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Abstract

Background. In vitro, cold-induced injury is an impor-
tant contributor to renal tubular cell damage. It is
mediated by iron-dependent formation of reactive
oxygen species and can be prevented by iron chelation.
We studied whether iron chelators can prevent cold-
induced damage in the isolated perfused rat kidney
(IPK) model both after cold perfusion (CP) and after
cold storage (CS). We hypothesized that in the CP
model iron-dependent cold-induced injury is more
pronounced, since oxygen is constantly provided.
Methods. The IPK was either flushed with University
of Wisconsin (UW) solution and stored for 4, 18 or
24 h at 4�C or perfused during 4 h at 4�C with UW for
machine perfusion. The iron chelators 2,20-dipyridyl
or desferal, or the negative control 4,40-dipyridyl were
added during the cold perfusion. Kidney function was
measured during 2 h reperfusion at 37.5�C and com-
pared to a control group (without cold preservation).
Results. Compared to control perfusion, kidney
function was decreased in all experimental protocols.
glomerular filtration rate and FR(H2O) were signifi-
cantly decreased, while FE(gluc) and FE(Na)
were higher after 4 h CS and CP. After 4 h CP, also
renal vascular resistance was increased. Addition of
2,20-dipyridyl did not improve kidney function after
either CS or CP. Prolonged periods of CS worsened
kidney function. The addition of 2,20-dipyridyl or
desferal did not improve kidney function after longer
periods of CS.
Conclusions. Addition of an iron chelator to the
preservation solution UW did not improve kidney
function after both CS and CP. Iron chelation is not
able to prevent cold-induced damage in the isolated
perfused rat kidney.

Keywords: cold perfusion; cold storage; iron;
isolated perfused kidney; renal injury

Introduction

It has long been thought that the immediate graft
injury after transplantation is predominantly caused
by ischaemia/reperfusion. In recent years, in vitro
studies have shown that not only ischaemia/
reperfusion but also cold per se may induce cell
damage. In liver cells [1] as well as in kidney cells [2],
it has been found that antioxidants can inhibit this
pure hypothermic injury. In vitro experiments show
that this cold-induced cell injury is triggered by a
cold-induced increase in cellular chelatable iron [3],
followed by an iron-dependent formation of reactive
oxygen species. In vitro, cold-induced injury can be
limited by iron chelators or oxygen deprivation. The
effect of iron chelators in this setting is impressive.
[Cold preservation of a primary culture of rat
proximal tubular cells (PTC) for 24 h followed by
rewarming results in marked cell injury and features
suggestive for apoptosis.] Addition of an iron chelator
during cold preservation prevents cell damage com-
pletely [4]. It is, however, not known whether iron-
dependent cold-induced damage plays an important
role in the injury that occurs during transplantation of
the kidney. During cold storage (CS), residual oxygen
is rapidly removed by ongoing metabolism. As a
result, iron-dependent cold-induced injury might be
limited during CS, since it is known that this damage
is less under hypoxic conditions [5]. In contrast, during
cold perfusion (CP), oxygen is constantly provided
to the kidney and consequently iron-dependent cold-
induced damage will be more pronounced. Moreover,
during CP one is able to study pure cold-induced
injury, since there is not a combination of cold and
ischaemia, as in CS.
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We aimed to study iron-dependent cold-induced
damage in the whole kidney. To this end, we studied the
effects of iron chelation on the loss of kidney function
after CP in the isolated perfused rat kidney (IPK).
We compared it to the effects of iron chelation on
kidney function after CS. The IPK was chosen as a
model to realize cold preservation without preceding
warm ischaemia, and to ensure that resulting damage
will exclusively be caused by the cold (in the case of CP)
or cold plus ischaemia (in case of CS). We designed
this study to assess specifically the effects of (iron-
dependent) cold-induced damage without ischaemia
in a whole organ. In earlier studies, iron chelation was
always applied in a combination of cold and ischaemia
[6,7], and a period of preceding warm ischaemia [8].

Subjects and methods

Materials

Pluronic F-108 was obtained from BASF (Arnhem, The
Netherlands). Sodium pentobarbital was purchased from
Sanofi Sante B.V. (Maassluis, The Netherlands), furosemide
from Aventis Pharma B.V. (Hoevelaken, The Netherlands)
and heparin from Leo Pharma B.V. (Weesp, The
Netherlands). Travasol 8.5% without electrolytes was from
Baxter (Brussels, Belgium). University of Wisconsin (UW)
solution (Viaspan) was obtained from Du Pont Pharma
(Wilmington, Delaware, USA) and UW gluconate for
machine perfusion was kindly provided by Dr Buurman
(University Hospital Maastricht, The Netherlands) [9].
Na-penicillin was purchased from Yamanouchi (Leiderdorp,
The Netherlands), insulin from Novo Nordisk Farma B.V.
(Alphen a.d. Rijn, The Netherlands) and dexamethasone
from Centrafarm (Etten-Leur, The Netherlands). ADH
(lysine-vasopressin) was obtained from Sandoz (Bazel,
Switzerland), aldosterone from Organon (Oss, The
Netherlands), and angiotensin II from Beckman (Palo Alto,
California, USA). All other chemicals were of analytical
grade and obtained either from Sigma (St. Louis, MO, USA)
or Merck AG (Darmstadt, Germany).

Isolated perfused rat kidney

Isolation of the rat kidney was performed as described in
detail previously [10] with some minor alterations. Briefly,
male Wistar–Hannover rats (220–280 g) were anaesthetized
with pentobarbital (6mg /100 g; i.p.). Subsequently, furose-
mide was injected i.p. (1mg/100 g) to increase urine secretion.
Heparin (125U/100 g) was injected in the spleen. After
canulation of the urether of the right kidney, the right renal
artery was canulated via the mesenteric artery without
interruption of flow. The kidney was excised and placed in a
perfusion chamber with a constant temperature (37.5 or 4�C
during warm perfusion or cold preservation respectively).
The perfusion buffer consisted of an isotonic cell-free
Krebs–Ringer–Henseleit-based perfusate containing 25 g/l
Pluronic F-108, 112.0mM NaCl, 5.2mM KCl, 25.0mM
NaHCO3, 0.28mM KH2PO4, 0.84mM Na2HPO4, 4.0mM
urea, 5.0mM glucose, 2.0mM CaCl2, 1.0mM MgCl2,
0.50mM L-cysteine, 2.3mM glycine, 2.0mM Na-pyruvate,
1.2mM Na-acetate, 0.113mM Na-glutaminate, 0.21mM

Na-propionate, 1.0mM inosine, 5.0mM alanine, 2.0mM
glutamine, 1.2mM a-ketoglutarate, 0.01mM ascorbic acid,
0.32ml Na-lactate solution (60%), 0.33mM glutathione,
0.08mMmyo-inositol, 1mg/l cholinechloride, 4 I.E./l insulin,
2 mg/l aldosterone, 10E ADH, 20mE angiotensin II. To this
solution, 10ml 8.5% Travasol per litre, a mixture of 15 amino
acids, was added. Pluronic F-108 was used as an oncotic agent
in the albumin-free perfusion buffer. For the determination
of glomerular filtration rate (GFR), vitamin B12 (14mM) was
added to the perfusion buffer. The perfusate reservoir was
placed in a waterbath of 37.5�C and was oxygenated with
95% O2/5% CO2.

Preservation solutions

UW solution and UW gluconate for machine perfusion,
supplemented with 250mg/l Na-penicillin, 48 I.u./l insulin
and 8.3mM dexamethasone, were used. The iron chelator
2,20-dipyridyl (2,20-DPD; 100 mM) or the negative control
4,40-dipyridyl (4,40-DPD; 100 mM) were added to the
preservation solutions.

Experimental protocols

In the control group (n¼ 6), kidneys were perfused at 37.5�C
with perfusion buffer (500ml) immediately after isolation.
During a stabilization period of 30min, the perfusion flow
was set to a value resulting in an arterial pressure of 75mmHg
recorded just proximal to the kidney. After the first 200ml of
venous effluent was discarded during the stabilization period,
the perfusate was recirculated in the perfusion system.

In the experimental groups, kidneys were randomly
distributed into the following experimental groups: CS
with 2,20-DPD (n¼ 6), CS with 4,40-DPD (n¼ 6), CP with
2,20-DPD (n¼ 6) and CP with 4,40-DPD (n¼ 6). CS kidneys
were flushed with cold (4�C) UW solution for 15min with a
perfusion flow of 2.2ml/min and an arterial pressure between
40–60mmHg, followed by 4 h storage at 4�C. We also
performed experiments with an extended period of CS.
Kidneys were cold stored for 24 h in the presence of
2,20-DPD (n¼ 7) or 4,40-DPD (n¼ 3) or vehicle (n¼ 5). In
addition, kidneys have been stored for 18 h at 4�C in the
presence (n¼ 3) or absence (n¼ 4) of the iron chelator desferal
(deferoxamine, 0.625mM). CP kidneys were perfused with
150ml cold (4�C) UW gluconate for machine perfusion.
During the first 15min of perfusion of the CP kidneys the
venous effluent was discarded, followed by recirculation of
the solution in the perfusion system for 4 h. Perfusion flow
was set to a value resulting in an arterial pressure of
40–60mmHg. At the end of the cold preservation period,
the preservation solution of both CS and CP kidneys was
replaced by 500ml perfusion buffer followed by reperfusion
of the kidneys at 37.5�C, like in control kidneys. After the
30min stabilization period, urine samples were collected
over 10min intervals during 2 h of perfusion and used for
functional analysis.

Functional analysis

During reperfusion, arterial pressure, GFR, diuresis and
fractional water reabsorption [FR(H2O)] were recorded
continuously. Renal vascular resistance (RVR) and filtration
fraction (FF) were calculated according to the following
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equations: RVR¼ arterial pressure/perfusion flow; FF¼

GFR/perfusion flow. Urine and perfusate samples were
analysed for glucose, sodium, and the enzyme alkaline
phosphatase (ALP). Sodium was determined by flame
photometry. The GLUCO-QUANT glucose kit from Roche
Diagnostics (Almere, the Netherlands) was used for glucose
analysis. ALP excretion, used as a measure for proximal
tubular injury, was measured by spectrophotometry.

Histology

At the end of the 2 h reperfusion period, samples from control
and experimental kidneys were collected. The samples were
fixed with bouin (25% formaldehyde of a 37% solution, 70%
picric acid, 5% acetic acid) and embedded in paraffin. Kidney
sections were stained with haematoxylin and eosin and
assessed by light microscopy.

Data analysis

Data are expressed as mean±SE of 6 kidneys in each group,
unless otherwise stated. Data obtained from two groups were

compared by ANOVA for repeated measures with time as
within-subject factor and treatment group as between-subject
factor. Differences were considered significant if P<0.05.

Results

Compared to 37.5�C control perfusion, 4 h cold
preservation of the IPK resulted in a decrease in
kidney function during reperfusion after both CS and
CP (P<0.05 for control vs 4,40-DPD). Figure 1 shows
the results of CS kidneys in the presence of the iron
chelator 2,20-DPD or the negative control 4,40-DPD.
CS kidneys in the presence of 4,40-DPD showed a
decrease in GFR and FR(H2O), and an increase in
fractional glucose excretion (FE(gluc)) and FE(Na)
compared to control (P<0.05). No significant differ-
ence in diuresis, RVR, FF and the release of ALP was
seen after CS when compared to control. Figure 2
shows the results of CP in the presence of 2,20-DPD
or 4,40-DPD. CP kidneys with 4,40-DPD showed an
increase in RVR, FE(Na) and FE(gluc), and a decrease
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were added to the UW solution. Kidney function after CS was compared to control perfusion without prior cold preservation (control; œ).
All data are means±SE of 6 experiments. *Significantly different from control (P<0.05).

2648 M. Bartels-Stringer et al.



in GFR and FR(H2O) compared to control kidneys
(P<0.05). No significant difference in diuresis, FF and
the release of ALP was seen after CP when compared
to control. Addition of the iron chelator 2,20-DPD to
the preservation solution did not prevent the decrease
in kidney function after either 4 h CS or 4 h CP
(P>0.05 for 4,40-DPD vs 2,20-DPD).

We also performed experiments using 24 h of CS.
In these experiments, in the control CS group either
4,40-DPD or vehicle was added to exclude a possible
toxic effect of 4,40-DPD. There was no difference
between these two groups (data not shown). Figure 3
shows the results of kidneys cold stored for 24 h in
the presence (n¼ 7) or absence (n¼ 8) of 2,20-DPD.
Compared to warm control perfusion, 24 h CS in the
absence of 2,20-DPD resulted in a decrease in GFR and
FR(H2O), and an increase in diuresis, RVR, FF and
FE(gluc) (P<0.05). ALP excretion per 10min was not
significantly different from warm control. However,
cumulative ALP excretion was higher in both experi-
mental groups compared to warm control (data not
shown). Addition of the iron chelator 2,20-DPD to the

preservation solution did not prevent the decrease
in kidney function after 24 h CS (P>0.05 for CS vs
CSþ 2,20-DPD). When 24 h of CS plus 2,20-DPD
(n¼ 7) was compared to either 4,40-DPD (n¼ 3) or
vehicle (n¼ 5), the results were the same.

During our study, we also performed experiments
using the iron chelator desferal. Figure 4 shows the
results for kidneys cold stored for 18 h in the presence
(n¼ 3) or absence (n¼ 4) of 0.625mM desferal. CS
control kidneys showed a decrease in GFR, FF and
FR(H2O), and an increase in RVR, FE(gluc), FE(Na)
and the release of ALP compared to warm control
perfusion (n¼ 6; P<0.05). No significant difference in
diuresis was seen after CS when compared to control.
Addition of desferal to the preservation solution did
not prevent the decrease in kidney function after 18 h
CS (P>0.1 for CS vs CSþ desferal).

Histological analysis of kidneys after 4 h of CS
or CP, with either 4,40-DPD or 2,20-DPD, showed
similar features consistent with mild tubular epithelial
damage, i.e. distension with flattening of tubular
epithelium, nuclear activation and fine vacuolation of
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the cytoplasm. The brush border remained intact
and there was no luminal cellular debris. After 24 h of
CS, damage was more severe. There was prominent
nuclear activation, irregular vacuolation of the
cytoplasm, irregular spacing of nuclei, and loss of the
brush border with cellular debris in tubular lumens
(Figure 5).

Discussion

During this study, we investigated whether iron-
dependent cold-induced damage contributes to injury
during cold kidney preservation, which is especially
important for CP by machine perfusion. Injury during
CP results from pure hypothermia. The iron-dependent
cold-induced damage imposed by CP may be more
pronounced than iron-dependent cold-induced damage
during CS. During CS, residual oxygen will be removed
by ongoing metabolism, but during CP oxygen is
constantly delivered to the organ. It is known that

hypoxia reduces iron-dependent cold-induced damage
in vitro [5]. In a recent review, it was described that
machine perfusion and CS of human kidney transplants
have similar long-term outcomes [11]. It is, however,
imaginable that possible beneficial effects of CP are
hampered by the deleterious effects of iron-dependent
cold-induced damage, which might be prevented by
the addition of an iron chelator. Our study does not
support this notion. Compared to control perfusion,
cold preservation of the IPK for 4 h resulted in a
decrease in kidney function during reperfusion after
both CS and CP (Figures 1 and 2). After 18 and 24 h
of CS (Figures 3 and 4), this decrease in function
during reperfusion was even more pronounced than
after 4 h of cold preservation. Addition of the iron
chelator 2,20-DPD to the preservation solution UW did
not improve kidney function or histology of proximal
tubules after both CS and CP for 4 h and after CS
for 24 h. The iron chelator desferal was also unable
to prevent the decrease in kidney function during
reperfusion after 18 h CS.
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In most studies, long-term (24 h) CS of kidneys is
applied. This leads to a dramatic decrease in function,
and to practically non-functioning kidneys with a
residual GFR of about 10% [12]. We decided to
study short-term (4 h) cold kidney preservation and
an extended period of CS (i.e. 24 h). We argued that
studying 4 h of cold preservation might be more
sensitive than 24 h, since the damage is more subtle.
Already after 2 h of CS, mitochondrial changes are
found in vitro [13]. Mitochondria are thought to play
a central role in the mechanism of cold storage [14].
Because PTC are completely dependent on oxidative
phosphorylation, mitochondrial dysfunction will lead
to functional changes of the kidney, indicative of PTC
impairment, such as an increased FE(gluc). Moreover,
it has been found in rats that 4 h of CS leads to
considerable damage in a rat kidney transplantation
model [15]. One should, of course, be aware that
our model is far from clinical conditions, particularly
marginal donors, where there is also considerable
damage before the cold preservation. So, our
model offers the advantage of selectively studying

cold-induced damage in a whole kidney model, which
limits its applicability in clinical practice.

In addition to the experiments with 2,20-DPD and
its negative control 4,40-DPD, experiments have been
done using the iron chelator desferal. During these
experiments, kidneys were cold stored for 18 h in the
presence or absence of 0.625mM desferal. Similar
conditions were used in the study of Huang et al. [8]
in which it was shown that inclusion of desferal in the
cold storage solution UW reduces cold ischaemia-
associated renal transplant damage and improves renal
function of rat kidney transplants.

Our data show that iron chelation does not prevent
deterioration of kidney function after cold preservation
of the kidney. In the literature, many studies have
shown the beneficial effect of iron chelation on
cold preservation. Most of these studies have been
performed in vitro, and in this setting the effect is
unequivocal [1,3–5]. Our study casts doubt on the effect
of iron chelation on cold-induced damage in vivo.
In the past, this effect has been found in vivo. During
CS of rabbit kidneys, prevention of lipid peroxidation
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by iron chelation was described [6,7]. Very recently,
Huang et al. showed that the addition of the iron
chelator desferal during CS of a syngeneic rat kidney
transplantation model improved kidney function
after transplantation considerably [8]. However, in all
of these models there is a combination of cold and
ischaemia, rather than pure cold-induced injury. So, in
these studies it is possible that the iron chelator has its
beneficial effects on ischaemia-reperfusion injury rather
than on the cold. It has been described before that iron
chelators are able to prevent damage induced by
ischaemia-reperfusion [16,17]. Secondly, since in our

model no leucocytes are added to the perfusate, it is
possible that we overlook effects of the iron chelator on
the endothelium. It is possible that iron chelation has
an effect on the endothelium and that upregulation of
adhesion molecules and subsequent leucocyte adhesion
is prevented. In warm ischaemia/reflow, adhesion of
leucocytes plays an important role. Treatment with
anti-ICAM-1 decreases damage [18] and also ICAM-1-
deficient mice are protected against damage inflicted
by warm ischaemia/reflow [19]. Iron-dependent cold-
induced damage has been described in cultured liver
endothelial cells [1]. It is possible that endothelial
cell stress leads to expression of adhesion molecules.
In a previous study, we did not find alteration
of vascular function (both endothelium-dependent
and -independent) in renal vessels [20], but this does
not exclude the possibility that iron-dependent cold-
induced damage leads to upregulation of adhesion
molecules in these cells that may be prevented by iron
chelation. Prevention of endothelial damage might
also explain the decrease of lipid peroxidation in stored
rabbit kidneys [6,7].

Our study shows that iron chelation is not able to
prevent cold-induced damage imposed by CS or CP
to PTC in the isolated perfused rat kidney. Although
very effective in vitro, iron chelation did not infer
protection. However, this does not mean that iron
chelators should not be added to the preservation
solution. Iron chelation might be beneficial by other
mechanisms than inhibition of iron-dependent cold-
induced damage of PTC.
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