, 2010). The relatively high ¹²⁷I concentrations of 5–7 μ g/g at depths of 6–10 m in the Xifeng section and 7–10 μ g/g at 1–2 m in the Luochuan section were observed and corresponded to the paleosol layers, which are rich in organic matter compared to the loess layers (Sun et al., 2011). This high ¹²⁷I concentrations linked to the high organic matter content is consistent with the dominant organic fraction of iodine observed in the loess soils (Luo et al., 2013).

The uranium concentration was measured to be 1.241–2.161 µg/g in the Xifeng section and slightly lower in the Luochuan section, $0.692-1.651 \mu g/g$. The ²³⁵U/²³⁸U ratio varied within (7.22–8.24) × 10⁻³. These data are comparable with the uranium concentration in soils from Europe (0.8–11.0 µg/g) and the United States (2.3–3.7 µg/g) and with the natural composition of ²³⁵U/²³⁸U 7.250 × 10⁻³ (Kabatapendias and Pendias, 1984; Lella et al., 2005).

4. DISCUSSION

It was reported that the accumulation rates of the loess and paleosol in the Xifeng and Luochuan sections are 3.8-16.5 cm/kyr (Wu et al., 1998). Thus, layers deeper than 4 cm were formed approximately 1000 years ago, much earlier than human nuclear activities (1940s). If no vertical migration of iodine occurred, the $^{129}I/^{127}I$ in the layers below 4 cm should represent the natural level of ¹²⁹I in the loess-paleosol sections. However, the $^{129}I/^{127}I$ ratio at a depth of about 10 cm is almost equal to that in the surface layer, and the ratio remains relatively high down to a depth of 40-60 cm (Fig. 2). This feature indicates vertically downward migration of anthropogenic ¹²⁹I to some extent. In layers deeper than 2 m, much lower and relatively constant ¹²⁹I/¹²⁷I ratios were observed in the two soil sections. The average ratio and one standard deviation of ¹²⁹I/¹²⁷I ratios in the deep layers (>2 m) in the two sections is calculated to be $(2.0 \pm 1.0) \times 10^{-11}$ excepting two relatively high values of 7.9×10^{-11} from a layer at 13.4 m in the Xifeng section and 6.2×10^{-11} at 4.95 m in the Luochuan section, which might represent the natural level of ¹²⁹I in the loess and paleosols. It is not clear why a slightly high 129 I/ 127 I value of $(5-10) \times 10^{-11}$ occurred in two layers in the two loess sections, a further investigation on variation of the iodine isotopes in this region is planned. This ¹²⁹I/¹²⁷I value, $(2.0 \pm 1.0) \times 10^{-11}$, is about one order of magnitude higher than that observed in the deep marine sediments, $(1.5 \pm$ $(0.15) \times 10^{-12}$ (Moran et al., 1998). This difference can probably be caused by: (1) severe downward migration of anthropogenic ¹²⁹I from the surface layers (reaching tens of meters), (2) a significant contribution of uranium fissional product, and (3) disequilibrium of iodine isotopes between the marine and terrestrial environments and therefore their different pre-nuclear ¹²⁹I/¹²⁷I ratios. Below we discuss the influence of each of these processes.

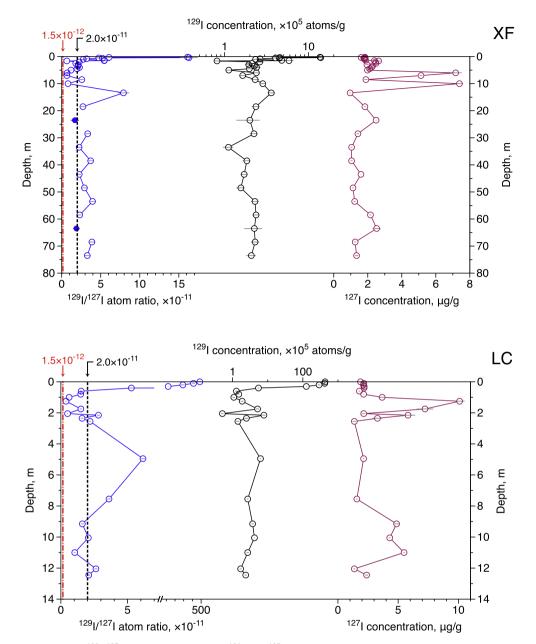


Fig. 2. Depth distribution of ${}^{129}I/{}^{127}I$ and concentrations of ${}^{129}I$ and ${}^{127}I$ in the loess-paleosol sections of Xifeng (XF) and Luochuan (LC). Solid blue circle: ${}^{129}I/{}^{127}I$ ratio at 23.5 m and 63.5 m depth in the XF section are from Hou et al. (2010). The black dashed line represents the pre-nuclear ${}^{129}I/{}^{127}I$ of 2.0 × 10⁻¹¹ in the CLP and the red dot-dashed line represents the initial ${}^{129}I/{}^{127}I$ of 1.5 × 10⁻¹² for the marine system. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.1. Downward migration of anthropogenic ¹²⁹I in the loesspaleosol sections

The trend of ¹²⁹I/¹²⁷I depth distribution supports limited downward migration of the anthropogenic ¹²⁹I as a result of seepage driven by gravity flow of rainwater, and it is observed only at the top parts of the sections. The ¹²⁹I/¹²⁷I values stabilize at a depth > 2 m (Fig. 2) without showing a gradual decrease through much thicker layers. In laboratory experiments, the migration rate of iodine in the soil was investigated to vary from $< 10^{-8}$ to 10^{-7} cm/s (Tikhomirov et al., 1981). Given that the ¹²⁹I released from human nuclear activities since 1945 is deposited in the top layers of the Xifeng and Luochuan sections, and migrated into the deeper layers at a rate of 10^{-7} cm/s, the downward migration distance from the surface can be estimated to be no more than 2 m until 2007, which is the sampling date. However, considering that the migration rate becomes sluggish due to transformation of soluble iodine into stable species strongly associated with soil particles (Tikhomirov et al., 1981), then the migration distance should be even shorter than 2 m. It has been reported that different fractions/species of ¹²⁹I exponentially decreased with increasing depth in loess-paleosol sections collected from the Sanyimiao and Luochuan sites (Luo et al., 2013). In all the fractions, including leachable, organic, oxides and residue, ¹²⁹I concentrations decreased 100 times at 0.9 m and 0.5 m compared to the surface layers, respectively, indicating limited migration distance of iodine in the loess. The results obtained here also support limited depth-related migration of anthropogenic ¹²⁹I which can be a maximum depth of 1.6 m and 0.6 m in the Xifeng and Luochuan sections, respectively.

4.2. Contribution of uranium fissiogenic ¹²⁹I

Uranium is an important source of natural ¹²⁹I in the Earth's crust through spontaneous fission of ²³⁸U and neutron induced fission of ²³⁵U. These uranium fissiogenic processes might be a possible source of ¹²⁹I in the loess and paleosols. Based on the uranium concentration (Table 1), the contribution of uranium-sourced fissiogenic ¹²⁹I to the total ¹²⁹I in the loess-paleosol samples can be estimated using the following equation (Boaretto et al., 1990):

$${}^{129}I = ({}^{238}U \cdot f_s^{129} \cdot \lambda^{238} + {}^{235}U \cdot f_i^{129} \cdot \varphi\sigma) \cdot (1 - e^{-\lambda^{129} \cdot t})/\lambda^{129},$$
(1)

where ²³⁸U and ²³⁵U are the measured concentrations (µg/g); f_s and f_i are the spontaneous fission yields of ²³⁸U (0.03%) and neutron-induced fission yield of ²³⁵U (0.75%), respectively; λ^{129} is the decay constant of ¹²⁹I ($4.4 \times 10^{-8} \text{ yr}^{-1}$); λ^{238} is the ²³⁸U decay constant ($8.5 \times 10^{-17} \text{ yr}^{-1}$); $\varphi\sigma$ is the production rate from thermal- and epithermal-neutron-induced fission of ²³⁵U; and *t* is the residence time of the U phase in the material. Because the spontaneous fission production mode is expected to be dominant at low U concentrations (<100 µg/g) (Boaretto et al., 1990), the equation can be re-written as:

$${}^{129}I = {}^{238}U \cdot f_s^{129} \cdot \lambda^{238} \cdot (1 - e^{-\lambda^{129} \cdot t}) / \lambda^{129}$$
⁽²⁾

The variable t refers to the onset of fissiogenic 129 I by uranium in the samples. In the loess and paleosol samples, some uranium existed in the crystal lattice when the minerals formed (hundreds of millions of years), while some entered the soil from the atmosphere during pedogenesis (less than hundreds of thousands of years) after the eolian dust deposited onto the CLP. Since the variable ^{129}I in the equation correlated positively with the independent variable t, a larger t, the age of the provenance of the loess and paleosol, is reasonable to provide an upper limit of the fissiogenic contribution. By means of detrital-zircon U-Pb dating, the dominant age populations in the Xifeng and Luochuan sites are found to be both roughly in the range of 200-500 Myr (Xiao et al., 2012). Supposing the uranium in the samples formed only within the minerals, and taking 500 Myr as the maximum age of the loess-paleosol minerals, a fissiogenic ¹²⁹I content can be calculated to be around 100 atoms/g. This is $\leq 0.1\%$ of the total ¹²⁹I (10⁵–10⁶ atoms/ g) in the samples in all the loess-paleosol strata studied. Therefore, the contribution of the fissiogenic ¹²⁹I from uranium in the samples is negligible.

4.3. Comparison of the pre-nuclear $^{129}I/^{127}I$ in loess with the marine system

The pre-nuclear ${}^{129}I/{}^{127}I$ of 2.0×10^{-11} in the deep loess-paleosol sections of Xifeng and Luochuan is one order of magnitude higher than the value (1.5×10^{-12}) reported in the marine system. This difference might be attributed to the possible different isotopic equilibrium of iodine in the terrestrial and marine systems. The ocean is the major reservoir of ¹²⁷I on the Erath's surface while the concentration of the radioactive ¹²⁹I strongly depends on different production modes (cosmogenic and fissiogenic). Assuming a constant production of radioactive iodine on land and in the ocean, the relatively large inventory of stable iodine in the marine environment may dilute its ${}^{129}I/{}^{127}I$ ratio, as compared to the terrestrial value. This mechanism could lead to a lower ${}^{129}I/{}^{127}I$ value in the oceans, as suggested by Edwards and Rey (1968). The terrestrial stable iodine content is orders of magnitude lower than that of the marine environment (Hu and Moran, 2010). The production rate of cosmogenic ¹²⁹I is same for both reservoirs, and the fissiogenic ¹²⁹I production rate is about tenfold higher in the terrestrial environment than in the marine environment (Edwards and Rey, 1968). Therefore, the difference of ¹²⁹I/¹²⁷I between terrestrial and marine environment may be an order of magnitude or more. A similar distribution pattern has been found for natural chlorine in groundwater, where the lowest ³⁶Cl/Cl occurred near the coast. and the ratio increased to a maximum in the inland region of the United States (Davis et al., 2003). That was also interpreted as incomplete mixing of chlorine isotopes, since a large fraction of chlorine in the continent is of marine origin while ³⁶Cl is a cosmogenic radionuclide. Although there is no evidence, such a distribution pattern for natural iodine isotopes is quite possible for the terrestrial environment because of the similar origin of stable iodine and chlorine. Thus, the extent of iodine isotopic exchange between the two systems would be another important factor impacting the isotopic ratio for the terrestrial environment, especially for the environment of the CLP which is more than 1000 km from the Pacific Ocean. According to the assumption above, we tried to make a calculation of the $^{129}I/^{127}I$ ratio in the terrestrial environment based on the valid inventory of the two isotopes corresponding to the land surface. The equilibrium contribution of natural ¹²⁹I to the hydrosphere calculated by Edwards and Rey (1968) was adopted as the input of 129 I to the terrestrial environment, in which the data for weathering of rocks, volcanic matter and cosmogenic production are 3.6×10^{25} , 2.3×10^{26} and 5.8×10^{26} atoms, respectively. The input ¹²⁹I was calculated to be 4.34×10^{26} atoms, considering a reasonable cosmogenic ¹²⁹I input corresponding to the land area percentage of the Earth's surface (29%). As discussed above, referring to the ¹²⁹I downward migration, the iodine in the loess/soil sections cannot penetrate more than 2 m downward, and we expect much less penetration in rocks, due their low porosity. Thus, we arbitrarily used 2 m as a global maximum thickness for all exposed rocks on the land surface, that are participating in the exchange of iodine isotopes with the atmosphere. Considering the surface area of the

continents $(1.49 \times 10^8 \text{ km}^2)$ (https://en.wikipedia.org/wiki/ Continent), the average density of the continental crust (2.7 g/cm^3), the area percentage (73%) of sedimentary rocks (Wilkinson et al., 2009), the average iodine concentration for sedimentary rocks $(1.49 \,\mu\text{g/g})$ and for other rock types $(0.024 \mu g/g)$, for metamorphic rocks, the highest value of the upper crust being taken as the iodine concentration in all the other types except sedimentary rocks) (Muramatsu and Wedepohl, 1998) into account, the total inventory of 127 I is calculated to be 4.2×10^{36} atoms. Then, the 129 I/ 127 I is estimated at 1.0×10^{-10} . This value might represent an isotopic composition of terrestrial iodine (upper limit) under a non-exchange mode. When exchange is considered, more stable iodine than ¹²⁹I would be transported from ocean to land. Therefore, terrestrial ¹²⁹I/¹²⁷I depends on how much ¹²⁷I is of marine origin. The Chinese loesspaleosol pre-anthropogenic ${}^{129}I/{}^{127}I$ resides between the theoretically calculated terrestrial ratio 1.0×10^{-10} and the 1.5×10^{-12} of the marine system, indicating a contribution of marine ¹²⁷I to the terrestrial environment. Consequently, the results of the two soil sections and the discussion above suggest that the measured $^{129}\mathrm{I}/^{127}\mathrm{I}$ ratio of $(2.0 \pm 1.0) \times 10^{-11}$ at the depth provides the best estimate of the initial ¹²⁹I pre-nuclear natural level in the terrestrial system of the CLP and most likely in mid-latitude regions of the Northern Hemisphere.

5. CONCLUSIONS

The results and discussion presented here lead to the following conclusions: (1) A constant low ¹²⁹I/¹²⁷I of about $(2.0 \pm 1.0) \times 10^{-11}$ was observed in the deep layers of loess-paleosol sections from the Xifeng and Luochuan sites, China; (2) the pre-nuclear level of ${}^{129}I/{}^{127}I$ in the loess deposits is one order of magnitude higher than the reported initial value $(1.5 \pm 0.15) \times 10^{-12}$ derived from marine sediments; (3) possible anthropogenic ¹²⁹I input via downward migration and excessive fissiogenic ¹²⁹I from uranium isotopes have negligible impact on the iodine isotopic ratio. The average value of $(2.0 \pm 1.0) \times 10^{-11}$ for the ¹²⁹I/¹²⁷I provides a reasonable estimate of the initial natural ¹²⁹I level in the terrestrial environment of the CLP and most likely in the middle latitudes of the Northern Hemisphere; (4) the higher pre-nuclear ${}^{129}I/{}^{127}I$ value of the terrestrial environment compared to the marine system might be attributed to low stable ¹²⁷I concentration in the terrestrial environment. These findings may open new frontiers of research utilizing ¹²⁹I as a dating tool in the terrestrial system and provide a better constraint on the pre-nuclear ¹²⁹I level in the terrestrial environment globally.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science Foundation of China (Grant No. 41403106), Ministry of Science and Technology of China (Grant No. 2015FY110800) and State Key Laboratory of Loess and Quaternary Geology. Authors thank Prof. Udo Fehn, Prof. Ala Aldahan and Prof. George S. Burr for their constructive suggestions and polishing the language of this manuscript and thank the 3 anonymous reviewers for their valuable comments on this paper.

REFERENCES

- An Z. H., Kukla G. J., Porter S. C. and Xiao J. L. (1991) Magneticsusceptibility evidence of monsoon variation on the loess plateau of Central China during the last 130,000 years. *Quaternary Res.* 36, 29–36.
- Boaretto E., Dan B., Hollos G. and Paul M. (1990) Measurements of natural concentrations of ¹²⁹I in uranium ores by accelerator mass spectrometry. *Nucl. Instrum. Meth. B.* **50**, 280–285.
- Davis S. N., Moysey S., Cecil L. D. and Zreda M. (2003) Chlorine-36 in groundwater of the United States: empirical data. *Hydrogeol. J.* 11, 217–227.
- Ding Z. L., Derbyshire E., Yang S. L., Sun J. M. and Liu T. S. (2005) Stepwise expansion of desert environment across Northern China in the past 3.5 Ma and implications for monsoon evolution. *Earth Planet. Sci. Lett.* 237, 45–55.
- Edwards, R. and Rey, P. (1968) Terrestrial occurrence and distribution of iodine-129. Carnegie-Mellon Uni., Pittsburg, USA. Report No. NYO-3624-3.
- Edwards R. R. (1962) Iodine-129: its occurrence in nature and its utility as a tracer. *Science* **137**, 851–853.
- Elmore D., Gove H. E., Ferraro R., Kilius L. R., Lee H. W., Chang K. H., Beukens R. P., Litherland A. E., Russo C. J., Purser K. H., Murrell M. T. and Finkel R. C. (1980) Determination of I-129 using tandem accelerator mass-spectrometry. *Nature* 286, 138–140.
- Englund E., Aldahan A. and Possnert G. (2008) Tracing anthropogenic nuclear activity with ¹²⁹I in lake sediment. *J. Environ. Radioactivity* **99**, 219–229.
- Fabryka-Martin J., Bentley H., Elmore D. and Airey P. L. (1985) Natural iodine-129 as an environmental tracer. *Geochim. Cosmochim. Acta* 49, 337–347.
- Fan Y., Hou X. and Zhou W. (2013) Progress on I-129 analysis and its application in environmental and geological researches. *Desalination* 321, 32–46.
- Fehn U., Holdren G. R., Elmore D., Brunelle T., Teng R. and Kubik P. W. (1986) Determination of natural and anthropogenic ¹²⁹I in marine sediments. *Geophys. Res. Lett.* **13**, 137– 139.
- Fehn U., Snyder G. and Egeberg P. K. (2000) Dating of pore waters with ¹²⁹I: Relevance for the origin of marine gas hydrates. *Science* 289, 2332–2335.
- Guo Z. T., Ruddiman W. F., Hao Q. Z., Wu H. B., Qiao Y. S., Zhu R. X., Peng S. Z., Wei J. J., Yuan B. Y. and Liu T. S. (2002) Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. *Nature* **416**, 159–163.
- Heller F. and Liu T. (1982) Magnetostratigraphical dating of loess deposits in China. *Nature* **300**, 431–433.
- Hou X., Hansen V., Aldahan A., Possnert G., Lind O. C. and Lujaniene G. (2009) A review on speciation of iodine-129 in the environmental and biological samples. *Anal. Chim. Acta* 632, 181–196.
- Hou X., Zhou W., Chen N., Zhang L., Liu Q., Luo M., Fan Y., Liang W. and Fu Y. (2010) Determination of ultralow level ¹²⁹I/¹²⁷I in natural samples by separation of microgram carrier free iodine and accelerator mass spectrometry detection. *Anal. Chem.* **82**, 7713–7721.
- Hu Q. and Moran J. E. (2010) Iodine: radionuclides. *Encyclopedia Inorg. Chem.*
- Jabbar T., Steier P., Wallner G., Cichocki O. and Sterba J. H. (2013) Investigation of the isotopic ratio I-129/I in petrified wood. J. Environ. Radioactiv. 120, 33–38.
- Kabatapendias A. and Pendias H. K. (1984) *Trace Elements in Soils and Plants.* CRC Press, UK.
- Kukla G. and An Z. (1989) Loess stratigraphy in Central China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 72, 203–225.

Lella L. A. D., Nannoni F., Protano G. and Riccobono F. (2005) Uranium contents and ²³⁵U/²³⁸U atom ratios in soil and earthworms in Western Kosovo after the 1999 war. *Sci. Total Environ.* 337, 109–118.

Liu, T.S., 1985. Loess and environment. China Ocean Press.

- Lu Z., Tomaru H. and Fehn U. (2008) Iodine ages of pore waters at hydrate ridge (ODP Leg 204), Cascadia margin: Implications for sources of methane in gas hydrates. *Earth Planet. Sci. Lett.* 267, 654–665.
- Luo M. Y., Hou X. L., Zhou W. J., He C. H., Chen N., Liu Q. and Zhang L. Y. (2013) Speciation and migration of I-129 in soil profiles. J. Environ. Radioactiv. 118, 30–39.
- Moran J. E., Fehn U. and Teng R. T. D. (1998) Variations in ¹²⁹I/¹²⁷I ratios in recent marine sediments: evidence for a fossil organic component. *Chem. Geol.* **152**, 193–203.
- Muramatsu Y. and Wedepohl K. H. (1998) The distribution of iodine in the Earth's crust. *Chem. Geol.* 147, 201–216.
- Porter S. C. and An Z. (1995) Correlation between climate events in the north atlantic and china during the last glaciation. *Nature* 375, 305–308.
- Santos F. J., López-Gutiérrez J. M., García-León M., Synal H. A. and San Miguel E. G. (2007) ¹²⁹I record in a sediment core from tinto river (spain). *Nucl. Instrum. Meth. B* 259, 503–507.
- Snyder G. T. and Fehn U. (2002) Origin of iodine in volcanic fluids: ¹²⁹I results from the central american volcanic arc. *Geochim. Cosmochim. Acta* 66, 3827–3838.
- Sun Y., Clemens S. C., An Z. and Yu Z. (2006) Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. *Quat. Sci. Rev.* 25, 33–48.
- Sun Y., He L., Liang L. and An Z. (2011) Changing color of chinese loess: Geochemical constraint and paleoclimatic significance. J. Asian Earth Sci. 40, 1131–1138.
- Sun Y., Kutzbach J., An Z., Clemens S., Liu Z., Liu W., Liu X., Shi Z., Zheng W. and Liang L. (2015) Astronomical and glacial forcing of East Asian Summer Monsoon variability. *Quat. Sci. Rev.* 115, 132–142.
- Szidat S., Schmidt A., Handl J., Jakob D., Botsch W., Michel R., Synal H. A., Schnabel C., Suter M., Lopez-Gutierrez J. M. and

Stade (2000) Iodine-129: Sample preparation, quality control and analyses of pre-nuclear materials and of natural waters from lower saxony, Germany. *Nucl. Instrum. Meth. B* **172**, 699–710.

- Tikhomirov F. A., Kasparov S. V. and Moiseyev I. T. (1981) Some aspects of the soil chemistry of radioiodine. *Soviet Soil Sci.* 13, 61–72.
- Tomaru H., Lu Z., Snyder G. T., Fehn U., Hiruta A. and Matsumoto R. (2007) Origin and age of pore waters in an actively venting gas hydrate field near Sado island, Japan Sea: interpretation of halogen and I-129 distributions. *Chem. Geol.* 236, 350–366.
- Wilkinson B. H., Mcelroy B. J., Kesler S. E., Peters S. E. and Rothman E. D. (2009) Global geologic maps are tectonic speedometers – rates of rock cycling from area-age frequencies. *Geol. Soc. Am. Bull.* **121**, 760–779.
- Wu H., Chen F. and Wang J. (1998) Temporal and spatial variations of the loess accumulation rate and its significance on the loess plateau during Quaternary. *Acta Sedimentol. Sin.* 16, 147–156.
- Xiao G., Zong K., Li G., Hu Z., Dupont-Nivet G., Peng S. and Zhang K. (2012) Spatial and glacial-interglacial variations in provenance of the Chinese Loess Plateau. *Geophys. Res Lett*, 39.
- Zhang L., Zhou W., Hou X., Chen N., Liu Q., He C., Fan Y., Luo M., Wang Z. and Fu Y. (2011) Level and source of ¹²⁹I of environmental samples in Xi'an region, China. *Sci. Total Environ.* **409**, 3780–3788.
- Zhou W. J., Xian F., Beck J. W., Jull A. J. T., An Z. S., Wu Z. K., Liu M., Chen M. B., Priller A., Kutschera W., Burr G. S., Yu H. G., Song S. H., Cheng P. and Kong X. H. (2010) Reconstruction of 130-kyr relative geomagnetic intensities from Be-10 in two Chinese loess sections. *Radiocarbon* 52, 129–147.
- Zhu R., Rui Z., Deng C., Pan Y., Liu Q. and Sun Y. (2007) Are Chinese loess deposits essentially continuous? *Geophys. Res. Lett.* 34, L17306.

Associate Editor: Yuri Amelin