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ABSTRACT
Due to the intensive and complicated human activities, the identification
of nitrate pollution source of coastal aquifer is usually a challenge. This
study firstly adopted stable isotope technique and stable isotope
analysis in R (SIAR) model to identify the nitrate sources and contribution
proportions of different sources in typical coastal groundwater of
northern China. The results showed that about 91.5% of the
groundwater samples illustrated significantly high nitrate concentrations
exceeding the maximum WHO drinking water standard (50 mg/l),
reflecting the high risk of groundwater nitrate pollution in the coastal
area. A total of 57 sampling sites were classified into three groups
according to hierarchical cluster analysis (HCA). The d15N-NO3

¡ and d18O-
NO3

¡ values of groundwater samples from Group C (including nine
samples) were much higher than those from Group A (including 40
samples) and Group B (including 8 samples). SIAR results showed that
NH4

C fertilizer was the dominant nitrate source for groundwater samples
of Groups A and B while manure and sewage (M&S) served as dominant
source for Group C. This study provided essential information on the
high risk and pollution sources of coastal groundwater nitrate of
northern China.
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Introduction

Known as an important earth’s critical zone, the coastal zone is dramatically influenced by
the anthropogenic activities. Therefore, groundwater in this area has shown various prob-
lems such as seawater intrusion (De Filippis et al. 2016), land subsidence due to overexploi-
tation of the groundwater (Hu et al. 2004), and groundwater pollution (Re et al. 2013).
Groundwater nitrate pollution has remarkable effects on coastal ecosystem and human
health, which thus becomes an important issue for this area. Nitrate pollution of
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groundwater is a worldwide issue attracting extensive attention by the public (Gu et al. 2013;
Hosono et al. 2013; Menci�o et al. 2016). Intensive anthropogenic activities have caused large
amount of nitrogen matters that are discharged into the groundwater. Therefore, nitrate
concentrations of the groundwater continuously increase to seriously disturb fate and trans-
port of nitrate in the groundwater and extensively affect the human health and ecological
stability (Gu et al. 2013; Miller et al. 2016; Musgrove et al. 2016). Identification of the
groundwater nitrate sources has become an important issue for preventing and controlling
groundwater nitrate pollution (Hosono et al. 2013; Matiatos 2016). However, it is usually
difficult to identify groundwater nitrate pollution because of multiple factors including
uncertainty of groundwater nitrate sources, complexity of nitrate transformation, and retar-
dant effects of groundwater nitrate. Therefore, identification of nitrate sources in groundwa-
ter will not only lay the scientific basis on evaluating groundwater resources but also have
important sense in theory and practice for prevention and control of groundwater pollution.

There are diverse groundwater nitrate sources such as fertilizer and manure, industrial
and domestic sewage, atmospheric N deposition, and soil organic N (Kendall 1998). Various
nitrate sources and complex physic-chemical reactions in nitrogen cycle have caused
remarkable shortcoming using individual approach for source identification (Hosono et al.
2013). Stable isotope technique has been gradually employed to identify the nitrate sources
along with the development of this technique (Kaown et al. 2009; Matiatos 2016). Generally,
d15N-NO3

¡ values range from¡6% to C6% for fertilizers, from ¡13% to C13% for atmo-
spheric N deposition, from C5% to C25% for manure, from C4% to C19% for sewage,
and from 0% to C8% for soil N while d18O-NO3

¡ values range from ¡10% to C10% for
nitrate derived from nitrification, from C25% to C75% for atmospheric N deposition, and
from C17% to C25% for fertilizers (Bateman and Kelly 2007; Finlay et al. 2007; Hales et al.
2007; Lee et al. 2008; Singleton et al. 2007; Xue et al. 2009). Individual isotope method shows
limitations such as overlapping isotope value range and variance in isotope values of target
groundwater and source sites due to isotope fractionation. Therefore, individual isotope
approach cannot accurately identify the nitrate source of groundwater (Hosono et al. 2013).
Quantitatively evaluating the contribution proportions of the different nitrate sources is
important for prevention and control of groundwater nitrate pollution. Based on stable iso-
tope technique, many models for identifying source contribution have been established
(Moore and Semmens 2008; Parnell and Jackson 2008; Parnell et al. 2010; Matiatos 2016;
Grimmeisen et al. 2017). SIAR (Stable Isotope Analysis In R) is a Bayesian mixing model
based on Direchlet distribution (Jackson et al. 2009; Parnell and Jackson 2008), showing
good ability of solving limits of mass-balance mixing models. SIAR model has been applied
to evaluate the contribution of different nitrate sources (Yue et al. 2015a; Xue et al. 2012;
Matiatos 2016), exhibiting good application potential.

Freshwater resources in coastal zones are limited while demands are high, resulting in
strict water resource management and protection of coastal freshwater aquifers. In the face
of growing water scarcity, groundwater is an important water supply in the coastal zone.
Many attempts have been devoted to protecting the groundwater in coastal zone. Due to
the rapid increase in population and remarkable economic development in the coastal zone
in China, water demands have become greater and groundwater has been over-abstracted.
Due to the intensive and complicated human activities in coastal area, the identification of
nitrate source of coastal aquifer is usually a challenge. This study adopted stable isotope tech-
nique and SIAR model to identify the nitrate sources and contribution proportions of
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different source in typical coastal groundwater in northern China. It aims at providing essen-
tial information on the coastal groundwater protection and pollution control in northern
China.

Methods and materials

Study area

The study area is a typical coastal zone located in the eastern Laizhou Bay, northern China,
bordering on Bohai Sea in the north (Figure 1). Laizhou Bay coastal area was affected by
extremely intensive anthropogenic activities in China. Groundwater in this area has been
over-abstracted for the last few decades. Therefore, seawater intrusion in coastal aquifer
throughout this area has become the most serious in China (Yin 1992). The annual exploita-
tion of groundwater in the eastern Laizhou Bay was 1.54 £ 108 m3 in 2003 (Li 2005),
thus significantly decreasing groundwater levels. It is under continental monsoon climate
with an average annual temperature of 12.4�C. The average annual precipitation is
640.3 mm, mainly (about 72.4%) distributing from June to September. The average annual

Figure 1. Study area and sampling sites.
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potential evaporation is 2,118.7 mm (Fu et al. 1994). The study area shows five types of land-
forms (i.e. marine deposits plain, alluvial plain, pluvial plain, and bedrock hills) spreading
from coast to inland, being made up of sandbar, lagoon, and bedrock. With the width of 5–
10 and 2–3 km in some parts, the plains distribute in the shape of belt in east-north direc-
tion. The study area possesses two types of water-bearing bodies including Quaternary loose
beds and bedrock-fissured aquifer. The Quaternary water-bearing beds are made up of flu-
vial and pluvial sediments, sand layers, and talus strata, with the deposit thickness of 10–
100 m in the west and 15–25 m in the east. There are 2–3 aquifers made up of different litho
facies such as gravel sand, coarse sand, medium-granular sand, and small-granular sand,
and then transiting to the sediments of marine phase or lagoon phase. Upper aquifers are in
close hydraulic connection with lower aquifers due to a large amount of borehole withdrawal
and “deposit windows.’’ The detailed information on the hydrology of the study area refers
to Wen et al. (2012).

Sampling and chemical analysis

Field sampling and investigation were carried out in June 2013 to evaluate groundwater
nitrate pollution in the study area. Fifty-seven groundwater samples were collected from
long-term groundwater observation wells and drinking wells with depths of 5–40 m
(Figure 1). Water temperature (T), pH, dissolved oxygen (DO), and electrical conductivity
(EC) of the groundwater samples were measured in situ using a portable water quality ana-
lyzer (HQd30, Hach, USA). Water samples were filtered through a 0.45-mm cellulose-acetate
filter and stored at 4�C until chemical and isotope analysis. The concentrations of NO3

¡,
Cl¡, SO4

2¡, NaC, KC, Mg2C, and Ca2C were analyzed using ion chromatography (ICS3000,
Dionex, USA). The concentrations of HCO3

¡ were determined using titration.
The stable isotope d18O-H2O compositions of groundwater samples were analyzed using

an isotope ratio mass spectrometer (MAT-253, Thermo Scientific, USA). The d15N-
NO3

¡and d18O-NO3
¡ compositions were analyzed using the denitrifier method at the Facil-

ity for Isotope Ratio Mass Spectrometry, University of California, Riverside. All stable iso-
tope results are expressed in the delta (d) units of per mil (%) relative to a suitable standard.
Vienna Standard Mean Ocean Water (VSMOW) standard was used for d18O-H2O and
d18O-NO3

¡ while atmospheric nitrogen gas (N2) was used for d15N-NO3
¡. More detailed

information on the determination procedure and main principles for d15N-NO3
¡ and d18O-

NO3
¡ refers to Yang et al. (2013).

Data analysis

Since several chemical and isotopic sub-datasets did not follow a normal distribution, non-
parametric tests (Mann–Whitney and Kruskal–Wallis) were used to evaluate these datasets
by comparing the average values of two independent samples (subgroups). Data selection
obeys the null hypothesis stating that two or more samples taken from a single population
would have no consistent differences between two or more ranking sets. When the calculated
p-value is less than 0.05, two groups are significantly different. Hierarchical cluster analysis
(HCA) was adopted to classify Ward’s linkage rule which iteratively linked nearby data
through a similarity matrix. ANOVA was performed to evaluate the distance between differ-
ent clusters. The squared Euclidian distance was selected for the similarity measurement.
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d15N-NO3
¡ and d18O-NO3

¡ values were standardized based on z-scores. All statistical calcu-
lations were performed using SPSS 20.0.

Estimation of nitrate source contributions (SIAR)

To quantify the contributions of the NO3
¡ sources to groundwater, a Bayesian mixing model

SIAR (Stable Isotope Analysis In R) was used (Parnell and Jackson 2008; Parnell et al. 2010).
By defining a set of N measurements on J isotopes with contributions of K sources, the SIAR
model can be expressed as follows (Parnell et al. 2010):

Xij D
Xk

k D 1

pkðSjk C cjkÞ C eij

Sjk » Nðmjk;v
2
jkÞ

cjk » Nðλjk; t2jkÞ
eij » Nð0; s2

j Þ

where Xij is the observed isotope value j of mixture i, in which i D 1, 2 3,…, I and j D 1, 2, 3,
…, J; Sjk refers to the source value k on isotope j (k D 1, 2 3,…, K) that is normally distrib-
uted with mean mjk and variance vjk; pk is the proportion of source k, which needs to be esti-
mated by the SIAR model; cjk is the isotope fractionation factor for isotope j on source k,
being normally distributed with mean value ljk and standard deviation tjk; and eij is the
residual error representing the additional unquantified variation between individual mix-
tures and is normally distributed with mean 0 and standard deviation sj. Detailed informa-
tion on SIAR model refers to Parnel et al. (2010).

Due to the lack of the information on the d15N-NO3
¡ and d18O-NO3

¡ isotope character-
istic values for the potential nitrate sources in the study area, the mean value and standard
deviation of each source nitrate isotope signature were cited from literatures (Kendall et al.
2007; Chae et al. 2009; Kaown et al. 2009; Xue et al. 2009; Urresti-Estala et al. 2015; Yue
et al. 2015a; Yue et al. 2015b). The isotope fractionation factor cjk for all sources was set as
zero because no significant signs of nitrogen transformation occurred in the groundwater
during the sampling periods.

Results and discussion

Risk assessment and isotope compositions of coastal groundwater nitrate

The statistical summary of water quality parameters was shown in Table 1. The nitrate con-
centrations ranged from 9.35 to 660.88 mg/l, with an average value of 190.65 mg/l. The
nitrate concentration in groundwater is generally less than 10 mg/l under the natural condi-
tion (ECETOC 1988). Except one sample, the remaining 56 groundwater samples exhibited
high nitrate concentrations (exceeding 10 mg/l), indicating that anthropogenic contamina-
tion has dramatically increased nitrate concentrations in the groundwater. In particular,
about 91.5% of the groundwater samples showed remarkably high nitrate concentrations
which exceeded the recommended maximum allowable value for nitrate in drinking water
according to the WHO (50 mg/l), indicating the high risk of groundwater nitrate pollution
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in the coastal area. Nitrate concentrations reached 600 mg/l at some sampling sites, which
reflected the extremely high risk of groundwater nitrate pollution in the coastal area.

Most of groundwater quality parameters varied in very wide ranges and high standard devi-
ations (Table 1). The pH values ranged from 7.00 to 7.88 with an average of 7.40, indicating a
slight tendency toward a basic composition. DO varied from 3.42 to 11.49 mg/l with an average
of 7.29 mg/l to illustrate oxic conditions. Groundwater samples showed highly dispersed EC
values, ranging from 490 to 3650 mS/cm. The Cl¡ concentrations also had a wide range
between 42.68 and 1319.82 mg/l with an average of 218.25 mg/l. Concentrations of Ca2C,
Mg2C, KC, HCO3

¡, and SO4
2¡ also showed remarkable variations (Table 1), indicating that

chemical composition was affected by diverse hydro-chemical processes (Park et al. 2005).
The d15N-NO3

¡ values in the groundwater ranged from C3.06% to C18.57%, with an
average value of C7.52%. The d18O-NO3

¡ values in the groundwater varied between
C0.07% to C8.01%, with a mean value of C3.44%. The wide distributions of d15N-NO3

¡

and d18O-NO3
¡ indicated that high nitrate concentrations in groundwater mainly originated

from multiple nitrate sources (Xue et al. 2009). The d18O compositions of the groundwater
samples ranged from ¡8.35 to ¡4.63% with an average of ¡7.19%.

Distribution of water quality classification based on HCA

A total of 57 sampling sites were classified into three groups according to HCA (Figures 2
and 3). Furthermore, Kruskal-Wallis test results showed that the differences between each
cluster were all significant at the 95% level (p < 0.05). As illustrated in Figure 2, the d15N-
NO3

¡ and d18O-NO3
¡ values of groundwater samples from Group C were much higher

than those from Groups A and B. Group B showed the lowest values of d15N-NO3
¡ and

d18O-NO3
¡.

Potential nitrate sources in groundwater include soil organic nitrogen, synthetic fertil-
izers, atmospheric nitrogen deposition, manure, and sewage waste (Kendall 1998). A classi-
cal dual isotope approach (d15N-NO3

¡ versus d18O-NO3
¡) was applied to identify the

predominant sources of NO3
¡ in the groundwater samples (Figure 4). Due to the absence of

nitrate isotope values for potential nitrate sources in the study area, the d15N-NO3
¡ and

d18O-NO3
¡ isotopic composition results were compared to those obtained by Kendall et al.

Table 1. Statistical summary of groundwater parameters.

Minimum Maximum Mean Standard deviation Skewness

pH 7.00 7.68 7.38 0.15 ¡0.13
EC (mS/cm) 509.00 3650.00 1416.96 513.92 1.50
DO (mg/l) 3.42 10.22 7.21 1.49 ¡0.28
NaC (mg/l) 22.11 532.87 80.39 75.04 4.31
KC (mg/l) 0.11 18.56 1.96 2.67 4.73
Mg2C (mg/l) 10.42 77.20 30.89 14.48 1.21
Ca2C (mg/l) 37.84 383.53 192.11 73.65 0.25
Cl¡ (mg/l) 34.45 1319.82 224.05 190.35 3.66
NO3

¡ (mg/l) 9.35 660.88 196.87 131.54 1.36
SO4

2- (mg/l) 35.66 271.40 108.77 56.29 0.95
HCO3

¡ (mg/l) 124.56 500.96 282.74 75.65 0.49
TDS (mg/l) 258.09 2795.71 979.82 422.96 1.48
d15N-NO3

¡ (%) 3.06 18.57 7.52 2.77 1.34
d18O-NO3

¡ (%) 0.07 8.01 3.43 1.71 0.58
d18O-H2O (%) ¡8.35 ¡4.63 ¡7.19 0.73 1.19
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(2007) and Xue et al. (2009). Figure 4 illustrated that the isotopic signatures of the ground-
water samples spread over the range of soil N, NH4

C fertilizer & soil N, soil N & manure
and sewage (M&S).

Nitrate concentrations of Group A ranged from 23.85 to 484.76 mg/l with an average of
184.75 mg/l. The d15N-NO3

¡ and d18O-NO3
¡ values of groundwater samples which were

classified into Group A ranged fromC4.28 toC11.82% and fromC1.76 toC5.31%, respec-
tively (Figure 2). It was observed visually that the samples did not fall into the ranges for a
specific source (Figure 4), illustrating that these groundwater samples most likely possessed
multiple nitrate source inputs. The isotopic signatures of nitrate were close to a mixture of
nitrate in soil N, NH4

C fertilizer, and M&S (Figure 4), suggesting that nitrate was influenced
by these nitrate sources. This is consistent with the land use pattern in the study area. The

Figure 2. Distribution of water quality classification using HCA.
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most of Group A sampling sites are located in the agricultural areas. However, these sam-
pling sites are not far from the residential areas where crops receive synthetic NH4

C fertil-
izer, manure, and sewage from the residential areas. Additionally, several sampling sites lay
near the coastal aquaculture area where the aquaculture sewage was discharged. Therefore,
groundwater in these sites is affected by multiple nitrate sources.

A total of eight samples were clustered into Group B with d15N-NO3
¡values between

C3.06% and C5.74% and d18O-NO3
¡ values between C0.07% and C1.77%. It is clear that

the isotopic values of the group B mainly fall into the range for NH4
C fertilizer and soil N

sources (Figure 4). However, soil N cannot be considered as the significant nitrate source of
the samples clustered into Group B because the concentrations of NO3

¡ for group B ranging
from 67.07 to 660.88 mg/l with an average 321.96 mg/l exceeded the NO3

¡concentrations
produced by the mineralization of soil N (Puig et al. 2013). Groundwater samples of group
B were collected from the agricultural areas which are far from the residential areas com-
pared to Group A (Figure 2). NH4

C fertilizers are very commonly used in these areas,

Figure 3. Water quality classification of different sampling sites using HCA.

Figure 4. Identification of nitrate sources in the groundwater samples.
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revealing that the dominant nitrate source of these groundwater samples might be NH4
C fer-

tilizers that underwent processes such as volatilization and nitrification (Yuan et al. 2012;
Matiatos 2016).

Nitrate concentrations of Group C that included nine groundwater samples ranged from
9.35 to 203.40 mg/l with an average of 139.58 mg/l. d15N-NO3

¡ and d18O-NO3
¡ values of

Group C varied between C8.68% and C18.57% and C5.23% and C8.01%. The isotopic
signatures of group C mainly fell into the range for M&S sources (Figure 4), suggesting that
nitrate in groundwater samples mainly derived from M&S. The sampling sites are located
near the industrial and urban zones. A great deal of domestic sewage was directly discharged
into the nearby ground or ditches without treatment due to the lack of wastewater treatment
facilities in this study area. Therefore, nitrate in groundwater of group C might be attributed
to leakage or disposal of untreated wastes from septic systems and industries. Moreover, a
manure origin cannot be precluded because animal breeding frequently occurs at a small dis-
tance from the industrial and urban zones in this area. Since aquaculture is an important
industry in coastal regions, coastal aquaculture might be an important nitrate source of the
groundwater in group C near the aquaculture area due to the discharge of aquaculture
wastewater.

Nitrogen transformations such as nitrification and denitrification are generally biogeo-
chemical processes that may especially occur in shallow aquifers (Rivett et al. 2008; Xue
et al. 2009; Hosono et al. 2013). Theoretically, NO3

¡ derived from nitrification has d18O-
NO3

¡ values ranging from¡10% toC10% (Xue et al. 2009). The measured d18O-NO3
¡val-

ues of the groundwater samples varied between C0.07% and C8.01% with a mean value of
C3.43% (Figure 5). These relatively low values suggested that nitrification was the dominant
process in the groundwater. Typically, it is considered that NO3

¡ produced from autotro-
phic nitrification contains two-thirds of the O2 from local water (e.g. soil water, groundwa-
ter, etc.) and one-third of the O2 from atmospheric oxygen (C23.5%) (Wassenaar 1995).
Therefore, measured d18O-H2O values in the groundwater can be used to estimate the theo-
retically d18O-NO3

¡ of groundwater during nitrification. Measured d18O-H2O values of
groundwater in the study area ranged from ¡8.35% to ¡4.63% with a mean value of

Figure 5. Box plots of d18O-NO3
¡ and d18O-H2O.

HUMAN AND ECOLOGICAL RISK ASSESSMENT 1051



¡7.19% (Figure 5). Consequently, the expected d18O-NO3
¡ values for groundwater nitrate

derived from nitrification should be ranged from C2.26% to C4.75% with mean value of
C3.04% according to the equation of d18O-NO3

¡ D 2/3 (d18O-H2O) C 1/3 (d18O-O2)
(Jak�obczyk-Karpierz et al. 2017). The theoretically expected value was close to but narrower
than the measured d18O-NO3

¡ values (d18O-NO3
¡ D C3.43% § C1.71%), indicating that

groundwater nitrate was derived from the nitrification of organic soil N, NH4
C fertilizer,

and M&S.
In theory, a remarkably positive linear relationship between d15N-NO3

¡ and d18O-NO3
¡

will be observed if significant denitrification occurs (Singleton et al. 2007; Sacchi et al. 2013).
No significant correlation of d15N-NO3

¡ and d18O-NO3
¡ was observed in the groundwater

samples (Figures 4 and 6). Moreover, the DO concentrations in the groundwater samples
illustrated in Table 1 were much higher than the O2 concentration suitable for denitrification
(Rivett et al. 2008). In consideration of the oxic groundwater conditions, denitrification was
not a major process in groundwater.

Contribution of different nitrate sources determined by SIAR

Based on the previous analysis of d15N-NO3
¡ and d18O-NO3

¡ isotopic characteristic values
for the groundwater samples, it is clear that nitrate in the groundwater originated from soil
N, NH4

C fertilizer, and M&S. However, the contribution rate of the potential nitrate sources
cannot be distinguished by the bi-plot approach. To quantify the contribution proportions
of the each nitrate source, SIAR model that can only be applied with two or more values (El
Gaouzi et al. 2013) was used to estimate the probability distribution for the relative contribu-
tion of each source in the study area. Contribution proportions of different nitrate sources
including soil N, NH4

C fertilizer, and M&S for groundwater samples were determined by
SIAR for Groups A, B, and C, respectively (Figure 7). The source contributions to groundwa-
ter nitrate were assessed by SIAR which incorporate the source uncertainty as the 25th and
75th confidence intervals, and the ranges of the mean values (Figure 7).

In this study, the mean values of contribution proportions were used for further analysis.
The mean values revealed a high variability in contribution of the three potential NO3

¡

Figure 6. Relationship between d15N-NO3
¡ and d18O-NO3

¡ values of the groundwater samples.
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sources for different groups of the groundwater samples (Figure 7). The results demon-
strated that NH4

C fertilizer was the dominant source for groundwater samples of Group A,
with the mean contribution proportion of 50%. M&S also contributed significantly, with the
mean proportion of 46%. The mean contribution proportion of soil N was only 4% for
groundwater samples of Group A. NH4

C fertilizer contributed 60% of the NO3
¡ in ground-

water for Group B. M&S and soil N contributed to groundwater nitrate for Group B with
average proportions of 23% and 17%, respectively. M&S served as dominant nitrate contri-
bution source for the groundwater samples of group C, with the mean contribution propor-
tion of 70%. NH4

C fertilizer and soil N showed similar contribution pattern, contributing to
the groundwater nitrate with proportions of 15% and 15%, respectively.

On the whole, the nitrate source contributions determined by SIAR model were rea-
sonable and in accordance with previous analysis by d15N-NO3

¡ and d18O-NO3
¡ iso-

tope characteristics. Comparing the above findings with the specific NO3
¡ pollution

sources, it was found that the dominant nitrate pollution sources of groundwater NO3
¡

in the study area were NH4
C fertilizer and M&S. This may be attributed to two rea-

sons. Firstly, chemical fertilizer and manure are widely used to increase crop produc-
tion in the study area where winter wheat, summer maize, and vegetable crops are
widely cultivated. Excessive use of fertilizer in China is well known, with average farm-
land application amount per unit area of three times the world average (Ministry of
Environmental Protection 2011). In the study area, fertilizers (300–600 kg/ha) are usu-
ally applied for better cultivation. Moreover, organic fertilizers such as pig and cattle
manures (500–1000 kg/ha) are also generally used for crops. However, the efficiency of
utilizing fertilizers in China is only 30%–40%, accompanying about half of the nitrogen
lost by volatilization and another 5%–10% lost by leaching (Gu et al. 2013). Excessive
use of agricultural fertilizers in the area has deteriorated groundwater nitrate pollution.
Secondly, sewage waste and/or manure are important nitrate sources in the groundwa-
ter of the study area. Industrial and domestic sources produce more than 3.0 £ 1010

m3 untreated sewage in China every year, and the sewage discharge into rivers is used
for irrigation of farmland (Zhang et al. 2014). It is assumed that the amount of sewage
will dramatically increase in the study area in accordance with significant progression
of economic developments and urbanization. Moreover, this sewage is usually under
low-level or no treatment before discharge, resulting in the high nitrate concentration
in the groundwater. In addition, mineralization of soil organic N was another nitrate

Figure 7. Contribution proportions of different nitrate sources for groundwater.
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source of the groundwater. Due to the sea-water intrusion, soil salinization is serious in
this region (Wen et al. 2012). In order to increase the soil organic matter content and
control saline-alkali soil, straw and stalks of crops are widely reused in the study area
(Jia et al. 2010) to cause increased soil organic N content. Soil organic N is an impor-
tant source of NO3

¡ pollution of groundwater, which is also corresponded by the find-
ings of this study.

The results from SIAR outputs showed that NO3
¡ in the groundwater mainly origi-

nated from NH4
C fertilizer and M&S. Although our results provide important informa-

tion for controlling nitrate concentrations in the groundwater, it has some limitations.
Firstly, only the spatial variation of nitrate sources in different groups was investigated in
this study. Therefore, further research is necessary to understand the temporal variation
of NO3

¡ sources in the groundwater. Secondly, the mean and standard deviations of
potential NO3

¡ sources used in this study were mostly cited from literatures. Thus, the
outputs obtained from SIAR model will become more precise if site-specific and more
accurate isotope information on d15N-NO3

¡ and d18O-NO3
¡ values of sources from the

study area can be obtained. Thirdly, the model gave large confidence intervals in this
work, which might cause large uncertainty in the apportionment results. The outputs of
Group A which had 40 samples showed smaller confidence intervals based on SIAR
results, which illustrated that information derived from large number of samples could
reduce the uncertainty and improve discrimination of nitrate source.

Conclusions

Stable isotope technique and SIAR model was firstly used to identify the nitrate sources and
contribution proportions of different sources in typical coastal groundwater in northern
China. About 91.5% of the groundwater samples collected from Laizhou Bay coastal area
illustrated significantly high nitrate concentrations which exceeded WHO drinking water
standard, reflecting the high risk of groundwater nitrate pollution in the study area. A total
of 57 sampling sites were classified into three clusters according to HCA. The d15N-NO3

¡

and d18O-NO3
¡ values of groundwater samples from Group C were much higher than those

from Groups A and B. SIAR results showed that NH4
C fertilizer was the dominant nitrate

source for groundwater samples of Groups A and B while manure and sewage served as
dominant source for Group C. The results obtained in this study will provide important
information for groundwater management and nitrate pollution control in the coastal zone.
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