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Abstract: The key proteins responsible for hormone synthesis in the thyroid are glycosylated.
Oligosaccharides strongly affect the function of glycosylated proteins. Both thyroid-stimulating
hormone (TSH) secreted by the pituitary gland and TSH receptors on the surface of thyrocytes
contain N-glycans, which are crucial to their proper activity. Thyroglobulin (Tg), the protein backbone
for synthesis of thyroid hormones, is a heavily N-glycosylated protein, containing 20 putative
N-glycosylated sites. N-oligosaccharides play a role in Tg transport into the follicular lumen, where
thyroid hormones are produced, and into thyrocytes, where hyposialylated Tg is degraded. N-glycans
of the cell membrane transporters sodium/iodide symporter and pendrin are necessary for iodide
transport. Some changes in glycosylation result in abnormal activity of the thyroid and alteration of
the metabolic clearance rate of hormones. Alteration of glycan structures is a pathological process
related to the progression of chronic diseases such as thyroid cancers and autoimmunity. Thyroid
carcinogenesis is accompanied by changes in sialylation and fucosylation, β1,6-branching of glycans,
the content and structure of poly-LacNAc chains, as well as O-GlcNAcylation, while in thyroid
autoimmunity the main processes affected are sialylation and fucosylation. The glycobiology of the
thyroid gland is an intensively studied field of research, providing new data helpful in understanding
the role of the sugar component in thyroid protein biology and disorders.

Keywords: glycosylation; thyroid; thyroid-stimulating hormone; TSHR; thyroglobulin; NIS; pendrin;
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1. Introduction

The thyroid gland is crucial to the regulation of metabolism, development and growth, acting
via the thyroid hormones triiodothyronine (T3) and thyroxine (T4) [1]. The characteristic molecular
system absorbs, concentrates, oxidizes and then incorporates iodine into thyroglobulin (Tg) in thyroid
follicles [2]. Tg is the protein backbone for the synthesis of thyroid hormones, which are produced by
thyrocytes and secreted into the thyroid colloid [3]. Thyroid peroxidase, also called thyroperoxidase
(TPO), contains a heme group in its ectodomain and requires iron for its activity [4]. TPO catalyzes
iodine oxidation, iodination of Tg, and extracellular production of monoiodotyrosine (MIT) and
diiodotyrosine (DIT) near the apical membrane of thyrocytes. The combination of MIT and DIT forms
T3, while T4 consists of two coupled DITs [3,5]. Synthesis of thyroid hormones is regulated by pituitary
thyroid-stimulating hormone (TSH), which binds to its thyroid-stimulating hormone receptor (TSHR)
on the surface of thyroid follicular cells [6]. All the above-mentioned thyroid proteins (Tg, TPO, TSHR)
and thyroid-related proteins (TSH) are N-glycosylated; their sugar components are responsible for the
proper functioning of glycoproteins [7–10].
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Glycosylation is one of the most common post-translational protein modifications (PTMs).
Attachment of glycans to a protein is a multistep enzymatic process occurring in the endoplasmic
reticulum (ER) and Golgi apparatus. Synthesis of glycans requires transfer of monosaccharides
from activated nucleoside triphosphate donors to a sugar acceptor [11]. This process is catalyzed by
glycosyltransferases (GTs), which play a key regulatory role in glycosylation; they are responsible for
the attachment of sugar moieties to the nascent oligosaccharide structure. Hydrolysis of the glycosidic
linkages and release of monosaccharides are catalyzed by glycosidases [12]. Three main types of
protein glycosylation have been distinguished: O-glycosylation, O-GlcNAcylation and N-glycosylation,
the most abundant PTMs (Figure 1). N-oligosaccharides are attached via an N-glycosidic bond to
asparagine (Asn) in the consensus sequence Asn-Xaa-Ser/Thr (Ser, serine; Thr, threonine; Xaa, any
amino acid except proline) during a multistep N-glycosylation process. All N-glycan structures
share the same core sequence Manα1,3(Manα1,6)Manβ1,4GlcNAcβ1,4GlcNAcβ1-Asn (Man, mannose;
GlcNAc; N-acetylglucosamine). The addition of monosaccharides to the core structures leads to
extension of the antennas in the outer part of N-glycans. Based on the complexity and composition
of monosaccharide residues in the outer part, N-glycans have been classified into three groups:
oligomannose (high-mannose), hybrid-type and complex-type. Oligomannose glycans contain between
five and nine mannoses attached to core GlcNAc residues. The antenna built by GlcNAcβ1,4Gal (Gal,
galactose) linked to the N-glycan core is characteristic for complex-type N-glycans, which are bi-, tri- or
tetraantennary structures. The antenna in the outer part of glycans may be modified by the addition of
α2,3- or α2,6-linked sialic acid (SA) as a terminal residue, and fucose (Fuc)-linked α1,2 to terminal Gal,
and α1,3 or α1,4 to subterminal GlcNAc. Fuc is also present in the core region of N-glycans α1,6-linked
to the innermost GlcNAc. Hybrid-type oligosaccharides share the features of high-mannose and
complex-type N-glycans [13–15]. O-oligosaccharides are attached via O-glycosidic bonds to Ser or Thr
of proteins and are extended to one of four common forms. A single N-acetylgalactosamine (GalNAc)
added to the protein chain, known as Tn antigen, is elongated with Gal, giving core 1 O-glycans.
Modification of Tn antigen with GlcNAc gives a core 3 structure. Further extension of O-glycans leads
to the formation of branches characteristic for core 2 and core 4 O-glycans [16]. O-glycan structure
can be separated into three regions: the innermost core region described above, a middle region
which forms the backbone chain of O-glycan, and an outermost region with the highest structural
variability [17]. In the case of O-GlcNAcylation, a single GlcNAc is added to the Ser or Thr residues
(Figure 1) [18,19]. O-GlcNAcylation is characteristic for cellular proteins, while most of the surface and
secreted as well as some lysosomal proteins are subject to N- and O-glycosylation [13,20,21].

The modification of proteins by the attachment of oligosaccharides influences protein folding,
function, structure and stability, immunological recognition, cell signaling and adhesion [12,22].
Glycans on thyroid proteins play significant roles in Tg transport and hormone synthesis [8], TSH
activity [9] and TSH recognition by its receptor [6], as well as iodide transport via sodium/iodide
symporter [23] and pendrin [24]. Proper glycosylation of proteins is crucial to the proper
functioning of the thyroid gland; changes in GT expression and glycan structure contribute to thyroid
disorders [21,25].

The earliest studies on sugar components of the key thyroid proteins were performed in the 1970s
and 1980s [26,27]. In 1975 the carbohydrate composition of human TSH subunits was described [26].
At the beginning of 1980s, the crucial role of Tg glycosylation in thyroid hormone production was
suggested based on in vitro studies [28]. Then the impact of Tg oligosaccharides on recognition
by specific antibodies was shown in the porcine model [29]. These findings were fundamental
to further studies aimed at decoding the role of glycans in thyroid proteins that are important in
thyrocyte physiology and pathology. Today, glycosylation in the thyroid gland is still a rich field for
exploration. Research in the last decade has been aimed at finding serum glycomarkers specific for
thyroid autoimmunity and cancers. Some studies have found changes in the glycosylation profile of
thyroid proteins during thyroid dysfunction [21,25]. This review summarizes the results of studies on
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the glycan structures of thyroid proteins, the role of the sugar component in glycoprotein functioning,
and alterations of glycosylation in thyroid diseases.
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Figure 1. Three post-translational modifications of proteins: N-glycosylation, O-glycosylation and 
O-GlcNAcylation. (A) N-oligosaccharides are attached via N-glycosidic bonds to asparagine (Asn) in 
the consensus sequence Asn-Xaa-Ser/Thr (Ser, serine; Thr, threonine; Xaa, any amino acid except 
proline). In the N-glycosylation process, three types of N-glycans are created: high-mannose (or 
oligomannose), hybrid-type, and complex-type bi-, tri- or tetraantennary, which share the same core 
structure (GlcNAc2Man3, dashed line) and differ in the external part, built of N-acetylglucosamine 
(GlcNAc), galactose (Gal), sialic acid (SA) and fucose (Fuc). Complex-type antennas can be extended 
with poly-N-acetyllactosamine (poly-LacNAc) chains. (B) O-glycan structures with mainly cores 1, 2, 
3 and 4 are formed in the O-glycosylation pathway. O-glycans also contain poly-LacNAc chains or 
are terminated with SA. O-oligosaccharides are linked via N-acetylgalactosamine (GalNAc) to Ser or 
Thr in the protein sequence. (C) In the O-GlcNAcylation process, a single GlcNac is attached to Ser or 
Thr. Glycosylation processes are catalyzed by different glycosyltransferases, including 
fucosyltransferase 8 (Fut8), N-acetylglucosaminyltransferase V (GnTV), 
N-acetylgalactosamine-specific α2,6-sialyltransferase 2 (ST6GalNAc2) and O-GlcNAc transferase 
(OGT) [13–19]. 
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Figure 1. Three post-translational modifications of proteins: N-glycosylation, O-glycosylation and
O-GlcNAcylation. (A) N-oligosaccharides are attached via N-glycosidic bonds to asparagine (Asn)
in the consensus sequence Asn-Xaa-Ser/Thr (Ser, serine; Thr, threonine; Xaa, any amino acid
except proline). In the N-glycosylation process, three types of N-glycans are created: high-mannose
(or oligomannose), hybrid-type, and complex-type bi-, tri- or tetraantennary, which share the same core
structure (GlcNAc2Man3, dashed line) and differ in the external part, built of N-acetylglucosamine
(GlcNAc), galactose (Gal), sialic acid (SA) and fucose (Fuc). Complex-type antennas can be extended
with poly-N-acetyllactosamine (poly-LacNAc) chains. (B) O-glycan structures with mainly cores 1,
2, 3 and 4 are formed in the O-glycosylation pathway. O-glycans also contain poly-LacNAc chains
or are terminated with SA. O-oligosaccharides are linked via N-acetylgalactosamine (GalNAc) to
Ser or Thr in the protein sequence. (C) In the O-GlcNAcylation process, a single GlcNac is attached
to Ser or Thr. Glycosylation processes are catalyzed by different glycosyltransferases, including
fucosyltransferase 8 (Fut8), N-acetylglucosaminyltransferase V (GnTV), N-acetylgalactosamine-specific
α2,6-sialyltransferase 2 (ST6GalNAc2) and O-GlcNAc transferase (OGT) [13–19].

2. Glycosylation of Proteins Involved in Thyroid Functioning

2.1. Glycosylation of TSH

2.1.1. TSH Protein and Glycan Structure

Thyrotropin (TSH) is a glycosylated heterodimer built of noncovalently linked α and β subunits.
TSH belongs to the family of glycoprotein hormones, which also includes luteinizing hormone (LH),
follicle-stimulating hormone (FSH) and human chorionic gonadotropin (hCG) [30]. The α chain is
common to other members of the human glycoprotein hormone family, whereas the β subunit is
unique to the TSH molecule. The genes encoding the α and β subunits of human TSH (hTSH) are
located on chromosomes 6 and 1, respectively. TSH, produced in the distal part of the pituitary
gland, stimulates thyroid cells to synthesize thyroid hormones via TSHR. Human TSH is a 28–30 kDa
glycoprotein; the glycan part represents 15–25% of its molecular weight. The amino acid sequence of
hTSH contains three potential N-glycosylation sites. Two of them are in the α subunit (Asn52, Asn78)
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and one in the β subunit (Asn23). Each of these oligosaccharide chains are complex-type N-glycans
(Figure 2).
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Figure 2. Glycosylation of the key thyroid proteins. Synthesis of thyroid hormones is regulated
by the hypothalamus-pituitary-thyroid axis. Thyrotropin-releasing hormone (TRH), produced by
the hypothalamus, stimulates the pituitary gland to release thyroid-stimulating hormone (TSH).
PD-TSH is secreted by the pars distalis (PD) and PT-TSH by the pars tuberalis of the pituitary gland.
PT-TSH binds to the TSH receptor (TSHR) in the hypothalamus and regulates seasonality. PD-TSH
binds to TSHR in the cell membrane of thyrocytes and induces signal transduction, resulting in
thyroglobulin (Tg) synthesis [31]. Thyroperoxidase (TPO) catalyzes iodine oxidation, iodination of
Tg, and production of monoiodotyrosine (MIT) and diiodotyrosine (DIT). The combination of MIT
and DIT gives triiodothyronine (T3), while tetraiodothyronine, also called thyroxine (T4), consists
of two coupled DITs [3–5]. Sodium/iodide symporter (NIS) is responsible for active transport of
iodide ions through the thyroid follicular cell membrane into thyrocytes. Pendrin, an anion transporter
located in the apical membrane of thyrocytes, is involved in iodide transport from follicular cells
into the lumen of follicles [32]. All the above-mentioned human thyroid proteins are N-glycosylated
and contain different numbers of N-glycosylation sites (red dots): TSH–3 (Asn23, Asn52, Asn78) [6],
TSHR–6 (Asn77, Asn99, Asn113, Asn177, Asn198, Asn302) [33], Tg–16 (Asn57, Asn179, Asn465,
Asn510, Asn729, Asn797, Asn928, Asn1200, Asn1329, Asn1345, Asn1696, Asn1754, Asn1993, Asn2230,
Asn2275, Asn2562) [34], NIS–3 (Asn485, Asn497, Asn225) [32,35], pendrin–3 [36]. TSH is abundant in
sulfated biantennary N-glycans [6]. TSHR contains high-mannose and complex-type structures [33].
High-mannose structures as well as galactosylated, fucosylated, and sialylated hybrid-type and
complex-type N-glycans have been identified on Tg [34,37,38].
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The heterogeneity of glycan structures results from their different branching, sialylation, core
fucosylation and terminal GlcNAc sulfation [6,31,39,40]. The antenna extended on the Manα1,3 arm is
terminated with sulfated sugar residues, while the Manα1,6 arm contains additionally α2,3-linked
SA as a terminal residue. Differences in glycosylation have also been shown between TSH subunits;
α subunit glycans are mainly sialylated and monosulfated, whereas the β subunit contains more
disulfated and core-fucosylated structures [40].

2.1.2. Functions of TSH Glycans

The diversity of glycan structures results in many TSH glycoforms, which differ in their
bioactivity [6,31]. N-glycosylation of the α subunit affects signal transduction after TSHR activation.
De-N-glycosylation of TSH improves its activity. β subunit glycosylation is important for TSH
stability and secretion [41]. Conversion of Asn to glutamine in the β subunit sequence by site-directed
mutagenesis significantly reduced TSH production in human embryonic kidney 293 cells cultured
in vitro [42]. Binding of de-N-glycosylated hTSH to the antibody against the β subunit was mostly
failed, whereas a lack of oligosaccharides has little effect on the affinity of the anti-α chain to this
subunit. Deglycosylated TSH is fivefold less immunoreactive to the antibody against the β chain
than to anti-α. This is due to the presence of the glycosylation-dependent epitopes that determine
antigenicity mainly on the β subunit [43].

2.1.3. Glycosylation of Recombinant TSH

The exact protocol for the production of the recombinant human TSH (rhTSH) in Chinese hamster
ovary (CHO) cells was described by Cole and colleagues [44]. The molecular mass of the α and β

subunits was estimated at 20 and 16 kDa, respectively, based on electrophoretic separation. Analysis
of the sugar component showed that rhTSH produced in CHO is more abundant in Man and GlcNAc
than pituitary TSH (phTSH). The sialylation level was higher in rhTSH; however, the SA:Gal ratio
was comparable between rhTSH and phTSH. Because the plasma clearance rate and toxicology
tests performed on monkey and rat showed no treatment-related aberration, rhTSH was suggested
as an exogenous source of TSH for treatment of post-thyroidectomy patients [44]. Recombinant
hTSH contains sialylated complex-type glycans. Bi- and triantennary structures were present at
three N-glycosylation sites, while tetraantennary oligosaccharides were attached mainly to Asn23.
Fucosylated N-glycans were found only at the Asn52 glycosylation site [41]. The glycan composition
depends on the primary and secondary structure of proteins as well as on glycosylation processing
in the host cells [44,45]. The bioactivity of hormones is determined by their metabolic clearance
rate (MCR). The activity and MCR of TSH depend on the N-glycan composition of thyrotropin.
Desialylation of rhTSH increased its bioactivity in vitro, while in vivo a lack of SA decreased
TSH activity in animal model. Resialylation of terminal Gal reversed these effects. Removal of
terminal GlcNAc reduced rhTSH activity in vivo, while degalactosylation did not affect the action of
thyrotropin [46]. SA-terminated rhTSH glycans differ from pituitary human TSH, which is abundant in
sulfated oligosaccharides. The use of several combinations of α and β subunits from rhTSH and phTSH
showed that the hybrids containing the desialylated α subunit were more active in vitro. Hybrids with
the same α subunit but a different desialylated or fully sialylated β subunit showed similar bioactivity.
This means that removing SA from the α subunit but not from the β chain significantly enhances the
in vitro activity of highly sialylated rhTSH [10].

It is well described that changes in TSH glycosylation, including sialylation, can alter epitope
expression [47,48] and modulate recognition by the specific antibody used in standard TSH
immunoassays [47]. Sialylation of rhTSH produced in the CHO cell line differs from phTSH due
to a lack of endogenous expression of α2,6-sialotransferase in CHO cells. For this reason, hamster
rhTSH was not a reliable assay reference for measurement of the circulating TSH level [48]. A recent
study reports that recombinant glycoengineered TSH (rgTSH) is an excellent alternative for rhTSH
as a calibrator for TSH measurement [49]. The rgTSH expressed in CHO cells transfected with



Int. J. Mol. Sci. 2018, 19, 2792 6 of 24

α2,6-sialotransferase minigene [50] was used as an assay standard to measure TSH level. Comparison
of rgTSH, phTSH and rhTSH showed a significant difference in their sialylation profiles. The highest
sialylation was found in the rgTSH form. Hypersialylation of rgTSH ensures biological activity and
antigenicity similar to circulating TSH. Measurement of TSH in an immunoassay with the use of
phTSH, rhTSH and rgTSH as calibrators showed the lowest variation of TSH values in the case of
rgTSH. A recombinant glycoengineered variant of TSH is suggested as a new immunoassay calibrator
in diagnostic tests [49].

2.1.4. Glycosylation of Naturally Occurring TSH

The mouse pituitary gland produces two types of TSH: PD-TSH in the pars distalis (PD) and
PT-TSH in the pars tuberalis (PT). PD-TSH is a classic form of thyrotropin which regulates thyroid
hormone synthesis, while PT-TSH binds to TSHR located on mediobasal hypothalamus ependymal
cells and activates the expression of the Dio2 gene, which is responsible for the regulation of seasonality.
The PD-TSH and PT-TSH forms also differ in their glycosylation patterns. The molecular mass of
PD-TSH (estimated at 37 kDa) is lower than that of PT-TSH (40 kDa). De-N-glycosylation reduces
the mass of both TSH variants to a 34 kDa protein. Matrix-assisted laser desorption-ionization
time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of enzymatically released N-glycans has
shown that sulfated biantennary glycans are present mainly on PD-TSH, while sialylated tri- and
tetraantennary N-glycans are characteristic for PT-TSH [31]. Lectin blotting with Maackia amurensis
agglutinin (MAA), which preferentially recognizes SA α2,3-linked to N-acetyllactosamine (LacNAc,
disaccharide Galβ1,4GlcNAcβ1,3), and Phaseolus vulgaris lectin (PHA-L), which binds β1,6GlcNAc
attached to the trimannosyl core [51], confirmed the MS results [31]. The diverse glycan components
of PD-TSH and PT-TSH influence the different bioactivities of these pituitary hormones [31].

In human serum, two forms of TSH with different glycosylation profiles have also been identified;
the human variants have distinct origins, structures and functions. Free (free-TSH, 44 kDa) and
macromolecular (macro-TSH, a complex of TSH and anti-TSH immunoglobulin, 150 kDa) forms were
found in sera of patients with hypothyroidism. After peptide N-glycosidase F (PNGase F) digestion,
the bands of both variants showed the same SDS-PAGE mobility. Lectin affinity demonstrated that
nearly half of the free-TSH glycans were recognized by Concanavalin A (Con A) specific for α-linked
Man, while almost all macro-TSH contained multi-branched N-glycans. The distinct glycosylation
resulted in altered binding of TSH forms to anti-TSH immunoglobulin [52].

The human thyroid gland is almost completely evolved at 12 weeks of gestation and is capable of
thyroid hormone synthesis dependent on maternal TSH. A low level of fetal TSH was first detected at
10 weeks of gestation. The level is higher at 18 weeks of gestation, when the thyroid gland is structurally
mature [53]. Glycosylation of TSH in ontogenesis has been studied in rat. The TSH glycosylation
pattern changes during ontogenesis in rat. An increase of bi- and multiantennary structures,
accompanied by alteration of the oligosaccharide charge resulting from sialylation enhancement,
was observed during rat postnatal development [54,55].

Different TSH glycosylation patterns influence in vitro signal transduction through cyclic
3′,5′-adenosine monophosphate (cAMP) and inositol triphosphate (IP3). Human TSHR-transfected
CHO and Cos-7 cell lines stimulated by different TSH glycoforms showed significant differences
in cAMP and IP3 production. TSH bearing high-mannose structures displayed a higher ability to
elevate cAMP and IP3 production than did TSH with biantennary N-glycans. Core fucosylation of
TSH glycans did not affect cAMP production, but only TSH glycoforms with core Fuc stimulated IP3
synthesis [56].

Removal of the Asn52 N-glycosylation site in the β subunit of hTSH resulted in six-fold higher
thyrotropin activity expressed in the CHO-K1 cell line as compared with wild-type TSH (wtTSH).
Site-directed mutagenesis of the Asn78 and Asn23 residues in the TSH molecule enhanced its activity
two- to three-fold, as compared with wtTSH. Also showing increased activity was wtTSH expressed
in glycosylation mutants CHO-Lec2 (cells deficient in the CMP-SA transporter, which produce
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completely desialylated glycoproteins) and CHO-Lec1 (cells without N-acetylglucosaminyltransferase
I, GnTI, having mainly oligomannose structures in place of complex-type N-glycans) [57]. Analysis of
glycosylation of human phTSH and circulating TSH using affinity lectin chromatography showed a
difference between the glycosylation profiles of phTSH and the circulating form of TSH. Con A specific
for Man and ricin, which recognizes Galβ1,4GlcNAc structures, were used in that study. More phTSH
was retained on the Con A chromatography column than the circulating hormone, indicating higher
content of oligomannose structures on phTSH than on the circulating form. Chromatography with
ricin as ligand, performed for fully glycosylated and desialylated TSH, showed lower sialylation of
phTSH than circulating TSH. Interestingly, an analysis of fetal sera showed that TSH glycoforms are
not sialylated during the fetal period. Desialylated serum TSH from primary hypothyroid patients
shows increased binding to ricin, suggesting increased TSH sialylation in this clinical condition as
compared with healthy controls [58].

2.2. Glycosylation of TSH Receptor

2.2.1. TSHR Protein and Glycan Structure

Thyrotropin receptor (TSHR) is an 84 kDa G protein-coupled 7-transmembrane domain receptor
composed of two subunits: an extracellular α chain, which forms the ligand-binding region; and
β polypeptide, which encompasses the transmembrane and cytosolic parts of the receptor and is
responsible for its signaling. TSHR is encoded by one gene located on chromosome 14 in human and
expressed as a single polypeptide cleaved into two subunits and joined by a disulfide bond [59,60].
The ectodomain contains nine leucine-rich repeats (LRRs) and an N-terminal tail, which comprise
the binding domain for TSH. Three distinct TSH-binding regions (aa 246–260, 277–296, 381–385) are
suggested to form together a complex TSH-binding pocket. Interaction via disulfide bonds between
Cys41 and other neighboring Cys in the TSHR α subunit plays a crucial role in high-affinity binding of
TSH [53]. The extracellular domain of the human receptor is heavily glycosylated at six N-glycosylation
sites (Asn77, Asn99, Asn113, Asn177, Asn198, Asn302), and among them Asn113 is unique to hTSHR
while Asn177 is specific to mammals (Figure 2).

2.2.2. Functions of TSHR Glycans

Removal of Asn77 or Asn113 results in disruption of TSH binding and inhibition of cAMP
synthesis [33,61]. TSHR expressed in the CHO cell line cultured in the presence of tunicamycin, an
inhibitor that completely abolishes N-glycosylation, showed impaired transport to the cell membrane
and loss of its function. Cell surface expression of TSHR produced in CHO-Lec1 (lack of complex-type
N-glycans) and CHO-Lec2 (SA deficiency) glycosylation mutants was reduced, but the receptor’s
ability to bind TSH and synthesize cAMP in response to ligand-binding remained unchanged [62].
Western blot analysis of hTSHR expressed in the CHO-K1 cell line showed two protein bands (120
and 100 kDa). PNGase F digestion revealed that the release of N-glycans led to altered migration
characteristics of both the upper and lower bands. Treatment with Endo-β-N-acetylglucosaminidase H
(Endo H, specific for oligomannose N-glycans) and neuraminidase (sialidase) indicated that the lower
band contains mostly high-mannose N-glycans, whereas the glycoform in the upper band is abundant
in complex-type structures [63].

TSHR is the main autoantigen in Graves’ disease. The glycans of the TSHR ectodomain play an
important role in recognition by autoantibodies. Only the glycosylated variant of the recombinant
TSHR ectodomain can bind thyroid stimulatory and blocking antibodies from human serum [64].
Moreover, the α subunit of TSHR, such as thyroglobulin described below, can bind to the mannose
receptor (ManR) [65] on the surface of antigen-presenting cells (APC) such as macrophages and
dendritic cells. The binding of glycosylated TSHR to ManR mediates phagocytosis and enhances
antigen presentation to T cells, which results in initiation and amplification of the immune response [66].
Cleavage of the TSHR polypeptide into α and β subunits also results in shedding of the α subunit
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from the thyrocyte cell surface. Complex-type N-glycans but not immature high-mannose structures
were detected on the cleaved α subunit, which must have resulted from cleavage of TSHR on the
cell surface. The enzyme responsible for this extracellular shedding has not been identified yet [60].
It is suggested that this truncated highly N-glycosylated α subunit contributes to Graves’ disease
pathology in genetically susceptible patients via induction and/or maturation of the stimulating
anti-TSHR [60,67].

2.3. Glycosylation of Thyroglobulin

2.3.1. Tg Protein and Glycan Structure

Thyroglobulin is the most abundant protein in the thyroid gland, and the protein backbone for
synthesis of T3 and T4 hormones. The most stable form of Tg is a 660 kDa glycoprotein built of two
chains (12S forms), 330 kDa each [68]. In the follicular lumen, besides the soluble 12S form there are
also two multimerized variants of Tg (19S dimer, 27S tetramer), present as insoluble globules that serve
as a reserve for the production of thyroid hormones [69,70]. Tg contains two regions: the N-terminal
domain with the characteristic sequence C-W/Y-C-V-V (ten repeats) and the C-terminal region with
high homology to acetylcholinesterase [68].

The Tg molecule is O- and N-glycosylated [8], and around 10% of its molecular mass is
related to oligosaccharides [71,72]. The polypeptide chain of human Tg (hTg) contains 20 putative
N-glycosylation sites, of which 16 Asn are glycosylated [34]. The main types of hTg oligosaccharides
are high-mannose and diantennary complex-type structures (Figure 2) [37]. Eight of the N-glycans
are fucosylated and galactosylated complex-type, five N-glycosylation sites contain high-mannose
oligosaccharides, two of them were identified as hybrid- or complex-type without Fuc, and one
N-glycosylation site was occupied by a variety of N-oligosaccharide structures [34]. Tg glycans are
highly sialylated [38], with α1,6-linked SA bound preferentially by Sambucus nigra agglutinin (SNA)
being more abundant than α2,3-SA recognized by MAA [73]. Glycans on Tg in the intrafollicular
globules, in contrast to soluble Tg, were not captured by Con A lectin specific for α-linked Man
and SNA. This may be due to the covalent cross-links between the Tg molecules stored in a high
concentration in the globules, which would reduce the access of lectins to glycan epitopes [69]. Porcine
Tg was also reported to contain sulfated N-linked carbohydrate chains [74]. The structure of the
O-glycans identified on Tg is still largely unknown [72].

2.3.2. Functions of Tg Glycans

Glycans are necessary for intracellular and extracellular transport of Tg, protein folding iodination
and hormone synthesis, and the proper functioning and immunoreactivity of Tg [72,75]. N-glycans
located in the N-terminal domain of Tg play a role in iodination of the tyrosine residue and in
iodotyrosine coupling. The N-terminal part, which contains the site of hormone synthesis located at
Tyr5, also has two potential N-glycosylation sites at Asn57 and Asn91. An analysis of two N-terminal
peptides—the variant with high-mannose N-glycans and the deglycosylated peptide—showed that
high-mannose glycosylation resulted in intensive T4 synthesis, while deglycosylation decreased T4
production [8,76]. N-glycosylation also influences Tg immunogenicity, as shown by the replacement
of high-mannose and biantennary complex-type structures by multiantennary complex-type
oligosaccharides that were not found in thyroid Tg [29]. The immunoreactivity of Tg depends
significantly on its sialylation; removal of SA increased the immune response against desialylated
Tg [77]. Sialylation of Tg N-glycans is also important for its transmembrane transporter binding,
and influences Tg solubility [72]. Glycans of porcine Tg modulate recognition of anti-thyroid
antibodies. Tg secreted by porcine thyroid cells cultured in serum-free medium has a characteristic
glycosylation pattern, different from that of thyroid gland thyroglobulin. Tg produced in vitro
contained heterogeneous complex-type N-glycans and lower content of high-mannose structures,
as compared with thyroid-derived Tg [38]. Thyroglobulin produced in vitro showed fourfold lower
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immunoreactivity with anti-Tg antibody than did thyroid Tg, attributable to differences in glycan
composition that influenced antibody binding affinity [29].

The asialoglycoprotein receptor (ASGPR) is a C-type lectin first described on the surface of
hepatocytes. ASGPR is responsible for regulation of the serum glycoprotein level; it recognizes and
binds asialylated glycoproteins terminated with Gal and GalNAc [78]. Although the ASGPR protein
is characteristic for hepatocytes, this receptor is also expressed in thyroid cells. Rat ASGPR is built
of two rat hepatic lectin subunits (RHL-1, RHL-2) [79] which contain a carbohydrate recognition
domain (CRD) on the extracytoplasmic side. The RHL-1 subunit, located on the apical membrane
of thyrocytes, binds poorly sialylated Tg, and this interaction mediates Tg uptake from the colloid,
endocytosis, and delivery to lysosomes [80]. Gal and GalNAc used in vitro as RHL-1 inhibitors reduced
Tg internalization by 33%. This means that the N-glycan-mediated interaction of RHL-1 with Tg is
one of the mechanisms initiating Tg internalization but is not necessary for this interaction [80,81].
ASPGR also transfers newly synthesized asialo-Tg from thyrocytes to the follicular lumen. During
this transport, Tg is sialylated by membrane-bound sialyltransferase, resulting in detachment of Tg
from the asialoglycoprotein receptor and its release to the lumen of the thyroid follicle [70]. The lectin
interaction of ASGPR with thyroglobulin, regulated by the level of Tg sialylation, is crucial to Tg
transport through the thyrocyte membrane.

2.4. Glycosylation of Thyroid Sodium/Iodide Symporter

Sodium/iodide symporter (NIS) is a membrane glycoprotein with molecular mass of
approximately 87 kDa, expressed in the salivary glands, gastric mucosa, lactating mammary glands,
and most of all in thyroid tissue. NIS is responsible for active transport of iodide ions through the
thyroid follicular basolateral membrane into thyrocytes. In lactating mammary gland cells, NIS
allows translocation of iodine into milk; this is crucial for nurslings to synthesize their own thyroid
hormones [32,35].

NIS contains three potential N-glycosylation sites (Asn225, Asn485, Asn497) [32,35], and the
N-glycans attached to them are important in iodide transport. The use of the single, double and
triple mutants of Asn 225, Asn485 and Asn497 generated by site-directed mutagenesis showed that
NIS with a low amount or no N-glycans remains an active transporter. The triple mutant without
N-glycans exhibited 50% of wild-type NIS activity [23]. The process of glycosylation is regulated by
cAMP. Activation of the cAMP cascade leads to an increase of iodine uptake and translocation to the
plasma membrane in thyroid cells. Decreased translocation to the membrane and reduced iodine
uptake were found in tunicamycin-treated follicular cells with impaired NIS N-glycosylation at the
early step of N-glycan synthesis [82].

Added to rat thyroid FRTL-5 cells cultured in vitro, KT5823, a staurosporine-related protein kinase
inhibitor, was found to increase TSH-induced NIS expression in this cell line [83]. A study by Beyer and
co-workers confirmed that KT5823 enhances the NIS protein level in thyroid cells. They observed an
increase of two NIS forms (80 kDa fully glycosylated, 60 kDa hypoglycosylated); enhancement of the
second glycoform was greater. This increase of NIS level was accompanied by higher radioactive iodide
uptake in thyroid cells. In MCF-7 human breast cancer cells, KT5823 up-regulated only the level of the
hypoglycosylated 60 kDa form, while the amount of the mature 90 kDa glycoform was reduced by
this protein kinase inhibitor. KT5823-treated breast cancer cells also showed lower radioactive iodide
uptake. The lower molecular mass of hypoglycosylated NIS suggests that KT5823 has a similar effect
on glycosylation to brefeldin A, an inhibitor of protein transport from the ER to the Golgi apparatus.
The effect of decreased iodide uptake in experimental KT5823-treated breast cancer cell mutants with
single or triple mutations of NIS glycosylation sites (N225Q, N489Q, N502Q, N225Q/N489Q/N502Q)
showed that the inhibition of iodide uptake was only partly connected with hypoglycosylation of
NIS [84].
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2.5. Glycosylation of Pendrin

Pendrin is an anion transporter with 11 or 12 transmembrane domains located in the apical
membrane of thyrocytes, kidney cells and inner ear cells. Human pendrin is a 780 aa glycoprotein with
molecular mass of 110–115 kDa, encoded by the SLC26A4 gene located on chromosome 7. Thyroid
pendrin is responsible for iodide transport, while in the kidney pendrin is a chloride and bicarbonate
transporter and plays a crucial role in acid-base metabolism [32,85]. Immunohistochemical analysis of
thyroid tissue showed that pendrin expression was higher in thyroid tissue specimens from patients
with Graves’ disease than in normal thyroid tissue [85].

Pendrin comprises three putative N-glycosylation sites in the extracellular domain.
De-N-glycosylation reduces its molecular mass to 85 kDa [36]. The role of pendrin glycosylation
was investigated in vitro in a kidney cell line transfected with cDNA of mouse pendrin containing
five N-glycosylation sites, two of which (Asn167, Asn172) are glycosylated. Deglycosylation did not
influence pendrin expression. The membrane content of a double N-glycosylation pendrin mutant
(N167A/N172A) was comparable to that of fully glycosylated pendrin. However, removal of the
N-glycans attached to both Asn167 and Asn172 abolished the intracellular-dependent affinity of
pendrin to Cl−, HCO3

− and OH−, as was shown in functional assays [24].

3. Glycosylation in Thyroid Pathology

The epidemiological statistics show that thyroid diseases, especially autoimmune thyroid diseases
(AITDs) and thyroid cancers, are a serious problem [86,87]. According to the American Thyroid
Association, around 20 million Americans suffer from some form of thyroid disease [88]. AITDs are
the most common causes of thyroid gland dysfunction [89]; their incidence depends on the region,
with developed countries showing the highest frequency of cases [90]. The occurrence of autoimmune
hypothyroidism is significantly higher in women than in men [91,92]. The most recent American
Cancer Society statistics give an estimate of about 53,990 new cases of thyroid cancer in 2018 [93].
The World Health Organization’s International Agency for Research on Cancer reported 52,937 new
incidents of thyroid cancer per 100,000 individuals in 2012 [94]. The epidemiological data for 1999 from
Silesia Province in Poland shows that 82.04% of the registered thyroid cancer cases were females and
only 17.03% were males. The statistics were similar nine years later: 80.97% of the thyroid cancers were
diagnosed in women, 19.03% in men. In both surveys most diagnosed cases were papillary thyroid
cancer, but there was a significant increase in the incidence of this type of cancer between 1999 and
2008 [95].

3.1. Thyroid Cancers

Thyroid cancers (TCs) derived from follicular thyroid cells are classified as well-differentiated
papillary and follicular thyroid carcinomas, as well as poorly differentiated and anaplastic thyroid
carcinomas. Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer, with
80–85% frequency; follicular thyroid cancer (FTC) occurs less frequently (10–15% of TC), and the
rarest is anaplastic thyroid cancer (ATC) with occurrence lower than 5% of TC [96,97]. Most TCs are
characterized by genetic abnormalities; among them, mutations of genes encoding proteins of the
mitogen-activated protein kinase (MAPK) signaling pathway are well described [98].

3.1.1. Alterations of Glycan Profiles in TC

Changes in the expression of key GTs, and the glycosylation profile, including sialylation and
fucosylation, complex-type N-glycan branching, the presence of bisecting GlcNAc, as well as the
content and structure of poly-LacNAc chains, have been reported in many types of cancers [99],
including TCs [25]. Alterations of the glycan profile in TCs have been observed in thyroid tissue
sections and in thyroid cells cultured in vitro. Moreover, the expression of galectins specific for
β-galactose or LacNAc disaccharide was altered in TCs [100,101].
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Sialylation

Sialylation of thyroid proteins is important to thyroid cancer progression. Changes in sialylation
were analyzed at gene level for sialyltransferase (ST) expressed in TC cells. Sialyltransferases α2,8
(ST8Sia) belong to a group of enzymes that catalyze SA linking to another sialic acid through an
α2,8-glycosidic bond and the formation of polysialylated glycan chains [102]. The expression of
different variants of ST8Sia was evaluated in FTC human tissue, the highly invasive FTC-238 cell line,
the FTC-133 non-invasive thyroid cancer cell line, normal thyroid tissue and the normal thyroid cell
line Nthy-ori 3-1. ST8Sia4 gene expression decreased in FTC and FTC-238, as compared with FTC-133
and normal thyroid cells. In contrast, the ST8Sia6 variant was up-regulated in invasive FTC-238 cells.
Silencing of ST8Sia4 in FTC-133 increased cell proliferation, mobility and colony formation ability, while
overexpression of ST8Sia4 in FTC-238 inhibited cell proliferation and decreased colony formation ability
and migration. The expression of miRNA146a and miRNA146b, negative regulators of ST8Sia4, was
found to be increased in FTC-238, as compared to FTC-133 and Nthy-ori 3-1 cells. PI3K/Akt/mTOR
signaling is partially involved in ST8Sia4 suppression induced by miRNA146a/b [103]. The expression
of another sialyltransferase, ST6GalNAc2, which mediates the transfer of SA to terminal GalNAc and
SA binding via α2,6-linkage, was higher in FTC-238 invasive cells than in FTC-133 non-invasive cells
and silencing of ST6GalNAc2 in the FTC-238 cell line reduced its invasive ability. A xenograft of
FTC-238 cells with silenced ST6GalNAc2 showed lower tumor volume in mice, as compared with
the control FTC-238 xenograft. Overexpression of ST6GalNAc2 in the FTC-133 non-invasive cell line
enhanced its invasive ability and increased the tumor volume in xenograft mouse [104].

Lectin histochemical staining of SA in tissue specimens of four human thyroid carcinomas showed
that cancer transformation of thyroid follicular epithelial cells to PTC and FTC is associated with an
increase of sialylation [105,106]. Changes in sialylation in thyroid diseases involve the Tg molecule.
Decreased content of SA in Tg glycans was observed in patients with TCs and Graves’ disease [107,108].
Impaired sialylation shortened the half-life of Tg [107].

Fucosylation

Different types of human TC analyzed in clinical biopsies have characteristic modes of
expression of the FUT8 gene, which encodes α1,6-fucosyltransferase (Fut8), responsible for attachment
of Fuc by α1,6-glycosidic bonds to the innermost GlcNAc in core glycan structures [25,109].
An immunohistochemical method used to detect Fut8 in human TCs showed the strongest staining
in PTC, as opposed to normal follicles, and no differences between FTC and normal thyroid
tissue. Elevated Fut8 expression was associated with increased PTC tumor size and metastasis
to lymph nodes [25,110]. The latest study demonstrated that TC progression is also accompanied
by diverse expression of α-L-fucosidase FUCA1, a lysosomal enzyme that removes Fuc from
oligosaccharides. The mRNA expression of FUCA1 (assessed by real-time PCR), as well as the presence
(immunohistochemical staining and Western blotting) and activity of this enzyme in different TCs,
showed reduced amounts of FUCA1 on gene and protein levels in ATC, as compared with PTC, normal
human thyroid tissues and cell lines [109]. The lower FUCA1 expression was accompanied by higher
FUT8 levels in ATC than in PTC, resulting in stronger fucosylation in anaplastic thyroid cancer. The
low level of FUCA1 was suggested to be related to the aggressiveness of ATC more than to tumor
growth. In view of the latest results demonstrating that FUCA1 is a downstream target of the p53 gene,
and reports indicating that ATC is usually characterized by a mutated form of p53 while PTC carries
wild-type p53, it has been suggested that p53 regulates FUCA1 gene expression in TCs [111].

O-GlcNAcylation

Altered glycosylation in TCs has also been observed for O-GlcNAcylation, the post-translational
modification of nuclear or cytoplasmic proteins by binding of a single GlcNAc to Ser or Thr. Two
enzymes are involved in this process: O-GlcNAc transferase (OGT), responsible for addition of
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GlcNAc; and O-GlcNAc hydrolase (OGA), which removes GlcNAc [18]. OGA activity is higher in
human surgical specimen of TCs than in non-neoplastic tissue samples. O-GlcNAc-modified proteins
in thyroid cells were found mainly in the nuclear fraction. Nuclear proteins are less O-GlcNAcylated
in thyroid tumor cells than in non-neoplastic tissues [112]. Inhibition of OGA enzyme by PUGNAc,
a GlcNAc analog, or silencing of OGA mRNA, increased the O-GlcNAc level in the ATC 8305C cell line.
Down-regulation of OGA activity enhanced the phosphorylation of Akt kinase induced by insulin-like
growth factor 1 (IGF-1); it resulted in increased cell viability and proliferation [113]. The importance
of OGT in TC progression has been investigated in ATC cell line variants with overexpression of
OGT, inhibition of OGA, and OGT silencing. Both OGT overexpression and OGA inhibition increased
thyroid cell proliferation, while the opposite effect, attenuated cell proliferation, was observed in
OGT-silenced cells. Higher O-GlcNAc level was associated with more intensive colony formation and
thyroid cell mobility [114].

Other Types of Glycan Modification in Thyroid Cancer

Alterations of Tg glycosylation in TC progression also involve other types of monosaccharides.
Lectin affinity testing with Lens culinaris agglutinin (LCA), specific for Man and glucose residues, was
useful in differentiating serum Tg from patients with benign and metastatic TCs. The LCA-positive Tg
fraction was significantly lower in TC patients with lymph node metastases than in those with benign
thyroid tumors [115].

Lectin staining of human histological sections of different TC tissues demonstrated that
poly-LacNAc chains are preferentially recognized by these lectins in PTC samples, and to a lesser
extent in FTC and other types of TC. Heterogeneous poly-LacNAc chains were identified in PTC: long
and short unbranched linear-type and highly branched chains [116].

N-acetylglucosaminyltransferase V (GnTV) catalyzes β1,6 branching of complex-type N-glycans
via transfer of GlcNAc from uridine 5′-diphosphate-GlcNAc (UDP-GlcNAc, nucleotide sugar donor)
to position 6 of α1,6 Man in the core structure of N-glycans. Up-regulation of GnTV expression
was observed in human FTC and was positively correlated with the expression of matriptase,
a tumor-associated transmembrane protease. β1,6-branching of matriptase N-glycans delayed the
degradation of this protein and increased its prometastatic activity [117].

The diffuse sclerosing variant of papillary thyroid carcinoma (DSPTC) is characterized by
abundant lymphocytic infiltrates. The mechanism of lymphocytic infiltration within malignant thyroid
tissue remains unknown. High endothelial venule (HEV)-like vessels are a potential channel of
lymphocyte recruitment. They enable efficient lymphocyte trafficking and have been found in DSPTC
tissue. Lymphocyte trafficking via HEV-like vessels in PTC occurs in the same way as in secondary
lymphoid organs via HEV. Lymphocyte-endothelial cell interactions mediated by adhesion molecules
are required in both physiological and cancer tissues. Glycosylated receptors play a crucial role among
the surface proteins responsible for lymphocyte-endothelial interactions. Immunohistochemical
analysis of glycans expressed on HEV-like vessels in surgical specimens of human DSPTC showed
the presence of 6-sulfo-LacNAc, sialyl-LewisX (sLeX, SA2,3Gal1,4(Fuc1,3)GlcNAc) and sialylated
6-sulfo-LacNAc, which serve as glycoepitopes for L-selectins on lymphocytes. This means that
glycan-covered HEV-like vessels can take part in the initial step of lymphocyte accumulation in
DSPTC [118].

3.1.2. Glycosylation of Specific Proteins in TC

Glucose Transporter 1

There are interesting results on the glycosylation of glucose transporter 1 (Glut1) in TCs. The Glut1
molecule contains 12 membrane-spanning domains and a single potential N-glycosylation site (Asn45)
located on the first extracellular loop. O-glycan structures were also detected on this membrane protein.
Glut1 expression is higher in ATC than in normal tissue, and the glycosylation of Glut1 differs between
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cancer and normal thyroid cells. Glycosylation of Glut1 in thyroid cells isolated from patient with ATC
significantly influences active glucose input to cells [119]. An increase of sugar uptake stimulates the
metabolism and expansive activity of cancer cells [120]. De-N-glycosylated Glut1 showed reduced
glucose transport across the plasma membrane to 50% of that of the fully N-glycosylated form. On the
other hand, inhibition of the early stage of N-glycosylation process and accumulation of high-mannose
and hybrid-type N-glycans did not have a negative impact on glucose transport. O-linked glycans are
also important to Glut1 function; blocking O-glycosylation decreased glucose transport, as in the case
of de-N-glycosylation [119].

Serum Proteins

Glycosylation of serum proteins has been found to undergo changes during the progression
of different cancers [121,122], among them thyroid carcinomas [21,123]. Modified glycosylation of
serum IgG seems to be a good glycomarker of many diseases, including TC. In thyroid patients there
were significantly fewer agalactosylated structures with core Fuc (G0F) as well as agalactosylated
core-fucosylated structures with bisecting GlcNAc (G0FN) attached to the Fc fragment of serum
IgG1 than in healthy individuals. In thyroid cancer patients the reduction of agalactosylated and
core-fucosylated glycans on IgG1 was accompanied by an increase of sialylated structures, mainly
G2S [123]. Many types of membrane or secreted glycoproteins have been shown to be up-regulated in
thyroid carcinomas, among them mucins and adhesion proteins [21].

3.2. Glycosylation in Hypothyroidism and Hyperthyroidism

Hypothyroidism and hyperthyroidism are mainly the results of pathological processes within
the thyroid gland and are among the primary thyroid diseases. Rare cases can also arise from
disorders of the hypothalamus or pituitary gland or from peripheral causes. The most common thyroid
dysfunctions are caused by thyroid autoimmunity, including Hashimoto’s thyroiditis (HT) and Graves’
disease (GD) [124]. AITD is characterized by immunogenicity of the major thyroid antigens (Tg, TSHR
and TPO), and a high degree of glycosylation is one of the causes of immunogenicity [125].

Results on N-glycosylation of anti-Tg immunoglobulin (IgG) are among the few obtained for
glycosylation in AITD. A higher level of serum anti-Tg is the main marker of AITD, especially in HT
patients. N-glycosylation of anti-Tg from patients with HT, with GD and with PTC was investigated
using ELISA lectin assays. Among the three groups, Hashimoto anti-Tg samples had the lowest core
fucosylation. There were no observed differences in the galactosylation and SA content of anti-Tg
IgG between AITD and PTC patients [126]. Further study showed higher content of Man, terminal
SA, core Fuc and Galβ1,4GlcNAcβ1,2Man glycans in anti-Tg IgG isolated from HT patients than in
healthy individuals [127]. Our recent study of three different European cohorts also showed decreased
IgG core fucosylation in AITD patients. The reduced core fucosylation of IgG was inversely related to
the level of anti-TPO. Using Ulex europaeus agglutinin (UEA I) specific for α1,2-linked Fuc, we also
detected lower content of Fuc in the glycan antennas of peripheral blood mononuclear cells (PBMCs)
from HT patients. We did not find shared genetic variance between AITD and glycosylation [128].

Grave’s disease, the most common cause of hyperthyroidism, is characterized by goiter and
ophthalmopathy, and is also associated with thyrotoxicosis [129]. Autoimmune processes are triggered
by the stimulating autoantibody against TSHR, which mimics the action of TSH. Activation of
TSHR results in increased secretion of T3 and T4, and hypertrophy of thyroid follicular cells. Apart
from stimulating anti-TSHR, blocking antibodies are also detected in 25–75% of GD patients. The
different biological effects of stimulating and blocking anti-TSHR depend on the epitope of the TSHR
molecule to which the antibody binds [90,130,131]. GD affects humans but not animals; this may
be due to the difference in N-glycosylation of the TSHR α subunit, which contains six potential
N-glycosylation sites in humans while in animals the α subunit contains fewer N-glycans. Even
great apes, closely related to humans, have five N-glycan motifs in TSHR sequence. It has been
suggested that more intensive N-glycosylation could play an important role in breaking self-tolerance
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in humans, leading to development of GD [129]. This hypothesis was verified in the BALB/c murine
model of hyperthyroidism. Mouse TSHR also has one N-linked glycan less than the human receptor.
Mice were immunized with an adenovirus expressing the mouse or human TSHR α subunit, which
share approximately 87% amino acid homology. The immune response was developed in 47% more
transgenic BALB/c mice immunized with a low level of the hTSHR α subunit than in mice injected
intramuscularly with a high dose of the adenovirus expressing the mouse TSHR α subunit (none
of the mice produced anti-TSHR). BALB/c mice with knock-out of the TSHR gene showed a much
stronger immune response when they were immunized with the adenovirus expressing the more
highly N-glycosylated human TSHR α subunit than those immunized with the adenovirus expressing
the less N-glycosylated mouse TSHR α subunit [129,132–134].

The thyroid tissue of patients with GD showed significantly higher total activity of
sialyltransferases and higher mRNA level of sialyltransferases 1 (ST6Gal1) and 4 (ST3Gal4) than
did control nontumorous tissue. A positive correlation between ST6Gal1 expression and TSH receptor
antibody level was also observed. Increased ST6Gal1 and ST3Gal1 mRNA was associated with elevated
SA content in thyroid gangliosides. Sialylation of thyroid gangliosides was highest in GD samples; the
profile of these lipids did not differ between GD, toxic and nontoxic thyroid nodules, and nontumorous
tissue groups [135].

Glycosylation changes have also been observed in congenital hypothyroidism (CH) not connected
with HT [53]. Sialylation of glycans attached to both TSH subunits was up-regulated in rats with
primary CH [39]. Further research on the CH rat model confirmed the enhanced sialylation by showing
that the level of TSH with sialylated multiantennary N-glycans secreted in vitro by pituitary explants
from CH rodents was higher than in control animals [136,137]. Changes in TSH glycan sialylation
affect the MCR (described above).

Autonomously functioning thyroid nodules (AFTN), connected mostly with constitutively
activated mutated TSHR, are a common cause of hypothyroidism. A comparative analysis of gene
expression in AFTN and normal surrounding tissue indicated 20–40 genes with changed expression in
AFTN, including up-regulated sialyltransferase 1 (ST6Gal1) [138].

Studies have demonstrated that TSH regulates the level of GTs in the thyroid. TSH stimulated
the expression of various GTs, including sialyltransferase, in porcine cells cultured in vitro [135,139],
and up-regulated the sialylation of Tg by shifting the terminal monosaccharide from Gal to SA.
In in vitro studies, tri- and tetrasialylated glycans were detected on Tg. TSH stimulation mainly
increased mono- and disialylated oligosaccharides of Tg [38]. Another study showed reduced
α2,6-sialylation and unchanged α2,3-sialylation of membrane and secreted Tg in response to TSH
stimulation in the RTL-5 hormone-responsive rat thyroid cell line [140]. Treatment of rats with
propylthiouracil, used in therapy of hyperthyroidism to enhance endogenous TSH, increased the
levels of mannosyltransferases and galactosyltransferases in the thyroid, while rats treated with
thyroxine to suppress TSH production showed decreased levels of these glycosyltransferases and
N-acetylglucosaminidase 141]. Hyposialylated Tg resulting from reduced sialyltransferase activity
affected iodotyrosine coupling and transport of Tg into the follicular lumen in a patient with congenital
goiter and hypothyroidism [141]. Due to the involvement of all the above enzymes in the synthesis
of glycans attached to Tg, this TSH-regulated glycosylation may play a role in T3 and T4 production
in rat [142]. Interestingly, increased sialylation in hypothyroid animals resulted from a higher
α2,3-sialyltransferase mRNA level in thyrotrophs, related to SA content in the TSH molecule [143].

The glycosylation pattern of hTSH from sera of hypothyroid patients differs from that of
euthyroid donors. An increase of TSH glycoforms with terminal Gal and SA was observed in
individuals with subclinical hypothyroidism and overt primary hypothyroidism. Serum TSH was
elevated after administration of pharmacological doses of thyrotropin-releasing hormone (TRH) to
patients with subclinical and overt primary hypothyroidism, but TRH treatment did not influence
the amount of sialylated or terminally galactosylated TSH isoforms [144]. Analysis of TSH glycans
in sera of hypothyroid patients also showed decreased core fucosylation, as compared with healthy
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donors [41,145]. Higher levels of terminal SA and Gal were observed in patients with resistance to
thyroid hormone T3; this is a rare genetic disease resulting from a mutation of the thyroid hormone
receptor β (TRβ1). A defect in the T3-binding domain of TRβ1 reduces the interaction of thyroid
hormone with the receptor and leads to hypothyroidism [9].

Thyroid hormones T3 and T4 regulate metabolism, growth and development by controlling gene
expression. Among more than two thousand liver genes, 55 genes have been found to be regulated
positively and negatively by T3. In the hypothyroid mouse model, 41 liver genes, including genes
encoding α2,6- and α2,3-sialyltransferases, were down-regulated in response to thyroid hormone
treatment [146].

4. Conclusions

Since the early research of the 1970s it has been known that most of the thyroid gland and
thyroid-related proteins are glycosylated and that sugar chains are an important part of thyroid
glycoproteins, significantly regulating protein function. The more comprehensive approaches
and high-throughput technology used nowadays enable researchers to make detailed analyses of
monosaccharide composition, to determine the glycosidic bond types in glycan structures, their
conformation and occupation of potential glycosylation sites, and to make functional assessments
of the roles of glycans. The results of interdisciplinary research in glycobiology and endocrinology
confirm that oligosaccharides are critically involved in the control of thyroid functioning in the
physiological state, and that changes in protein glycosylation profiles lead to thyroid pathologies,
including thyroid carcinogenesis and autoimmunity.
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aa amino acids
AFTN autonomously functioning thyroid nodules
AITD autoimmune thyroid disease
Akt protein kinase B (PKB)
ASGPR asialoglycoprotein receptor
APC antigen-presenting cell
ATC anaplastic thyroid cancer
cAMP cyclic 3′,5′-adenosine monophosphate
CMP cytidine monophosphate
CH congenital hypothyroidism
CHO Chinese hamster ovary cell line
CHO-Lec glycosylation mutant of CHO
Con A Concanavalin A lectin
CRD carbohydrate recognition domain
DIT diiodotyrosine
DSPTC diffuse sclerosing variant of papillary thyroid carcinoma
Endo H endo-β-N-acetylglucosaminidase H
ER endoplasmic reticulum
FSH follicle-stimulating hormone
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FTC follicular thyroid cancer
Fuc fucose
FUCA α-L-fucosidase
Fut8 α1,6-fucosyltransferase
G0F agalactosylated IgG N-glycans with core fucose
G0FN agalactosylated IgG N-glycans with bisecting GlcNAc and core fucose
G2S bigalactosylated IgG N-glycans with sialic acid
Gal galactose
GalNAc N-acetylgalactosamine
GD Graves’ disease
GlcNAc N-acetylglucosamine
Glut1 glucose transporter
GnT N-acetylglucosaminyltransferase
GT glycosyltransferase
hCG human chorionic gonadotropin
HEV high endothelial venule
HT Hashimoto’s thyroiditis
IGF-1 insulin-like growth factor 1
IgG immunoglobulin
IP3 inositol triphosphate
LacNAc N-acetyllactosamine
LCA Lens culinaris agglutinin
LH luteinizing hormone
LRR leucine-rich repeat
MAA Maackia amurensis agglutinin
MALDI-TOF-MS matrix-assisted laser desorption-ionization time-of-flight mass spectrometry
Man mannose
ManR mannose receptor
MAPK mitogen-activated protein kinase
MCR metabolic clearance rate
MIT monoiodotyrosine
mTOR mammalian target of rapamycin
NIS sodium/iodide symporter
OGA O-GlcNAc hydrolase
OGT O-GlcNAc transferase
PBMC peripheral blood mononuclear cell
PD-TSH pars distalis thyrotropin
PHA-L Phaseolus vulgaris lectin
phTSH pituitary human thyrotropin
PI3K phosphatidylinositol-3-kinase
PNGase F peptide N-glycosidase F
PTC papillary thyroid carcinoma
PTM post-translational protein modification
PT-TSH pars tuberalis thyrotropin
RHL rat hepatic lectin
rhTSH recombinant human thyrotropin
SA sialic acid
Ser serine
sLeX sialyl-LewisX

SNA Sambucus nigra agglutinin
ST sialyltransferase
ST3Gal4 sialyltransferase 4
ST6Gal1 sialyltransferase 1
ST6GalNAc2 N-acetylgalactosamine-specific α2,6-sialyltransferase 2
ST8Sia α2,8-sialyltransferase
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T3 triiodothyronine
T4 thyroxine
TC thyroid cancer
Tg thyroglobulin
Thr threonine
TPO thyroperoxidase
TRβ1 thyroid hormone receptor β
TRH thyrotropin-releasing hormone
TSH thyroid-stimulating hormone
TSHR thyrotropin receptor
UDP uridine 5′-diphosphate
UEA I Ulex europaeus agglutinin I
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thyroglobulin in papillary thyroid carcinoma. Exp. Clin. Endocrinol. 1992, 100, 124–128. [CrossRef] [PubMed]

109. Vecchio, G.; Parascandolo, A.; Allocca, C.; Ugolini, C.; Basolo, F.; Moracci, M.; Strazzulli, A.;
Cobucci-Ponzano, B.; Laukkanen, M.O.; Castellone, M.D.; et al. Human a-L-fucosidase-1 attenuates the
invasive properties of thyroid cancer. Oncotarget 2017, 8, 27075–27092. [CrossRef] [PubMed]

110. Ito, Y.; Miyauchi, A.; Yoshida, H.; Uruno, T.; Nakano, K.; Takamura, Y.; Miya, A.; Kobayashi, K.; Yokozawa, T.;
Matsuzuka, F.; et al. Expression of alpha1,6-fucosyltransferase (FUT8) in papillary carcinoma of the thyroid:
Its linkage to biological aggressiveness and anaplastic transformation. Cancer Lett. 2003, 200, 167–172.
[CrossRef]

111. Tsuchida, N.; Ikeda, M.A.; Ishino, Y.; Grieco, M.; Vecchio, G. FUCA1 is induced by wild-type p53 and
expressed at different levels in thyroid cancers depending on p53 status. Int. J. Oncol. 2017, 50, 2043–2048.
[CrossRef] [PubMed]

112. Krzeslak, A.; Pomorski, L.; Lipinska, A. Elevation of nucleocytoplasmic beta-N-acetylglucosaminidase
(O-GlcNAcase) activity in thyroid cancers. Int. J. Mol. Med. 2010, 25, 643–648. [CrossRef] [PubMed]
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Bogdańska, M.; Nauman, J.; Bartoszewicz, Z. Thyroid sialyltransferase mRNA level and activity are increased
in Graves’ disease. Thyroid 2005, 15, 645–652. [CrossRef]

136. DeCherney, G.S.; Gesundheit, N.; Gyves, P.W.; Showalter, C.R.; Weintraub, B.D. Alterations in the sialylation
and sulfation of secreted mouse thyrotropin in primary hypothyroidism. Biochem. Biophys. Res. Commun.
1989, 159, 755–762. [CrossRef]

http://dx.doi.org/10.1093/glycob/cwj084
http://www.ncbi.nlm.nih.gov/pubmed/16464868
http://dx.doi.org/10.1016/j.pathol.2016.08.002
http://www.ncbi.nlm.nih.gov/pubmed/27956273
http://dx.doi.org/10.1016/S0304-4165(03)00050-3
http://dx.doi.org/10.1155/2010/205357
http://www.ncbi.nlm.nih.gov/pubmed/20706540
http://dx.doi.org/10.1155/2015/490531
http://www.ncbi.nlm.nih.gov/pubmed/26509158
http://dx.doi.org/10.1016/0009-8981(92)90073-Y
http://dx.doi.org/10.1016/j.jprot.2012.02.001
http://www.ncbi.nlm.nih.gov/pubmed/22365975
http://dx.doi.org/10.1038/nrendo.2018.18
http://www.ncbi.nlm.nih.gov/pubmed/29569622
http://dx.doi.org/10.1159/000363161
http://www.ncbi.nlm.nih.gov/pubmed/25231450
http://dx.doi.org/10.1530/EJE-12-0964
http://www.ncbi.nlm.nih.gov/pubmed/23360821
http://dx.doi.org/10.1210/jc.2014-2921
http://www.ncbi.nlm.nih.gov/pubmed/25380293
http://dx.doi.org/10.1101/362004
http://dx.doi.org/10.1089/thy.2011.0209
http://www.ncbi.nlm.nih.gov/pubmed/22066476
http://dx.doi.org/10.1111/j.1744-313X.2009.00830.x
http://www.ncbi.nlm.nih.gov/pubmed/19284442
http://dx.doi.org/10.1016/j.autrev.2014.01.013
http://www.ncbi.nlm.nih.gov/pubmed/24424182
http://dx.doi.org/10.1210/en.2007-1024
http://www.ncbi.nlm.nih.gov/pubmed/17823263
http://dx.doi.org/10.1210/en.2008-1690
http://www.ncbi.nlm.nih.gov/pubmed/19264867
http://dx.doi.org/10.1210/en.2010-0315
http://www.ncbi.nlm.nih.gov/pubmed/20555026
http://dx.doi.org/10.1089/thy.2005.15.645
http://dx.doi.org/10.1016/0006-291X(89)90059-4


Int. J. Mol. Sci. 2018, 19, 2792 24 of 24

137. Taylor, T.; Gesundheit, N.; Gyves, P.W.; Jacobowitz, D.M.; Weintraub, B.D. Hypothalamic hypothyroidism
caused by lesions in rat paraventricular nuclei alters the carbohydrate structure of secreted thyrotropin.
Endocrinology 1988, 122, 283–290. [CrossRef] [PubMed]

138. Eszlinger, M.; Krohn, K.; Frenzel, R.; Kropf, S.; Tönjes, A.; Paschke, R. Gene expression analysis reveals
evidence for inactivation of the TGF-beta signaling cascade in autonomously functioning thyroid nodules.
Oncogene 2004, 23, 795–804. [CrossRef] [PubMed]

139. Franc, J.L.; Hovsepian, S.; Fayet, G.; Bouchilloux, S. Differential effects of thyrotropin on various
glycosyltransferases in porcine thyroid cells. Biochem. Biophys. Res. Commun. 1984, 118, 910–915. [CrossRef]

140. Grollman, E.F.; Saji, M.; Shimura, Y.; Lau, J.T.; Ashwell, G. Thyrotropin regulation of sialic acid expression in
rat thyroid cells. J. Biol. Chem. 1993, 268, 3604–3609. [PubMed]

141. Grollman, E.F.; Doi, S.Q.; Weiss, P.; Ashwell, G.; Wajchenberg, B.L.; Medeiros-Neto, G. Hyposialylated
thyroglobulin in a patient with congenital goiter and hypothyroidism. J. Clin. Endocrinol. Metab. 1992, 74,
43–48. [CrossRef] [PubMed]

142. Spiro, M.J. Preferential response of thyroid glycosyltransferases to changes in thyrotropin stimulation.
Arch. Biochem. Biophys. 1980, 202, 35–42. [CrossRef]

143. Helton, T.E.; Magner, J.A. beta-Galactoside alpha-2,3-sialyltransferase messenger RNA increases in
thyrotrophs of hypothyroid mice. Thyroid 1995, 5, 315–317. [CrossRef] [PubMed]

144. Trojan, J.; Theodoropoulou, M.; Usadel, K.H.; Stalla, G.K.; Schaaf, L. Modulation of human thyrotropin
oligosaccharide structures-enhanced proportion of sialylated and terminally galactosylated serum
thyrotropin isoforms in subclinical and overt primary hypothyroidism. J. Endocrinol. 1998, 158, 359–365.
[CrossRef] [PubMed]

145. Schaaf, L.; Trojan, J.; Helton, T.E.; Usadel, K.H.; Magner, J.A. Serum thyrotropin (TSH) heterogeneity in
euthyroid subjects and patients with subclinical hypothyroidism: The core fucose content of TSH-releasing
hormone-released TSH is altered, but not the net charge of TSH. J. Endocrinol. 1995, 144, 561–571. [CrossRef]
[PubMed]

146. Feng, X.; Jiang, Y.; Meltzer, P.; Yen, P.M. Thyroid hormone regulation of hepatic genes in vivo detected by
complementary DNA microarray. Mol. Endocrinol. 2000, 4, 947–955. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1210/endo-122-1-283
http://www.ncbi.nlm.nih.gov/pubmed/3335209
http://dx.doi.org/10.1038/sj.onc.1207186
http://www.ncbi.nlm.nih.gov/pubmed/14737114
http://dx.doi.org/10.1016/0006-291X(84)91481-5
http://www.ncbi.nlm.nih.gov/pubmed/8429037
http://dx.doi.org/10.1210/jcem.74.1.1727828
http://www.ncbi.nlm.nih.gov/pubmed/1727828
http://dx.doi.org/10.1016/0003-9861(80)90403-8
http://dx.doi.org/10.1089/thy.1995.5.315
http://www.ncbi.nlm.nih.gov/pubmed/7488875
http://dx.doi.org/10.1677/joe.0.1580359
http://www.ncbi.nlm.nih.gov/pubmed/9846165
http://dx.doi.org/10.1677/joe.0.1440561
http://www.ncbi.nlm.nih.gov/pubmed/7738480
http://dx.doi.org/10.1210/mend.14.7.0470
http://www.ncbi.nlm.nih.gov/pubmed/10894146
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Glycosylation of Proteins Involved in Thyroid Functioning 
	Glycosylation of TSH 
	TSH Protein and Glycan Structure 
	Functions of TSH Glycans 
	Glycosylation of Recombinant TSH 
	Glycosylation of Naturally Occurring TSH 

	Glycosylation of TSH Receptor 
	TSHR Protein and Glycan Structure 
	Functions of TSHR Glycans 

	Glycosylation of Thyroglobulin 
	Tg Protein and Glycan Structure 
	Functions of Tg Glycans 

	Glycosylation of Thyroid Sodium/Iodide Symporter 
	Glycosylation of Pendrin 

	Glycosylation in Thyroid Pathology 
	Thyroid Cancers 
	Alterations of Glycan Profiles in TC 
	Glycosylation of Specific Proteins in TC 

	Glycosylation in Hypothyroidism and Hyperthyroidism 

	Conclusions 
	References

